JP2007023870A - Judging method of regeneration time and ending time of diesel smoke filter - Google Patents

Judging method of regeneration time and ending time of diesel smoke filter Download PDF

Info

Publication number
JP2007023870A
JP2007023870A JP2005206142A JP2005206142A JP2007023870A JP 2007023870 A JP2007023870 A JP 2007023870A JP 2005206142 A JP2005206142 A JP 2005206142A JP 2005206142 A JP2005206142 A JP 2005206142A JP 2007023870 A JP2007023870 A JP 2007023870A
Authority
JP
Japan
Prior art keywords
smoke
resistance value
flow resistance
smoke filter
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005206142A
Other languages
Japanese (ja)
Inventor
Chang Dae Kim
昌 大 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Priority to JP2005206142A priority Critical patent/JP2007023870A/en
Publication of JP2007023870A publication Critical patent/JP2007023870A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a judging method of regeneration time and ending time of a diesel smoke filter capable of judging the regeneration time and the ending time of the diesel smoke filter. <P>SOLUTION: The judging method comprises a step to previously measure a flow resistance value changing for every quantity of smoke, a step to previously store each smoke and the flow resistance value into a storage/calculation means for data processing, a step to determine the previously stored flow resistance value equivalent to quantity of smoke as a standard of the forcible regeneration time (starting time) of the smoke filter, a step to measure the flow resistance value of an actual vehicle and confirm the quantity of smoke to meet the measured flow resistance value, and a step to judge the forcible regeneration time and the end time of the smoke filter by comparing/calculating the flow resistance value of the real vehicle with the flow resistance value of the confirmed quantity of smoke. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はディーゼル煤煙濾過装置の再生時点及び終了点判断方法に関するものであって、より詳細にはディーゼル煤煙濾過装置の前後端圧力差を排気ガス流量で除した値(以下、流れ抵抗値と称する)で煤煙の蓄積量程度をデータ化し、煤煙濾過装置の強制再生時点及び終了点を判断できるようにしたディーゼル煤煙濾過装置の再生時点及び終了点判断方法に関するものである。   The present invention relates to a method for judging the regeneration point and end point of a diesel smoke filter, and more specifically, a value obtained by dividing a pressure difference between the front and rear ends of a diesel smoke filter by an exhaust gas flow rate (hereinafter referred to as a flow resistance value). ) Is a method for determining the regeneration point and end point of a diesel soot filter device, in which the amount of accumulated smoke is converted into data and the forced regeneration point and end point of the smoke filter device can be determined.

現在、EURO−IV規制対応のため、ディーゼル煤煙濾過装置(図2参照)の開発に拍車がかけられているが、このような規制を満足させるため多くのシステムの変更が必要であり、又既存の酸化触媒のみでは上記規制を満足させるに困難な点があるので、新たにディーゼル煤煙濾過装置を開発している。   Currently, in order to comply with the EURO-IV regulations, the development of diesel smoke filter devices (see Fig. 2) has been spurred, but many system changes are required to satisfy such regulations, and existing Since only the above oxidation catalyst has difficulty in satisfying the above regulations, a new diesel smoke filter is being developed.

特に、ディーゼル自動車の場合、1.7トンを基準としてそれ以下の車両ではディーゼル煤煙濾過装置を使用することなく、EURO―IV規制を満足させようとしているが、1.7トン以上の車両ではディーゼル煤煙濾過装置を装着しなければEURO―IV規制を満足させることができない。   In particular, in the case of a diesel vehicle, a vehicle with a size of 1.7 tons or less is trying to satisfy the EURO-IV regulation without using a diesel smoke filter, but a vehicle with a size of 1.7 tons or more is diesel-powered. EURO-IV regulations cannot be satisfied without the soot filter.

しかし、ディーゼル自動車にディーゼル煤煙濾過装置を装着するためには多くのエンジンデータと車両データが必要であり、これをマッピングするに充分な期間が要求されている。
また、ディーゼル煤煙濾過装置装着のため、捕集された煤煙を効果的に燃焼させ、継続的に再使用できるようにすることも重要な点である。
However, a lot of engine data and vehicle data are required to mount a diesel smoke filter device on a diesel vehicle, and a sufficient period is required to map them.
It is also important to effectively burn the collected soot so that it can be reused continuously because it is equipped with a diesel soot filter.

上記ディーゼル煤煙濾過装置を開発、装着するための必要最小限で、かつ、優先的に実行すべき検討課題は次の通りである。
1)燃料の後噴射(進刻/遅刻含む)に伴う排気ガス温度上昇
2)エンジン条件毎の煤煙強制再生戦略
3)煤煙ローディング(Loading)量把握及び煤煙強制再生の開始と終了点把握
4)未制御バーニング(Uncontrolled burning)防止技術等。
The following are the minimum and preferential considerations for developing and installing the diesel soot filter.
1) Exhaust gas temperature rise due to fuel after-injection (including advance / late) 2) Smoke forced regeneration strategy for each engine condition 3) Smoke loading (loading) amount grasping and smoke forcible regeneration start and end point grasping 4) Uncontrolled burning prevention technology, etc.

上記の通り、ディーゼル自動車を製造及び販売するためには数回の耐久試験と評価試験(ヨロッパ評価モード:ECモード、米国評価モード:FTP−75モード)を通過する必要があり、基本ロジックとエラーロジック及び煤煙強制再生ロジック等、実道路での与件及び状況に合わせて多様な開発ロジックを作成して突発的な問題を防止しなければならない。
これに、上記全ての場合の課題に対する充分なデータが必要であることは言うまでもない。
As mentioned above, in order to manufacture and sell diesel vehicles, it is necessary to pass several endurance tests and evaluation tests (European evaluation mode: EC mode, US evaluation mode: FTP-75 mode), and basic logic and errors A variety of development logics such as logic and forced smoke regeneration logic must be created according to the conditions and conditions on the actual road to prevent sudden problems.
Needless to say, this requires sufficient data for all of the above problems.

前記検討課題1)項、2)項及び4)項については、問題点を把握してそれに対するマッピングと試験データを保有する必要がある。3)項の場合には充分な試験データとともに有効利用のため、その正確な煤煙の量と蓄積程度を把握しなければならないが、現時点では、実車両及びエンジンで蓄積されている煤煙量を秤で測る方法しかないのが実情である。   Regarding the issues 1), 2) and 4), it is necessary to grasp the problem and to have mapping and test data for it. In the case of item 3), it is necessary to ascertain the exact amount of smoke and its accumulation for effective use together with sufficient test data. At present, however, the amount of smoke accumulated in actual vehicles and engines is measured. The fact is that there is only a way to measure with.

従って、実車両及びエンジン試験の際、煤煙強制再生時点を把握するため、現在の煤煙濾過装置内に何gの煤煙が溜っているかを計測し、これを再び装着して試験を進行しなければならない。
しかし、一般的に煤煙濾過装置の重量が12〜15kgであるのに対して、煤煙の重量は約2〜12gと微量であるため、測定精度(Accuracy)が低く、また、走行時煤煙濾過装置の外側に異物質が付着しても煤煙量が変化するので、煤煙量をリアルタイムで正確に測定することは不可能である。
Therefore, in the actual vehicle and engine test, in order to grasp the time point for forced regeneration of smoke, measure how many grams of smoke is accumulated in the current smoke filter device, and install it again to proceed with the test. Don't be.
However, since the weight of the smoke filter is generally 12 to 15 kg, the weight of the smoke is as small as about 2 to 12 g, so the measurement accuracy (Accuracy) is low, and the smoke filter when traveling Since the amount of smoke changes even if foreign substances adhere to the outside, it is impossible to accurately measure the amount of smoke in real time.

エンジン対象試験でも煤煙濾過装置を切離して秤でその重量を測定することは同じであるため、同様の問題がある。即ち、試験中に該当煤煙濾過装置を切離して重みを測り、これを更に装着して試験を継続進行しなければならない。
このような試験を繰り返すと開発期間が非常に長くなるばかりでなく、測定されたデータの信頼度が落ちることになる。
すなわち、ディーゼル煤煙濾過装置に蓄積された正確な煤煙の量を把握することができないので、該当装置内の蓄積煤煙に対する正確な再生時点を設定できないことになる。
In the engine test, it is the same problem to separate the smoke filter and measure its weight with a scale. That is, during the test, the corresponding smoke filter device must be disconnected and weighed, and the test must be continued with this attached.
Repeating such a test not only makes the development period very long, but also reduces the reliability of the measured data.
That is, since the accurate amount of smoke accumulated in the diesel smoke filter device cannot be grasped, it is not possible to set an accurate regeneration time point for accumulated smoke in the device.

現在のディーゼル煤煙濾過装置の再生ロジックは、一定マイレージ(mileage)(200km以上)以上で、水温(50℃以上)、エンジン回転数(2000rpm以上)、および車両速度等の変数を考慮して一定条件以上でのみポストインジェクション(Post Injection)を使用して600℃で煤煙を再生するようになっている。
しかし、現在、再生前のディーゼル煤煙濾過装置内の煤煙量と、再生終了後の煤煙量を正確に把握する方法がないため、該当車両の該当ロジックのみではいくら煤煙が溜っており、又何度で再生し、どの程度まで煤煙を除去できるか把握できず、煤煙濾過装置内の状況が全く分からない場合が発生することになる。
従って、煤煙濾過装置再生のための燃料浪費、設備の耐久性劣化を招くことになる。
特開平7−4226号公報 特開平9−264119号公報
The regeneration logic of the current diesel smoke filter device is a certain mileage (more than 200km) or more, taking into account variables such as water temperature (above 50 ° C), engine speed (more than 2000rpm), and vehicle speed. Only in the above manner, smoke is regenerated at 600 ° C. using post injection.
However, there is currently no method for accurately grasping the amount of smoke in the diesel smoke filter before regeneration and the amount of smoke after completion of regeneration. In other words, it may not be possible to grasp how much smoke can be removed, and the situation inside the smoke filter device may not be known at all.
Accordingly, waste of fuel for regeneration of the smoke filter device and deterioration of the durability of the equipment are caused.
Japanese Patent Laid-Open No. 7-4226 JP-A-9-264119

本発明は上記の点を考慮してなされたものであって、エンジン及び車両の条件に拘らず、煤煙濾過装置内に溜っている煤煙量に従い、ディーゼル煤煙濾過装置の前後端圧力差を排気ガス流量に除算した値である流れ抵抗値を算定して、煤煙の蓄積量及び該当する流れ測定値をデータ化させることにより、ソフトウェア的なものを設けるとともに、以後実車の流れ測定値のみ測定しても煤煙濾過装置の強制再生時点及び終了点を容易に判断することができるディーゼル煤煙濾過装置の再生時点及び終了点判断方法を提供するにその目的がある。   The present invention has been made in consideration of the above points, and the pressure difference between the front and rear ends of the diesel smoke filter is determined according to the amount of smoke accumulated in the smoke filter regardless of the engine and vehicle conditions. The flow resistance value, which is the value divided by the flow rate, is calculated, and the accumulated amount of smoke and the corresponding flow measurement value are converted into data, so that software is provided, and only the flow measurement value of the actual vehicle is measured thereafter. It is another object of the present invention to provide a method for determining the regeneration point and end point of a diesel smoke filter device that can easily determine the forced regeneration point and end point of the smoke filter device.

上記の目的を達成するための本発明は、エンジン及び車両の条件に拘らず、煤煙濾過装置内に溜っている煤煙量(SL)毎に変わる流れ抵抗値(ディーゼル煤煙濾過装置の前後端圧力差を排気ガス流量に除算した値)を予め測定する段階と、前記各煤煙量(SL)及び該当流れ抵抗値(FR1)を貯蔵/演算手段に予め貯蔵してデータ化させる段階と、予め貯蔵された煤煙量(SL)に該当する流れ抵抗値(FR1)を煤煙濾過装置の強制再生時点(開始点)の基準に定める段階と、実車の流れ抵抗値(FR2)を測定すると共にこの測定された流れ抵抗値(FR2)と一致する煤煙量(SL)を前記貯蔵/演算手段で演算して確認する段階と、前記実車の流れ抵抗値(FR2)と、前記確認された煤煙量(SL)の該当流れ抵抗値(FR1)を前記貯蔵/演算手段で比較/演算して、前記煤煙濾過装置の強制再生時点と終了点を判断すると共に前記煤煙濾過装置の強制再生如何を決定する段階と、からなることを特徴とする。   In order to achieve the above object, the present invention provides a flow resistance value (differential pressure difference between the front and rear ends of a diesel smoke filter device) that changes depending on the amount of smoke (SL) accumulated in the smoke filter device regardless of engine and vehicle conditions. A value obtained by dividing the exhaust gas flow rate), a step of storing each smoke amount (SL) and a corresponding flow resistance value (FR1) in the storage / calculating means in advance and converting them into data, The flow resistance value (FR1) corresponding to the amount of smoke (SL) is determined as a standard for the forced regeneration time (starting point) of the smoke filter device, and the flow resistance value (FR2) of the actual vehicle is measured and measured. The step of calculating and confirming the smoke amount (SL) corresponding to the flow resistance value (FR2) by the storage / calculation means, the flow resistance value (FR2) of the actual vehicle, and the confirmed smoke amount (SL) Applicable flow resistance value (FR1 Comparison / calculation is made in storing / calculating means, and wherein determining the forced regeneration whether the DPF while determine the end point and the forced regeneration time of the DPF device, in that it consists of.

前記貯蔵/演算手段はECUであり、実車で測定された流れ抵抗値(FR2)と予め貯蔵された流れ抵抗値(FR1)とを比較して、その値が一致すると、強制再生時点であると判断すると共に、前記煤煙濾過装置を強制再生させることを特徴とする。   The storage / calculation means is an ECU. When the flow resistance value (FR2) measured in the actual vehicle is compared with the previously stored flow resistance value (FR1) and the values match, The determination is made and the soot filtering device is forcibly regenerated.

本発明によるディーゼル煤煙濾過装置の再生時点及び終了点判断方法によれば、ディーゼル煤煙濾過装置の前後端圧力差を排気ガス流量で除した値である流れ抵抗値を測定した後、煤煙の蓄積量及び該当流れ測定値をデータ化させて、実車の流れ抵抗値を測定するだけで煤煙蓄積量が容易に把握でき、これを基に、煤煙濾過装置の強制再生時点及び終了点が分かる。   According to the method for judging the regeneration time and end point of the diesel smoke filter according to the present invention, after measuring the flow resistance value, which is a value obtained by dividing the pressure difference between the front and rear ends of the diesel smoke filter by the exhaust gas flow rate, the accumulated amount of smoke In addition, the accumulated smoke amount can be easily grasped simply by measuring the flow resistance value of the actual vehicle by converting the corresponding flow measurement value into data, and based on this, the forced regeneration point and end point of the smoke filter device can be known.

又、本発明の方法はディーゼル煤煙濾過装置の煤煙強制再生のための運用法にも適用することができ、煤煙の蓄積量を判断してエンジン制御方法、燃料量決定及び燃料噴射時期を予測する方法にも活用することができる。   The method of the present invention can also be applied to an operation method for forced soot regeneration of a diesel soot filtering device, and judges an accumulation amount of soot and predicts an engine control method, fuel amount determination and fuel injection timing. It can also be used in methods.

ここで本発明の好ましい実施例を添付図面を参照して詳細に説明する。   Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

以下図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の説明に先立ち、前記従来技術について簡単に述べる。従来技術はリアルタイムに変わる車両のディーゼル煤煙濾過装置内の蓄積された煤煙量を把握できない点に問題点がある。
煤煙量が把握できないため、ディーゼル煤煙濾過装置をコントロールする再生時点及び終了時点が把握できず、又、どのぐらい再生されているかについての情報もなく、次にはどの程度再生すべきかについてのデータもなかった。
すなわち、従来技術でも再生は行われるが、その現象及び状況を把握するデータが得られないため再生状態を全く把握することができなかった。
Prior to the description of the present invention, the prior art will be briefly described. The prior art has a problem in that it cannot grasp the accumulated amount of smoke in the diesel smoke filter of the vehicle that changes in real time.
Since the amount of soot cannot be determined, it is not possible to know the regeneration point and end point for controlling the diesel smoke filter, and there is no information on how much it is being regenerated, and there is also data on how much it should be regenerated next. There wasn't.
In other words, although playback is performed even in the prior art, data for grasping the phenomenon and situation cannot be obtained, so that the reproduction state cannot be grasped at all.

従って、効率的なディーゼル煤煙濾過装置を開発するためには、車両とエンジンを対象として、リアルタイムのデータ等が何gの煤煙がローディング(Loading)されたデータであるか、明確に提示されなければならない。
すなわち、エンジン及び車両の条件に拘らず、煤煙濾過装置内に溜っている煤煙を推定する定数値を導き出す必要があり、これを該当車毎の特有の値で示さなければならない。この値は、再生のための排気ガス温度上昇及び空気量変化、又燃料量変化等に影響されない定数値でなければならない。
Therefore, in order to develop an efficient diesel soot filter device, it is necessary to clearly show how many grams of soot are loaded for vehicles and engines. Don't be.
That is, it is necessary to derive a constant value for estimating the soot accumulated in the soot filter regardless of the engine and vehicle conditions, and this must be indicated by a specific value for each vehicle. This value must be a constant value that is not affected by the exhaust gas temperature rise, the air amount change, the fuel amount change, etc. for regeneration.

本発明はフィールド(Field)での与件及び状況によって、変化しない定数値を設けて煤煙濾過装置内に蓄積された煤煙(Soot)の量を正確に予測し、これに基づいて強制再生区間の開始点と終了点を設けることに主目的がある。
以下に、本発明の方法を説明する。
The present invention accurately estimates the amount of soot accumulated in the smoke filter device by providing a constant value that does not change according to the conditions and circumstances in the field, and based on this, the forced regeneration interval The main purpose is to set the start and end points.
The method of the present invention will be described below.

先ず、エンジン及び車両の条件に拘らず、煤煙濾過装置内に溜っている煤煙量(SL)毎に変わる、流れ抵抗値(ディーゼル煤煙濾過装置の前後端圧力差を排気ガス流量で除した値)を予め算定する。
前記流れ抵抗値の算定方法は、煤煙濾過装置の前後端に設置された差圧センサーからの信号をECUで受信して、煤煙濾過装置の前後端圧力差を演算する段階と、吸気量及び燃料量感知センサーからの信号をECUで受信して排気ガス流量を測定する段階と、前後端圧力差を排気ガス流量で除する演算段階と、からなる。
First, the flow resistance value (value obtained by dividing the pressure difference between the front and rear ends of the diesel smoke filter by the exhaust gas flow rate) changes for each smoke amount (SL) accumulated in the smoke filter regardless of the engine and vehicle conditions. Is calculated in advance.
The calculation method of the flow resistance value includes a step of receiving a signal from a differential pressure sensor installed at the front and rear ends of the smoke filter device, calculating a pressure difference between the front and rear ends of the smoke filter device, an intake air amount and a fuel The ECU comprises a step of receiving a signal from the quantity sensor by the ECU and measuring the exhaust gas flow rate, and a calculation step of dividing the front-rear pressure difference by the exhaust gas flow rate.

添付した図3は車両での流れ抵抗(FlowResistance)値(Del.P/Volume Flow)を示したもので、煤煙量6g/L蓄積の場合の流れ抵抗値を表す。
図3に示すように、エンジン回転数(rpm)及びその他の変数によってシャープな形(M)を表すこともあるが、これはECUを介してフィルータリングされた値(E)に表すと、より安定的なものになる。
The attached FIG. 3 shows the flow resistance value (Del. P / Volume Flow) in the vehicle, and represents the flow resistance value in the case of accumulation of smoke amount 6 g / L.
As shown in FIG. 3, a sharp shape (M) may be represented by the engine speed (rpm) and other variables, but this is represented by a value (E) filtered through the ECU. It becomes more stable.

図3に示すように、車両の速度及びrpmが瞬間的に変化し、空気量及び燃料量も転移(Transient)区間の適用を受けて瞬間に変化しているが、流れ抵抗値は一定の傾向があり、殆んど0.030〜0.035の値となっている。すなわち、ディーゼル煤煙濾過装置内の煤煙蓄積量が約6gの場合、試験車両では流れ抵抗値が0.030〜0.035程度に収まり、車両の外部条件によって容易に変化しないことが分かる。   As shown in FIG. 3, the vehicle speed and rpm change instantaneously, and the amount of air and the amount of fuel change instantaneously in response to the application of the transition section, but the flow resistance value tends to be constant. Most of the values are 0.030 to 0.035. That is, when the accumulated amount of smoke in the diesel smoke filter is about 6 g, it can be seen that the flow resistance value is about 0.030 to 0.035 in the test vehicle and does not easily change depending on the external conditions of the vehicle.

一方、添付した図4は車両での煤煙量8g/L蓄積の場合の流れ抵抗値の傾向を示したもので、煤煙8g蓄積の場合は、流れ抵抗値は約0.050〜0.055程度となっている。   On the other hand, FIG. 4 attached shows the tendency of the flow resistance value in the case of accumulation of 8 g / L of smoke in the vehicle. In the case of accumulation of 8 g of smoke, the flow resistance value is about 0.050 to 0.055. It has become.

次に、上記のように予め測定された各煤煙量(SL)及び該当流れ抵抗値(FR1)を貯蔵/演算手段、すなわち、ECUに予め貯蔵してデータ化し、各煤煙量(SL)に該当する流れ抵抗値(FR1)を煤煙濾過装置の強制再生時点(開始点)の基準に定める。
このように、各煤煙量に対する流れ抵抗値がECUに予め貯蔵された状態で実車の流れ抵抗値(FR2)を測定すると、実車にどの程度の煤煙量が溜っているかが分かる。
Next, each smoke amount (SL) and the corresponding flow resistance value (FR1) measured in advance as described above are stored / calculated in advance in the storage means, that is, ECU, converted into data, and correspond to each smoke amount (SL). The flow resistance value (FR1) to be used is determined as a reference for the forced regeneration time point (start point) of the smoke filter device.
As described above, when the flow resistance value (FR2) of the actual vehicle is measured in a state where the flow resistance value for each amount of smoke is stored in advance in the ECU, it can be understood how much smoke is accumulated in the actual vehicle.

すなわち、実車の流れ抵抗値(FR2)を測定すると共に、この測定された流れ抵抗値(FR2)と一致する煤煙量(SL)を上記貯蔵/演算手段で演算して確認することになる。   That is, the flow resistance value (FR2) of the actual vehicle is measured, and the smoke amount (SL) that matches the measured flow resistance value (FR2) is calculated and confirmed by the storage / calculation means.

次に、上記実車の流れ抵抗値(FR2)と、上記確認された煤煙量(SL)の該当流れ抵抗値(FR1)を上記貯蔵/演算手段で比較/演算して、上記煤煙濾過装置の強制再生時点と終了点を判断すると共に、上記煤煙濾過装置の強制再生如何を決定する。
その結果、実車条件で測定された流れ抵抗値はECUデータ(予め貯蔵された流れ抵抗値)を通じて容易に求めることができる値であり、この流れ抵抗値をモニターリングすると、煤煙の蓄積量の程度とディーゼル煤煙濾過装置の再生時点及び終了点を把握することができる。
Next, the flow resistance value (FR2) of the actual vehicle and the corresponding flow resistance value (FR1) of the confirmed smoke amount (SL) are compared / calculated by the storage / calculation means, and the smoke filter device is forced. A regeneration time point and an end point are determined, and whether or not the soot filter is forcibly regenerated is determined.
As a result, the flow resistance value measured under actual vehicle conditions is a value that can be easily obtained through ECU data (previously stored flow resistance value). When this flow resistance value is monitored, the degree of accumulation of soot And the regeneration point and end point of the diesel smoke filter.

すなわち、上記ECUで、実車で測定された流れ抵抗値(FR2)と予め貯蔵された流れ抵抗値(FR2)を比較して、その値が一致すると強制再生時点であると判断すると共に、上記煤煙濾過装置を強制再生させることになる。
添付した図5は煤煙蓄積量と流れ抵抗値との相関関係を示すグラフである。図5の線形グラフを描くため、煤煙量(予め知っている)が溜っている煤煙濾過装置を車両に装着して、流れ抵抗値を求め、これを図式化した。
That is, the ECU compares the flow resistance value (FR2) measured in the actual vehicle with the previously stored flow resistance value (FR2), and determines that it is the forced regeneration point when the values match, and the soot and smoke The filtration device is forced to regenerate.
Attached FIG. 5 is a graph showing the correlation between the accumulated amount of smoke and the flow resistance value. In order to draw the linear graph of FIG. 5, a smoke filtering device in which the amount of smoke (which is known in advance) is mounted on a vehicle, a flow resistance value is obtained, and this is graphically represented.

図5のグラフが求められると、実際車両で未知の煤煙量が溜った煤煙濾過装置を装着し、流れ抵抗値を求めると、その時の煤煙濾過装置内に蓄積された煤煙の量を正確に予測することができる。
より効果的に上記流れ抵抗値を使用するため、流れ抵抗値をECUでフィルータリングして計算した上、この値に約100程度を掛けて表すと、分かりやすく表すことができる。
When the graph of FIG. 5 is obtained, a smoke filter device with an unknown amount of smoke accumulated in an actual vehicle is mounted, and when the flow resistance value is obtained, the amount of smoke accumulated in the smoke filter device at that time is accurately predicted. can do.
In order to use the flow resistance value more effectively, when the flow resistance value is calculated by filtering by the ECU and multiplied by about 100, it can be expressed easily.

従って、図4に示す8g/Lを基準として煤煙濾過装置を再生しようとする場合、実車の流れ抵抗値が0.050〜0.055に測定されると、この測定された流れ抵抗値に該当する煤煙量をECUで確認することになり、その後のECUの演算を通じて実車の流れ抵抗値が予め貯蔵された流れ抵抗値に比べて同一又はそれ以上であれば、ECUは煤煙濾過装置の強制再生を始めることになる。   Therefore, when trying to regenerate the smoke filter device based on 8 g / L shown in FIG. 4, when the flow resistance value of the actual vehicle is measured to 0.050 to 0.055, it corresponds to the measured flow resistance value. If the flow resistance value of the actual vehicle is equal to or higher than the flow resistance value stored in advance through the calculation of the ECU, the ECU performs forced regeneration of the smoke filter device. Will begin.

図6(a)は、6g/Lでの強制再生の場合の流れ抵抗値の変化様相を示し、図6(b)は、8g/Lでの強制再生の場合の流れ抵抗値の変化様相を示す。
図6(a)を参照すると、6g/Lでの強制再生の場合、該当車両の走行条件では、約1200秒の煤煙強制再生条件で大部分の蓄積された煤煙が燃焼することが分かる。
図6(b)を参照すると、8g/Lでの強制再生の場合は、約800〜1000秒の煤煙強制再生が必要であることがわかる。
FIG. 6 (a) shows a change aspect of the flow resistance value in the case of forced regeneration at 6 g / L, and FIG. 6 (b) shows a change aspect of the flow resistance value in the case of forced regeneration at 8 g / L. Show.
Referring to FIG. 6A, in the case of forced regeneration at 6 g / L, it can be seen that most of the accumulated smoke is burned under the forced smoke regeneration condition of about 1200 seconds under the traveling condition of the corresponding vehicle.
Referring to FIG. 6 (b), it can be seen that in the case of forced regeneration at 8 g / L, smoke regeneration for about 800 to 1000 seconds is necessary.

図6(a)及び6(b)に示すように、煤煙濾過装置の煤煙強制再生の総時間を煤煙ローディング(Loading)量別に判断することができる。煤煙濾過装置内の煤煙ローディング量を任意gを基準として再生すると仮定すると、その時の流れ抵抗値をECUロジックの煤煙強制再生開始点に定め、これを通じてモニターリング流れ抵抗値が予め貯蔵された値以上に表われる時、どのぐらいの時間強制再生が必要であって、又いつ頃強制再生が終了するかを一目瞭然判断することができる。   As shown in FIGS. 6 (a) and 6 (b), it is possible to determine the total time for forced soot regeneration of the soot filter by the soot loading amount. Assuming that the soot loading amount in the soot filtering device is regenerated based on an arbitrary g, the flow resistance value at that time is set as the starting point of forced smoke regeneration of the ECU logic, and through this, the monitoring flow resistance value is greater than the prestored value. It is possible to determine at a glance how long the forced regeneration is necessary and when the forced regeneration is finished.

本発明によるディーゼル煤煙濾過装置の再生時点及び終了点判断方法を説明する順序図である。It is a flowchart explaining the regeneration time and end point judgment method of the diesel smoke filter apparatus by this invention. ディーゼル煤煙濾過装置を示す概略図である。It is the schematic which shows a diesel smoke filter apparatus. 煤煙量6g/L蓄積の場合の車両での流れ抵抗値(Del.P/Volume Flow)を示す。The flow resistance value (Del.P / Volume Flow) in the vehicle in the case of accumulation of smoke amount 6 g / L is shown. 煤煙量8g/L蓄積の場合の車両での流れ抵抗値(Del.P/Volume Flow)を示す。The flow resistance value (Del. P / Volume Flow) in the vehicle in the case of accumulation of smoke amount 8g / L is shown. 煤煙蓄積量と流れ抵抗値との相関関係を示すグラフである。It is a graph which shows the correlation with a soot accumulation amount and a flow resistance value. (a)、(b)は6g/L及び8g/Lでの強制再生の場合の流れ抵抗値の変化を示すグラフである。(A), (b) is a graph which shows the change of the flow resistance value in the case of forced regeneration in 6g / L and 8g / L.

Claims (2)

エンジン及び車両の条件に拘らず、煤煙濾過装置内に溜っている煤煙量(SL)毎に変わる流れ抵抗値(ディーゼル煤煙濾過装置の前後端圧力差を排気ガス流量で除した値)を予め測定する段階と、
前記各煤煙量(SL)及び該当流れ抵抗値(FR1)を貯蔵/演算手段に予め貯蔵してデータ化させる段階と、
予め貯蔵された煤煙量(SL)に該当する流れ抵抗値(FR1)を煤煙濾過装置の強制再生時点(開始点)の基準に定める段階と、
実車の流れ抵抗値(FR2)を測定すると共にこの測定された流れ抵抗値(FR2)と一致する煤煙量(SL)を前記貯蔵/演算手段で演算して確認する段階と、
前記実車の流れ抵抗値(FR2)と、前記確認された煤煙量(SL)の該当流れ抵抗値(FR1)を前記貯蔵/演算手段で比較/演算して、前記煤煙濾過装置の強制再生時点と終了点を判断すると共に前記煤煙濾過装置の強制再生如何を決定する段階と、
からなることを特徴とするディーゼル煤煙濾過装置の再生時点及び終了点判断方法。
Regardless of engine and vehicle conditions, the flow resistance value (value obtained by dividing the pressure difference between the front and rear ends of the diesel smoke filter by the exhaust gas flow rate) that changes for each smoke amount (SL) accumulated in the smoke filter is measured in advance. And the stage of
Storing each smoke amount (SL) and the corresponding flow resistance value (FR1) in the storage / calculating means in advance and converting it into data;
A step of determining a flow resistance value (FR1) corresponding to a pre-stored smoke amount (SL) as a reference for a forced regeneration time point (start point) of the smoke filter device;
Measuring the flow resistance value (FR2) of the actual vehicle and calculating and confirming the smoke amount (SL) that matches the measured flow resistance value (FR2) by the storage / calculation means;
The flow resistance value (FR2) of the actual vehicle and the corresponding flow resistance value (FR1) of the confirmed smoke amount (SL) are compared / calculated by the storage / calculation means, Determining an end point and determining whether to force regeneration of the soot filter;
A method for judging the point of regeneration and end point of a diesel smoke filter device, comprising:
前記貯蔵/演算手段はECUであり、実車で測定された流れ抵抗値(FR2)と予め貯蔵された流れ抵抗値(FR1)とを比較して、その値が一致すると、強制再生時点であると判断すると共に、前記煤煙濾過装置を強制再生させることを特徴とする請求項1に記載のディーゼル煤煙濾過装置の再生時点及び終了点判断方法。   The storage / calculation means is an ECU. When the flow resistance value (FR2) measured in the actual vehicle is compared with the previously stored flow resistance value (FR1) and the values match, The method for determining the regeneration time point and end point of the diesel smoke filter device according to claim 1, wherein the smoke filter device is forcibly regenerated while making a determination.
JP2005206142A 2005-07-14 2005-07-14 Judging method of regeneration time and ending time of diesel smoke filter Withdrawn JP2007023870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206142A JP2007023870A (en) 2005-07-14 2005-07-14 Judging method of regeneration time and ending time of diesel smoke filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206142A JP2007023870A (en) 2005-07-14 2005-07-14 Judging method of regeneration time and ending time of diesel smoke filter

Publications (1)

Publication Number Publication Date
JP2007023870A true JP2007023870A (en) 2007-02-01

Family

ID=37784972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206142A Withdrawn JP2007023870A (en) 2005-07-14 2005-07-14 Judging method of regeneration time and ending time of diesel smoke filter

Country Status (1)

Country Link
JP (1) JP2007023870A (en)

Similar Documents

Publication Publication Date Title
JP5562697B2 (en) DPF regeneration control device, regeneration control method, and regeneration support system
KR102517259B1 (en) Method for diagnosing particulate filter and computer program product thereof
CN105089757B (en) Method and device for detecting soot and ash loads of a particle filter
US10519841B2 (en) Method and system for monitoring of a physical quantity related to a particulate mass in at least one exhaust pipe
US9181840B2 (en) Method to operate a diesel particulate filter
US8186146B2 (en) After-treatment component detection system
US9347348B2 (en) Active regeneration control device for a diesel particulate filter
US20060218895A1 (en) Method for operating an internal combustion engine and device for executing the method
EP2864601A1 (en) Method for detecting abnormally frequent diesel particulate filter regeneration, engine and exhaust after treatment system, and warning system and method
CN112412600B (en) Method, device and equipment for monitoring trapping efficiency of particle trap and storage medium
GB2532774A (en) A method of scheduling a diagnostic event
WO2014090497A1 (en) On board diagnosis of the condition of an exhaust particle filter
CN103016116B (en) The system and method for pollution of detection noxious substance for the exhauster of vehicle
JP2005344711A (en) Method of regenerating diesel soot filter
US7934374B2 (en) Method and system for combustion engine particulate filter regeneration
JP2009520152A5 (en)
JP6414802B2 (en) Engine oil deterioration diagnosis device for diesel engine
CN102312711B (en) Exhaust gas treatment method and system
CN102102565B (en) Method and device for on-board error diagnosis in operation of internal combustion engine of motor vehicle
JP2005519226A (en) Method for regenerating particulate filter for automobiles
JP2007023870A (en) Judging method of regeneration time and ending time of diesel smoke filter
KR100590961B1 (en) Method for determinating regeneration start point and end point of soot filtering device
US20060272320A1 (en) Method for determining start and end points of regeneration of diesel soot-filtering device
CN107345495A (en) The frequent regeneration diagnostic method of diesel particulate filters
EP1762718A2 (en) Process for regeneration of a particulate filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090622