JP2007022421A - Trailer brake receiver - Google Patents

Trailer brake receiver Download PDF

Info

Publication number
JP2007022421A
JP2007022421A JP2005209671A JP2005209671A JP2007022421A JP 2007022421 A JP2007022421 A JP 2007022421A JP 2005209671 A JP2005209671 A JP 2005209671A JP 2005209671 A JP2005209671 A JP 2005209671A JP 2007022421 A JP2007022421 A JP 2007022421A
Authority
JP
Japan
Prior art keywords
brake
tangential force
sliding
torque
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005209671A
Other languages
Japanese (ja)
Other versions
JP4693534B2 (en
Inventor
Shinobu Yasukawa
忍 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2005209671A priority Critical patent/JP4693534B2/en
Publication of JP2007022421A publication Critical patent/JP2007022421A/en
Application granted granted Critical
Publication of JP4693534B2 publication Critical patent/JP4693534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress generation of a flat on a wheel tread by rapidly instructing torque near tangential force coefficient relevant torque at detection of slide-traveling, to enhance ride comfort by suppression of large variation in brake torque and to accomplish effective utilization of adhesion force. <P>SOLUTION: The trailer brake receiver always presumes tangential force coefficient of a trailer wheel by a disturbance observer and operates a brake torque reduction amount of the minimum requirement for re-adhesion and brake torque instructed after re-adhesion such that they become the torque slightly smaller than the tangential force coefficient relevant brake torque at detection of slide-traveling. A timing setting value for turning ON/OFF a delivery valve and a feeding stop valve on or after the detection of slide-traveling is operated from the brake torque reduction amount and the brake torque instructed after the re-adhesion. The delivery valve and the feeding stop valve are turned ON/OFF based on the timing setting value by expectation control without reference to trailer axial acceleration on or after the detection of slide-traveling to suppress a reduction amount of brake torque and a slide-traveling speed from being excessive. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気車を構成する付随車の良好な乗り心地を維持しつつ、粘着力の有効利用、フラットの発生や車輪踏面の磨耗量の低減を図った滑走再粘着制御を実現する付随車ブレーキ受量器に関するものである。   The present invention provides an accompanying vehicle that realizes sliding re-adhesion control that effectively uses adhesive force, reduces occurrence of flats and reduces the amount of wear on wheel treads while maintaining good riding comfort of the accompanying vehicle constituting the electric vehicle. It relates to a brake weight receiver.

電気車は車輪・レール間の接線力(粘着力ともいう)によって加減速を行っているが、この接線力は、一般にすべり速度に対して図5に破線で示すような特性を有している。この接線力を軸重(車軸1軸当たりのレールに加わる垂直荷重)で割ったものを接線力係数、接線力係数の最大値を粘着係数という。
図示の如く、接線力の最大値を超えないブレーキトルクを空気ブレーキ装置で発生している場合には滑走は発生せず、接線力の最大値より左側の微小なすべり速度の粘着領域で電気車は走行する。もし最大値より大きなブレーキトルクを発生するとすべり速度は増大し、接線力が低下するのでますますすべり速度が増大する滑走状態になるが、車輪およびレールが乾燥状態では空気ブレーキ装置で発生するブレーキトルクは接線力の最大値を超えないように車両の性能が設定されるので、滑走は発生しない。
An electric vehicle performs acceleration / deceleration by means of a tangential force (also referred to as adhesive force) between wheels and rails. This tangential force generally has a characteristic as shown by a broken line in FIG. . The tangential force divided by the axle load (vertical load applied to the rail per axle) is called the tangential force coefficient, and the maximum value of the tangential force coefficient is called the adhesion coefficient.
As shown in the figure, when a brake torque that does not exceed the maximum value of the tangential force is generated by the air brake device, no sliding occurs, and the electric vehicle is applied in the adhesive region with a minute sliding speed on the left side of the maximum value of the tangential force. Will travel. If a brake torque larger than the maximum value is generated, the slip speed increases and the tangential force decreases, resulting in a sliding state in which the slip speed increases further. However, when the wheels and rails are dry, the brake torque generated by the air brake device Since the vehicle performance is set so as not to exceed the maximum value of the tangential force, no sliding occurs.

しかし、実線で示すように、レール面が雨などによって湿潤状態にある場合は粘着係数が低下して、接線力の最大値が車両の設定性能に対応した空気ブレーキ装置の発生トルクより小さくなる。この場合、すべり速度が増大して滑走状態になり、そのまま放置するとこれに対応して接線力が低下し、車両の減速に必要な減速力がますます低下してしまうので、迅速に滑走を検出し、空気ブレーキ装置が発生するトルクを低減して再粘着させることが必要になる。このようにトルクの制御を行って再粘着させる場合、小さなすべり速度に維持しつつ、空気ブレーキ装置の発生トルクが極力接線力の最大値近傍の値になるように制御することが、電気車の減速性能を高める上で必要である。   However, as indicated by the solid line, when the rail surface is wet due to rain or the like, the adhesion coefficient decreases, and the maximum value of the tangential force becomes smaller than the generated torque of the air brake device corresponding to the set performance of the vehicle. In this case, the sliding speed increases and the vehicle enters a sliding state.If left as it is, the tangential force decreases correspondingly, and the deceleration force required to decelerate the vehicle further decreases. However, it is necessary to reduce the torque generated by the air brake device and re-adhere. When re-adhesion is performed by controlling the torque in this way, it is possible to control the generated torque of the air brake device to be as close to the maximum value of the tangential force as possible while maintaining a low sliding speed. Necessary for improving deceleration performance.

このような再粘着制御の実現を目的とした方法として、電動車については主電動機の回転速度を主電動機に印加される電圧・電流から推定し、この推定速度情報と主電動機発生トルクの演算値を入力情報として、最小次元外乱オブザーバを用いて車輪・レール間の接線力に対応した主電動機トルクを制御周期毎に推定して、空転・滑走検知時の推定トルクを用いて主電動機の発生トルクを制御する方式が、提案されている(非特許文献1参照)。そしてこの制御方式によって、良好な乗り心地を保ちつつ、主電動機の発生トルクを極力接線力の最大値近傍に維持することができつつある(非特許文献2参照)。
なおブレーキ時には、電力回生ブレーキ(以下単に回生ブレーキと称する)を用いる電気車が多いが、この場合電気ブレーキ力は回生エネルギーを吸収してくれる負荷車両の在線状態によって絶えず変動するので、電動車ブレーキ受量器において電気ブレーキ力と空気ブレーキ力とでブレーキ指令に対応したブレーキ力になるように制御している。すなわち、その時の速度に応じて、電動車ブレーキ受量器では、ブレーキ指令に対応したブレーキ力を発生するために、電気ブレーキで発生すべき電気ブレーキ力と補足すべき空気ブレーキ力を演算して、電気車制御装置に対して、ブレーキ指令とともに、電気ブレーキで発生すべき電気ブレーキ力を回生ブレーキ力指令として指令する。電気車制御装置では、電気ブレーキ力発生系で回生ブレーキ指令どおりの電気ブレーキ力を発生すべく、電気車推進装置を制御する。そして、再粘着制御系において滑走検知しない場合は、実際に発生している電気ブレーキ力を、回生ブレーキフィードバック信号としてブレーキ受量器に出力する。ブレーキ受量器では、また回生ブレーキ有効信号(電動車ブレーキ受量器に入力される回生ブレーキフィードバック信号が正しい値を示していることを意味する)をもとに、補足すべき空気ブレーキ力を修正して、空気ブレーキ指令として図示しない電動車の空気ブレーキ発生装置に対して出力する。なお、この制御過程中に、再粘着制御系において滑走を検知した場合は、再粘着制御に伴う電気ブレーキ力を回生ブレーキフィードバック信号としてブレーキ受量器に出力する。
以上のような制御系の構成で、例えば上記の最小次元外乱オブザーバを用いて車輪・レール間の接線力に対応した主電動機トルクを制御周期毎に推定して、空転・滑走検知時の推定トルクを用いて主電動機の発生トルクを制御する方式を用いると、電気ブレーキ力をもとに滑走検知時の車輪・レール間の電気ブレーキ力に対応したトルクを高精度で推定できるので、電気ブレーキ力の短時間における高速制御によって確実に再粘着させるとともに、この間電気ブレーキ力の高速制御により空気ブレーキ力の変動を抑制できるので、全体のブレーキ力が変動することのない良好な乗り心地を実現できている。また、電気ブレーキ力を用いてこれに対応した車輪・レール間の接線力を推定しながら再粘着制御を行っているので、空気ブレーキ力を含めたトータルの粘着力の有効利用ができている。
As a method for realizing such re-adhesion control, for electric vehicles, the rotational speed of the main motor is estimated from the voltage and current applied to the main motor, and the estimated speed information and the calculated value of the main motor generated torque are calculated. Is used as input information to estimate the main motor torque corresponding to the tangential force between the wheels and rails using the minimum dimensional disturbance observer for each control cycle, and the generated torque of the main motor using the estimated torque at the time of idling / sliding detection A method for controlling the above has been proposed (see Non-Patent Document 1). With this control method, it is possible to maintain the generated torque of the main motor as close as possible to the maximum value of the tangential force while maintaining good riding comfort (see Non-Patent Document 2).
When braking, there are many electric vehicles that use electric power regenerative braking (hereinafter simply referred to as regenerative braking), but in this case, the electric braking force constantly fluctuates depending on the line condition of the load vehicle that absorbs the regenerative energy. In the receiver, the electric brake force and the air brake force are controlled so that the brake force corresponds to the brake command. That is, according to the speed at that time, in order to generate the brake force corresponding to the brake command, the electric vehicle brake receiver calculates the electric brake force to be generated by the electric brake and the air brake force to be supplemented. In addition to the brake command, the electric vehicle control device is commanded as an electric brake force to be generated by the electric brake as a regenerative brake force command. In the electric vehicle control device, the electric vehicle propulsion device is controlled so that the electric brake force generation system generates the electric brake force according to the regenerative brake command. And when sliding is not detected in the re-adhesion control system, the actually generated electric brake force is output to the brake receiver as a regenerative brake feedback signal. The brake receiver also determines the air brake force to be supplemented based on the regenerative brake valid signal (meaning that the regenerative brake feedback signal input to the electric vehicle brake receiver is correct). It corrects and outputs as an air brake instruction | command with respect to the air brake generator of an electric vehicle which is not shown in figure. Note that, during this control process, when slipping is detected in the re-adhesion control system, the electric brake force accompanying the re-adhesion control is output to the brake receiver as a regenerative brake feedback signal.
With the configuration of the control system as described above, for example, the main motor torque corresponding to the tangential force between the wheels and the rails is estimated for each control period using the minimum dimension disturbance observer, and the estimated torque at the time of idling / sliding detection By using the method to control the torque generated by the main motor using the motor, it is possible to estimate the torque corresponding to the electric brake force between the wheels and rails at the time of sliding detection with high accuracy based on the electric brake force. The high-speed control in a short period of time ensures reliable re-adhesion, and during this time the high-speed control of the electric brake force can suppress fluctuations in the air brake force, so that it is possible to realize a good riding comfort without fluctuations in the overall brake force. Yes. In addition, since the re-adhesion control is performed while estimating the tangential force between the wheels and rails corresponding to the electric brake force, the total adhesive force including the air brake force can be effectively used.

これに対して、付随車においては、車軸端に付けた速度センサからの速度情報をもとにブレーキ時に滑走の発生を検出し、空気ブレーキ力を制御して滑走抑制制御を付随車ブレーキ受量器で行って、滑走を発生させて車輪踏面にフラットが発生することを防止する措置が講じられている。しかし実際には、空気ブレーキの応答が遅いことと、付随車のレール面上で見た車輪・車軸などの回転部分の慣性モーメントが電動車のようには主電動機や歯車が付いていないために小さいことから、図7に示すように、一旦滑走が発生すると急速に大きな滑走速度になり、この滑走している車輪を再粘着させるためには、大きく空気ブレーキ力を低下させることが必要であるのが現状である。また、車輪が再粘着したことを演算遅れの大きい軸加速度を用いて検知して、その後に空気ブレーキ力を増大させる制御が行われるため、必要以上に空気ブレーキ力を低下させてしまうことになる。このため、ブレーキ時に乗り心地が悪化し、また接線力のピーク値近傍に対応した空気ブレーキ力を発生することができないために、粘着力の有効利用が図れず減速性能が低下するケースが多い。さらに、滑走速度が大きくなるために、車輪踏面にフラットが発生するとか、車輪踏面の磨耗量が大きくなるという問題を有している。
このような問題の解消が求められている。
On the other hand, in the accompanying vehicle, the occurrence of sliding is detected during braking based on the speed information from the speed sensor attached to the axle end, and the air braking force is controlled to control the sliding suppression control. Measures are taken to prevent the occurrence of flats on the wheel treads by running on a vessel. However, in reality, the response of the air brake is slow and the moment of inertia of the rotating parts such as wheels and axles seen on the rail surface of the accompanying car is not equipped with the main motor and gears like an electric car. Because of its small size, as shown in FIG. 7, once sliding occurs, it rapidly reaches a large sliding speed. In order to re-adhere the sliding wheel, it is necessary to greatly reduce the air brake force. is the current situation. In addition, since the control of increasing the air brake force is performed after detecting that the wheel has re-adhered using the axial acceleration with a large calculation delay, the air brake force is reduced more than necessary. . For this reason, the riding comfort is deteriorated during braking, and the air braking force corresponding to the vicinity of the peak value of the tangential force cannot be generated, so that the adhesive force cannot be effectively used and the deceleration performance is often lowered. Further, since the sliding speed increases, there is a problem that a flat surface is generated on the wheel tread or that the amount of wear on the wheel tread increases.
There is a need to eliminate such problems.

門脇悟志、大石潔、宮下一郎、保川忍著:「外乱オブザーバと速度センサレスベクトル制御による電気車(2M1C)の空転再粘着制御の一方式」、電気学会論文誌D、平成13年11月号、pp1192-1198Satoshi Kadowaki, Kiyoshi Oishi, Ichiro Miyashita, Shinobu Yasukawa: “A method of re-adhesion control of an electric vehicle (2M1C) by disturbance observer and speed sensorless vector control”, IEEJ Transactions D, November 2001, pp1192-1198 畑正、廣瀬寛、門脇悟志、大石潔、飯田哲史、高木正志、佐野孝、保川忍著:「速度センサレスベクトル制御・外乱オブザーバによる空転再粘着制御の実車両への適用とその評価 - 205系5000番代電車における実例 - 」、平成15年電気学会産業応用部門大会論文集、ppIII-93〜98Tadashi Hata, Hiroshi Hirose, Satoshi Kadowaki, Kiyoshi Oishi, Satoshi Iida, Masashi Takagi, Takashi Sano, Shinobu Yasukawa: "Application of Speed Sensorless Vector Control / Re-adhesion Control with Disturbance Observer to Real Vehicles and its Evaluation-Series 205 Example of the 5000th generation train-", Proceedings of the Institute of Electrical Engineers of Japan, 2003, ppIII-93-98

解決しようとする問題点は、空気ブレーキの応答速度が遅いことと付随車軸周りの慣性モーメントが小さいことに起因して、一旦滑走が発生すると急速に大きな滑走速度になり車輪踏面にフラットを発生させることがあることと車輪踏面の磨耗量が増大すること、再粘着させるためには空気ブレーキ力を大きく低下させることが必要になり粘着力の有効利用が図れないことと、再粘着後は空気ブレーキ力を急速に増大させるために乗り心地が悪くなることである。   The problem to be solved is that the air brake response speed is slow and the moment of inertia around the associated axle is small. The amount of wear on the wheel tread increases, the air brake force must be greatly reduced to re-adhere, and the effective use of the adhesive force cannot be achieved. Riding comfort is worsened because of the rapid increase in power.

本発明は上述した点に鑑み創案されたもので、その目的とするところは、この課題を解消するため、
1. 請求項1において、
運転士の指令したブレーキ力指令値と吐き出し弁RSKVと供給停止弁ASKVの動作履歴情報とから現在の発生ブレーキ力を演算し、この発生ブレーキ力と速度センサにより検出される車輪速度を最小次元外乱オブザーバによって付随車車輪の接線力係数を推定する接線力係数推定器に入力して、常時付随車車輪の接線力係数を推定し、前記車輪速度の他に当該付随車1両分の残り3軸の車輪速度とから最も高い車輪速度のものを車両速度と見なしてこの車両速度と当該車輪速度との差速度を用いて、あるいは前記速度センサから演算した付随車軸加速度を用いて、滑走検知器によって付随車車輪の滑走を検知し、滑走検知時の推定接線力係数から、再粘着させるための必要最小限のブレーキトルク引き下げ量と、再粘着後に指令する滑走検知時の推定接線力係数に対応したトルクより僅かに小さいブレーキトルクとを算出し、このブレーキトルクの引き下げ量と再粘着後に指令するブレーキトルクとから、吐き出し弁RSKVと供給停止弁ASKVの現時点以降のオン・オフさせるタイミング設定値を演算し、現時点以降付随車軸加速度を参照することなく、このように演算したオン・オフさせるタイミング設定値をもとに吐き出し弁RSKVと供給停止弁ASKVをオン・オフさせて、大きな滑走速度に至ることなく確実に再粘着させ、その後急速に滑走検知時の接線力係数対応トルクに近いトルクを指令するようにして、車輪踏面のフラット発生の抑制、粘着力の有効利用と乗り心地の向上を図るようにしたことを特徴とする付随車ブレーキ受量器である。
The present invention was devised in view of the above points, and its purpose is to eliminate this problem.
1. In claim 1,
The brake force command value commanded by the driver and the operation history information of the discharge valve RSKV and supply stop valve ASKV are used to calculate the current generated brake force, and the generated brake force and the wheel speed detected by the speed sensor are the minimum dimension disturbance. Input to the tangential force coefficient estimator that estimates the tangential force coefficient of the associated vehicle wheel by the observer, always estimate the tangential force coefficient of the associated vehicle wheel, and in addition to the wheel speed, the remaining three axes for the associated vehicle By using the difference between the vehicle speed and the wheel speed, or the associated axle acceleration calculated from the speed sensor, the one with the highest wheel speed is considered as the vehicle speed by the sliding detector. By detecting the sliding of the wheel of the associated vehicle and estimating the tangential force coefficient at the time of sliding, the minimum brake torque reduction amount required for re-adhesion and the estimation at the time of sliding detection commanded after re-adhesion A brake torque that is slightly smaller than the torque corresponding to the linear force coefficient is calculated, and the discharge valve RSKV and the supply stop valve ASKV are turned on and off from the present time based on the brake torque reduction amount and the brake torque that is commanded after re-adhesion. The timing set value to be calculated is calculated and the discharge valve RSKV and the supply stop valve ASKV are turned on / off based on the timing set value to be turned on / off in this way without referring to the accompanying axle acceleration from the present time. Re-adhesion is ensured without reaching a large sliding speed, and then a torque close to the torque corresponding to the tangential force coefficient at the time of sliding detection is commanded to suppress the occurrence of flatness on the wheel tread and to effectively use and ride the adhesive force. It is an accompanying vehicle brake bolster characterized by improving comfort.

2. 請求項2において、
接線力係数推定器において推定された接線力係数を用いて滑走検知の閾値を可変とした滑走検知器を備えたことを特徴とする請求項1記載の付随車ブレーキ受量器である。
2. In claim 2,
2. The accompanying vehicle brake receiver according to claim 1, further comprising a sliding detector having a variable sliding detection threshold value using the tangential force coefficient estimated by the tangential force coefficient estimator.

本発明の請求項1に記載の付随車ブレーキ受量器では、最小次元外乱オブザーバを用いて常時推定遅れの小さい状態で付随車車輪の接線力係数を推定していて、滑走検知した場合に、滑走検知時の接線力係数の推定値から、再粘着させるための必要最小限のブレーキトルク引き下げ量と、再粘着後に指令する滑走検知時の推定接線力係数に対応したトルクより僅かに小さいブレーキトルクとを算出し、このブレーキトルクの引き下げ量と再粘着後に指令するブレーキトルクとから、吐き出し弁RSKVと供給停止弁ASKVの現時点以降のオン・オフさせるタイミング設定値を演算し、現時点以降付随車軸加速度を参照することなく、予測制御によりこのように演算したオン・オフさせるタイミング設定値をもとに吐き出し弁RSKVと供給停止弁ASKVをオン・オフさせるので、演算遅れの大きい付随車車輪加速度の推移を見ながら吐き出し弁RSKVと供給停止弁ASKVのオン・オフ制御をすることによる必要以上の過大なブレーキトルクの引き下げや滑走速度の増大を生ずることなく、小さな滑走速度のうちに確実に再粘着させ、その後急速に滑走検知時の接線力係数対応トルクに近いトルクを指令するので、大きな滑走速度となることによる車輪踏面のフラットの発生を抑制でき、またブレーキトルクの大きな変動の抑制による乗り心地の向上が可能となり、さらに粘着力の有効利用を図ることができる。
また、本発明の請求項2記載によれば、常時推定している接線力係数によって滑走検知の閾値を可変とするので、滑走検知する上で必要最低限度の閾値に設定できるので、さらなる滑走速度の低減を行うことができることになる。
In the incidental vehicle brake receiver according to claim 1 of the present invention, when the tangential force coefficient of the incidental vehicle wheel is estimated in a state where the estimated delay is always small using the minimum dimension disturbance observer, From the estimated value of the tangential force coefficient at the time of sliding detection, the minimum required brake torque reduction amount for re-adhesion and the brake torque slightly smaller than the torque corresponding to the estimated tangential force coefficient at the time of sliding detection commanded after re-adhesion Based on the brake torque reduction amount and the brake torque commanded after re-adhesion, the timing setting values for turning on and off the discharge valve RSKV and the supply stop valve ASKV from the current time are calculated, and the associated axle acceleration is calculated from the current time. Without turning on the discharge valve RSKV and the supply stop valve ASKV based on the timing set value for turning on / off calculated in this way by predictive control. Because it is turned off, the brake valve RSKV and the supply stop valve ASKV are turned on and off while observing the transition of the accompanying vehicle wheel acceleration with a large calculation delay, resulting in excessive reduction in brake torque and increase in sliding speed. Without any problem, it is possible to reliably re-adhere within a small sliding speed, and then promptly issue a torque close to the torque corresponding to the tangential force coefficient at the time of sliding detection. In addition, the ride comfort can be improved by suppressing large fluctuations in the brake torque, and the adhesive force can be effectively used.
Further, according to the second aspect of the present invention, since the threshold value of the sliding detection is made variable according to the tangential force coefficient that is always estimated, it is possible to set the threshold value to the minimum necessary level for the sliding detection. Can be reduced.

付随車車輪の接線力係数を推定遅れの小さな最小次元オブザーバによって常時推定していて、滑走検知時の接線力係数の推定値によって、再粘着させるための必要最小限のブレーキトルク引き下げ量と再粘着後に指令するブレーキトルクを滑走検知時の接線力係数対応ブレーキトルクより僅かに小さなブレーキトルクとなるように演算して、このブレーキトルク引き下げ量と再粘着後に指令するブレーキトルクから、吐き出し弁RSKVと供給停止弁ASKVの現時点以降のオン・オフさせるタイミング設定値を演算し、現時点以降付随車軸加速度を参照することなく、予測制御によりこのように演算したオン・オフさせるタイミング設定値をもとに吐き出し弁RSKVと供給停止弁ASKVをオン・オフさせることで、演算遅れの大きい付随車車輪加速度の推移を見ながら吐き出し弁RSKVと供給停止弁ASKVのオン・オフ制御をすることによる必要以上の過大なブレーキトルクの引き下げや滑走速度の増大を防止し、大きな滑走速度となることや車輪踏面にフラットが発生することを抑制し、また粘着力の有効利用と乗り心地の向上を実現している。   The tangential force coefficient of the accompanying vehicle wheel is always estimated by a minimum dimensional observer with a small estimated delay, and the minimum brake torque reduction amount and re-adhesion required for re-adhesion based on the estimated value of the tangential force coefficient at the time of sliding detection The brake torque to be commanded later is calculated to be slightly smaller than the brake torque corresponding to the tangential force coefficient at the time of sliding detection, and the discharge valve RSKV is supplied from this brake torque reduction amount and the brake torque commanded after re-adhesion. Calculates the timing setting value for turning on and off the stop valve ASKV from now on, and discharge valve based on the timing setting value to be turned on and off in this way by predictive control without referring to the accompanying axle acceleration after the current time By turning on and off the RSKV and supply stop valve ASKV, it is possible to change the acceleration of the accompanying vehicle wheel acceleration with a large calculation delay. While watching the discharge valve RSKV and supply stop valve ASKV, on / off control prevents excessive reduction of brake torque and increase of the running speed, preventing a large running speed and flatness on the wheel tread. In addition, it achieves effective use of adhesive strength and improved ride comfort.

図1は本発明の請求項1に記載の一実施例を示すブロック図、図2は本発明の請求項2に記載の一実施例を示すブロック図、図3は本発明の請求項1に記載の一実施例を用いて制御した滑走再粘着制御状態の例を示す図、図4は本発明の請求項2に記載の一実施例を用いて制御した滑走再粘着制御状態の例を示す図、図5は接線力係数あるいは接線力のすべり速度に対する一般的な特性を示す図、図6は最小次元外乱オブザーバ方式接線力係数推定器のブロック図、図7は従来の付随車ブレーキ受量器を用いて制御した滑走再粘着制御状態の例を示す図である。   1 is a block diagram showing an embodiment of the present invention as set forth in claim 1, FIG. 2 is a block diagram showing an embodiment as set forth in claim 2 of the present invention, and FIG. 3 is shown in claim 1 of the present invention. The figure which shows the example of the sliding re-adhesion control state controlled using one Example of description, FIG. 4 shows the example of the sliding re-adhesion control state controlled using one Example of Claim 2 of this invention Fig. 5, Fig. 5 is a diagram showing general characteristics with respect to the tangential force coefficient or the sliding speed of the tangential force, Fig. 6 is a block diagram of a minimum dimension disturbance observer type tangential force coefficient estimator, and Fig. 7 is a conventional incidental vehicle brake load It is a figure which shows the example of the sliding re-adhesion control state controlled using the vessel.

図1において、吐き出し弁RSKVの動作信号SRSKV と供給停止弁ASKVの動作信号
SASKV とを吐き出し弁RSKV・供給停止弁ASKV動作情報記憶装置1に入力し、吐き出し弁RSKV・供給停止弁ASKV動作情報記憶装置1ではこれらの電磁弁がオン・オフした時刻を時々刻々動作履歴情報His_actとして記憶しておき、これら電磁弁がいつオン・オフしたかを動作履歴情報として空気ブレーキ力演算器2に対して出力する。空気ブレーキ力演算器2には、この他に運転士のブレーキ弁操作に対応したブレーキ力指令値Fcom_brを図示しないブレーキ力設定器において発生して入力される。空気ブレーキ力演算器2では、入力されたブレーキ力指令値Fcom_brから現在のブレーキ弁操作量に対応したブレーキ力の最終値Fbr_finalが分かり、このブレーキ弁操作量に対応したブレーキ力の最終値Fbr_finalと、動作履歴情報から吐き出し弁RSKVと供給停止弁ASKVのオン・オフ時刻が分かることから、一次遅れで変化するブレーキシリンダ圧力(以下BC圧力という)の時々刻々の推移を把握できるので、空気ブレーキ力Fairを求めることができる。
このように演算された空気ブレーキ力Fairと、図示しない速度センサによって検出された車輪速度ωaxlと、空車軸重からの増加分が分かる応荷重信号Sweightとが、最小次元外乱オブザーバ方式接線力係数推定器3に入力される。
In FIG. 1, the operation signal SRSKV of the discharge valve RSKV and the operation signal SASKV of the supply stop valve ASKV are input to the discharge valve RSKV / supply stop valve ASKV operation information storage device 1, and the discharge valve RSKV / supply stop valve ASKV operation information is stored. In the device 1, the time when these solenoid valves are turned on / off is stored as operation history information His_act from time to time, and the time when these solenoid valves are turned on / off is stored in the air brake force calculator 2 as operation history information. Output. In addition to this, the brake force command value Fcom_br corresponding to the driver's brake valve operation is generated and inputted to the air brake force calculator 2 by a brake force setter (not shown). In the air brake force calculator 2, the final brake force value Fbr_final corresponding to the current brake valve operation amount is known from the input brake force command value Fcom_br, and the final brake force value Fbr_final corresponding to this brake valve operation amount is obtained. Since the ON / OFF time of the discharge valve RSKV and supply stop valve ASKV can be determined from the operation history information, the brake cylinder pressure (hereinafter referred to as BC pressure) that changes with the primary delay can be grasped from time to time. Fair can be obtained.
The air brake force Fair calculated in this way, the wheel speed ωaxl detected by a speed sensor (not shown), and the applied load signal Weight that indicates the increase from the idle axle weight are the minimum dimension disturbance observer type tangential force coefficient estimation. Is input to the device 3.

そして、最小次元外乱オブザーバ方式接線力係数推定器3では、図6のブロック図に示すように、空気ブレーキ力Fairと車輪速度ωaxlと応荷重信号Sweightとから、車輪・レール間の接線力係数推定値μestを演算する。最小次元外乱オブザーバ方式接線力係数推定器3による接線力係数推定値μestの演算結果は、(1)式のように与えられる。

Figure 2007022421
ここに、
Figure 2007022421
:空車軸重、r:車輪半径、s:ラプラス演算子、a:外乱オブザーバの極(これの逆数が時定数)、Jm:車軸周りの慣性モーメントである。また、応荷重信号Sweightは、空車軸重からの軸重増加分の空車軸重に対する比率として与えられるものとしている。 Then, the minimum dimension disturbance observer type tangential force coefficient estimator 3 estimates the tangential force coefficient between the wheels and the rails from the air brake force Fair, the wheel speed ωaxl, and the applied load signal Weight as shown in the block diagram of FIG. Calculate the value μest. The calculation result of the tangential force coefficient estimated value μest by the minimum dimension disturbance observer type tangential force coefficient estimator 3 is given by the following equation (1).
Figure 2007022421
here,
Figure 2007022421
: Empty axle weight, r: wheel radius, s: Laplace operator, a: pole of disturbance observer (the reciprocal of this is a time constant), Jm: moment of inertia around the axle. The variable load signal Sweight is given as a ratio to the empty axle weight corresponding to the increase in axle weight from the empty axle weight.

また車輪速度ωaxlは車輪軸加速度演算器4に入力されて車輪軸加速度αaxlが演算される。この車輪軸加速度αaxlは車輪速度ωaxlとともに、滑走検知器5に入力される。滑走検知器5には、ブロック図に示されている車輪速度ωaxlの他に付随車1両分の残り3軸の車輪速度も入力されるので、公知の方法により、これら4軸分の車輪速度から最も高い速度のものを車両速度Vtとみなして、当該車輪速度ωaxlが車両速度Vtより予め定めた閾値δVth以上低いか、入力された当該車輪の車輪軸加速度αaxlの絶対値|αaxl|が、予め定めた閾値hs_b以上大きい場合に滑走が発生したと認識して、滑走検知信号slipを暫時オンとして(予め定めた閾値hs_bより小さい場合は、滑走が発生していないのでこの信号をオフとして)、この滑走検知信号slipを吐き出し弁・供給停止弁オン・オフタイミング設定器6に出力する。   The wheel speed ωaxl is input to the wheel axis acceleration calculator 4 to calculate the wheel axis acceleration αaxl. The wheel axis acceleration αaxl is input to the sliding detector 5 together with the wheel speed ωaxl. In addition to the wheel speed ωaxl shown in the block diagram, the remaining three-axis wheel speed for one associated vehicle is also input to the sliding detector 5, so that the wheel speeds for these four axes can be obtained by a known method. The vehicle speed Vt is regarded as the vehicle speed Vt, and the wheel speed ωaxl is lower than the vehicle speed Vt by a predetermined threshold value δVth or the absolute value of the wheel axis acceleration αaxl of the input wheel | αaxl | Recognize that sliding has occurred when it is greater than or equal to a predetermined threshold value hs_b, and turn on the sliding detection signal slip for a while (if it is smaller than the predetermined threshold value hs_b, this signal is turned off because no sliding has occurred) The slip detection signal slip is output to the discharge valve / supply stop valve on / off timing setter 6.

吐き出し弁・供給停止弁オン・オフタイミング設定器6には、この滑走検知信号slipのほか、接線力係数推定値μestと、車輪速度ωaxl、車輪軸加速度αaxlが入力される。これらの入力信号から、吐き出し弁・供給停止弁オン・オフタイミング設定器6では、接線力係数推定値μest、車輪速度ωaxl、車輪軸加速度αaxlの演算遅れを考慮に入れて、滑走している車輪を確実に再粘着させることができる範囲での空気ブレーキトルク引き下げ量の最小値τd_minと、再粘着後に指令する滑走検知時の接線力係数の推定値に対応した空気ブレーキトルクより僅かに小さい空気ブレーキトルクτc_muを演算して、図3に示すように、時刻T1で滑走検知した場合に、τd_minに対応した量だけBC圧力を低下させることができると予測した時刻T2とBC圧力を低下させるための吐き出し弁RSKVと供給停止弁ASKVを時刻T1から時刻T2までオン指令とする動作情報、τd_minに対応した量だけBC圧力が低下すると予測した時刻T2から完全に再粘着すると予測した時刻T3までBC圧力をその値に維持するための吐き出し弁RSKVオフ・供給停止弁ASKVオンの動作情報、完全に再粘着すると予測した時刻T3から時刻T4までBC圧力を増大させてτc_muに対応したBC圧力にするための吐き出し弁RSKVオフ・供給停止弁ASKVオフの動作情報、τc_muに対応したBC圧力になると予測した時刻T4から時刻T5までこのBC圧力に維持するための吐き出し弁RSKVオフ・供給停止弁ASKVオンの動作情報、さらに時刻T5から(粘着係数が増大している可能性があるために)BC圧力を増大させるための吐き出し弁RSKVオフ・供給停止弁ASKVオフの動作情報を作成する。そして、このようにして作成した吐き出し弁RSKV動作情報、供給停止弁ASKV動作情報を図示しない吐き出し弁RSKVと供給停止弁ASKVに対して出力してこれら電磁弁を所定の時刻においてオン・オフさせる。このように、演算遅れの大きい車輪軸加速度αaxlを参照することなく予測制御により所定のタイミングで吐き出し弁RSKVと供給停止弁ASKVをオン・オフさせるので、図3の時刻T1から時刻T4までの車輪速度に示すように小さな滑走速度のうちに再粘着させることができ、またこの間のBC圧力の低下量を小さい範囲に抑制できるので、粘着力の有効利用と乗り心地の改善が可能となる。
このことは、図7に示した従来の付随車ブレーキ受量器を用いて制御した再粘着制御状態の例と対比すると明白である。すなわち、図7では時刻T1で滑走検知した後、吐き出し弁RSKVと供給停止弁ASKVをオンとしてBC圧力を低減させる動作を行い、車輪軸加速度αaxlを参照して、この車輪軸加速度αaxlがゼロあるいはプラスの値に変化したタイミングにおいて再粘着に向かい出したと判断して、吐き出し弁RSKVオフ・供給停止弁ASKVオフとしてBC圧力を増大させる制御を行っている。ところが、速度パルスの計数によって演算される車輪速度ωaxlの差分によって演算される車輪軸加速度αaxlは、時間的な揺らぎが大きくなるので制御に使用できるようにフィルタに通したものを使用するため、車輪速度から大きく遅れたものとなる。そのため、このように演算遅れの大きい車輪軸加速度αaxlを用いて、これがゼロあるいはプラスの値に変化したタイミングにおいてBC圧力を増大させる制御を行っているため、図7に示すように時刻T2においてBC圧力を増大に転じさせたときには、大きくBC圧力が低下してしまい、またBC圧力の低下が遅れることから滑走速度が非常に大きくなる。また、このように大きくBC圧力を低下させるため、BC圧力を上昇させ始めた初期の段階で車輪が再粘着してしまうことにより、その後のBC圧力の上昇がそのまま接線力の変動となってしまうので、このように大きくBC圧力が変化することによって、乗り心地を大きく害することになる。
これに対して、本発明の請求項1に記載の受量器によって、BC圧力の変動の小さい制御が行われるため、乗り心地の良い滑走再粘着制御が実現できることになる。
In addition to the sliding detection signal slip, the tangential force coefficient estimated value μest, the wheel speed ωaxl, and the wheel axis acceleration αaxl are input to the discharge valve / supply stop valve on / off timing setter 6. From these input signals, the discharge valve / supply stop valve on / off timing setter 6 takes into account the calculation delay of the tangential force coefficient estimated value μest, the wheel speed ωaxl, and the wheel axis acceleration αaxl, and the wheel is sliding. Air brake torque reduction amount τd_min within the range that can reliably re-adhere and air brake slightly smaller than the air brake torque corresponding to the estimated value of the tangential force coefficient at the time of sliding detection commanded after re-adhesion When the torque τc_mu is calculated and sliding is detected at time T1, as shown in FIG. 3, the time T2 and BC pressure that are predicted to be reduced by the amount corresponding to τd_min can be reduced. Operation information for turning on the discharge valve RSKV and the supply stop valve ASKV from time T1 to time T2, and completely re-adhering from time T2 when BC pressure is predicted to decrease by an amount corresponding to τd_min Operational information of the discharge valve RSKV off / supply stop valve ASKV on to maintain the BC pressure at that value until the predicted time T3, and increase the BC pressure from time T3 to time T4 predicted to be completely re-adhered to τc_mu Exhaust valve RSKV off / supply stop valve ASKV off operation information to make BC pressure corresponding to, Exhaust valve RSKV to maintain this BC pressure from time T4 to time T5 predicted to be BC pressure corresponding to τc_mu Operation information of OFF / supply stop valve ASKV ON, and operation information of discharge valve RSKV OFF / supply stop valve ASKV OFF to increase BC pressure (because the adhesion coefficient may increase) from time T5 Create Then, the discharge valve RSKV operation information and the supply stop valve ASKV operation information created in this way are output to the discharge valve RSKV and the supply stop valve ASKV (not shown) to turn these electromagnetic valves on and off at a predetermined time. In this way, the discharge valve RSKV and the supply stop valve ASKV are turned on / off at a predetermined timing by predictive control without referring to the wheel axis acceleration αaxl having a large calculation delay, so the wheels from time T1 to time T4 in FIG. As shown in the speed, re-adhesion can be achieved within a small sliding speed, and the amount of decrease in BC pressure during this period can be suppressed to a small range, so that effective use of adhesive force and improvement of riding comfort can be achieved.
This is apparent when compared with the example of the re-adhesion control state controlled using the conventional accompanying vehicle brake receiver shown in FIG. That is, in FIG. 7, after the sliding is detected at time T1, the operation is performed to reduce the BC pressure by turning on the discharge valve RSKV and the supply stop valve ASKV, and referring to the wheel axis acceleration αaxl, the wheel axis acceleration αaxl is zero or At the timing when the value has changed to a positive value, it is determined that re-adhesion has started, and control is performed to increase the BC pressure as a discharge valve RSKV off / supply stop valve ASKV off. However, since the wheel axis acceleration αaxl calculated by the difference of the wheel speed ωaxl calculated by the speed pulse count increases the temporal fluctuation, it uses the one passed through the filter so that it can be used for control. It will be greatly delayed from the speed. For this reason, since the wheel axis acceleration αaxl having a large calculation delay is used and control is performed to increase the BC pressure at a timing when the wheel axis acceleration αaxl changes to zero or a positive value, the BC pressure is increased at time T2 as shown in FIG. When the pressure is increased, the BC pressure is greatly decreased, and since the decrease in the BC pressure is delayed, the sliding speed becomes very large. In addition, in order to greatly reduce the BC pressure in this way, the wheel re-adheres at the initial stage when the BC pressure starts to increase, and the subsequent increase in the BC pressure becomes the fluctuation of the tangential force as it is. Therefore, the ride comfort is greatly harmed by such a large BC pressure change.
On the other hand, since the control with a small fluctuation of the BC pressure is performed by the receiver according to the first aspect of the present invention, sliding re-adhesion control with good riding comfort can be realized.

図2は本発明の請求項2に記載の一実施例を示すブロック図であるが、図1と異なるところは、接線力係数推定値μestが滑走検知器5に入力されているところである。実施例1においては、車輪軸加速度αaxlによる滑走検知の閾値hs_bは一定値と仮定した。この場合、接線力係数が一般に小さくなる高速度域においては、低速度域より相対的に閾値が大きくなり、そのため大きな滑走速度になってから滑走を検知することになる。これに対して、滑走検知したときの接線力係数の推定値をもとに、例えば下式のように閾値hs_bを変化させる。

Figure 2007022421
ここに、k、a、bは定数、grad : 千分率で表した勾配、μ0:常用最大ブレーキに対応した粘着係数、fmin:f(μest)の最小値、hs_b0:常用最大ブレーキ時の車両の設定減速度に対応した閾値である。そして、f(μest)は(3)式に示すように、1.0以下の値を有する。
(2)〜(3)式に示すように、接線力係数の推定値μestが小さいほど滑走検知の閾値が小さくなるので、高速度域において早期に滑走を検知できるため、図4に示すように本発明の請求項1によるよりもさらに滑走速度を小さくできるので、さらなる粘着力の有効利用が可能となる。 FIG. 2 is a block diagram showing an embodiment according to claim 2 of the present invention. The difference from FIG. 1 is that a tangential force coefficient estimated value μest is inputted to the sliding detector 5. In the first embodiment, it is assumed that the threshold hs_b for sliding detection based on the wheel axis acceleration αaxl is a constant value. In this case, in the high speed region where the tangential force coefficient is generally small, the threshold value is relatively larger than that in the low speed region, so that the sliding is detected after a high sliding speed is reached. On the other hand, based on the estimated value of the tangential force coefficient when sliding is detected, for example, the threshold value hs_b is changed as in the following equation.
Figure 2007022421
Where k, a, b are constants, grad: gradient in thousandths, μ0: adhesion coefficient corresponding to the maximum service brake, fmin: minimum value of f (μest), hs_b0: vehicle at maximum service brake Is a threshold value corresponding to the set deceleration. F (μest) has a value of 1.0 or less as shown in the equation (3).
As shown in the equations (2) to (3), the smaller the estimated value μest of the tangential force coefficient is, the smaller the threshold value of the sliding detection is. Therefore, since the sliding can be detected early in the high speed range, as shown in FIG. Since the sliding speed can be further reduced as compared with the first aspect of the present invention, further effective use of the adhesive force is possible.

本発明は、電車列車中の付随車における空気ブレーキ力作用時の滑走再粘着制御性能向上に関して、外乱オブザーバによる接線力推定を利用してなされたものであり、車両の駆動力やブレーキ力特性を直接計測することなく間接的な制御量によって明確に表現できる場合には、例えば気動車やディーゼル機関車などにおいても、外乱オブザーバによる接線力推定を利用した本特許は適用が可能である。   The present invention has been made by utilizing tangential force estimation by a disturbance observer for improving the sliding re-adhesion control performance when an air braking force is applied to an accompanying vehicle in a train. In the case where it can be clearly expressed by an indirect control amount without directly measuring, the present patent using tangential force estimation by a disturbance observer can be applied to, for example, a diesel train or a diesel locomotive.

本発明の請求項1に記載の一実施例を示すブロック図である。It is a block diagram which shows one Example as described in Claim 1 of this invention. 本発明の請求項2に記載の一実施例を示すブロック図である。It is a block diagram which shows one Example as described in Claim 2 of this invention. 本発明の請求項1に記載の一実施例を用いて制御した滑走再粘着制御状態の例を示す図である。It is a figure which shows the example of the sliding re-adhesion control state controlled using one Example of Claim 1 of this invention. 本発明の請求項2に記載の一実施例を用いて制御した滑走再粘着制御状態の例を示すである。It is an example of the sliding re-adhesion control state controlled using one embodiment according to claim 2 of the present invention. 接線力係数あるいは接線力のすべり速度に対する一般的な特性を示す図である。It is a figure which shows the general characteristic with respect to the sliding speed of a tangential force coefficient or a tangential force. 最小次元外乱オブザーバ方式接線力係数推定器のブロック図である。It is a block diagram of a minimum dimension disturbance observer system tangential force coefficient estimator. 従来の付随車ブレーキ受量器を用いて制御した滑走再粘着制御状態の例を示す図である。It is a figure which shows the example of the sliding re-adhesion control state controlled using the conventional accompanying vehicle brake receiving device.

符号の説明Explanation of symbols

1 吐き出し弁RSKV・供給停止弁ASKV動作情報記憶装置
2 空気ブレーキ力演算器
3 最小次元外乱オブザーバ方式接線力係数推定器
4 車輪軸加速度演算器
5 滑走検知器
6 吐き出し弁・供給停止弁オン・オフタイミング設定器
SRSKV 吐き出し弁RSKV動作信号
SASKV 供給停止弁ASKV動作信号
His_act 動作履歴情報
Fcom_br ブレーキ力指令値
ωaxl 車輪速度
Fair 空気ブレーキ力
Sweight 応荷重信号
αaxl 車輪軸加速度
slip 滑走検知信号
μest 接線力係数推定値
τd_min 確実に再粘着させることができる範囲での空気ブレーキトルク引き下げ
量の最小値
τc_mu 再粘着後に指令する滑走検知時の接線力係数の推定値に対応した空気ブ
レーキトルクより僅かに小さい空気ブレーキトルク

Figure 2007022421
Fmu 接線力推定値
r 車輪半径
Jm 車軸周りの慣性モーメント
Figure 2007022421
a 外乱オブザーバの極
s ラプラス演算子
1 Discharge valve RSKV / Supply stop valve ASKV motion information storage device 2 Air brake force calculator 3 Minimum dimension disturbance observer tangential force coefficient estimator 4 Wheel axis acceleration calculator 5 Sliding detector 6 Discharge valve / Supply stop valve ON / OFF Timing setter SRSKV Discharge valve RSKV operation signal SASKV Supply stop valve ASKV operation signal
His_act Operation history information Fcom_br Brake force command value ωaxl Wheel speed
Fair Air brake force Weight Response load signal αaxl Wheel axle acceleration
slip Sliding detection signal μest Estimated tangential force coefficient τd_min Air brake torque reduction within a range where it can be reliably adhered again
Minimum value τc_mu Air block corresponding to the estimated value of tangential force coefficient at the time of sliding detection commanded after re-adhesion
Air brake torque slightly less than rake torque
Figure 2007022421
Fmu Estimated tangential force r Wheel radius Jm Moment of inertia around axle
Figure 2007022421
a Disturbance observer pole s Laplace operator

Claims (2)

ブレーキ力指令値、吐き出し弁RSKVと供給停止弁ASKVの動作履歴情報、速度センサにより検出される車輪速度、付随車質量、車輪径などから付随車車輪の接線力係数を推定する接線力係数推定器と、1車両分の前記車輪速度を用いて演算した車両速度と前記車輪速度の差速度からあるいは前記速度センサから演算した付随車軸加速度から付随車軸の滑走を検知する滑走検知器と、滑走を検知した場合には前記接線力係数推定値に対応したトルクより小さいトルクを指令して当該付随車輪を再粘着状態に戻しその後前記接線力係数推定値に対応したトルクを指令するために滑走検知時点において設定した滑走検知時点以降の吐き出し弁RSKVと供給停止弁ASKVのオンオフのタイミング設定値をもとに前記吐き出し弁RSKVと供給停止弁ASKVのオンオフ制御を行う電磁弁制御器を備えたことを特徴とする付随車ブレーキ受量器。
Tangential force coefficient estimator that estimates the tangential force coefficient of the associated vehicle wheel from the brake force command value, the operation history information of the discharge valve RSKV and supply stop valve ASKV, the wheel speed detected by the speed sensor, the associated vehicle mass, wheel diameter, etc. A sliding detector that detects sliding of the associated axle from the difference between the vehicle speed calculated using the wheel speed for one vehicle and the wheel speed or from the associated axle acceleration calculated from the speed sensor; If this is the case, a torque smaller than the torque corresponding to the tangential force coefficient estimated value is commanded, the associated wheel is returned to the re-adhesion state, and then the torque corresponding to the tangential force coefficient estimated value is commanded at the time of sliding detection. On / off control of the discharge valve RSKV and the supply stop valve ASKV is performed based on the ON / OFF timing setting values of the discharge valve RSKV and the supply stop valve ASKV after the set sliding detection time. An accompanying vehicle brake receiver, comprising a solenoid valve controller.
請求項1に記載の付随車ブレーキ受量器において、接線力係数推定器において推定された接線力係数をもとに滑走検知の閾値を可変とした滑走検知器を備えたことを特徴とする付随車ブレーキ受量器   The accompanying vehicle brake receiver according to claim 1, further comprising a sliding detector having a variable threshold for detecting the sliding based on the tangential force coefficient estimated by the tangential force coefficient estimator. Car brake balance
JP2005209671A 2005-07-20 2005-07-20 Accompanying car brake receiver Expired - Fee Related JP4693534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209671A JP4693534B2 (en) 2005-07-20 2005-07-20 Accompanying car brake receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209671A JP4693534B2 (en) 2005-07-20 2005-07-20 Accompanying car brake receiver

Publications (2)

Publication Number Publication Date
JP2007022421A true JP2007022421A (en) 2007-02-01
JP4693534B2 JP4693534B2 (en) 2011-06-01

Family

ID=37783731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209671A Expired - Fee Related JP4693534B2 (en) 2005-07-20 2005-07-20 Accompanying car brake receiver

Country Status (1)

Country Link
JP (1) JP4693534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159742A (en) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 Brake control method for railroad vehicle, brake control device, and brake control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115533A (en) * 1997-06-16 1999-01-12 Railway Technical Res Inst Brake force control device and brake force control method
JPH1148939A (en) * 1997-08-05 1999-02-23 Nissan Motor Co Ltd Antiskid controller
JP2000211487A (en) * 1999-01-20 2000-08-02 Mitsubishi Electric Corp Skid control device for rolling stock
JP2000224708A (en) * 1999-01-29 2000-08-11 Kiyoshi Oishi Electric rolling stock controller
JP2002325307A (en) * 2001-04-25 2002-11-08 Kiyoshi Oishi Control device for electric rolling stock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115533A (en) * 1997-06-16 1999-01-12 Railway Technical Res Inst Brake force control device and brake force control method
JPH1148939A (en) * 1997-08-05 1999-02-23 Nissan Motor Co Ltd Antiskid controller
JP2000211487A (en) * 1999-01-20 2000-08-02 Mitsubishi Electric Corp Skid control device for rolling stock
JP2000224708A (en) * 1999-01-29 2000-08-11 Kiyoshi Oishi Electric rolling stock controller
JP2002325307A (en) * 2001-04-25 2002-11-08 Kiyoshi Oishi Control device for electric rolling stock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159742A (en) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 Brake control method for railroad vehicle, brake control device, and brake control program

Also Published As

Publication number Publication date
JP4693534B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5720701B2 (en) Vehicle control device
US8342618B2 (en) Traction control device for vehicle
US8886375B2 (en) Control apparatus for electric vehicle
US10532743B2 (en) Method for controlling motor torque in electric vehicle
US8825240B2 (en) Control device for electric rolling stock
US10137784B2 (en) Control device for electric vehicle
CN108463370B (en) Brake control device, brake control method, train, and program
CN107848424B (en) Brake control device
US10328803B2 (en) Control method and control device for electric vehicle
WO2011108082A1 (en) Vehicle control device
JP4621377B2 (en) Electric vehicle control device
CN110758358B (en) Electromechanical combined brake control method and device for tracked vehicle
JP5322994B2 (en) Power generation control device for hybrid vehicle
EP2623361A1 (en) Brake control apparatus for vehicle, and brake control apparatus for multi-car train
JP2017056746A (en) Electric brake device
JP4693534B2 (en) Accompanying car brake receiver
WO2015004699A1 (en) Inter-vehicle distance maintaining control device
JP2012010504A (en) Train controller having train monitoring/data transmission system
JP2018140724A (en) Mechanical brake control method and mechanical brake control device
JP2007106185A (en) Brake electric operating device of trailer
JP4349919B2 (en) Electric vehicle control device
CN109866769A (en) For run motor vehicle method and corresponding motor vehicle
JP2010158944A (en) Driving force distribution controller of hybrid vehicle
JP2005261113A (en) Electric vehicle control unit
KR20210077084A (en) Eco-friendly vehicle and method of controlling driving force for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees