JP2007019579A - Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit - Google Patents

Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit Download PDF

Info

Publication number
JP2007019579A
JP2007019579A JP2005195902A JP2005195902A JP2007019579A JP 2007019579 A JP2007019579 A JP 2007019579A JP 2005195902 A JP2005195902 A JP 2005195902A JP 2005195902 A JP2005195902 A JP 2005195902A JP 2007019579 A JP2007019579 A JP 2007019579A
Authority
JP
Japan
Prior art keywords
signal
expected value
inter
replica
value signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195902A
Other languages
Japanese (ja)
Inventor
Yasushi Watabe
康 渡部
Kazuaki Suzuki
一章 鈴木
Hisaya Kato
久也 加藤
Mikihiro Ouchi
幹博 大内
Yoshinaga Matsumura
喜修 松村
Mahbub Rashid
マーブブ ラシド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005195902A priority Critical patent/JP2007019579A/en
Publication of JP2007019579A publication Critical patent/JP2007019579A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a storage area of a large capacity is required to repeat processing because processing for forming a pseudo inter-carrier interference component and eliminating it from a reception signal is repeated, in order to suppress deterioration in reception performance caused by inter-carrier interference generated in a mobile reception environment where a propagation path varies. <P>SOLUTION: A quadrature demodulator performs quadrature demodulation for an input signal to generate a quadrature-demodulated signal. A storage area stores and holds the quadrature-demodulated signal. A propagation path estimator estimates a propagation path from the quadrature demodulated signal and an expected value signal. A replica eliminator eliminates the inter-carrier interference from the quadrature-demodulated signal. An error corrector corrects an error of a demodulated signal by soft decision processing. A hard decision device applies hard decision processing to the demodulated signal. A determination switching device selects results of hard and soft decisions. A replica creating device creates a replica of an inter-carrier interference component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、据え置き型のデジタル放送受信機に限らず、自動車などの移動体においてもデジタル放送信号を受信し、良好な復調処理を行うことができるデジタル放送受信機に関するものである。   The present invention relates to a digital broadcast receiver that can receive a digital broadcast signal and perform good demodulation processing not only on a stationary digital broadcast receiver but also on a mobile body such as an automobile.

地上デジタル放送は据え置き型受信機による固定受信に加えて移動体に搭載された受信機による移動受信が可能となる。移動受信環境においてはフェージングによって復調部において良好な受信結果を示さないことが起こりえる。これはOFDM(Othogonal Frequency Division Multiplexing)などのマルチキャリア伝送では、各キャリアに移動に伴うドップラーシフトが発生してキャリア配列の直交性が崩れ、隣り合うキャリアが互いに重畳し、干渉を及ぼしあうキャリア間干渉(ICI:Inter Carrier Interference)を起こすからである。   In addition to fixed reception by a stationary receiver, terrestrial digital broadcasting can be received by a receiver mounted on a mobile object. In the mobile reception environment, it is possible that the demodulator does not show a good reception result due to fading. This is because, in multi-carrier transmission such as OFDM (Othonal Frequency Division Multiplexing), Doppler shift occurs due to movement in each carrier, the orthogonality of the carrier arrangement collapses, and adjacent carriers overlap each other and cause interference between carriers. This is because interference (ICI: Inter Carrier Interference) occurs.

前記のようなドップラーシフトに伴うキャリア間干渉の発生による復調処理における受信特性の劣化を防ぐ従来の技術として、例えば特許文献1に示されたものがある。図9は上記従来の受信機の構成を示すブロック図である。上記従来の受信機は直交復調器101と伝送路推定器102とレプリカ作成器103とレプリカ除去器104と誤り訂正器105とから構成される。   For example, Patent Document 1 discloses a conventional technique for preventing deterioration of reception characteristics in demodulation processing due to the occurrence of inter-carrier interference due to the Doppler shift as described above. FIG. 9 is a block diagram showing the configuration of the conventional receiver. The conventional receiver includes an orthogonal demodulator 101, a transmission path estimator 102, a replica creator 103, a replica remover 104, and an error corrector 105.

アンテナから入力された信号を直交復調器101は直交復調し、直交復調信号を伝送路推定器102およびレプリカ除去器104へ供給する。伝送路推定器102は直交復調信号と期待値信号から伝送路状態を推定し、伝送路推定信号をレプリカ作成器103とレプリカ除去器104へ供給する。レプリカ作成器103は期待値信号と伝送路推定器信号からICIレプリカ信号を作成し、レプリカ除去器104へ供給する。レプリカ除去器104は直交復調信号とICIレプリカ信号からICIレプリカ成分を取り除いた復調信号(時間軸)を作るとともに、伝送路推定信号を用いてICI残差の抑圧と復調信号の時間−周波数変換を行い、復調信号(周波数軸)を誤り訂正器105へ供給する。誤り訂正器105は復調信号(周波数軸)の誤り訂正を行って期待値信号を作成し、レプリカ作成器103と伝送路推定器102へ供給するとともにデジタル放送受信機の出力として付記されないバックエンドへ供給する。   The quadrature demodulator 101 demodulates the signal input from the antenna and supplies the quadrature demodulated signal to the transmission path estimator 102 and the replica remover 104. The transmission path estimator 102 estimates the transmission path state from the quadrature demodulated signal and the expected value signal, and supplies the transmission path estimation signal to the replica creator 103 and the replica remover 104. The replica creator 103 creates an ICI replica signal from the expected value signal and the transmission path estimator signal, and supplies the ICI replica signal to the replica remover 104. The replica remover 104 generates a demodulated signal (time axis) obtained by removing the ICI replica component from the quadrature demodulated signal and the ICI replica signal, and suppresses the ICI residual and performs the time-frequency conversion of the demodulated signal using the transmission path estimation signal. The demodulated signal (frequency axis) is supplied to the error corrector 105. The error corrector 105 performs error correction on the demodulated signal (frequency axis) to generate an expected value signal, supplies the signal to the replica generator 103 and the transmission path estimator 102, and returns to the back end not added as an output of the digital broadcast receiver. Supply.

上記デジタル放送受信機の動作について説明する。直交復調器101はアンテナから入力された信号を直交復調処理することによってI−Qの複素信号に変換する。さらに複素信号の同期を確立後、ガードインターバルを除去して伝送路推定器102、及びレプリカ除去器104へ供給する。   The operation of the digital broadcast receiver will be described. The orthogonal demodulator 101 converts the signal input from the antenna into an IQ complex signal by performing orthogonal demodulation processing. Further, after synchronization of the complex signal is established, the guard interval is removed and supplied to the transmission path estimator 102 and the replica remover 104.

図2に伝送路推定器102の構成を示す。伝送路推定器102はタップ係数生成部201と伝送路応答行列生成部202と遅延部203と重み付け部204と加算部205と減算部206から構成される。遅延部203は入力された期待値信号を処理時間単位毎に遅延させ、重み付け部204へ供給する。重み付け部204は遅延部203から供給された遅延信号にタップ係数生成部201から供給されたタップ係数を乗算し、乗算結果を出力として加算部205へ供給する。加算部205は重み付け部204から供給された各タップの乗算結果の総和をとり、減算部206へ供給する。減算部206は直交復調信号と加算部205から供給された信号との誤差を算出し、タップ係数生成部201へ供給する。タップ係数生成部201は減算部206から供給された誤差信号からタップ係数を算出し、重み付け部204へ供給して新たなタップ係数にするともに伝送路応答行列生成部202へ供給する。伝送路応答行列生成部202はタップ係数生成部201から供給されたタップ係数をもとに伝送路応答行列を生成し、伝送路推定器102の出力として伝送路応答行列(伝送路推定信号)をレプリカ作成器103及びレプリカ除去器104へ供給する。伝送路推定器102におけるタップ係数の算出は前記処理時間毎にRLS(Recursive Least Square)アルゴリズムを用いて行う。すなわち、ある時刻での受信信号と、期待値から求めたある時刻での受信信号のレプリカ信号との絶対値2乗誤差を最小にするような処理を行う。   FIG. 2 shows the configuration of the transmission path estimator 102. The transmission path estimator 102 includes a tap coefficient generation unit 201, a transmission path response matrix generation unit 202, a delay unit 203, a weighting unit 204, an addition unit 205, and a subtraction unit 206. The delay unit 203 delays the input expected value signal for each processing time unit, and supplies it to the weighting unit 204. The weighting unit 204 multiplies the delay signal supplied from the delay unit 203 by the tap coefficient supplied from the tap coefficient generation unit 201 and supplies the multiplication result as an output to the addition unit 205. The adding unit 205 calculates the sum of the multiplication results of the taps supplied from the weighting unit 204 and supplies the sum to the subtracting unit 206. The subtraction unit 206 calculates an error between the orthogonal demodulated signal and the signal supplied from the addition unit 205 and supplies the error to the tap coefficient generation unit 201. The tap coefficient generation unit 201 calculates a tap coefficient from the error signal supplied from the subtraction unit 206, supplies the tap coefficient to the weighting unit 204 to make a new tap coefficient, and supplies it to the transmission line response matrix generation unit 202. The transmission channel response matrix generation unit 202 generates a transmission channel response matrix based on the tap coefficients supplied from the tap coefficient generation unit 201, and uses the transmission channel response matrix (transmission channel estimation signal) as an output of the transmission channel estimator 102. This is supplied to the replica creator 103 and the replica remover 104. The calculation of the tap coefficient in the transmission path estimator 102 is performed using an RLS (Recursive Last Square) algorithm for each processing time. That is, processing is performed to minimize an absolute value square error between a received signal at a certain time and a replica signal of the received signal at a certain time obtained from an expected value.

図3にレプリカ除去器104の構成を示す。レプリカ除去器104は減算部301と残差除去フィルタ302から構成される。減算部301は直交復調器101から供給された直交復調信号とレプリカ作成器103から供給されたICIレプリカ信号との減算を行い、その結果を残差除去フィルタ302へ供給する。残差除去フィルタ302は、レプリカ除去後の直交復調信号と伝送路推定信号を用いてICIレプリカ除去後のICIの残差を抑圧するとともに、フーリエ変換を行うため線形合成を行い、その出力を誤り訂正器105へ供給する。   FIG. 3 shows the configuration of the replica remover 104. The replica remover 104 includes a subtractor 301 and a residual removal filter 302. The subtraction unit 301 performs subtraction between the quadrature demodulated signal supplied from the quadrature demodulator 101 and the ICI replica signal supplied from the replica creator 103, and supplies the result to the residual removal filter 302. The residual removal filter 302 suppresses the ICI residual after removing the ICI replica by using the quadrature demodulated signal after removal of the replica and the transmission path estimation signal, performs linear synthesis to perform Fourier transform, and outputs an error as an error. Supply to the corrector 105.

誤り訂正器105は残差除去フィルタ302から供給された信号に対して誤り訂正処理を行う。誤り訂正処理の1つには各符号化ビットが+1である確率と−1である確率の対数尤度比を用いて行う方法がある。残差除去フィルタ出力の対数尤度比を事前情報として最大事後確率(MAP)復号を行い、符号ビットと情報ビットの対数尤度比を算出する。情報ビットの対数尤度比によって受信ビット系列が決定し、誤りがある場合には符号ビットの対数尤度比はインターリーブされて期待値を生成し、この期待値がレプリカ作成器、伝送路推定器へ供給される。このようにして繰り返し等化、復号が行われて誤り率の向上が達成される。MAP復号については非特許文献1に詳しくその動作が説明されている。また別の方法として残差除去フィルタの出力をデインターリーブした後にビタビ復号、及びRS復号を行い、軟判定により復号ビットを生成する誤り訂正処理がある。デインターリーブにはビットデインターリーブ、キャリアデインターリーブに加え、国内地上デジタル放送においては処理遅延の大きな時間デインターリーブも含まれる。   The error corrector 105 performs error correction processing on the signal supplied from the residual removal filter 302. As one of error correction processes, there is a method of using a log likelihood ratio of a probability that each encoded bit is +1 and a probability that is -1. Maximum a posteriori probability (MAP) decoding is performed using the log likelihood ratio of the residual removal filter output as a priori information, and the log likelihood ratio between the sign bit and the information bit is calculated. The received bit sequence is determined by the log-likelihood ratio of the information bits. If there is an error, the log-likelihood ratio of the code bits is interleaved to generate an expected value, and this expected value is used as a replica generator and transmission path estimator. Supplied to. In this way, iterative equalization and decoding are performed to improve the error rate. The operation of MAP decoding is described in detail in Non-Patent Document 1. As another method, there is an error correction process in which Viterbi decoding and RS decoding are performed after the output of the residual removal filter is deinterleaved, and decoded bits are generated by soft decision. In addition to bit deinterleaving and carrier deinterleaving, deinterleaving includes time deinterleaving with a large processing delay in domestic terrestrial digital broadcasting.

以上のように上記デジタル放送受信機は移動受信することによって生じるキャリア間干渉を除去するため、受信信号をいったん復号し、すべてのキャリアの復号データを元に伝送路推定を行う。さらに同時にICI成分を疑似的に作り出し、受信信号から除去する。以上の動作を繰り返すことによって徐々にICIの影響を低減させ、良好な受信性能を実現することができる。
特開2004−221702号公報 P.Robertson・E.Villebrun・P.Hoecher,“A comparison of optimal and sub−optimal MAP decording algorithms operating in the log domain”,Proc.of ICC95,1995.June,p.1009−1003 伊藤 雅文・須山 聡・府川 和彦・鈴木 博、「高速フェージングによるICIを除去するスキャッタードパイロット信号用OFDMターボ干渉キャンセル受信」、電子情報通信学会信学技報、NS2003−51、RCS2003−74 林 健一郎・木村 知弘・影山 定司・原田 泰男・木曽田 晃・坂下 誠司、「OFDM復調における適応等化方式の検討」、テレビジョン学会技術報告、ITE Technical Report Vol.20.No.53、PP.55
As described above, in order to eliminate inter-carrier interference caused by mobile reception, the digital broadcast receiver once decodes a received signal and performs transmission path estimation based on decoded data of all carriers. At the same time, an ICI component is artificially created and removed from the received signal. By repeating the above operations, it is possible to gradually reduce the influence of ICI and realize good reception performance.
JP 2004-211702 A P. Robertson E. Villebrun P. Hoecher, “A comparison of optimal and sub-optimal MAP decoding algorithms in the log domain”, Proc. of ICC95, 1995. June, p. 1009-1003 Masafumi Ito, Satoshi Suyama, Kazuhiko Fukawa, Hiroshi Suzuki, “OFDM turbo interference cancellation reception for scattered pilot signals to remove ICI due to high-speed fading”, IEICE Technical Report, NS2003-51, RCS2003-74 Kenichiro Hayashi, Tomohiro Kimura, Seiji Kageyama, Yasuo Harada, Satoshi Kishida, Seiji Sakashita, “Examination of Adaptive Equalization Scheme in OFDM Demodulation”, Television Society Technical Report, ITE Technical Report Vol. 20. No. 53, PP. 55

しかしながら、国内地上波テレビ放送では、誤り訂正処理に時間デインターリーブ(最大408シンボルの処理遅延)の処理を含むため1シンボル以上の時間がかかり、伝送路推定とレプリカ除去、誤り訂正処理をN回(N≧2)繰り返すと、あるシンボルのデータが入力されてから出力されるまでにN×408シンボルの遅延が生じる。テレビ放送波は非断続性の連続信号であるため、受信した信号を連続的に信号処理して出力する必要がある。従来のデジタル放送受信機では伝送路推定、レプリカ除去、誤り訂正の繰り返し処理をする間、あるシンボルのデータが各ブロックを占有することになり、次のシンボルのデータが処理できない。その結果、出力されるデータは欠落したものとなり、非断続性のテレビ信号を連続して再生することができなくなる。この問題を解決する方法として、直交復調器の後段に記憶領域を設ける方法がある。この方法は1シンボルのデータをフィードバックして繰り返し処理する間にアンテナから受信したデータ系列を繰り返し処理の前段、すなわち直交復調器の後で信号の欠落がないように蓄えておいて、上記の繰り返し処理を順次行っていくものである。上記方法ではデータ系列を蓄える記憶領域が繰り返し回数、シンボル長によって増大する。さらに、上記方法はインターリーブ/デインターリーブを含む誤り訂正処理を含むため、処理遅延による記憶容量の増加にともなうコスト増を引き起こす。   However, in domestic terrestrial television broadcasting, since error correction processing includes time deinterleave processing (processing delay of a maximum of 408 symbols), it takes more than one symbol, and transmission path estimation, replica removal, and error correction processing are performed N times. When (N ≧ 2) is repeated, a delay of N × 408 symbols occurs after data of a certain symbol is inputted and outputted. Since TV broadcast waves are non-intermittent continuous signals, it is necessary to continuously process and output received signals. In a conventional digital broadcast receiver, data of a certain symbol occupies each block during repeated processing of channel estimation, replica removal, and error correction, and data of the next symbol cannot be processed. As a result, the output data is lost, and the intermittent TV signal cannot be reproduced continuously. As a method of solving this problem, there is a method of providing a storage area after the quadrature demodulator. In this method, while data of one symbol is fed back and repeatedly processed, the data series received from the antenna is stored in the previous stage of the iterative process, that is, after the quadrature demodulator so that no signal is lost, Processing is performed sequentially. In the above method, the storage area for storing the data series increases with the number of repetitions and the symbol length. Furthermore, since the above method includes error correction processing including interleaving / deinterleaving, it causes an increase in cost due to an increase in storage capacity due to processing delay.

そこで本発明は前記の問題を解決すべく、なされたもので移動受信等によっておこるキャリア間干渉による受信性能の劣化を抑えるとともに、繰り返し処理を行うために必要となる記憶領域が大容量とならないデジタル放送受信機を実現することを目的とする。   Accordingly, the present invention has been made in order to solve the above-mentioned problems, and suppresses the deterioration in reception performance due to inter-carrier interference caused by mobile reception or the like, and a digital memory that does not require a large storage area for repeated processing. The purpose is to realize a broadcast receiver.

上記課題を解決するために本発明に係るデジタル放送受信機は、入力信号を直交復調し直交復調信号を生成する直交復調器と、前記直交復調信号を記憶する記憶領域と、前記記憶領域に記憶された直交復調信号と期待値から伝送路特性を推定し伝送路推定信号を生成する伝送路推定器と、前記記憶された直交復調信号と前記伝送路推定信号とICIレプリカ信号からICI成分を除去した復調信号を生成するレプリカ除去器と、前記レプリカ除去器からの前記復調信号の軟判定処理による誤り訂正をする誤り訂正器と、前記レプリカ除去器からの前記復調信号を硬判定処理する硬判定器と、前記硬判定器による硬判定結果と前記誤り訂正器による軟判定結果とを選択する判定切替器と、前記判定切替器からの期待値と前記伝送路推定器からの伝送路推定信号をもとにICIレプリカ信号を生成するレプリカ作成器を具備する。   In order to solve the above problems, a digital broadcast receiver according to the present invention includes an orthogonal demodulator that orthogonally demodulates an input signal to generate an orthogonal demodulated signal, a storage area that stores the orthogonal demodulated signal, and a storage area that stores the orthogonal demodulated signal. A transmission path estimator that estimates transmission path characteristics from the orthogonal demodulated signal and the expected value and generates a transmission path estimation signal; and removes ICI components from the stored orthogonal demodulation signal, transmission path estimation signal, and ICI replica signal A replica remover that generates the demodulated signal, an error corrector that performs error correction by soft decision processing of the demodulated signal from the replica remover, and a hard decision that performs a hard decision process on the demodulated signal from the replica remover A decision switching unit for selecting a hard decision result by the hard decision unit and a soft decision result by the error correction unit, an expected value from the decision change unit, and a transmission path estimator Comprising a replica generator for generating a ICI replica signal sending passage estimation signal based.

上記の構成によれば、前記ICIレプリカ信号を作成して直交復調信号から除去する処理を繰り返す上で、前記判定切替器で期待値を生成する信号源を処理の途中で軟判定結果から硬判定結果に切り替えることで、記憶領域の容量を小さくすることができる。   According to the above configuration, when the process of creating the ICI replica signal and removing it from the quadrature demodulated signal is repeated, the signal source that generates the expected value by the determination switch is determined from the soft decision result during the process. By switching to the result, the capacity of the storage area can be reduced.

以上説明したように、本発明のデジタル放送受信機は、小さな記憶領域を実装するのみで移動受信時のキャリア間干渉が主原因となる受信性能の劣化を抑えることができる。   As described above, the digital broadcast receiver according to the present invention can suppress deterioration of reception performance mainly due to inter-carrier interference during mobile reception only by mounting a small storage area.

(実施の形態1)
本発明の実施の形態1におけるデジタル放送受信機について図面を参照しながら説明する。図1は本発明のデジタル放送受信機の実施の形態1の構成図である。図1に示した構成は図9に示した従来のデジタル放送受信機に記憶領域106と硬判定器107と判定切替器108を追加したものである。
(Embodiment 1)
A digital broadcast receiver according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of Embodiment 1 of a digital broadcast receiver according to the present invention. The configuration shown in FIG. 1 is obtained by adding a storage area 106, a hard decision unit 107, and a decision switching unit 108 to the conventional digital broadcast receiver shown in FIG.

硬判定器107はレプリカ除去器104から供給されたICIレプリカ信号を除去した復調信号を変調方式に応じたマッピング点にデマッピングして信号の期待値を生成し、硬判定期待値信号として判定切替器108へ供給する。判定切替器108は硬判定器107から供給された硬判定期待値信号と誤り訂正器105から供給された軟判定期待値信号のどちらかを選択し、レプリカ作成、及び伝送路推定に用いる期待値信号としてレプリカ作成器103、及び伝送路推定器102へ供給する。記憶領域106は直交復調器101から供給された直交復調信号を伝送路推定、レプリカ作成、レプリカ除去の処理を繰り返す間バッファリングし、前記処理が終わると同時に次の信号をシンボル単位で伝送路推定器102、及びレプリカ除去器104へ供給する。   The hard decision unit 107 generates an expected value of the signal by demapping the demodulated signal from which the ICI replica signal supplied from the replica remover 104 is removed to a mapping point according to the modulation method, and switches the decision as a hard decision expected value signal. To the vessel 108. The decision switcher 108 selects either the hard decision expected value signal supplied from the hard decision device 107 or the soft decision expected value signal supplied from the error corrector 105, and the expected value used for replica creation and transmission path estimation The signals are supplied to the replica generator 103 and the transmission path estimator 102 as signals. The storage area 106 buffers the quadrature demodulated signal supplied from the quadrature demodulator 101 while iterating the process of transmission path estimation, replica creation, and replica removal, and at the same time the above process is completed, the next signal is estimated for each symbol. And supply to the replica 102 and the replica remover 104.

判定切替器108は図4に示すようにカウンタ401と繰り返し回数判定部402と切替部403から構成されている。カウンタ401は付記されないシンボルの切り替わりを示すシンボル切替信号によって動作を開始(リセット)し、カウント値を繰り返し回数判定部402へ供給する。繰り返し回数判定部402はカウンタ401から供給されたカウント値と予め設定した閾値とを比較し、繰り返し回数判定信号を切替部403へ供給する。切替部403は繰り返し回数判定部402から供給された繰り返し回数判定信号をもとに硬判定器107から供給された硬判定期待値信号、もしくは誤り訂正器105から供給された軟判定期待値信号を選択し、期待値信号としてレプリカ作成器103、及び伝送路推定器102へ供給する。他の構成は図9に示した構成と同一である。同一の構成部分の説明は省略する。   As shown in FIG. 4, the determination switch 108 includes a counter 401, a repetition count determination unit 402, and a switching unit 403. The counter 401 starts (resets) the operation in response to a symbol switching signal indicating symbol switching that is not appended, and supplies the count value to the repetition count determination unit 402. The repetition number determination unit 402 compares the count value supplied from the counter 401 with a preset threshold value and supplies a repetition number determination signal to the switching unit 403. The switching unit 403 receives the hard decision expected value signal supplied from the hard decision unit 107 based on the repetition number decision signal supplied from the repetition number decision unit 402 or the soft decision expected value signal supplied from the error corrector 105. The selected value is supplied to the replica generator 103 and the transmission path estimator 102 as an expected value signal. Other configurations are the same as those shown in FIG. Description of the same components is omitted.

一般的に硬判定による期待値(硬判定期待値信号)は軟判定による期待値(軟判定期待値信号)と比較して精度が低く信頼性が低い。すなわち、信号内に不要な成分を多く含んだ状態においては、硬判定期待値信号は誤判定を起こすことが多い。不要成分を多く含んだ状態での硬判定期待値信号から伝送路推定信号、ICIレプリカ信号を作成しても信頼性の低い伝送路特性を推定し、本来除去したいICI成分との誤差が大きなICIレプリカ信号を作成することになる。このような精度の不十分な信号を用いて繰り返し処理を行ってもいっこうに精度の改善は図れない。   In general, an expected value (hard decision expected value signal) by hard decision is less accurate and less reliable than an expected value (soft decision expected value signal) by soft decision. That is, in a state where many unnecessary components are included in the signal, the hard decision expected value signal often causes erroneous determination. Even if a transmission path estimation signal and an ICI replica signal are generated from a hard decision expected value signal containing a large amount of unnecessary components, the transmission path characteristics with low reliability are estimated, and the ICI has a large error from the ICI component that is originally desired to be removed. A replica signal is created. Even if it repeats using such a signal with insufficient accuracy, the accuracy cannot be further improved.

しかし非特許文献2によると軟判定期待値信号を用いたICI除去を1回でも行うと、受信性能の良悪を示す誤り率が大幅に改善されることが報告されている。そこで硬判定期待値信号を用いたICI除去に軟判定期待値信号を用いたICI除去を組み込むことで、主として硬判定期待値信号を用いたICI除去が可能になると考えられる。具体的には伝送路状態、ICI成分がよくわからない初動時には軟判定期待値信号を用いて伝送路推定、及びICIレプリカの作成を行い、伝送路の信頼性が一定レベル以上となったら硬判定期待値信号を用いた伝送路推定、及びICIレプリカ作成を行うように切り替える。軟判定と硬判定の切り替えは以下のように行う。伝送路の信頼性が一定レベル以上となる軟判定期待値信号を用いた繰り返し処理の回数を予め求めておき、上記の回数だけ軟判定による処理を行う。次に硬判定による処理を所定の回数、もしくはシンボルが切り替わるまで繰り返してICIレプリカ除去の精度を高めていく。   However, according to Non-Patent Document 2, it has been reported that if ICI removal using a soft decision expected value signal is performed even once, the error rate indicating good or bad reception performance is greatly improved. Therefore, it is considered that ICI removal mainly using the hard decision expected value signal becomes possible by incorporating ICI removal using the soft decision expected value signal into ICI removal using the hard decision expected value signal. Specifically, at the initial movement when the transmission path state and ICI component are not well understood, the transmission path is estimated using the soft decision expected value signal and an ICI replica is created. If the reliability of the transmission path exceeds a certain level, a hard decision expectation is made. Switching is performed to perform transmission path estimation using a value signal and ICI replica creation. Switching between soft decision and hard decision is performed as follows. The number of iterations using the soft decision expected value signal at which the reliability of the transmission line is equal to or higher than a certain level is obtained in advance, and the soft decision is performed for the number of times described above. Next, the processing by the hard decision is repeated a predetermined number of times or until the symbol is switched to improve the accuracy of ICI replica removal.

上記の動作によりICI成分の除去精度が高まる理由を以下に示す。初期状態では伝送路推定信号は伝送路の状態に依存しないある値(初期値)を用いているのに対し、軟判定期待値信号を用いて最低1回の伝送路推定の更新が行われれば、伝送路推定信号が伝送路の状態に応じた値をとり得る。伝送路推定信号の精度が高いということは、これを用いて作成するICIレプリカ信号の精度を上げることになる。以上のことより最低1回は軟判定期待値信号を用いたレプリカ除去を行う必要がある。軟判定期待値信号を用いた処理から硬判定期待値信号を用いた処理に切り替える場合にも、いったん軟判定期待値信号を用いて精度の高い伝送路推定信号を作り上げた後であることから、実際の伝送路と推定した伝送路のずれが大きくなることはない。それゆえ、上記伝送路推定信号から作成されるICIレプリカ信号の精度も高く保つことができ、硬判定期待値信号を用いた処理を繰り返しても問題は生じないといえる。   The reason why the accuracy of removing the ICI component is increased by the above operation will be described below. In the initial state, the transmission path estimation signal uses a certain value (initial value) that does not depend on the transmission path state, but if the transmission path estimation is updated at least once using the soft decision expected value signal. The transmission path estimation signal can take a value according to the state of the transmission path. The high accuracy of the transmission path estimation signal increases the accuracy of the ICI replica signal created using this. From the above, it is necessary to perform replica removal using the soft decision expected value signal at least once. Even when switching from processing using the soft decision expected value signal to processing using the hard decision expected value signal, it is after creating a highly accurate transmission path estimation signal once using the soft decision expected value signal, The deviation between the actual transmission path and the estimated transmission path does not increase. Therefore, the accuracy of the ICI replica signal created from the transmission path estimation signal can be kept high, and it can be said that no problem occurs even if the process using the hard decision expected value signal is repeated.

図5は本発明のデジタル放送受信機の信号のタイミングチャートである。なお、本タイミングチャートは軟判定期待値信号を用いたレプリカ除去の処理を1回のみ行った後に、硬判定期待値信号を用いたレプリカ除去処理を繰り返し行うモデルとして示す。記憶領域106から供給される信号は、これ以降シンボル単位で伝送路推定、ICIレプリカ作成、レプリカ除去の処理が行われる。   FIG. 5 is a signal timing chart of the digital broadcast receiver of the present invention. This timing chart is shown as a model in which the replica removal process using the hard decision expected value signal is repeated after the replica removal process using the soft decision expected value signal is performed only once. Thereafter, the signal supplied from the storage area 106 is subjected to transmission path estimation, ICI replica creation, and replica removal processing in symbol units.

上記の動作について説明する。直交復調信号は記憶領域106に時間経過とともに蓄積され、記憶領域106はシンボル番号iの繰り返し処理が終わった後に、次のシンボル番号i+1のデータを伝送路推定器102とレプリカ除去器104ブロックへ供給する。記憶領域106より後段にて伝送路推定、ICIレプリカ作成、レプリカ除去の一連の処理を行う間も直交復調信号は記憶領域106に順次蓄積されていくため、ある有限のメモリに蓄えるには、1シンボル分のデータから1回だけレプリカ除去する間に流れ込むデータ量Mの繰り返し回数N倍のメモリサイズ(M×N)が必要になる。   The above operation will be described. The orthogonal demodulated signal is accumulated in the storage area 106 over time, and the storage area 106 supplies the data of the next symbol number i + 1 to the transmission path estimator 102 and the replica remover 104 block after the repetition of the symbol number i is completed. To do. Since the orthogonal demodulated signals are sequentially stored in the storage area 106 even during a series of processing of transmission path estimation, ICI replica creation, and replica removal after the storage area 106, in order to store in a certain finite memory, 1 A memory size (M × N) that is N times the number of repetitions of the data amount M that flows while removing the replica from the data for the symbol only once is required.

このとき伝送路推定、ICIレプリカ作成、レプリカ除去の一連の処理を1シンボル以内で行えば、上記メモリサイズを小さくすることが可能である。具体的には最低2シンボル分のメモリサイズを確保すれば、次のシンボルの全てのデータが蓄積されるまでに伝送路推定、ICIレプリカ作成、レプリカ除去の一連の処理を複数回行うことができる。本発明のデジタル放送受信機においては、硬判定期待値信号に切り替えた後の伝送路推定、ICIレプリカ作成、レプリカ除去の一連の処理に要する時間は、地上デジタル放送の1シンボル時間(約1ms)と比較して微小なものであり、数十回の繰り返し処理を行うことができるといえる。具体的には伝送路推定、ICIレプリカ作成、レプリカ除去の一連の処理に要する処理遅延が約15μsecとした場合に最大66回の繰り返し処理を行うことができる。   At this time, the memory size can be reduced if a series of processes of channel estimation, ICI replica creation, and replica removal are performed within one symbol. Specifically, if a memory size of at least two symbols is secured, a series of processes of transmission path estimation, ICI replica creation, and replica removal can be performed a plurality of times until all data of the next symbol is accumulated. . In the digital broadcast receiver of the present invention, the time required for a series of processing of transmission path estimation, ICI replica creation, and replica removal after switching to the hard decision expected value signal is one symbol time (about 1 ms) of terrestrial digital broadcasting. It can be said that it can be repeated several tens of times. Specifically, when the processing delay required for a series of processing of transmission path estimation, ICI replica creation, and replica removal is about 15 μsec, iterative processing can be performed up to 66 times.

(実施の形態2)
本発明の実施の形態2におけるデジタル放送受信機について図面を参照しながら説明する。図6は本発明のデジタル放送受信機の実施の形態2の構成図である。図6に示した構成は図9に示した従来のデジタル放送受信機に記憶領域106と硬判定器107と判定切替器108と判定キャリア選択器601を追加したものである。
(Embodiment 2)
A digital broadcast receiver according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram of Embodiment 2 of the digital broadcast receiver of the present invention. The configuration shown in FIG. 6 is obtained by adding a storage area 106, a hard decision unit 107, a decision switching unit 108, and a decision carrier selector 601 to the conventional digital broadcast receiver shown in FIG.

判定キャリア選択器601は判定切替器108から供給された期待値信号を信頼性に応じて有効/無効の判定を下し、判定結果を伝送路推定器102、及びレプリカ作成器103へ供給する。他の構成は図9に示した構成と同一である。同一の構成部分の説明は省略する。   The determination carrier selector 601 determines whether the expected value signal supplied from the determination switch 108 is valid / invalid according to the reliability, and supplies the determination result to the transmission path estimator 102 and the replica creator 103. Other configurations are the same as those shown in FIG. Description of the same components is omitted.

判定キャリア選択器の動作について図7を用いて説明する。図7はレプリカ除去器104から出力されたQPSK変調された復調信号をデマッピングした図である。上記復調信号に白色雑音やマルチパスによる妨害成分、移動受信時に発生するICI成分といった妨害成分が含まれていない場合、デマッピングしてI−Q平面に再配置された信号点は変調時に配置した点に重なる。しかし上記妨害成分が含まれた復調信号では、デマッピングした再配置点は変調時に配置した点と重ならず、変調時のマッピング点からずれる。ずれの程度は妨害成分の大きさによって決まるものであり、妨害が大きい場合には隣り合うマッピング点へ再配置されることも起こりえる。こうした場合、本来再配置されるべき点と異なる点へ再配置され、誤判定による受信性能の劣化を引き起こす。本発明のデジタル放送受信機はフィードバック制御によって徐々に信号の品質を高める構成になっているため、誤判定した信頼性の低い信号を用いて作成したICIレプリカ信号や伝送路推定信号を用いた復調処理を行うと信号品質の改善効果を抑制するだけでなく、信号品質の劣化を引き起こすことも考えられる。そこで信号の品質を判定し、品質の低い信号点を示す期待値信号の影響を抑えた制御を行う。   The operation of the decision carrier selector will be described with reference to FIG. FIG. 7 is a diagram obtained by demapping the QPSK-modulated demodulated signal output from the replica remover 104. When the demodulated signal does not contain interference components such as white noise, multipath interference components, and ICI components generated during mobile reception, the signal points that have been demapped and rearranged on the IQ plane are arranged at the time of modulation. Overlapping points. However, in the demodulated signal including the interference component, the demapped rearrangement point does not overlap the point arranged at the time of modulation, and deviates from the mapping point at the time of modulation. The degree of deviation is determined by the magnitude of the disturbing component, and when the disturbing is large, rearrangement to adjacent mapping points may occur. In such a case, it is rearranged to a point different from the point that should be rearranged, and the reception performance is deteriorated due to erroneous determination. Since the digital broadcast receiver of the present invention is configured to gradually improve the signal quality by feedback control, demodulation using an ICI replica signal or transmission path estimation signal created using an erroneously determined low-reliability signal When the processing is performed, not only the improvement effect of the signal quality is suppressed, but also the deterioration of the signal quality may be caused. Therefore, the quality of the signal is determined, and control is performed while suppressing the influence of an expected value signal indicating a low-quality signal point.

具体的には、隣り合うマッピング点との境界付近は誤判定しやすい領域(判定困難エリア)とみなし、ICIレプリカ信号を作成する際に上記領域にデマッピングされた信号点の期待値信号からのICI漏れ込み成分を0にホールドする。これにより信頼性の低い期待値信号によって表現されるキャリアが、必要以上のICI成分を作り出すことによる信号品質の劣化を抑えることができる。また、判定困難エリアにデマッピングされたキャリアからのICI漏れ込み成分を前シンボルの漏れ込み成分をホールドして用いることで、必要以上のICI成分を作り出すことによる信号品質の劣化を抑えることもできる。   Specifically, the vicinity of the boundary between adjacent mapping points is regarded as a region that is easily misjudged (difficult region of determination), and the expected value signal of the signal point demapped to the region when the ICI replica signal is created Hold the ICI leakage component at zero. As a result, the carrier expressed by the expected value signal with low reliability can suppress the deterioration of the signal quality due to the generation of an unnecessary ICI component. Further, by using the ICI leakage component from the carrier demapped in the difficult-to-determine area while holding the leakage component of the previous symbol, it is possible to suppress deterioration in signal quality due to generation of an unnecessary ICI component. .

なお判定困難エリアの幅は一定である必要はなく、変調方式や移動速度、フィードバック処理の繰り返し回数に応じて可変にしてもよい。   Note that the width of the difficult-to-determine area does not need to be constant, and may be variable according to the modulation method, the moving speed, and the number of repetitions of feedback processing.

(実施の形態3)
本発明の実施の形態3におけるデジタル放送受信機について図面を参照しながら説明する。図8は本発明のデジタル放送受信機の実施の形態3の構成図である。図8に示した構成は図9に示した従来のデジタル放送受信機に記憶領域106と硬判定器107と判定切替器108と判定キャリア選択器601と等化器801と伝送路推定器B802を追加したものである。
(Embodiment 3)
A digital broadcast receiver according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram of Embodiment 3 of the digital broadcast receiver of the present invention. The configuration shown in FIG. 8 includes a storage area 106, a hard discriminator 107, a judgment switch 108, a judgment carrier selector 601, an equalizer 801, and a transmission path estimator B802 in the conventional digital broadcast receiver shown in FIG. It is added.

伝送路推定器B802はレプリカ除去器104から供給された復調信号を用いて伝送路推定信号Bを等化器801へ供給する。等化器801はレプリカ除去器104から供給された復調信号と伝送路推定器B802から供給された伝送路推定信号Bを用いて、パイロット信号を用いた等化処理を行い、等化後の信号を硬判定器107と誤り訂正器105へ供給する。他の構成は図9に示した構成と同一である。同一の構成部分の説明は省略する。   Transmission path estimator B 802 supplies transmission path estimation signal B to equalizer 801 using the demodulated signal supplied from replica remover 104. The equalizer 801 performs equalization processing using a pilot signal using the demodulated signal supplied from the replica remover 104 and the transmission path estimation signal B supplied from the transmission path estimator B 802, and the equalized signal Is supplied to the hard discriminator 107 and the error corrector 105. Other configurations are the same as those shown in FIG. Description of the same components is omitted.

判定キャリア選択器601で判定困難エリアにあると判断された期待値信号からのICI漏れ込み成分を0にホールドするとICI成分の誤差を抑えることは可能であるが、伝送路推定の精度を改善することはできない。そこで誤った伝送路推定結果による信号品質の劣化を補正するため、レプリカ除去器104でICI成分を除去した後に、非特許文献3に記載のパイロット信号を用いた伝送路推定とパイロット信号を用いた伝送路推定結果を用いた等化処理を行う。硬判定期待値信号による全キャリアを用いたICIレプリカ除去処理、パイロット信号を用いた伝送路推定による等化処理といったおのおの単独の処理では、判定困難エリアにある信号点を用いた伝送路推定の信頼性の低下、ICI成分の混入による信号品質の劣化にそれぞれ対処できない。本実施の形態によるデジタル放送受信機では上記2つの問題点を同時に解決し、移動受信時の受信性能の大きな改善効果を得ることができる。なお本実施の形態における硬判定期待値信号から軟判定期待値信号への切替は繰り返し回数だけでなく、C/Nや誤り率といった受信状態に応じて切り替えてもよい。   If the ICI leakage component from the expected value signal determined to be in the difficult determination area by the determination carrier selector 601 is held at 0, the error of the ICI component can be suppressed, but the accuracy of transmission path estimation is improved. It is not possible. Therefore, in order to correct signal quality degradation due to erroneous channel estimation results, ICI components are removed by replica remover 104, and then channel estimation using pilot signals and pilot signals described in Non-Patent Document 3 are used. Equalization processing using the transmission path estimation result is performed. The reliability of channel estimation using signal points in difficult-to-determine areas can be achieved by independent processing such as ICI replica removal processing using all carriers using hard decision expected value signals and equalization processing using channel estimation using pilot signals. It is impossible to cope with signal quality degradation due to deterioration of signal quality and mixing of ICI components. The digital broadcast receiver according to the present embodiment can solve the above two problems at the same time and obtain a great improvement effect on the reception performance during mobile reception. Note that the switching from the hard decision expected value signal to the soft decision expected value signal in the present embodiment may be switched according to the reception state such as C / N and error rate as well as the number of repetitions.

なお本願の実施の形態2〜3で説明したデジタル放送受信機の判定キャリア選択器にて設定する判定困難領域はQPSK変調方式のみに適応できるだけでなく、16QAM変調方式や64QAM変調方式といった多値QAM変調方式においても設定することができ、QPSK変調と同様に品質の低い信号からの影響を軽減させることができる。   Note that the difficult-to-determine area set by the decision carrier selector of the digital broadcast receiver described in the second to third embodiments of the present application can be applied not only to the QPSK modulation method but also to the multi-value QAM such as the 16QAM modulation method and the 64QAM modulation method. The modulation scheme can also be set, and the influence from a low-quality signal can be reduced as in QPSK modulation.

本願の実施の形態1〜3で説明したデジタル放送受信機においてレプリカ除去は時間軸で行っていたが、直交復調信号をフーリエ変換等の時間−周波数変換処理によって周波数軸上の信号に変換し、周波数軸上のICIレプリカ信号を作成して周波数軸上でレプリカ除去を行ってもよい。   In the digital broadcast receiver described in the first to third embodiments of the present application, replica removal is performed on the time axis, but the orthogonal demodulated signal is converted into a signal on the frequency axis by time-frequency conversion processing such as Fourier transform, An ICI replica signal on the frequency axis may be created and replica removal may be performed on the frequency axis.

本願の実施の形態1〜3で説明したデジタル放送受信機において繰り返し回数は、チャンネル選局後、同期が確立してからの繰り返し回数のことを指し、同期確立前は繰り返し処理を行う必要はない。   In the digital broadcast receiver described in the first to third embodiments of the present application, the number of repetitions refers to the number of repetitions after synchronization is established after channel selection, and it is not necessary to perform repetition processing before synchronization is established. .

なお本願の実施の形態1〜3で説明したデジタル放送受信機において硬判定期待値信号と軟判定期待値信号を切り替えて使用したが、移動による伝送路の変動が小さい受信環境においては、キャリア間干渉の影響が小さく受信性能への影響が軽微となるため、軟判定期待値から硬判定期待値への切替をあえて行う必要はない。また、移動による伝送路の変動が大きな状態から小さな状態へ受信環境が変化したときには、硬判定期待値から軟判定期待値への切替を行ってもよい。移動による伝送路の変動は移動体に備え付けの外部速度計や位置情報検出器の時間変化等から検知する。   In the digital broadcast receiver described in the first to third embodiments of the present application, the hard decision expected value signal and the soft decision expectation value signal are switched and used. Since the influence of interference is small and the influence on reception performance is small, there is no need to intentionally switch from the soft decision expected value to the hard decision expected value. Further, when the reception environment changes from a state in which a transmission path fluctuation due to movement changes from a large state to a small state, switching from the hard decision expected value to the soft decision expected value may be performed. Changes in the transmission path due to movement are detected from changes in the time of external speedometers and position information detectors attached to the moving body.

さらに本願の実施の形態の2で説明したデジタル放送受信機において硬判定期待値信号から軟判定期待値信号への切替は繰り返し回数によって行っていたが、C/NやBERといった受信状態が劣化した場合に切り替えてもよい。   Furthermore, in the digital broadcast receiver described in Embodiment 2 of the present application, switching from the hard decision expected value signal to the soft decision expected value signal was performed by the number of repetitions, but the reception state such as C / N and BER deteriorated. It may be switched in some cases.

本願の実施の形態1〜3で説明したデジタル放送受信機は単一アンテナで受信する必要はなく、マルチアンテナ受信によるダイバーシティ効果と組み合わせることも可能である。   The digital broadcast receiver described in the first to third embodiments of the present application need not be received by a single antenna, and can be combined with the diversity effect by multi-antenna reception.

また、なお、以上に述べた本願発明の全実施の形態は、集積回路であるLSIとして実現することもできる。これらは、個別に1チップ化されてもよいし、すべての構成または一部の構成を含むように1チップ化されてもよい。   In addition, all the embodiments of the present invention described above can be realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include all or part of the structure.

ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。   The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.

また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用しても良い。   Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.

さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。   Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.

本発明のデジタル放送受信機はデジタルTV放送、デジタルラジオ放送などの移動体用の受信装置として有用である。   The digital broadcast receiver of the present invention is useful as a receiver for mobile objects such as digital TV broadcast and digital radio broadcast.

本発明のデジタル放送受信機の実施の形態1の構成を示すブロック図The block diagram which shows the structure of Embodiment 1 of the digital broadcast receiver of this invention. 図1における伝送路推定器の内部構造を示したブロック図Block diagram showing the internal structure of the transmission path estimator in FIG. 図1におけるレプリカ除去器の内部構造を示したブロック図The block diagram which showed the internal structure of the replica remover in FIG. 図1における判定切替器の内部構造を示したブロック図The block diagram which showed the internal structure of the determination switching device in FIG. 図1のデジタル放送受信機の内部信号のタイミングチャートTiming chart of internal signals of digital broadcast receiver of FIG. 本発明のデジタル放送受信機の実施の形態2の構成を示すブロック図The block diagram which shows the structure of Embodiment 2 of the digital broadcast receiver of this invention. 図6における判定キャリア選択器での判定基準を示すマッピング図Mapping diagram showing determination criteria in determination carrier selector in FIG. 本発明のデジタル放送受信機の実施の形態3の構成を示すブロック図The block diagram which shows the structure of Embodiment 3 of the digital broadcast receiver of this invention. 従来のデジタル放送受信機の構成を示すブロック図Block diagram showing the configuration of a conventional digital broadcast receiver

符号の説明Explanation of symbols

101 直交復調器
102 伝送路推定器
103 レプリカ作成器
104 レプリカ除去器
105 誤り訂正器
106 記憶領域
107 硬判定器
108 判定切替器
201 タップ係数生成部
202 伝送路応答行列生成部
203 遅延部
204 重み付け部
205 加算部
206 減算部
301 減算部
302 残差除去フィルタ
401 カウンタ
402 繰り返し回数判定部
403 切替部
601 判定キャリア選択器
801 等化器
901 伝送路推定器B
DESCRIPTION OF SYMBOLS 101 Quadrature demodulator 102 Transmission path estimator 103 Replica creator 104 Replica remover 105 Error corrector 106 Storage area 107 Hard discriminator 108 Decision switcher 201 Tap coefficient generator 202 Transmission path response matrix generator 203 Delay unit 204 Weighting unit 205 Adder 206 Subtractor 301 Subtractor 302 Residual Removal Filter 401 Counter 402 Repetition Count Judgment Unit 403 Switching Unit 601 Judgment Carrier Selector 801 Equalizer 901 Channel Estimator B

Claims (18)

アンテナから入力した信号を直交復調する直交復調器と、直交復調した信号を記憶保持する記憶領域と、期待値信号と前記記憶領域からの出力信号から伝送路の状態を推定して伝送路推定信号を生成する伝送路推定器と、前記期待値信号と前記伝送路推定信号を用いてキャリア間干渉成分を擬似的に作り出すレプリカ作成器と、
前記記憶領域から出力された直交復調信号と前記伝送路推定信号と前記レプリカ作成器からの擬似的に作り出したキャリア間干渉成分を用いてキャリア間干渉成分を取り除くレプリカ除去器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を軟判定処理する誤り訂正器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を硬判定処理する硬判定器と、前記誤り訂正器による軟判定期待値信号と前記硬判定器による硬判定期待値信号から期待値信号を選定する判定切替器とを具備し、キャリア間干渉成分を作り出す際の前記期待値信号を硬判定期待値信号と軟判定期待値信号とで受信状態に応じて切り替えるデジタル放送受信機。
A quadrature demodulator that quadrature demodulates the signal input from the antenna, a storage area that stores and holds the quadrature demodulated signal, an expected value signal, and an output signal from the storage area to estimate the state of the transmission path and to estimate the transmission path A replica estimator that generates an inter-carrier interference component using the expected value signal and the transmission path estimation signal,
A replica remover that removes an inter-carrier interference component by using an orthogonal demodulated signal output from the storage area, the transmission path estimation signal, and an inter-carrier interference component created in a pseudo manner from the replica creator; and An error corrector that performs soft decision processing on the demodulated signal from which the generated inter-carrier interference component has been removed, a hard decision device that performs hard decision processing on the demodulated signal from which the pseudo-generated inter-carrier interference component has been removed, and the error corrector And a decision switch for selecting an expected value signal from a hard decision expected value signal by the hard decision device, and the hard decision expected value signal when generating an inter-carrier interference component. And a digital broadcast receiver that switches depending on the reception state between the soft decision expected value signal.
前記判定切替器において前記軟判定期待値信号と前記硬判定期待値信号のどちらを選定するかは、伝送路推定、レプリカ作成、レプリカ除去の一連の処理をフィードバック処理の繰り返し回数に基づいて決定する請求項1記載のデジタル放送受信機。 Whether to select the soft decision expectation value signal or the hard decision expectation value signal in the decision switcher is determined based on the number of repetitions of the feedback process, a series of processes of channel estimation, replica creation, and replica removal. The digital broadcast receiver according to claim 1. 前記記憶領域の大きさは、伝送路推定、レプリカ作成、レプリカ除去の一連のフィードバック処理の繰り返し回数と一連のフィードバック処理の処理遅延時間に基づいて決定する請求項1記載のデジタル放送受信機。 The digital broadcast receiver according to claim 1, wherein the size of the storage area is determined based on the number of repetitions of a series of feedback processes of transmission path estimation, replica creation, and replica removal and a processing delay time of the series of feedback processes. アンテナから入力した信号を直交復調する直交復調器と、直交復調した信号を記憶保持する記憶領域と、期待値信号と前記直交復調した信号から伝送路の状態を推定して伝送路推定信号を生成する伝送路推定器と、前記期待値信号と前記伝送路推定信号を用いてキャリア間干渉成分を擬似的に作り出すレプリカ作成器と、前記直交復調した信号から擬似的に作り出したキャリア間干渉成分を取り除くレプリカ除去器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を軟判定処理する誤り訂正器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を硬判定処理する硬判定器と、前記誤り訂正器による軟判定期待値信号と前記硬判定器による硬判定期待値信号から期待値信号を選定する判定切替器と、前記期待値信号の信頼性に応じてレプリカ作成時に用いるデータを選定する判定キャリア選択器を具備し、キャリア間干渉成分を作り出す際の源信号を前記硬判定期待値信号と前記軟判定期待値信号とで受信状態に応じて切り替えるデジタル放送受信機。 A quadrature demodulator that quadrature demodulates the signal input from the antenna, a storage area that stores and holds the quadrature demodulated signal, a transmission path estimation signal by estimating the state of the transmission path from the expected value signal and the quadrature demodulated signal A transmission path estimator, a replica creator that artificially creates an inter-carrier interference component using the expected value signal and the transmission path estimation signal, and an inter-carrier interference component that is artificially created from the orthogonally demodulated signal. A replica remover to be removed, an error corrector for soft-decision processing of the demodulated signal from which the artificially generated inter-carrier interference component is removed, and a hard-decision processing of the demodulated signal from which the artificially generated inter-carrier interference component has been removed A hard decision device, a decision switch for selecting an expected value signal from a soft decision expectation value signal by the error corrector and a hard decision expectation value signal by the hard decision device, A decision carrier selector for selecting data used when creating a replica according to the reliability of the expected value signal; and a source signal for generating an inter-carrier interference component as the hard decision expected value signal and the soft decision expected value signal Digital broadcast receiver that switches according to reception status. 前記判定キャリア選択器は隣接するマッピング点との境界付近にデマッピングされたキャリアからの漏れ込み成分を0としてキャリア間干渉のレプリカを作り出す請求項4記載のデジタル放送受信機。 5. The digital broadcast receiver according to claim 4, wherein the determination carrier selector generates a replica of inter-carrier interference by setting a leakage component from a carrier demapped near a boundary between adjacent mapping points to zero. 前記判定キャリア選択器は隣接するマッピング点との境界付近にデマッピングされたキャリアからの漏れ込み成分は前シンボルの漏れ込み成分をホールドして用いることでキャリア間干渉のレプリカを作り出す請求項4記載のデジタル放送受信機。 5. The determination carrier selector generates a replica of inter-carrier interference by holding and using a leakage component of a previous symbol as a leakage component from a carrier demapped near a boundary with an adjacent mapping point. Digital broadcast receiver. 入力信号を直交復調し、直交復調した信号を記憶保持し、期待値信号と前記記憶保持した出力信号から伝送路の状態を推定して伝送路推定信号を生成し、前記期待値信号と前記伝送路推定信号を用いてキャリア間干渉成分を擬似的に作り出し、
前記記憶保持された直交復調信号と前記伝送路推定信号と前記擬似的に作り出したキャリア間干渉成分を用いてキャリア間干渉成分を取り除き、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号に軟判定処理を施し、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号に硬判定処理を施し、前記軟判定期待値信号と前記硬判定期待値信号から期待値信号を選定し、キャリア間干渉成分を作り出す際の前記期待値信号を硬判定期待値信号と軟判定期待値信号とで受信状態に応じて切り替えるデジタル放送受信方法。
The input signal is orthogonally demodulated, the orthogonally demodulated signal is stored and retained, the state of the transmission path is estimated from the expected value signal and the stored output signal, and a transmission path estimation signal is generated, and the expected value signal and the transmission Create an inter-carrier interference component using the path estimation signal,
A demodulated signal from which the inter-carrier interference component is removed by using the orthogonally demodulated signal, the transmission path estimation signal, and the artificially created inter-carrier interference component that have been stored, and the pseudo-generated inter-carrier interference component is removed. Is subjected to soft decision processing, hard decision processing is performed on the demodulated signal from which the inter-carrier interference component created in a pseudo manner is removed, and an expected value signal is selected from the soft decision expected value signal and the hard decision expected value signal, A digital broadcast receiving method for switching the expected value signal when generating an inter-carrier interference component between a hard decision expected value signal and a soft decision expected value signal according to a reception state.
前記軟判定期待値信号と前記硬判定期待値信号の選定は、伝送路推定、レプリカ作成、レプリカ除去の一連の処理をフィードバック処理の繰り返し回数に基づいて決定する請求項7記載のデジタル放送受信方法。 8. The digital broadcast receiving method according to claim 7, wherein the selection of the soft decision expected value signal and the hard decision expectation value signal determines a series of processes of channel estimation, replica creation, and replica removal based on the number of repetitions of feedback processing. . 前記記憶領域の大きさは、伝送路推定、レプリカ作成、レプリカ除去の一連のフィードバック処理の繰り返し回数と一連のフィードバック処理の処理遅延時間に基づいて決定する請求項7記載のデジタル放送受信方法。 8. The digital broadcast receiving method according to claim 7, wherein the size of the storage area is determined based on the number of repetitions of a series of feedback processes of transmission path estimation, replica creation, and replica removal and a processing delay time of the series of feedback processes. 入力信号を直交復調し、直交復調した信号を記憶保持し、期待値信号と前記直交復調した信号から伝送路の状態を推定して伝送路推定信号を生成し、前記期待値信号と前記伝送路推定信号を用いてキャリア間干渉成分を擬似的に作り出し、前記直交復調した信号から擬似的に作り出したキャリア間干渉成分を取り除き、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号に軟判定処理を施し、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号に硬判定処理を施し、前記誤り訂正器による軟判定期待値信号と前記硬判定期待値信号から期待値信号を選定し、前記期待値信号の信頼性に応じてレプリカ作成時に用いるデータを選定する判定キャリア選択処理を施し、キャリア間干渉成分を作り出す際の源信号を前記硬判定期待値信号と前記軟判定期待値信号とで受信状態に応じて切り替えるデジタル放送受信方法。 The input signal is orthogonally demodulated, the orthogonally demodulated signal is stored and held, the state of the transmission path is estimated from the expected value signal and the orthogonally demodulated signal, and a transmission path estimation signal is generated, and the expected value signal and the transmission path An inter-carrier interference component is artificially created using the estimated signal, and the pseudo-inter-carrier interference component is removed from the orthogonally demodulated signal, and the pseudo-generated inter-carrier interference component is removed and the demodulated signal is softened. Apply hard decision processing to the demodulated signal from which the artificially generated inter-carrier interference component has been removed, and select an expected value signal from the soft decision expected value signal by the error corrector and the hard decision expected value signal Then, a decision carrier selection process for selecting data to be used at the time of replica creation is performed according to the reliability of the expected value signal, and the source signal for generating the inter-carrier interference component is Digital broadcast receiving method of switching in accordance with the reception state hard decision expected value signal and said soft decision expected value signal. 前記判定キャリア選択処理は、隣接するマッピング点との境界付近にデマッピングされたキャリアからの漏れ込み成分を0としてキャリア間干渉のレプリカを作り出す請求項10記載のデジタル放送受信方法。 The digital broadcast receiving method according to claim 10, wherein the determination carrier selection process creates a replica of inter-carrier interference by setting a leakage component from a carrier demapped near a boundary between adjacent mapping points to zero. 前記判定キャリア選択処理は、隣接するマッピング点との境界付近にデマッピングされたキャリアからの漏れ込み成分は前シンボルの漏れ込み成分をホールドして用いることでキャリア間干渉のレプリカを作り出す請求項10記載のデジタル放送受信方法。 11. The determination carrier selection process creates a replica of inter-carrier interference by holding and using a leakage component of a previous symbol as a leakage component from a carrier demapped near a boundary with an adjacent mapping point. The digital broadcast receiving method as described. 入力信号を直交復調する直交復調器と、直交復調した信号を記憶保持する記憶領域と、期待値信号と前記記憶領域からの出力信号から伝送路の状態を推定して伝送路推定信号を生成する伝送路推定器と、前記期待値信号と前記伝送路推定信号を用いてキャリア間干渉成分を擬似的に作り出すレプリカ作成器と、
前記記憶領域から出力された直交復調信号と前記伝送路推定信号と前記レプリカ作成器からの擬似的に作り出したキャリア間干渉成分を用いてキャリア間干渉成分を取り除くレプリカ除去器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を軟判定処理する誤り訂正器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を硬判定処理する硬判定器と、前記誤り訂正器による軟判定期待値信号と前記硬判定器による硬判定期待値信号から期待値信号を選定する判定切替器とを具備し、キャリア間干渉成分を作り出す際の前記期待値信号を硬判定期待値信号と軟判定期待値信号とで受信状態に応じて切り替えるデジタル放送受信回路。
An orthogonal demodulator that orthogonally demodulates an input signal, a storage area that stores and holds the orthogonally demodulated signal, an expected value signal, and an output signal from the storage area are used to estimate the state of the transmission path and generate a transmission path estimation signal A transmission path estimator; and a replica creator that artificially creates an inter-carrier interference component using the expected value signal and the transmission path estimation signal;
A replica remover that removes an inter-carrier interference component by using an orthogonal demodulated signal output from the storage area, the transmission path estimation signal, and an inter-carrier interference component created in a pseudo manner from the replica creator; and An error corrector that performs soft decision processing on the demodulated signal from which the generated inter-carrier interference component has been removed, a hard decision device that performs hard decision processing on the demodulated signal from which the pseudo-generated inter-carrier interference component has been removed, and the error corrector And a decision switch for selecting an expected value signal from a hard decision expected value signal by the hard decision device, and the hard decision expected value signal when generating an inter-carrier interference component. And a digital broadcast receiving circuit that switches between the soft decision expected value signal according to the reception state.
前記判定切替器において前記軟判定期待値信号と前記硬判定期待値信号のどちらを選定するかは、伝送路推定、レプリカ作成、レプリカ除去の一連の処理をフィードバック処理の繰り返し回数に基づいて決定する請求項13記載のデジタル放送受信回路。 Whether to select the soft decision expectation value signal or the hard decision expectation value signal in the decision switcher is determined based on the number of repetitions of the feedback process, a series of processes of channel estimation, replica creation, and replica removal. The digital broadcast receiving circuit according to claim 13. 前記記憶領域の大きさは、伝送路推定、レプリカ作成、レプリカ除去の一連のフィードバック処理の繰り返し回数と一連のフィードバック処理の処理遅延時間に基づいて決定する請求項13記載のデジタル放送受信回路。 14. The digital broadcast receiving circuit according to claim 13, wherein the size of the storage area is determined based on the number of repetitions of a series of feedback processes of channel estimation, replica creation, and replica removal and a processing delay time of the series of feedback processes. 入力信号を直交復調する直交復調器と、直交復調した信号を記憶保持する記憶領域と、期待値信号と前記直交復調した信号から伝送路の状態を推定して伝送路推定信号を生成する伝送路推定器と、前記期待値信号と前記伝送路推定信号を用いてキャリア間干渉成分を擬似的に作り出すレプリカ作成器と、前記直交復調した信号から擬似的に作り出したキャリア間干渉成分を取り除くレプリカ除去器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を軟判定処理する誤り訂正器と、前記擬似的に作り出したキャリア間干渉成分を取り除いた復調信号を硬判定処理する硬判定器と、前記誤り訂正器による軟判定期待値信号と前記硬判定器による硬判定期待値信号から期待値信号を選定する判定切替器と、前記期待値信号の信頼性に応じてレプリカ作成時に用いるデータを選定する判定キャリア選択器を具備し、キャリア間干渉成分を作り出す際の源信号を前記硬判定期待値信号と前記軟判定期待値信号とで受信状態に応じて切り替えるデジタル放送受信回路。 An orthogonal demodulator that orthogonally demodulates the input signal, a storage area that stores and holds the orthogonally demodulated signal, and a transmission path that estimates the state of the transmission path from the expected value signal and the orthogonally demodulated signal and generates a transmission path estimation signal An estimator; a replica creator that artificially creates an inter-carrier interference component using the expected value signal and the transmission path estimation signal; and a replica removal that removes the inter-carrier interference component that is artificially created from the orthogonally demodulated signal. An error correction unit that performs soft decision processing on the demodulated signal from which the inter-carrier interference component created in a pseudo manner is removed, and a hard decision that performs hard decision processing on the demodulated signal from which the pseudo inter-carrier interference component is removed. A decision switch for selecting an expected value signal from a soft decision expected value signal by the error corrector and a hard decision expected value signal by the hard decision device, and a signal of the expected value signal A decision carrier selector for selecting data to be used at the time of replica creation according to the characteristics, and depending on the reception state of the hard decision expected value signal and the soft decision expected value signal as the source signal when creating the inter-carrier interference component Digital broadcast receiving circuit to switch. 前記判定キャリア選択器は隣接するマッピング点との境界付近にデマッピングされたキャリアからの漏れ込み成分を0としてキャリア間干渉のレプリカを作り出す請求項16記載のデジタル放送受信回路。 The digital broadcast receiving circuit according to claim 16, wherein the determination carrier selector generates a replica of inter-carrier interference by setting a leakage component from a carrier demapped near a boundary between adjacent mapping points to zero. 前記判定キャリア選択器は隣接するマッピング点との境界付近にデマッピングされたキャリアからの漏れ込み成分は前シンボルの漏れ込み成分をホールドして用いることでキャリア間干渉のレプリカを作り出す請求項16記載のデジタル放送受信回路。 17. The determination carrier selector creates a replica of inter-carrier interference by holding and using a leakage component of a previous symbol as a leakage component from a carrier demapped near a boundary with an adjacent mapping point. Digital broadcasting receiver circuit.
JP2005195902A 2005-07-05 2005-07-05 Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit Pending JP2007019579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195902A JP2007019579A (en) 2005-07-05 2005-07-05 Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195902A JP2007019579A (en) 2005-07-05 2005-07-05 Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit

Publications (1)

Publication Number Publication Date
JP2007019579A true JP2007019579A (en) 2007-01-25

Family

ID=37756385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195902A Pending JP2007019579A (en) 2005-07-05 2005-07-05 Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit

Country Status (1)

Country Link
JP (1) JP2007019579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507233A (en) * 2008-10-31 2012-03-22 エスティー‐エリクソン、ソシエテ、アノニム Receiver with ICI noise estimation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507233A (en) * 2008-10-31 2012-03-22 エスティー‐エリクソン、ソシエテ、アノニム Receiver with ICI noise estimation

Similar Documents

Publication Publication Date Title
Sanzi et al. A comparative study of iterative channel estimators for mobile OFDM systems
US7733993B2 (en) Phase noise canceling OFDM receiver
US7564912B2 (en) Method and apparatus for channel state information generation in a DVB-T receiver
US8937996B2 (en) Receiver with ICI noise estimation
MXPA06010073A (en) Iterative channel and interference estimation and decoding.
AU2009202588A1 (en) Channel estimation for communication systems
KR100923214B1 (en) Channel estimation using a minimized channel prediction interval
KR101001730B1 (en) The method and appratus of the adaptive ici cancellation iterative receiver in wibro system
JP4545209B2 (en) Orthogonal frequency division multiplexed signal receiving apparatus and receiving method thereof
US9853700B2 (en) Wireless transmission system and reception device
JP2011097125A (en) Receiving device, receiving method, communication system, and communication method
CN108206794B (en) Receiver, integrated circuit device and signal demodulation method for communication system
EP2680520B1 (en) Method and apparatus for efficient MIMO reception with reduced complexity
JP2007019579A (en) Digital broadcast receiver, digital broadcast receiving method, and digital broadcast receiving circuit
JP2007158877A (en) Digital broadcasting receiver for performing digital communication in traveling body, digital broadcast receiving method and integrated circuit about digital broadcasting reception
JP5833945B2 (en) Receiving apparatus and program
WO2015151713A1 (en) Reception apparatus performing turbo equalizations
KR100636373B1 (en) Apparatus of multiple survivor path phaseoffset estimation, and satellite communication system based on tdma using it
JP5174741B2 (en) Semiconductor integrated circuit and received signal processing method
Mohammed et al. BER Performance of Convolutional Coded OFDM System in Different Fading Channels Scenarios with Exact and Simplified LLR
Namboodiri et al. Low-complexity iterative receiver design for mobile OFDM systems
EP3361659A1 (en) Dpsk receiver module
JP5937879B2 (en) Receiving apparatus and program
WO2009006912A1 (en) Apparatus and method for especially nordstrom-robinson code decoder
Sanzi et al. Transactions Letters_