JP2007019056A - Tunable laser resonator and wavelength sweeping method - Google Patents

Tunable laser resonator and wavelength sweeping method Download PDF

Info

Publication number
JP2007019056A
JP2007019056A JP2005195727A JP2005195727A JP2007019056A JP 2007019056 A JP2007019056 A JP 2007019056A JP 2005195727 A JP2005195727 A JP 2005195727A JP 2005195727 A JP2005195727 A JP 2005195727A JP 2007019056 A JP2007019056 A JP 2007019056A
Authority
JP
Japan
Prior art keywords
diffraction grating
wavelength
resonator
total reflection
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195727A
Other languages
Japanese (ja)
Inventor
Koji Tamura
浩司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2005195727A priority Critical patent/JP2007019056A/en
Publication of JP2007019056A publication Critical patent/JP2007019056A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunable laser resonator, along with its wavelength sweeping method, in which wavelength width is narrower than conventional one. <P>SOLUTION: The resonator is arranged with a double diffraction gratings to enhance dispersion for a narrower oscillation wavelength width. Wavelength sweeping is performed by rotation around the support point of the diffraction grating and translation of a total reflection mirror synchronized with it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2つの回路格子を用いた波長可変レーザー共振器及びその波長掃引方法に関する。   The present invention relates to a wavelength tunable laser resonator using two circuit gratings and a wavelength sweeping method thereof.

従来は、1つの回折格子を用い、その回折光を全反射鏡により折り返すことにより共振器を構成していたものがある(例えば、特許文献1参照)。
以下、図2により従来の共振器について説明する。共振器は、レーザー媒質5を中心に、全反射鏡3、回折格子1、波長選択用全反射鏡6の間で構成される。従来は、回折格子1からの回折光を波長選択して再び回折格子1へ折り返す目的で、波長選択用全反射鏡6を用いていた(例えば、特許文献1参照)。
Conventionally, there is one in which a resonator is configured by using a single diffraction grating and folding back the diffracted light by a total reflection mirror (see, for example, Patent Document 1).
Hereinafter, a conventional resonator will be described with reference to FIG. The resonator is constituted by a total reflection mirror 3, a diffraction grating 1, and a wavelength selection total reflection mirror 6 with a laser medium 5 as a center. Conventionally, the wavelength selecting total reflection mirror 6 has been used for the purpose of selecting the wavelength of the diffracted light from the diffraction grating 1 and returning it to the diffraction grating 1 again (see, for example, Patent Document 1).

即ち、上記図2の共振器では、光源からの光がレーザー媒質である波長可変固体レーザー素子に入射され、得られた入射励起光の波長選択が回折格子を経て波長選択用全反射鏡により行われ、単一縦モードのレーザー光を発振することが記載されている。単一縦モードのレーザー光とは、発振光の縦モードが単一で、僅かなエネルギー幅を選択的に励起できるほどエネルギー幅が狭く安定したスペクトルを有するものである。
特開平4−33365号公報
That is, in the resonator shown in FIG. 2, the light from the light source is incident on the wavelength tunable solid-state laser element that is a laser medium, and the wavelength selection of the obtained excitation light is performed by the wavelength selection total reflection mirror through the diffraction grating. However, it is described that a single longitudinal mode laser beam is oscillated. The single longitudinal mode laser light has a single stable longitudinal mode and a stable spectrum with a narrow energy width that can selectively excite a small energy width.
JP-A-4-33365

従来の方法では、発振波長幅が広く、単一縦モード発振が容易ではなかった。本発明は、このような従来の構成が有していた問題を解決しようとするものであり、発振波長幅を狭め、単一縦モード発振をより容易に実現することを目的とするものである。   In the conventional method, the oscillation wavelength width is wide and single longitudinal mode oscillation is not easy. The present invention is intended to solve the problems of such a conventional configuration, and aims to narrow the oscillation wavelength width and more easily realize single longitudinal mode oscillation. .

本発明では、図1に示されるように、回折格子1の回折光を反射させる目的に、従来の波長選択用全反射鏡に代わって回折格子2を用いることにより、発振波長幅が狭く、且つ単一縦モードのレーザー光を発振させる。又、波長掃引(共振器からの発振光の波長を連続的に変える)は、回折格子2の支点Cを中心とした回転、及びその回転に同期して、全反射鏡3を、その波長での回折格子1と回折格子2との回折角度条件を満足し、且つ、単一縦モードのレーザー光の満たすべき条件を同時に満足する共振器長となる位置まで全反射鏡を移動させることにより行う。   In the present invention, as shown in FIG. 1, for the purpose of reflecting the diffracted light of the diffraction grating 1, by using the diffraction grating 2 instead of the conventional wavelength selecting total reflection mirror, the oscillation wavelength width is narrow, and Single longitudinal mode laser light is oscillated. Further, the wavelength sweep (continuously changing the wavelength of the oscillation light from the resonator) causes the total reflection mirror 3 to rotate at the wavelength in synchronization with the rotation about the fulcrum C of the diffraction grating 2 and the rotation. The total reflection mirror is moved to a position that satisfies the diffraction angle condition of the diffraction grating 1 and the diffraction grating 2 and satisfies the conditions to be satisfied by the single longitudinal mode laser beam at the same time. .

前記回折角度条件とは、ある発振波長λにおいて、その波長で2つの回折格子の回折角が満たすべき条件であり、下記式(1)、(3)の条件であり、又、前記同時に満足するとは、ある波長λにおいて、常に下記式(1)、(3)とその条件で、下記式(4)の条件を満たすようにL2(図4参照)を変えることにより2つの条件を満たすことである。したがって、発振波長は、回折格子2の回転角度で決まり、回折格子2の回転により波長を掃引、変化させる場合、ある回転角度に回折格子2があるとき、その角度により決まる波長である。この波長に必要とされるモード条件を満たすために共振器の長さを移動機構により変化させる。   The diffraction angle condition is a condition that the diffraction angles of the two diffraction gratings should satisfy at a certain oscillation wavelength λ, and are the conditions of the following formulas (1) and (3). By satisfying the two conditions by changing L2 (see FIG. 4) so that the condition of the following expression (4) is always satisfied by the following expressions (1) and (3) and the conditions at a certain wavelength λ. is there. Therefore, the oscillation wavelength is determined by the rotation angle of the diffraction grating 2, and when the wavelength is swept and changed by the rotation of the diffraction grating 2, when the diffraction grating 2 is at a certain rotation angle, the oscillation wavelength is a wavelength determined by the angle. In order to satisfy the mode condition required for this wavelength, the length of the resonator is changed by a moving mechanism.

本発明における技術的背景を説明すると、以下のとおりである。
(発振波長幅が狭いことについて)
波長分散素子である回折格子の回折角度と入射光の波長との分散関係は、一般に次式で表される。
[数1]
d(sinα+sinβ)=mλ (1)
d:回折格子周期
m:回折次数
λ:波長
α:入射光の入射角
β:回折角
本発明では、図4に示されるように従来の反射鏡を用いた場合に比べ、2つ目の回折格子を用いることにより、この分散度が更に増し、共振器内で定在波になる波長をより狭くすることができる。即ち、2つ目の回折格子により、波長の分散がより増え、共振器内で定在波を構成する波長幅が狭くなることにより、出力光の幅を狭くすることができる。
(単一縦モードについて)
共振器の長さがL、入射光の波長がλの場合には、それら縦モードの関係は次式で表される。
[数2]
L=n・(λ/2) (2)
nは整数
縦モードは、図3(a)に示されるように間隔c/2Lでたつ。この場合、図3(b)の破線で示されるように発振波長幅が広ければ、得られる発振光は、図3(c)の破線に示されるようにモードが複数たち、波長幅は広くなる。しかし、図3(b)の実線に示されるように波長幅を狭くすることにより、図3(c)の実線に示されるように発振波長をモード1本だけとすることができる。
(幾何学的関係について)
2番目の回折格子に関しては、図4に示されるように、入射光と出射光の角度は同じγであるので、それと入射光の波長λとの関係は次の式で表される。
[数3]
2d・sinγ=m’λ (3)
m’:回折次数
(1)と(3)を連立してといて、ある入射角αで入射した波長λの光の回折角β、γを求める条件が、回折格子の幾何学的条件となる。また、波長を変えた場合に、その波長変化に必要とされる2番目の回折格子の回転角度θにも幾何学的に満たすべき関係がある。
(全反射鏡の移動について)
単一縦モードの条件は、図4に示されるように、共振器長L1とL2の和が、(2)式と同様に、その波長λでのモード条件、
[数4]
L1+L2=n・(λ/2) (4)
を満たすことである。
The technical background of the present invention will be described as follows.
(About the narrow oscillation wavelength)
The dispersion relationship between the diffraction angle of the diffraction grating, which is a wavelength dispersion element, and the wavelength of incident light is generally expressed by the following equation.
[Equation 1]
d (sin α + sin β) = mλ (1)
d: diffraction grating period m: diffraction order λ: wavelength α: incident angle of incident light β: diffraction angle
In the present invention, as shown in FIG. 4, compared to the case where a conventional reflector is used, the use of the second diffraction grating further increases the degree of dispersion and allows the wavelength to become a standing wave in the resonator. Can be made narrower. That is, the second diffraction grating further increases the dispersion of the wavelength, and the wavelength width constituting the standing wave in the resonator is narrowed, whereby the width of the output light can be narrowed.
(About single vertical mode)
When the length of the resonator is L and the wavelength of incident light is λ, the relationship between these longitudinal modes is expressed by the following equation.
[Equation 2]
L = n · (λ / 2) (2)
n is an integer. The longitudinal mode is at an interval c / 2L as shown in FIG. In this case, if the oscillation wavelength width is wide as shown by the broken line in FIG. 3B, the obtained oscillation light has a plurality of modes and the wavelength width becomes wide as shown by the broken line in FIG. . However, by narrowing the wavelength width as shown by the solid line in FIG. 3B, the oscillation wavelength can be limited to one mode as shown by the solid line in FIG.
(About geometric relationships)
With respect to the second diffraction grating, as shown in FIG. 4, the angle of incident light and outgoing light is the same γ, so the relationship between it and the wavelength λ of incident light is expressed by the following equation.
[Equation 3]
2d · sinγ = m′λ (3)
m ′: Diffraction orders (1) and (3) are taken together, and the conditions for obtaining the diffraction angles β and γ of light having a wavelength λ incident at a certain incident angle α are the geometric conditions of the diffraction grating. . When the wavelength is changed, the rotational angle θ of the second diffraction grating required for the wavelength change also has a geometrical relationship.
(About movement of the total reflection mirror)
As shown in FIG. 4, the condition of the single longitudinal mode is that the sum of the resonator lengths L1 and L2 is the mode condition at the wavelength λ, as in the equation (2).
[Equation 4]
L1 + L2 = n · (λ / 2) (4)
Is to satisfy.

逆に、移動機構により、L2の距離を
[数4’]
L2=n・(λ/2)― L1 (4’)
となるように変えることで、常に単一縦モードの条件を満たすことができる。
On the other hand, the distance of L2 is changed
[Equation 4 ']
L2 = n · (λ / 2)-L1 (4 ')
By changing so as to satisfy the condition, the condition of the single vertical mode can always be satisfied.

本発明における、回折格子1の回折光を反射させる目的に、従来の波長選択用全反射鏡に代わって回折格子2を用いる構成により、波長幅の狭い波長可変レーザー光源が提供できる。   For the purpose of reflecting the diffracted light of the diffraction grating 1 in the present invention, a tunable laser light source having a narrow wavelength width can be provided by using the diffraction grating 2 instead of the conventional total reflection mirror for wavelength selection.

以下、本発明の実施形態を図1に基づいて説明する。
共振器は、レーザー媒質5を中心に全反射鏡3、波長分散素子である回折格子1及び回折格子2の間で構成される。レーザー媒質から得られたレーザー光は、回折格子1に入射する。回折格子1からの1次回折光は回折格子2に入射し、その回折光を再び回折格子1に戻すことにより、発振波長幅が狭く、且つ単一縦モードのレーザー光を発振する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
The resonator is composed of a total reflection mirror 3 around a laser medium 5 and a diffraction grating 1 and a diffraction grating 2 which are wavelength dispersion elements. Laser light obtained from the laser medium is incident on the diffraction grating 1. The first-order diffracted light from the diffraction grating 1 is incident on the diffraction grating 2, and the diffracted light is returned to the diffraction grating 1 again to oscillate a single longitudinal mode laser beam with a narrow oscillation wavelength width.

共振器の波長掃引は、回折格子2の支点Cを中心とした回転により行う。この際、各波長での回折格子1と回折格子2の回折角と回転角との間の幾何学的関係を満足し、同時に、全反射鏡から回折格子1を経て回折格子2までの共振器長が、発振波長の半分の整数倍となる条件を満足するように、全反射鏡移動機構4により全反射鏡3を、回折格子2の回転と同期させて移動させることにより、単一縦モードを保った共振器の波長掃引を行う。   The wavelength sweep of the resonator is performed by rotation around the fulcrum C of the diffraction grating 2. At this time, the geometrical relationship between the diffraction angle and the rotation angle of the diffraction grating 1 and the diffraction grating 2 at each wavelength is satisfied, and at the same time, a resonator from the total reflection mirror to the diffraction grating 2 through the diffraction grating 1. By moving the total reflection mirror 3 in synchronization with the rotation of the diffraction grating 2 by the total reflection mirror moving mechanism 4 so as to satisfy the condition that the length is an integral multiple of half the oscillation wavelength, a single longitudinal mode is obtained. Sweeps the wavelength of the resonator that maintains

チタンサファイア結晶をレーザー媒質として用い、1800本/mmの回折格子を2本、800nmの中心反射波長を有する全反射鏡により、図1と同様の共振器を構成した。共振器長は約7.8cmであった。ヤグレーザーの第2高調波による励起により、発振波長811nmにおいて、単一縦モード発振を達成できた。この際、励起光入力約25mJで発振光出力約1.1mJを得た。   Using a titanium sapphire crystal as a laser medium, two 1800 diffraction gratings / mm diffraction gratings and a total reflection mirror having a central reflection wavelength of 800 nm were used to form a resonator similar to that shown in FIG. The resonator length was about 7.8 cm. A single longitudinal mode oscillation could be achieved at an oscillation wavelength of 811 nm by excitation with the second harmonic of the yag laser. At this time, an oscillation light output of about 1.1 mJ was obtained with an excitation light input of about 25 mJ.

本発明は、同位体分離、高分解能分光、ウラン濃縮、使用済み核燃料の核分裂生成物の分離回収等の波長可変光源として使用される。   The present invention is used as a wavelength tunable light source for isotope separation, high resolution spectroscopy, uranium enrichment, separation and recovery of spent nuclear fuel fission products, and the like.

本発明の共振器の構成を示した平面図である。It is the top view which showed the structure of the resonator of this invention. 従来の共振器の構成を示した平面図である。It is the top view which showed the structure of the conventional resonator. 単一縦モード発振の原理((追加))を示す図である。It is a figure which shows the principle ((addition)) of single longitudinal mode oscillation. 本発明の共振器の回折格子の回転角及び回折光の角度を示す図である。It is a figure which shows the rotation angle of the diffraction grating of the resonator of this invention, and the angle of diffracted light.

符号の説明Explanation of symbols

1: 第1回折格子
2: 第2回折格子
3: 全反射鏡
4: 全反射鏡移動機構
5: レーザー媒質
6: 波長選択用全反射鏡
1: First diffraction grating 2: Second diffraction grating 3: Total reflection mirror 4: Total reflection mirror moving mechanism 5: Laser medium 6: Total reflection mirror for wavelength selection

Claims (4)

波長分散素子に、斜入射型配置の第1回折格子及びその回折光を回折するための第2回折格子を用いる共振器。   A resonator that uses, as a wavelength dispersion element, a first diffraction grating arranged obliquely and a second diffraction grating for diffracting the diffracted light. レーザー媒質を中心に全反射鏡、第1回折格子及び第2回折格子で構成され、レーザー媒質から得られたレーザー光が第1回折格子に入射し、第1回折格子からの1次回折光が第2回折格子に入射し、その回折光を再び第1回折格子1に戻すことにより、発振波長幅が狭く、且つ単一縦モードのレーザー光を発振させる請求項1記載の共振器。   The laser medium is composed of a total reflection mirror, a first diffraction grating, and a second diffraction grating. The laser light obtained from the laser medium is incident on the first diffraction grating, and the first-order diffracted light from the first diffraction grating is the first. 2. The resonator according to claim 1, wherein a laser beam having a narrow oscillation wavelength and a single longitudinal mode is oscillated by entering the second diffraction grating and returning the diffracted light to the first diffraction grating 1 again. 第2回折格子をその支点を中心に回転させ、同時に全反射鏡を移動機構により移動させることにより、波長掃引と縦モード維持とを可能とすることを特徴とする波長掃引方法。   A wavelength sweeping method characterized in that wavelength sweeping and longitudinal mode maintenance are enabled by rotating the second diffraction grating about its fulcrum and simultaneously moving the total reflection mirror by a moving mechanism. 共振器がレーザー媒質を中心に全反射鏡、第1回折格子及び第2回折格子で構成され、レーザー媒質から得られたレーザー光が第1回折格子に入射され、第1回折格子からの1次回折光が第2回折格子に入射され、その回折光を再び第1回折格子に戻し、その際に、各波長での第1回折格子と第2回折格子の回折角と第2回折格子の回転角との間の幾何学的関係を満足し、同時に、全反射鏡から第1回折格子を経て第2回折格子までの共振器長が、発振波長の半分の整数倍となる条件を満足するように、全反射鏡を移動機構で第2回折格子の回転と同期させて移動させることにより、発振波長幅が狭く、且つ単一縦モードのレーザー光を発振させる請求項3記載の方法。








The resonator is composed of a total reflection mirror, a first diffraction grating, and a second diffraction grating with the laser medium as the center, and laser light obtained from the laser medium is incident on the first diffraction grating, and the first time from the first diffraction grating. The folded light is incident on the second diffraction grating, and the diffracted light is returned to the first diffraction grating again. At this time, the diffraction angles of the first diffraction grating and the second diffraction grating and the rotation angles of the second diffraction grating at the respective wavelengths. So that the resonator length from the total reflection mirror through the first diffraction grating to the second diffraction grating is an integral multiple of half the oscillation wavelength. 4. The method according to claim 3, wherein the total reflection mirror is moved in synchronism with the rotation of the second diffraction grating by the moving mechanism to oscillate a laser beam having a narrow oscillation wavelength width and a single longitudinal mode.








JP2005195727A 2005-07-05 2005-07-05 Tunable laser resonator and wavelength sweeping method Pending JP2007019056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195727A JP2007019056A (en) 2005-07-05 2005-07-05 Tunable laser resonator and wavelength sweeping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195727A JP2007019056A (en) 2005-07-05 2005-07-05 Tunable laser resonator and wavelength sweeping method

Publications (1)

Publication Number Publication Date
JP2007019056A true JP2007019056A (en) 2007-01-25

Family

ID=37755995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195727A Pending JP2007019056A (en) 2005-07-05 2005-07-05 Tunable laser resonator and wavelength sweeping method

Country Status (1)

Country Link
JP (1) JP2007019056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196769A (en) * 2010-03-18 2011-10-06 Sun Tec Kk Optical tomographic image display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267768A (en) * 1992-03-23 1993-10-15 Toshiba Corp Tunable laser device
JPH05299759A (en) * 1992-04-22 1993-11-12 Nec Corp Narrow-band laser apparatus
JPH0964439A (en) * 1995-08-25 1997-03-07 Anritsu Corp Laser light source apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267768A (en) * 1992-03-23 1993-10-15 Toshiba Corp Tunable laser device
JPH05299759A (en) * 1992-04-22 1993-11-12 Nec Corp Narrow-band laser apparatus
JPH0964439A (en) * 1995-08-25 1997-03-07 Anritsu Corp Laser light source apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196769A (en) * 2010-03-18 2011-10-06 Sun Tec Kk Optical tomographic image display system

Similar Documents

Publication Publication Date Title
JP5911038B2 (en) Semiconductor laser device
WO2017022142A1 (en) Semiconductor laser device
US8929409B2 (en) External cavity tunable laser with an air gap etalon comprising wedges
JP2007142384A (en) High efficient second harmonic generation vertical external cavity surface light emitting laser
JP5234457B2 (en) Laser resonator
JP4144642B2 (en) LASER LIGHT SOURCE DEVICE AND IMAGE GENERATION DEVICE USING THE SAME
WO2019163335A1 (en) Light resonator and laser processing machine
JP2009259914A (en) Laser device, laser display, and laser irradiation device
JP4311453B2 (en) LASER LIGHT SOURCE DEVICE AND IMAGE GENERATION DEVICE USING THE SAME
JP2009026834A (en) Wavelength tunable light source of external resonator type
US20090128906A1 (en) Folded Radial Brewster Polariser
JP2007019056A (en) Tunable laser resonator and wavelength sweeping method
JP2017519367A (en) Laser device
JP5223064B2 (en) Wavelength scanning laser light source
JPS6046837B2 (en) Laser device
Binks et al. Frequency locking of a pulsed single-longitudinal-mode laser in a coupled-cavity resonator
JP2009289990A (en) Laser light source
JP6171950B2 (en) Laser oscillator and wavelength switching device
US20150077853A1 (en) Single-Longitudinal Mode Laser with High Resolution Filter
JP2010272823A (en) Wavelength variable light source apparatus
Izatt et al. Two-and three-grating resonators for high-power pulsed CO 2 lasers
JPH0433385A (en) Wavelength variable solid state laser resonator
US11803097B1 (en) Self-seeded OPA system
Pati et al. Single-mode tunable Ti: sapphire laser over a wide frequency range
Arnold et al. Parametric oscillator: a grating-coupled CdSe OPO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Effective date: 20091203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100729