JP2007018014A - Liquid crystal display device and electronic apparatus - Google Patents

Liquid crystal display device and electronic apparatus Download PDF

Info

Publication number
JP2007018014A
JP2007018014A JP2006283500A JP2006283500A JP2007018014A JP 2007018014 A JP2007018014 A JP 2007018014A JP 2006283500 A JP2006283500 A JP 2006283500A JP 2006283500 A JP2006283500 A JP 2006283500A JP 2007018014 A JP2007018014 A JP 2007018014A
Authority
JP
Japan
Prior art keywords
liquid crystal
dielectric
display device
electrode
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283500A
Other languages
Japanese (ja)
Other versions
JP2007018014A5 (en
Inventor
Tsuyoshi Maeda
強 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006283500A priority Critical patent/JP2007018014A/en
Publication of JP2007018014A publication Critical patent/JP2007018014A/en
Publication of JP2007018014A5 publication Critical patent/JP2007018014A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device with a vertical alignment mode in which a high image quality and a wide viewing angle are secured. <P>SOLUTION: The liquid crystal display device is made by interposing a liquid crystal layer including a liquid crystal whose dielectric anisotropy is negative between a pair of substrates, wherein, in a dot region constituting a display unit, a dielectric protrusion disposed on an electrode, an aperture slit disposed on the electrode or a marginal end part of the electrode are disposed on one substrate side of the pair of substrates and, in order to prevent the liquid crystal from inclining to contradictory directions on a straight line of connecting the dielectric protrusion and the aperture slit or the marginal end part as a plain view when a voltage is applied to the liquid crystal, dielectric constant ε<SB>t1</SB>of the dielectric protrusion, dielectric constant ε<SB>//</SB>of major axis of liquid crystal and dielectric constant ε<SB>⊥</SB>of minor axis thereof has the relation; ε<SB>t1</SB>>ε<SB>//</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶表示装置、及び電子機器に関するものである。   The present invention relates to a liquid crystal display device and an electronic apparatus.

近年、垂直配向した液晶モードを備えた液晶表示装置が実用化されている。この種の液晶表示装置では、基板に対して垂直配向した液晶が電圧印加時に倒れる方向を適切に制御する必要があり、その配向制御を目的とするスリット(切欠部)や誘電体突起からなる配向制御構造物を電極に設けることがなされている(特許文献1参照)。また前記誘電体突起の配置条件についての検討も成されている(非特許文献1参照)。   In recent years, liquid crystal display devices having a vertically aligned liquid crystal mode have been put into practical use. In this type of liquid crystal display device, it is necessary to appropriately control the direction in which the liquid crystal aligned vertically with respect to the substrate is tilted when a voltage is applied, and the alignment composed of slits (notches) and dielectric protrusions for the purpose of controlling the alignment. A control structure is provided on the electrode (see Patent Document 1). Studies have also been made on the arrangement conditions of the dielectric protrusions (see Non-Patent Document 1).

特許第2947350号公報Japanese Patent No. 2947350 A Super-High Quality Multi-Domain Vertical Alignment LCD byNew Rubbing-Less Technology ,SID1998 DIGEST 41.1A Super-High Quality Multi-Domain Vertical Alignment LCD by New Rubbing-Less Technology, SID1998 DIGEST 41.1

上記従来技術の如く配向制御構造を設け、さらにその配置条件等を適切に設定することは、垂直配向モードの液晶表示装置の高画質化に有効である。しかし、本発明者が垂直配向モードの液晶表示装置のさらなる高画質化、広視角化を目的として研究を重ねたところ、前記配向制御構造物として誘電体突起を設ける場合には、液晶の特性に応じて適切な特性を備えた誘電体突起を設ける必要があることが分かった。すなわち、係る最適化を行わない場合、誘電体突起により垂直配向液晶の配向制御を行う従来の液晶表示装置では却って画質を低下させるおそれがあることが分かった。本発明は係る問題点を解決する手段を提供するものであり、その目的は、高画質化、広視角化を実現した垂直配向モードの液晶表示装置を提供することにある。   Providing an alignment control structure as in the above prior art and setting the arrangement conditions and the like appropriately is effective for improving the image quality of a vertical alignment mode liquid crystal display device. However, the present inventor has conducted research for the purpose of further improving the image quality and widening the viewing angle of the liquid crystal display device in the vertical alignment mode. When the dielectric protrusion is provided as the alignment control structure, the characteristics of the liquid crystal are reduced. Accordingly, it has been found that it is necessary to provide a dielectric protrusion having appropriate characteristics. In other words, it has been found that when such optimization is not performed, the image quality of the conventional liquid crystal display device that controls the alignment of the vertically aligned liquid crystal by the dielectric protrusion may be deteriorated. The present invention provides means for solving such problems, and an object of the present invention is to provide a vertical alignment mode liquid crystal display device realizing high image quality and wide viewing angle.

上記課題は、対向面に電極を有する一対の基板間に初期状態が垂直配向を呈する液晶層を挟持した液晶表示装置であって、1表示単位を構成するドット領域内において、前記一対の基板の一方の基板には前記液晶層側に突出した誘電体突起が前記電極上に形成され、前記一対の基板の他方の基板の対向面側には前記誘電体突起と平面方向で隣接する位置に配向制御構造物が設けられ、前記誘電体突起の誘電率をεt1、前記液晶層を構成する液晶分子の長軸方向の誘電率をε//、短軸方向の誘電率をεとしたときに、ε>ε//>εt1の関係とすることで解決できるこの構成によれば、垂直配向液晶の配向制御する手段として誘電体突起を備えた液晶表示装置において、誘電体突起の誘電率が液晶分子の長軸方向における誘電率より小さい場合に、ドット領域内の液晶の配向制御を良好に行うことができ、広視角、高輝度の表示を得ることができる。 The above-described problem is a liquid crystal display device in which a liquid crystal layer having an initial state of vertical alignment is sandwiched between a pair of substrates having electrodes on opposite surfaces, and in the dot region constituting one display unit, A dielectric protrusion protruding toward the liquid crystal layer is formed on the electrode on one substrate, and is aligned at a position adjacent to the dielectric protrusion in the planar direction on the opposite surface side of the other substrate of the pair of substrates. When a control structure is provided, the dielectric constant of the dielectric protrusion is ε t1 , the dielectric constant in the major axis direction of the liquid crystal molecules constituting the liquid crystal layer is ε // , and the dielectric constant in the minor axis direction is ε , according to this configuration can be solved by a relation of ε ⊥> ε //> ε t1 , the liquid crystal display device provided with a dielectric protrusion as a means of controlling alignment of the vertically aligned liquid crystal, the dielectric projection dielectric Field whose modulus is smaller than the dielectric constant in the long axis direction A, it is possible to satisfactorily perform the liquid crystal alignment control in the dot region, it is possible to obtain a wide viewing angle, a high-luminance display.

本発明によれば、一対の基板間に誘電異方性が負の液晶を含む液晶層を挟持してなる液晶表示装置であって、表示単位を構成するドット領域内において、前記一対の基板のうち一方の基板側にあっては、電極上に設けた誘電体突起と、前記電極に設けた開口スリット又は前記電極の縁端部が設けられてなり、前記液晶に電圧を印加したときに、平面視した前記誘電体突起と前記開口スリット又は前記縁端部とを結ぶ直線上において前記液晶が相反する方向に傾倒しないよう、前記誘電体突起の誘電率をεt1、前記液晶の長軸方向の誘電率をε//、短軸方向の誘電率をεとしたときに、εt1>ε//の関係を有していることを特徴とする液晶表示装置を提供する。この構成によれば、垂直配向液晶の配向制御する手段として誘電体突起を備えた液晶表示装置において、誘電体突起の誘電率が液晶分子の長軸方向における誘電率より大きい場合に、ドット領域内の液晶の配向制御を良好に行うことができ、広視角、高輝度の表示を得ることができる。また、本構成では、配向制御構造物が一方の基板のみに設けられた構成とすることができるため、製造の容易性が高くなり、製造歩留まりの向上が期待できる。
従って、上記各構成によれば、誘電体突起を垂直配向液晶の配向制御する手段として備えた液晶表示装置において、誘電体突起の誘電率によって異なる液晶分子の電圧印加時の挙動を適切に制御することができ、もって広視角、高輝度の表示を得られる液晶表示装置を提供することができる。
According to the present invention, there is provided a liquid crystal display device in which a liquid crystal layer including a liquid crystal having a negative dielectric anisotropy is sandwiched between a pair of substrates, wherein the pair of substrates are arranged in a dot region constituting a display unit. On one of the substrates, a dielectric protrusion provided on the electrode and an opening slit provided on the electrode or an edge of the electrode are provided, and when a voltage is applied to the liquid crystal, The dielectric constant of the dielectric protrusion is ε t1 , and the major axis direction of the liquid crystal is set so that the liquid crystal does not tilt in the opposite direction on the straight line connecting the dielectric protrusion and the opening slit or the edge portion in plan view. the dielectric constant epsilon //, a dielectric constant in the minor axis direction is taken as epsilon ⊥, to provide a liquid crystal display device, characterized in that a relation of ε t1> ε //. According to this configuration, in a liquid crystal display device having a dielectric protrusion as a means for controlling the alignment of vertically aligned liquid crystal, when the dielectric constant of the dielectric protrusion is larger than the dielectric constant in the major axis direction of the liquid crystal molecules, The liquid crystal orientation can be controlled well, and a display with a wide viewing angle and high luminance can be obtained. Moreover, in this structure, since the orientation control structure can be provided only on one substrate, the ease of manufacturing is improved, and an improvement in manufacturing yield can be expected.
Therefore, according to each of the above configurations, in a liquid crystal display device provided with dielectric protrusions as a means for controlling the alignment of vertically aligned liquid crystal, the behavior of liquid crystal molecules at the time of voltage application depending on the dielectric constant of the dielectric protrusions is appropriately controlled. Therefore, a liquid crystal display device capable of obtaining a display with a wide viewing angle and high luminance can be provided.

また、本発明の液晶表示装置では、前記誘電体突起と隣接する配向制御構造物が、前記ドット領域内に設けられた電極に形成された開口スリット、又は前記電極の縁端部である構成とすることができる。
また、前記誘電体突起と隣接する配向制御構造物が他の誘電体突起であり、当該他の誘電体突起の誘電率をεt2としたとき、前記液晶分子の誘電率ε//に対して、ε//>εt2の関係を有している構成とすることもできる。
先の構成を備えた液晶表示装置では、誘電体突起と隣接する配向制御構造物として、電極縁端で生じる斜め電界により電圧印加時の液晶分子の配向制御を行うもの、及び液晶層中に誘電率の異なる突起物を設けることで電界を歪ませて配向制御を行うもののいずれも適用することができる。
In the liquid crystal display device of the present invention, the alignment control structure adjacent to the dielectric protrusion is an opening slit formed in an electrode provided in the dot region, or an edge portion of the electrode. can do.
The alignment control structure adjacent to the dielectric protrusion is another dielectric protrusion, and when the dielectric constant of the other dielectric protrusion is ε t2 , the dielectric constant ε // of the liquid crystal molecule is , Ε // > ε t2 .
In the liquid crystal display device having the above configuration, as the alignment control structure adjacent to the dielectric protrusion, the alignment control of the liquid crystal molecules at the time of voltage application by the oblique electric field generated at the electrode edge, and the dielectric in the liquid crystal layer Any of those in which the orientation is controlled by distorting the electric field by providing projections having different rates can be applied.

本発明の液晶表示装置では、前記開口スリットの内側に設けられ、誘電率εt2がε//>εt2の関係を有する他の誘電体突起を有することが好ましい。この構成によれば、開口スリットの周辺で生じる斜め電界と、誘電体突起によって生じる電界歪みとにより液晶分子の配向制御を行う他の誘電体突起を設けるので、誘電体突起から離れた位置の液晶分子も良好に配向制御することができ、応答速度ないし開口率を向上させる上で有利な構成となる。 In the liquid crystal display device of the present invention, it is preferable to have another dielectric protrusion provided inside the opening slit and having a dielectric constant ε t2 of ε // > ε t2 . According to this configuration, since the other dielectric protrusion for controlling the alignment of the liquid crystal molecules is provided by the oblique electric field generated around the opening slit and the electric field distortion generated by the dielectric protrusion, the liquid crystal at a position away from the dielectric protrusion is provided. Molecules can also be well controlled in orientation, which is advantageous for improving response speed or aperture ratio.

また、他の解決手段としては、対向面に電極を有する一対の基板間に初期状態が垂直配向を呈する液晶層を挟持した液晶表示装置であって、1表示単位を構成するドット領域内において、前記一対の基板の一方の基板には前記液晶層側に突出した第1の誘電体突起が前記電極上に形成され、前記一対の基板の他方の基板には前記第1の誘電体突起と平面方向で隣接する位置に第2の誘電体突起が前記電極上に形成され、前記第1の誘電体突起の誘電率をεt1、前記第2の誘電体突起の誘電率をεt2、前記液晶層を構成する液晶分子の長軸方向の誘電率をε//、短軸方向の誘電率をεとしたときに、εt1>ε//、及びεt2>ε//の関係を有していることを特徴とする液晶表示装置を提供する。通常ドット領域に設けられて配向制御構造物を成す誘電体突起は同一材質により形成されるが、互いに異なる誘電率を有する誘電体突起により配向制御を行う構成であってもよい。そして、このような異なる誘電率を有する誘電体突起が隣接して設けられている場合には、本構成の如く異なる基板にそれぞれ誘電体突起を設けることが好ましい。このような構成とすることで、高画質、広視角の表示を得ることができる。 Another solution is a liquid crystal display device in which a liquid crystal layer having an initial vertical orientation is sandwiched between a pair of substrates having electrodes on opposite surfaces, and within a dot region constituting one display unit, A first dielectric protrusion protruding toward the liquid crystal layer is formed on the electrode on one substrate of the pair of substrates, and the first dielectric protrusion and the flat surface are formed on the other substrate of the pair of substrates. A second dielectric protrusion is formed on the electrode at a position adjacent in the direction, the dielectric constant of the first dielectric protrusion is ε t1 , the dielectric constant of the second dielectric protrusion is ε t2 , and the liquid crystal When the dielectric constant in the major axis direction of the liquid crystal molecules constituting the layer is ε // , and the dielectric constant in the minor axis direction is ε , there is a relationship of ε t1 > ε // , and ε t2 > ε // Provided is a liquid crystal display device. Normally, the dielectric protrusions provided in the dot region and forming the alignment control structure are formed of the same material. However, a configuration in which the alignment control is performed by dielectric protrusions having different dielectric constants may be used. When dielectric protrusions having different dielectric constants are provided adjacent to each other, it is preferable to provide the dielectric protrusions on different substrates as in this configuration. With such a configuration, display with high image quality and wide viewing angle can be obtained.

また、前記ドット領域内に、反射表示を行う反射表示領域と、透過表示を行う透過表示領域とが設けられている構成とすることができる。この構成によれば、広視角、高画質の透過/反射表示が可能な半透過反射型液晶表示装置が提供される。   In addition, a reflective display area for performing reflective display and a transmissive display area for performing transmissive display can be provided in the dot area. According to this configuration, a transflective liquid crystal display device capable of transmissive / reflective display with a wide viewing angle and high image quality is provided.

次に本発明は、先に記載の本発明の液晶表示装置を備えたことを特徴とする電子機器を提供する。本発明によれば、広視角、高輝度の表示部を有する電子機器が提供される。   Next, the present invention provides an electronic apparatus comprising the liquid crystal display device of the present invention described above. According to the present invention, an electronic apparatus having a display unit with a wide viewing angle and high brightness is provided.

以下、本発明の実施の形態を図面を参照しつつ説明する。尚、以下で参照する各図面では図を見易くするために各部の大きさや厚さを適宜異ならせている。図1及び図2は、それぞれ本発明の第1実施形態、第2実施形態の液晶表示装置の要部(基本構成の一部)を示す断面構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing referred to below, the size and thickness of each part are appropriately changed in order to make the drawing easy to see. FIG. 1 and FIG. 2 are cross-sectional configuration diagrams showing the main part (a part of the basic configuration) of the liquid crystal display device of the first embodiment and the second embodiment of the present invention, respectively.

図1に示す第1実施形態の液晶表示装置100は、対向配置された第1基板25と第2基板10との間に、誘電異方性が負の液晶からなる液晶層50が挟持された構成を備えている。第2基板10の内面側(液晶層側)に第2電極9と、誘電体突起18と、これらの第2電極9、誘電体突起18を覆う垂直配向膜23とがこの順で形成されている。第1基板25の内面側には、第1電極31と、垂直配向膜33とがこの順で形成されている。1表示単位を構成するドット領域内において、第1電極31は第2電極9より狭く形成されており、図示左右方向(Y方向/第1基板25の平面方向)の第1電極31の縁端部(エッジ部・切り欠き部)31a、31aが第2電極9の上方に平面的に配置されている。即ち、1つのドット領域内において、誘電体突起18が異なる基板に形成された第1電極31の縁端部31aと縁端部31aの間に配置された位置関係(誘電体突起18と第1電極31の縁端部31a、31aが平面的に重ならずに互い違いに隣接して配置された位置関係)とされている。
一方、図2に示す第2実施形態の液晶表示装置200は、第1実施形態の液晶表示装置と基本構成は同様であるが、誘電体突起18が第1基板25の第1電極31上に設けられている点で異なっている。即ち、1つのドット領域内において、誘電体突起18が同じ基板に形成された第1電極31の縁端部31aと縁端部31aの間に配置された位置関係(誘電体突起18と第1電極31の縁端部31a、31aが隣接して交互に配置された位置関係)とされている。
尚、ドット領域とは、1表示単位を構成する領域であって、例えば一般的に一方の基板に形成された1つの画素電極とこれに対向した他方の基板に形成された対向電極によって構成されている。
In the liquid crystal display device 100 according to the first embodiment shown in FIG. 1, a liquid crystal layer 50 made of a liquid crystal having negative dielectric anisotropy is sandwiched between a first substrate 25 and a second substrate 10 which are arranged to face each other. It has a configuration. A second electrode 9, a dielectric protrusion 18, and a vertical alignment film 23 covering these second electrode 9 and dielectric protrusion 18 are formed in this order on the inner surface side (liquid crystal layer side) of the second substrate 10. Yes. On the inner surface side of the first substrate 25, a first electrode 31 and a vertical alignment film 33 are formed in this order. In the dot region constituting one display unit, the first electrode 31 is formed narrower than the second electrode 9, and the edge of the first electrode 31 in the horizontal direction in the figure (Y direction / plane direction of the first substrate 25). Portions (edge portions and cutout portions) 31 a and 31 a are planarly arranged above the second electrode 9. That is, within one dot region, the dielectric protrusion 18 is disposed between the edge 31a and the edge 31a of the first electrode 31 formed on different substrates (the dielectric protrusion 18 and the first protrusion 31). The edge portions 31a and 31a of the electrode 31 are arranged adjacent to each other in a staggered manner without overlapping in plan view).
On the other hand, the liquid crystal display device 200 of the second embodiment shown in FIG. 2 has the same basic configuration as that of the liquid crystal display device of the first embodiment, but the dielectric protrusion 18 is formed on the first electrode 31 of the first substrate 25. It differs in that it is provided. That is, within one dot region, the positional relationship (dielectric protrusion 18 and first dielectric protrusion 18 and first edge 31a) is disposed between the edge 31a and the edge 31a of the first electrode 31 formed on the same substrate. The edge portions 31a and 31a of the electrode 31 are adjacent to each other and are alternately arranged).
The dot region is a region constituting one display unit, and is generally composed of, for example, one pixel electrode formed on one substrate and a counter electrode formed on the other substrate facing the pixel electrode. ing.

このような構成のもと、これらの液晶表示装置100,200は、液晶層50を構成する液晶分子51は、前記両電極9,31に電圧が印加されていない状態(非選択状態、初期配向状態)では、垂直配向膜23,33の配向規制力により基板10,25に対して垂直方向に配向し、前記両電極間に電圧が印加される(選択状態とされる)と、基板10,25の面方向に向かって倒れるように動作する。   Under such a configuration, in these liquid crystal display devices 100 and 200, the liquid crystal molecules 51 constituting the liquid crystal layer 50 are in a state in which no voltage is applied to the electrodes 9 and 31 (non-selected state, initial alignment). In a state), when the vertical alignment films 23 and 33 are aligned in the vertical direction with respect to the substrates 10 and 25 due to the alignment regulating force and a voltage is applied between the electrodes (the selected state), the substrates 10 and 25 It operates so as to fall in the direction of 25 planes.

また、液晶表示装置100,200は、上記電圧印加時の液晶分子51の配向方向を制御するための配向制御構造物として誘電体突起18を備えるとともに、対向する基板に設けられた電極より狭く形成された電極の縁端部(エッジ部・切り欠き部)31aにおいて生じる電界の歪みによっても液晶分子51の配向を制御するようになっている。そして、これら第1実施形態、第2実施形態の液晶表示装置は、1つのドット領域の略中央部に設けられた誘電体突起18の誘電率(εt1)と、液晶分子51の誘電率(ε//、ε)との関係において互いに異なっており、係る関係の差異に基づき誘電体突起18と隣接する配向制御構造物(縁端部31a、9a)との配置関係が異ならされている。ここで、液晶分子の誘電率ε//は、液晶分子の長軸方向(図示X方向)の誘電率であり、誘電率εは、液晶分子の短軸方向(図示Y方向)の誘電率である。以下では、ε//、εをそれぞれ長軸方向誘電率、短軸方向誘電率と呼ぶ。 The liquid crystal display devices 100 and 200 include the dielectric protrusion 18 as an alignment control structure for controlling the alignment direction of the liquid crystal molecules 51 when the voltage is applied, and are formed narrower than the electrodes provided on the opposing substrate. The orientation of the liquid crystal molecules 51 is also controlled by the distortion of the electric field generated at the edge portion (edge portion / notch portion) 31a of the formed electrode. In the liquid crystal display devices according to the first and second embodiments, the dielectric constant (ε t1 ) of the dielectric protrusion 18 provided substantially at the center of one dot region and the dielectric constant ( ε // , ε ), and the arrangement relationship between the dielectric protrusion 18 and the adjacent alignment control structures (edge portions 31a and 9a) is different based on the difference in the relationship. . Here, the dielectric constant epsilon // of the liquid crystal molecules is the dielectric constant of the longitudinal direction of the liquid crystal molecules (the X direction), the dielectric constant epsilon is the dielectric constant in the minor axis direction of liquid crystal molecules (the Y direction) It is. Hereinafter, ε // and ε are referred to as a long-axis direction dielectric constant and a short-axis direction dielectric constant, respectively.

まず、図1に示す第1実施形態の液晶表示装置100では、液晶の配向制御手段を成すべく設けられた誘電体突起18の誘電率εt1が、液晶分子51の長軸方向誘電率ε//より小さくなっている。すなわち、誘電体突起18の誘電率εt1と、液晶分子51の誘電率ε//、εとが、ε>ε//>εt1の関係を有している。これに対して、図2に示す第2実施形態の液晶表示装置200では、誘電体突起18の誘電率εt1が、液晶分子51の長軸方向誘電率ε//より大きくなっている(εt1>ε//)。
そして、前記両液晶表示装置は、その誘電体突起18の配置において異なっている。このように本発明に係る液晶表示装置は、誘電体突起18の誘電率と液晶分子51の誘電率との関係に応じて、誘電体突起18と該誘電体突起18に隣接する配向制御構造物(電極の縁端部31a)との配置関係を適切に設定するものであり、これによって高画質かつ広視角の良好な表示を得るようになっている。
First, in the liquid crystal display device 100 of the first embodiment shown in FIG. 1, the dielectric constant ε t1 of the dielectric protrusion 18 provided to form the liquid crystal alignment control means is the long-axis direction dielectric constant ε / of the liquid crystal molecules 51. / It is getting smaller. That is, the dielectric constant epsilon t1 of the dielectric protrusion 18, the dielectric constant of the liquid crystal molecules 51 ε //, ε and has a relation of ε ⊥> ε //> ε t1 . On the other hand, in the liquid crystal display device 200 of the second embodiment shown in FIG. 2, the dielectric constant ε t1 of the dielectric protrusion 18 is larger than the dielectric constant ε // of the liquid crystal molecules 51 in the major axis direction (ε t1 > ε // ).
The two liquid crystal display devices differ in the arrangement of the dielectric protrusions 18. As described above, the liquid crystal display device according to the present invention includes the dielectric protrusion 18 and the alignment control structure adjacent to the dielectric protrusion 18 according to the relationship between the dielectric constant of the dielectric protrusion 18 and the dielectric constant of the liquid crystal molecules 51. The arrangement relationship with the (edge portion 31a of the electrode) is appropriately set, and thereby a high-quality display with a wide viewing angle is obtained.

以下、図3から図10を参照して、誘電体突起18の誘電率εt1と、液晶分子51の誘電率ε//、εとの関係に応じた液晶分子の挙動、並びに本実施形態の液晶表示装置の作用について説明する。図3から図10は、誘電体突起18の誘電率を異ならせたときの液晶分子の挙動を計算したシミュレーション結果を示す断面構成図である。 Hereinafter, with reference to FIGS. 3 to 10, the behavior of the liquid crystal molecules according to the relationship between the dielectric constant ε t1 of the dielectric protrusion 18 and the dielectric constants ε // , ε of the liquid crystal molecules 51, and the present embodiment The operation of the liquid crystal display device will be described. 3 to 10 are cross-sectional configuration diagrams showing simulation results obtained by calculating the behavior of the liquid crystal molecules when the dielectric protrusions 18 have different dielectric constants.

図3及び図4には、誘電体突起の誘電率εt1が1.0、液晶分子の長軸方向誘電率ε//が4.0、短軸方向誘電率εが9.0とされた一つのドット領域内の要部(基本構成とされる一部)を表した液晶表示装置において、両電極9,31間に電圧を印加した直後の液晶の状態(図3)と、100ms経過後の液晶の状態(図4)とが示されている。
尚、図3から図8に結果を示すシミュレーションでは、電極及び誘電体突起の構成は、図示するように、第2基板10の電極9上の略中央部に誘電体突起18が設けられており、第1電極31は第2電極9よりも狭い幅に形成され、第1電極31の縁端部31a、31aは第2電極9の上方に配置された構成としている。
In FIGS. 3 and 4, the dielectric constant epsilon t1 of the dielectric protrusion is 1.0, the long axis direction dielectric constant epsilon // of the liquid crystal molecules is 4.0, the minor axis direction permittivity epsilon is 9.0 In a liquid crystal display device showing the main part (a part of the basic configuration) in one dot region, the state of the liquid crystal immediately after the voltage is applied between both electrodes 9 and 31 (FIG. 3), and 100 ms have elapsed. The state of the later liquid crystal (FIG. 4) is shown.
In the simulations showing the results in FIGS. 3 to 8, the configuration of the electrodes and the dielectric protrusions is such that the dielectric protrusions 18 are provided at the substantially central portion on the electrodes 9 of the second substrate 10 as shown in the figure. The first electrode 31 is formed to be narrower than the second electrode 9, and the edge portions 31 a and 31 a of the first electrode 31 are arranged above the second electrode 9.

図5及び図6には、誘電体突起の誘電率εt1が3.5、液晶分子の長軸方向誘電率ε//が4.0、短軸方向誘電率εが9.0とされた一つのドット領域内の要部(基本構成とされる一部)を表した液晶表示装置において、両電極9,31間に電圧を印加した直後の液晶の状態(図5)と、100ms経過後の液晶の状態(図6)とが示されている。
図7及び図8には、誘電体突起の誘電率εt1が5.0、液晶分子の長軸方向誘電率ε//が4.0、短軸方向誘電率εが9.0とされた一つのドット領域内の要部(基本構成とされる一部)を表した液晶表示装置において、両電極9,31間に電圧を印加した直後の液晶の状態(図7)と、100ms経過後の液晶の状態(図8)とが示されている。
5 and 6 show, the dielectric constant epsilon t1 of the dielectric protrusion is 3.5, the long axis direction dielectric constant epsilon // of the liquid crystal molecules is 4.0, the minor axis direction permittivity epsilon is 9.0 In a liquid crystal display device showing the main part (a part of the basic configuration) in one dot region, the state of the liquid crystal immediately after the voltage is applied between the electrodes 9 and 31 (FIG. 5), and 100 ms have elapsed. The later liquid crystal state (FIG. 6) is shown.
FIG 7 and FIG 8, the dielectric constant epsilon t1 of the dielectric protrusion is 5.0, the long axis direction dielectric constant epsilon // of the liquid crystal molecules is 4.0, the minor axis direction permittivity epsilon is 9.0 In a liquid crystal display device showing the main part (a part of the basic configuration) in one dot region, the state of the liquid crystal immediately after the voltage is applied between both electrodes 9 and 31 (FIG. 7), and 100 ms have elapsed. The state of the later liquid crystal (FIG. 8) is shown.

これらの図に示すように、誘電体突起18と液晶分子51とが、εt1<ε//の関係を有する、図3から図6に示す条件では、誘電体突起18から両側(電極縁端方向)に向かって液晶分子51が倒れており、誘電体突起18を境界とする2つの液晶ドメインが対称に形成されている。以下に、縁端部31a及び誘電体突起18の配向制御作用について説明する。 As shown in these drawings, the dielectric protrusions 18 and the liquid crystal molecules 51 have a relationship of ε t1// , and under the conditions shown in FIGS. The liquid crystal molecules 51 are tilted toward (direction), and two liquid crystal domains having the dielectric protrusions 18 as a boundary are formed symmetrically. Hereinafter, the orientation control action of the edge portion 31a and the dielectric protrusion 18 will be described.

液晶分子の配向を制御する手段がない場合には、電圧印加により液晶分子はランダムな方向に倒れる。この場合、異なる配向状態の液晶ドメインの境界に不連続線(ディスクリネーション)が現れて残像や輝度低下等の原因になる。また、このディスクリネーションは印加電圧により異なる位置に現れるため、ドット領域内の液晶ドメインの大きさが安定せず、また液晶ドメインはそれぞれ異なる視角特性を有するため、斜め方向から見た場合にざらざらとしたシミ状のムラとして見えることになる。そこで、液晶分子の配向制御手段を設けることにより、電圧印加時に液晶分子を所定方向に傾倒させて配向させることが可能になる。   When there is no means for controlling the alignment of the liquid crystal molecules, the liquid crystal molecules are tilted in a random direction by voltage application. In this case, a discontinuous line (disclination) appears at the boundary between the liquid crystal domains having different alignment states, which may cause afterimages or luminance reduction. In addition, since this disclination appears at different positions depending on the applied voltage, the size of the liquid crystal domain in the dot region is not stable, and each liquid crystal domain has different viewing angle characteristics, so that it is rough when viewed from an oblique direction. It will appear as a spot-like unevenness. Therefore, by providing a liquid crystal molecule alignment control means, it becomes possible to align the liquid crystal molecules in a predetermined direction when a voltage is applied.

まず、誘電体突起18の作用につき、図3及び図4を用いて説明する。誘電体突起18を含む第2電極9の表面には配向膜23が形成されているので、図3に示すように、電圧無印加時及び電圧無印加直後における液晶分子51は基板面に対して垂直に配向している。ここで、第1電極31および第2電極9に電圧を印加すると、等電位線52…により示す電界が液晶層50に形成され、特に誘電体突起18の周辺には、誘電体突起18と液晶分子51との誘電率の差異により電界の歪みが生じる。そして、このような歪みが生じると、基板面に垂直に配向している液晶分子51は、この電界に対して所定角度のプレチルトを有することになる。従って、電圧印加により液晶分子51を誘電体突起18の図示左右方向外側(誘電体突起18の傾斜面と接触角を増大させる方向)へ傾倒させて配向規制することができる。さらに、誘電体突起18の周辺領域における液晶分子も、ドミノ倒しの要領で同じ方向に傾倒させることができる。   First, the operation of the dielectric protrusion 18 will be described with reference to FIGS. 3 and 4. Since the alignment film 23 is formed on the surface of the second electrode 9 including the dielectric protrusions 18, the liquid crystal molecules 51 when no voltage is applied and immediately after no voltage is applied to the substrate surface as shown in FIG. It is oriented vertically. Here, when a voltage is applied to the first electrode 31 and the second electrode 9, an electric field indicated by equipotential lines 52... Is formed in the liquid crystal layer 50, and in particular around the dielectric protrusion 18, the dielectric protrusion 18 and the liquid crystal The distortion of the electric field is caused by the difference in dielectric constant from the molecule 51. When such distortion occurs, the liquid crystal molecules 51 aligned perpendicular to the substrate surface have a pretilt of a predetermined angle with respect to the electric field. Therefore, the orientation of the liquid crystal molecules 51 can be regulated by inclining the liquid crystal molecules 51 outward in the horizontal direction of the dielectric protrusions 18 (in the direction of increasing the contact angle with the inclined surface of the dielectric protrusions 18) by applying a voltage. Furthermore, the liquid crystal molecules in the peripheral region of the dielectric protrusion 18 can be tilted in the same direction in the manner of tilting dominoes.

次に、電極の縁端部31aの作用について説明する。縁端部31aにもそれを覆うように配向膜33が形成されているので、電圧無印加時における液晶分子51は基板面に対して垂直に配向している。ここで、第1電極31および第2電極9に電圧を印加すると、等電位線52…の形状に示されるように、電極縁端部31aの周辺に斜め電界が発生する。そして、電圧無印加時における液晶分子51の長軸方向は、この斜め電界からみると所定角度傾いて配向していることになるので、液晶分子にプレチルトが付与されたのと同様になる。従って、電圧印加により液晶分子51を縁端部31aから電極中央部側へ傾倒させて配向規制することができる。さらに、縁端部31aから内側(電極中央部側)に配された液晶分子51も、ドミノ倒しの要領で縁端部31aにおける液晶分子の配向方向に沿って同じ方向に次々と傾倒させることができる。   Next, the operation of the edge portion 31a of the electrode will be described. Since the alignment film 33 is formed so as to cover the edge 31a, the liquid crystal molecules 51 when no voltage is applied are aligned perpendicular to the substrate surface. Here, when a voltage is applied to the first electrode 31 and the second electrode 9, an oblique electric field is generated around the electrode edge 31a as shown by the shape of the equipotential lines 52. The major axis direction of the liquid crystal molecules 51 when no voltage is applied is oriented at a predetermined angle when viewed from this oblique electric field, and is the same as when a pretilt is applied to the liquid crystal molecules. Therefore, the orientation of the liquid crystal molecules 51 can be regulated by inclining the liquid crystal molecules 51 from the edge 31a toward the center of the electrode by applying a voltage. Further, the liquid crystal molecules 51 arranged on the inner side (electrode center side) from the edge 31a can be tilted one after another in the same direction along the alignment direction of the liquid crystal molecules in the edge 31a in the manner of tilting dominoes. it can.

以上の作用により、上記誘電体突起18及び電極の縁端部31aにより配向規制された液晶分子51が、誘電体突起18と一方の縁端部31aとの間で一様に同方向に倒れ、その結果、図4及び図6に示すように誘電体突起18を中心としたほぼ対称の液晶ドメインが形成される。従って、図3から図6の条件と同様の構成である図1に示した実施形態の液晶表示装置100では広視角、高輝度の良好な表示が得られることが分かる。   By the above action, the liquid crystal molecules 51 whose alignment is regulated by the dielectric protrusion 18 and the edge portion 31a of the electrode are uniformly tilted in the same direction between the dielectric protrusion 18 and the one edge portion 31a. As a result, as shown in FIGS. 4 and 6, substantially symmetric liquid crystal domains around the dielectric protrusions 18 are formed. Therefore, it can be seen that the liquid crystal display device 100 of the embodiment shown in FIG. 1 having the same configuration as the conditions of FIGS. 3 to 6 can provide a good display with a wide viewing angle and high luminance.

これに対して、図7及び図8に示す条件は、誘電体突起18と液晶分子51とがその誘電率において、εt1>ε//の関係を有しており、図8に示すように、液晶分子51は電圧印加時に誘電体突起18の傾斜面に沿う方向(誘電体突起18の先端頂部に向かう方向、誘電体突起18の傾斜面と接触角を減少させる方向)に倒れ、誘電体突起18の周辺の液晶分子51も誘電体突起18側へ向かって倒れている。その一方で、第1電極31の縁端部31aでは、先の図3から図6の条件と同様に、第1電極31の中央部に向かって液晶分子51が倒れている。このように誘電体突起18と縁端部31aとの間で相反する方向に液晶分子51が倒れる結果、誘電体突起18と第1電極の縁端部31aとの中間地点で、液晶分子51が倒れなくなり、ディスクリネーションを生じる。 On the other hand, the conditions shown in FIGS. 7 and 8 are that the dielectric protrusion 18 and the liquid crystal molecules 51 have a relationship of ε t1 > ε // in the dielectric constant, as shown in FIG. When the voltage is applied, the liquid crystal molecules 51 are tilted in a direction along the inclined surface of the dielectric protrusion 18 (a direction toward the top of the tip of the dielectric protrusion 18 and a direction in which the contact angle with the inclined surface of the dielectric protrusion 18 is reduced). The liquid crystal molecules 51 around the protrusion 18 are also tilted toward the dielectric protrusion 18 side. On the other hand, at the edge portion 31 a of the first electrode 31, the liquid crystal molecules 51 are tilted toward the central portion of the first electrode 31, similarly to the conditions of FIGS. As described above, as a result of the liquid crystal molecules 51 falling in the opposite direction between the dielectric protrusion 18 and the edge portion 31a, the liquid crystal molecules 51 are located at an intermediate point between the dielectric protrusion 18 and the edge portion 31a of the first electrode. It will not fall down and will cause disclination.

このように、液晶分子51の誘電率ε//に対して誘電体突起18の誘電率εt1の値が異なっていると、電圧印加時の液晶分子51の挙動が異なることになり、図3から図6に示したεt1<ε//の条件では、広い視角範囲で高輝度の表示が得られるが、図7,8に示したεt1>ε//の条件では、ドット領域内にディスクリネーションが生じて表示品質が低下する。上記各条件間でこのような液晶分子の挙動の差異が生じるのは、誘電体突起18と液晶との誘電率の差異により液晶層50内に生じる電界の歪みの形状が異なっていることによる。つまり、図4及び図6に示す条件では、両図に示す等電位線52…の形状から、誘電体突起18の図示上方で上側に凸なる電界の歪みが生じており、図8に示す条件では、逆に下側に凸なる電界の歪みが生じている。そのため、液晶分子51の傾倒方向が異なることとなり、液晶層50に形成される液晶ドメインも異なったものとなるからである。 As described above, when the value of the dielectric constant ε t1 of the dielectric protrusion 18 is different from the dielectric constant ε // of the liquid crystal molecule 51, the behavior of the liquid crystal molecule 51 when a voltage is applied is different. From FIG. 6, a high luminance display can be obtained in a wide viewing angle range under the condition of ε t1// shown in FIG. 6, but in the condition of ε t1 > ε // shown in FIGS. Disclination occurs and display quality deteriorates. The difference in the behavior of the liquid crystal molecules between the above conditions is due to the difference in the shape of the electric field distortion generated in the liquid crystal layer 50 due to the difference in dielectric constant between the dielectric protrusion 18 and the liquid crystal. That is, under the conditions shown in FIG. 4 and FIG. 6, the shape of the equipotential lines 52... Shown in both figures causes distortion of the electric field protruding upward above the dielectric protrusion 18, and the conditions shown in FIG. Then, on the contrary, a distortion of the electric field protruding downward occurs. Therefore, the tilt directions of the liquid crystal molecules 51 are different, and the liquid crystal domains formed in the liquid crystal layer 50 are also different.

上述したように、図7及び図8に示した条件(εt1>ε//)では、良好な表示は得られない。そこで本発明者は、図7及び図8に示した条件においても良好な表示を得るべく液晶表示装置の構成について検討を重ね、図2に示した構成のごとく誘電体突起18を他の配向制御構成物(第1電極31の縁端部31a)を有する第1基板25側に設けるならば、液晶分子の誘電率ε//に対して比較的高い誘電率を有する誘電体突起18を用いた場合にも良好な表示を得られることを知見した。 As described above, good display cannot be obtained under the conditions (ε t1 > ε // ) shown in FIGS. Therefore, the present inventor has repeatedly studied the configuration of the liquid crystal display device in order to obtain a good display even under the conditions shown in FIGS. 7 and 8, and the dielectric protrusion 18 is subjected to other orientation control as in the configuration shown in FIG. If provided on the first substrate 25 side having the component (the edge 31a of the first electrode 31), the dielectric protrusion 18 having a relatively high dielectric constant relative to the dielectric constant ε // of the liquid crystal molecules was used. In some cases, it was found that a good display can be obtained.

図9及び図10は、図2に示した液晶表示装置200と同様の構成とした、誘電体突起18を第1基板25の電極31上に配した液晶表示装置でのシミュレーション結果である。誘電体突起18の誘電率εt1は5.0、液晶分子51の長軸方向誘電率ε//は4.0、短軸方向誘電率εは9.0である。
図10に示すように、図2に示した構成を採用すれば、電圧印加時に誘電体突起18を中心とする対称な液晶ドメインが液晶層50中に形成されるようになり、εt1>ε//なる条件においても、広視角かつ高輝度の良好な表示が可能な液晶表示装置とすることができる。
9 and 10 show simulation results in a liquid crystal display device having the same configuration as that of the liquid crystal display device 200 shown in FIG. 2 and having the dielectric protrusion 18 disposed on the electrode 31 of the first substrate 25. Permittivity epsilon t1 of the dielectric protrusion 18 5.0 long axis permittivity epsilon // of the liquid crystal molecules 51 is 4.0, the minor axis direction permittivity epsilon is 9.0.
As shown in FIG. 10, when the configuration shown in FIG. 2 is adopted, a symmetric liquid crystal domain centered on the dielectric protrusion 18 is formed in the liquid crystal layer 50 when a voltage is applied, and ε t1 > ε // Even under such conditions, a liquid crystal display device capable of good display with a wide viewing angle and high luminance can be obtained.

また本発明者は、誘電体突起18の誘電率εt1を異ならせた場合の液晶表示装置の応答速度についても検証した。その結果、図3,4の条件(εt1=1.0)の液晶表示装置では、図5,6の条件(εt1=3.5)の液晶表示装置に比して中間調領域で5ms程度の応答速度の向上を実現できることが分かった。これは、図4と図6の等電位線52…の分布を比較すると分かるように、誘電体突起18に起因する電界の歪みは図4の方が大きく、これにより液晶分子51に対する配向規制力が大きくなるためであると考えられる。 The inventor also verified the response speed of the liquid crystal display device when the dielectric constant ε t1 of the dielectric protrusion 18 is varied. As a result, the liquid crystal display device under the condition (ε t1 = 1.0) shown in FIGS. 3 and 4 is 5 ms in the halftone region as compared with the liquid crystal display device under the condition (ε t1 = 3.5) shown in FIGS. It was found that the response speed can be improved to a certain extent. As can be seen from the comparison of the distribution of equipotential lines 52 in FIG. 4 and FIG. 6, the distortion of the electric field caused by the dielectric protrusion 18 is larger in FIG. This is thought to be due to an increase in.

尚、上記実施形態では、誘電体突起18と隣接する配向制御構造物の一例として、具体的には第1電極31の縁端部31aである場合を例示して説明したが、係る第1電極31の縁端部31aに代えて、第1電極31の一部を切り欠いて形成できる開口スリットを誘電体突起18の両側(第1電極31のドット領域の端部に位置する部分)に設けた構成であっても上記と同様の効果を得ることができる。   In the above-described embodiment, as an example of the alignment control structure adjacent to the dielectric protrusion 18, specifically, the case of the edge portion 31 a of the first electrode 31 has been described as an example. In place of the edge portion 31a of the opening 31, an opening slit that can be formed by cutting out a part of the first electrode 31 is provided on both sides of the dielectric protrusion 18 (portions located at the end of the dot region of the first electrode 31). Even with this configuration, the same effects as described above can be obtained.

また本発明では、誘電体突起18と隣接する配向制御構造物が、他の誘電体突起(第2の誘電体突起)である構成も適用できる。但しこの場合、この他の誘電体突起(第2の誘電体突起)の誘電率に注意する必要がある。すなわち、先に記載の説明から明らかなように、第1電極の縁端部31a、あるいは開口スリットと同等の配向制御機能を備えた誘電体突起とするためには、この第2の誘電体突起の誘電率(εt2と表記する。)が液晶分子51の長軸方向誘電率ε//に対して、εt2<ε//の関係を有している必要がある。 In the present invention, a configuration in which the alignment control structure adjacent to the dielectric protrusion 18 is another dielectric protrusion (second dielectric protrusion) can also be applied. In this case, however, it is necessary to pay attention to the dielectric constant of the other dielectric protrusion (second dielectric protrusion). That is, as is apparent from the above description, in order to obtain a dielectric protrusion having an orientation control function equivalent to that of the edge portion 31a of the first electrode or the opening slit, the second dielectric protrusion (the epsilon t2 notation.) dielectric constant relative to the longitudinal axis permittivity epsilon // of the liquid crystal molecules 51, it is necessary to have a relationship of ε t2//.

一方、この第2の誘電体突起の誘電率εt2が、液晶分子の長軸方向誘電率ε//に対して、εt2>ε//の関係を有する場合には、液晶分子51は電圧印加時にこの誘電体突起に向かって周囲から倒れ込むので、係る第2の誘電体突起を備えた液晶表示装置を構成する場合には、図1に示す構成では、誘電体突起18と同じ側(第2基板の電極9上)であって誘電体突起18を挟んだ両側に第1電極の縁端部31aの代わりとして第2の誘電体突起を設けることとなり、図2に示す構成では、誘電体突起18と反対側(第2基板の電極9上)の端部に第1電極の縁端部31aの代わりとして第2の誘電体突起を設けることとなる。これらの構成を採用すれば、液晶分子の長軸方向誘電率ε//より高い誘電率εt2を有する第2の誘電体突起が、誘電体突起18に隣接する配向制御構造物として設けられた液晶表示装置においても広視角、高輝度の良好な表示を得ることができる。 On the other hand, when the dielectric constant ε t2 of the second dielectric protrusion has a relationship of ε t2 > ε // with respect to the dielectric constant ε // of the liquid crystal molecules in the long axis direction, the liquid crystal molecules 51 have the voltage Since the liquid crystal display device having the second dielectric protrusion is configured to fall from the periphery toward the dielectric protrusion when applied, in the configuration shown in FIG. 2 on the electrode 9 of the two substrates), and the second dielectric protrusion is provided instead of the edge 31a of the first electrode on both sides of the dielectric protrusion 18, and in the configuration shown in FIG. A second dielectric protrusion is provided instead of the edge 31a of the first electrode at the end opposite to the protrusion 18 (on the electrode 9 of the second substrate). By adopting these configurations, the second dielectric protrusions having a dielectric constant epsilon t2 higher than the long axis direction dielectric constant epsilon // of the liquid crystal molecules were provided as the alignment control structure adjacent the dielectric protrusion 18 Also in a liquid crystal display device, a favorable display with a wide viewing angle and high luminance can be obtained.

(液晶表示装置の具体的構成例)
上記実施の形態に示した構成は、誘電異方性が負の垂直配向液晶を備えた液晶表示装置のすべてに適用することが可能である。図11は、様々な型の液晶表示装置の概略構成図である。図11(a)は透過型であり、(b)は反射型であり、(c)および(d)は半透過反射型である。尚、図11(c)は第1基板を素子基板とし第2基板を対向基板とした場合であり、(d)は第2基板を素子基板とし第1基板を対向基板とした場合である。図11に示す各液晶表示装置において、透明電極の表面に誘電体突起、開口スリット等を形成すれば、いずれも上述した効果を得ることができる。そこで、後述の実施例では、図11(a)に示す透過型の液晶表示装置を第1構成例として説明する。また第2構成例として、図11(c)に示す半透過反射型の液晶表示装置に適用した例を説明する。
(Specific configuration example of liquid crystal display device)
The configuration described in the above embodiment can be applied to all liquid crystal display devices including a vertically aligned liquid crystal having negative dielectric anisotropy. FIG. 11 is a schematic configuration diagram of various types of liquid crystal display devices. 11A is a transmissive type, FIG. 11B is a reflective type, and FIGS. 11C and 11D are transflective types. FIG. 11C shows the case where the first substrate is the element substrate and the second substrate is the counter substrate, and FIG. 11D is the case where the second substrate is the element substrate and the first substrate is the counter substrate. In each of the liquid crystal display devices shown in FIG. 11, the above-described effects can be obtained by forming dielectric protrusions, opening slits, and the like on the surface of the transparent electrode. Therefore, in the embodiments described later, the transmissive liquid crystal display device shown in FIG. 11A will be described as a first configuration example. As a second configuration example, an example applied to the transflective liquid crystal display device shown in FIG. 11C will be described.

<第1構成例>
図12は、先の実施形態の液晶表示装置の詳細構成例を示す部分斜視図、図13は、同、液晶表示装置の1ドット領域内の部分断面構成図、図14は、同、3つのドット領域で構成される1画素領域を示す平面構成図である。これらの図に示す液晶表示装置は、スイッチング素子としてTFD(Thin Film Diode)素子(二端子型非線形素子)を用いたアクティブマトリクス方式のカラー液晶表示装置であるが、スイッチング素子としてTFT(Thin Film Transistor)素子を用いたアクティブマトリクス方式の液晶表示装置に、本発明を適用することも可能である。尚、図13に示す部分断面構造は、図14に示すA−A線に沿う断面構造に対応している。
<First configuration example>
FIG. 12 is a partial perspective view illustrating a detailed configuration example of the liquid crystal display device of the previous embodiment, FIG. 13 is a partial cross-sectional configuration diagram in one dot region of the liquid crystal display device, and FIG. It is a plane block diagram which shows 1 pixel area comprised by a dot area. The liquid crystal display device shown in these figures is an active matrix type color liquid crystal display device using a TFD (Thin Film Diode) element (two-terminal nonlinear element) as a switching element, but a TFT (Thin Film Transistor) as a switching element. It is also possible to apply the present invention to an active matrix liquid crystal display device using elements. The partial cross-sectional structure shown in FIG. 13 corresponds to the cross-sectional structure along the line AA shown in FIG.

図12に示すように、本例の液晶表示装置は、相互に対向する素子基板(第1基板)25と対向基板(第2基板)10とを主体として構成されており、前記両基板10,25の間には図示略の液晶層が挟持されている。この液晶層は、図13に概念的に示すように、初期配向が垂直配向を呈する誘電異方性が負の液晶から構成されている。素子基板25は、ガラスやプラスチック、石英等の透光性材料からなる基板であって、その内面側(図示下面側)には、前記対向基板10の走査線9と交差する方向に延在する複数のデータ線11がストライプ状に設けられている。さらに、ITO(インジウム錫酸化物)等の透明導電材料からなる平面視略矩形状の複数の画素電極(第1電極)31がマトリクス状に配列形成されるとともに、各々に対応して設けられたTFD素子13を介して前記データ線11と接続されている。   As shown in FIG. 12, the liquid crystal display device of this example is mainly composed of an element substrate (first substrate) 25 and a counter substrate (second substrate) 10 facing each other. A liquid crystal layer (not shown) is sandwiched between 25. As conceptually shown in FIG. 13, this liquid crystal layer is composed of a liquid crystal having a negative initial dielectric anisotropy and a negative dielectric anisotropy. The element substrate 25 is a substrate made of a translucent material such as glass, plastic, or quartz, and extends on the inner surface side (lower surface side in the drawing) in a direction intersecting the scanning line 9 of the counter substrate 10. A plurality of data lines 11 are provided in a stripe shape. Further, a plurality of pixel electrodes (first electrodes) 31 having a substantially rectangular shape in plan view made of a transparent conductive material such as ITO (indium tin oxide) are arranged in a matrix and provided corresponding to each of them. The data line 11 is connected via the TFD element 13.

一方、対向基板10もガラスやプラスチック、石英等の透光性材料からなる基板であって、その内面側(図示上面側)には、カラーフィルタ層22と、複数の走査線9とが形成されている。カラーフィルタ層22は、図12に示すように、平面視略矩形状のカラーフィルタ22R,22G,22Bが周期的に配列された構成となっている。各カラーフィルタ22R,22G,22Bは、前記素子基板25の画素電極31に対応して形成されている。また走査線9は、ITO等の透明導電材料によって略帯状に形成され、前記素子基板25のデータ線11と交差する方向に延在している。そして走査線9は、その延在方向に配列された前記カラーフィルタ22R,22G,22Bを覆うように形成され、対向電極(第1電極)として機能する。尚、画素電極31の形成領域により1ドットが構成され、カラーフィルタ22R,22G,22Bを備えた3ドットにより1画素が構成されている。   On the other hand, the counter substrate 10 is also a substrate made of a light-transmitting material such as glass, plastic, quartz, and the color filter layer 22 and a plurality of scanning lines 9 are formed on the inner surface side (the upper surface side in the drawing). ing. As shown in FIG. 12, the color filter layer 22 has a structure in which color filters 22R, 22G, and 22B having a substantially rectangular shape in plan view are periodically arranged. Each of the color filters 22R, 22G, and 22B is formed corresponding to the pixel electrode 31 of the element substrate 25. The scanning line 9 is formed in a substantially strip shape by a transparent conductive material such as ITO and extends in a direction intersecting the data line 11 of the element substrate 25. The scanning line 9 is formed so as to cover the color filters 22R, 22G, and 22B arranged in the extending direction, and functions as a counter electrode (first electrode). Incidentally, one dot is constituted by the formation region of the pixel electrode 31, and one pixel is constituted by three dots provided with the color filters 22R, 22G, and 22B.

[断面構造]
次に、図13は、図12の1ドット領域内の部分断面構成図である。この図13では、理解を容易にするため、素子基板25におけるTFD素子および各種配線の記載を省略している。
図13に示すように、素子基板25における画素電極31の液晶層側には、ポリイミド等からなる垂直配向膜33が形成されている。一方、対向基板10における対向電極9の液晶層側には、ポリイミド等からなる垂直配向膜23が形成されている。なお、配向膜23,33には、ともに垂直配向処理は施されているが、ラビングなどのプレチルトを付与する処理は施されていない。
[Cross-section structure]
Next, FIG. 13 is a partial cross-sectional configuration diagram in one dot region of FIG. In FIG. 13, the description of the TFD elements and various wirings in the element substrate 25 is omitted for easy understanding.
As shown in FIG. 13, a vertical alignment film 33 made of polyimide or the like is formed on the liquid crystal layer side of the pixel electrode 31 in the element substrate 25. On the other hand, a vertical alignment film 23 made of polyimide or the like is formed on the liquid crystal layer side of the counter electrode 9 in the counter substrate 10. The alignment films 23 and 33 are both subjected to a vertical alignment process, but are not subjected to a pretilt treatment such as rubbing.

そして、素子基板25と対向基板10との間に、誘電異方性が負の液晶材料からなる液晶層50が挟持されている。この液晶材料は、液晶分子51により概念的に示すように、電圧無印加時には配向膜に対して垂直に配向しており、電界を印加した時に配向膜に対して平行に(すなわち、電界方向と垂直に)配向するようになっている。また素子基板25および対向基板10の周縁部に塗布されたシール材(不図示)により、素子基板25および対向基板10が相互に接着されるとともに、素子基板25および対向基板10とシール材とによって形成される空間に液晶層50が封入されている。   A liquid crystal layer 50 made of a liquid crystal material having negative dielectric anisotropy is sandwiched between the element substrate 25 and the counter substrate 10. As conceptually shown by the liquid crystal molecules 51, this liquid crystal material is aligned perpendicular to the alignment film when no voltage is applied, and is parallel to the alignment film when an electric field is applied (that is, with the electric field direction). Oriented vertically). The element substrate 25 and the counter substrate 10 are bonded to each other by a sealing material (not shown) applied to the peripheral portions of the element substrate 25 and the counter substrate 10, and the element substrate 25, the counter substrate 10 and the seal material A liquid crystal layer 50 is sealed in the space to be formed.

一方、素子基板25の外面には位相差板36及び偏光板37が設けられ、対向基板10の外面にも位相差板26及び偏光板27が設けられている。この偏光板27,37は、特定方向に振動する直線偏光のみを透過させる機能を有する。また位相差板26,36には、可視光の波長に対して略1/4波長の位相差を持つλ/4板が採用されている。なお、偏光板27,37の透過軸と位相差板26,36の遅相軸とが約45°をなすように配置されて、偏光板27,37および位相差板26,36により円偏光板が構成されている。この円偏光板により、直線偏光を円偏光に変換し、円偏光を直線偏光に変換しうるようになっている。また、偏光板27の透過軸および偏光板37の透過軸は直交するように配置され、位相差板26の遅相軸および位相差板36の遅相軸も直交するように配置されている。さらに、対向基板10の外面側にあたる液晶セルの外側には、光源、リフレクタ、導光板などを有するバックライト(照明手段)60が設置されている。   On the other hand, a phase difference plate 36 and a polarizing plate 37 are provided on the outer surface of the element substrate 25, and a phase difference plate 26 and a polarizing plate 27 are also provided on the outer surface of the counter substrate 10. The polarizing plates 27 and 37 have a function of transmitting only linearly polarized light that vibrates in a specific direction. The retardation plates 26 and 36 are λ / 4 plates having a phase difference of approximately ¼ wavelength with respect to the wavelength of visible light. The transmission axes of the polarizing plates 27 and 37 and the slow axis of the retardation plates 26 and 36 are arranged at about 45 °, and the circular polarizing plates are formed by the polarizing plates 27 and 37 and the retardation plates 26 and 36. Is configured. With this circularly polarizing plate, linearly polarized light can be converted into circularly polarized light, and circularly polarized light can be converted into linearly polarized light. Further, the transmission axis of the polarizing plate 27 and the transmission axis of the polarizing plate 37 are arranged to be orthogonal to each other, and the slow axis of the retardation film 26 and the slow axis of the retardation film 36 are also arranged to be orthogonal. Further, a backlight (illuminating means) 60 having a light source, a reflector, a light guide plate, and the like is installed outside the liquid crystal cell corresponding to the outer surface side of the counter substrate 10.

図13に示す本実施形態の液晶表示装置では、以下のようにして画像表示が行われる。バックライト60から照射された光は、偏光板27および位相差板26を透過して円偏光に変換され、液晶層50に入射する。なお、電圧無印加時において基板と垂直に配向している液晶分子には屈折率異方性がないので、入射光は円偏光を保持したまま液晶層50を進行する。さらに位相差板36を透過した入射光は、偏光板37の透過軸と直交する直線偏光に変換される。そして、この直線偏光は偏光板27を透過しないので、本実施形態の液晶表示装置では、電圧無印加時において黒表示が行われる(ノーマリーブラックモード)。   In the liquid crystal display device of this embodiment shown in FIG. 13, image display is performed as follows. The light emitted from the backlight 60 passes through the polarizing plate 27 and the phase difference plate 26, is converted into circularly polarized light, and enters the liquid crystal layer 50. Since no liquid crystal molecules aligned perpendicular to the substrate have no refractive index anisotropy when no voltage is applied, incident light travels through the liquid crystal layer 50 while maintaining circular polarization. Further, the incident light transmitted through the phase difference plate 36 is converted into linearly polarized light orthogonal to the transmission axis of the polarizing plate 37. Since this linearly polarized light does not pass through the polarizing plate 27, the liquid crystal display device of this embodiment performs black display when no voltage is applied (normally black mode).

一方、液晶層50に電界を印加すると、液晶分子が基板と平行に再配向して、屈折率異方性を具備する。そのため、バックライト60から液晶層50に入射した円偏光は、液晶層50を透過する過程で楕円偏光に変換される。この入射光が位相差板36を透過しても、偏光板37の透過軸と直交する直線偏光には変換されず、その全部または一部が偏光板37を透過する。したがって、本実施形態の液晶表示装置では、電圧印加時において白表示が行われる。なお、液晶層50に印加する電圧を調整することにより、階調表示を行うことも可能である。   On the other hand, when an electric field is applied to the liquid crystal layer 50, the liquid crystal molecules are reoriented in parallel with the substrate and have refractive index anisotropy. Therefore, the circularly polarized light incident on the liquid crystal layer 50 from the backlight 60 is converted into elliptically polarized light in the process of passing through the liquid crystal layer 50. Even if this incident light passes through the phase difference plate 36, it is not converted into linearly polarized light orthogonal to the transmission axis of the polarizing plate 37, and all or part of it is transmitted through the polarizing plate 37. Therefore, in the liquid crystal display device of this embodiment, white display is performed when a voltage is applied. Note that gradation display can be performed by adjusting the voltage applied to the liquid crystal layer 50.

[配向制御手段]
図14は、図12に示す液晶表示装置の3つのドット領域で構成された1画素領域を示す平面構成図であり、素子基板の構成部材を実線で、対向基板の構成部材を一点鎖線で示している。図14に示すように、画素電極31および対向電極9の表面には、液晶分子の配向制御手段である開口スリット31bや誘電体突起18等が形成されている。画素電極31には、平面視略帯状の複数の開口スリット31bが形成されている。また対向電極9の表面には、平面視略帯状の複数の誘電体突起18が形成されている。なお、対向基板10に形成された各誘電体突起18および素子基板25に形成された各開口スリット31bの配置関係は、画素電極31の長辺方向に対して交互(平面的に重ならず互い違い)に配置されている。また、画素電極31における一方の長辺から他方の長辺にかけて、各突起18の間隔および各スリット31bの間隔が広がるように、各突起18および各スリット31bが配置されている。なお上記とは逆に、対向電極10に開口スリットを形成し、画素電極31に誘電体突起を形成してもよい。
[Orientation control means]
FIG. 14 is a plan view showing one pixel region constituted by three dot regions of the liquid crystal display device shown in FIG. 12, and the constituent members of the element substrate are indicated by solid lines and the constituent members of the counter substrate are indicated by alternate long and short dash lines. ing. As shown in FIG. 14, on the surface of the pixel electrode 31 and the counter electrode 9, an opening slit 31b, dielectric protrusions 18 and the like, which are liquid crystal molecule alignment control means, are formed. In the pixel electrode 31, a plurality of opening slits 31b having a substantially band shape in plan view are formed. A plurality of dielectric protrusions 18 having a substantially band shape in plan view are formed on the surface of the counter electrode 9. The arrangement relationship between the dielectric protrusions 18 formed on the counter substrate 10 and the opening slits 31b formed on the element substrate 25 is alternate with respect to the long side direction of the pixel electrode 31 (it does not overlap in a plan view and is alternate). ). In addition, the protrusions 18 and the slits 31b are arranged so that the distance between the protrusions 18 and the distance between the slits 31b increase from one long side to the other long side of the pixel electrode 31. In contrast to the above, an opening slit may be formed in the counter electrode 10 and a dielectric protrusion may be formed in the pixel electrode 31.

誘電体突起18は、樹脂等の誘電体材料からなり、グレーマスクを用いたフォトリソグラフィ等によって形成されている。本例の液晶表示装置では、図1に示した液晶表示装置100の構成において複数の誘電体突起18及び配向制御構造物(開口スリット)が採用された構成であって、従ってこの誘電体突起18の誘電率εt1は、液晶分子51の長軸方向誘電率ε//より小さくなっている。すなわち、本構成例の液晶表示装置は、図1に示した液晶表示装置の基本構成及び作用を採用しており、誘電体突起18と液晶層50との誘電率の関係に応じて、誘電体突起18及び開口スリット31bの配置が適切に決められているので、ドット領域内にディスクリネーションを生じず、広視角、高コントラストの良好な表示を得られるようになっている。 The dielectric protrusion 18 is made of a dielectric material such as a resin, and is formed by photolithography using a gray mask. In the liquid crystal display device of this example, the configuration of the liquid crystal display device 100 shown in FIG. 1 employs a plurality of dielectric protrusions 18 and alignment control structures (opening slits). The dielectric constant ε t1 of the liquid crystal molecules 51 is smaller than the dielectric constant ε // of the long axis direction of the liquid crystal molecules 51. In other words, the liquid crystal display device of this configuration example employs the basic configuration and operation of the liquid crystal display device shown in FIG. 1, and the dielectric material depends on the dielectric constant relationship between the dielectric protrusion 18 and the liquid crystal layer 50. Since the arrangement of the protrusions 18 and the opening slits 31b is appropriately determined, it is possible to obtain a good display with a wide viewing angle and high contrast without causing disclination in the dot area.

尚、本構成例の液晶表示装置において、平面的には、電界印加時に、略帯状の開口スリット31bを中心として放射状に液晶分子が傾倒することになる。また略帯状の誘電体突起18を中心として放射状に液晶分子51が傾倒することになる。これら誘電体突起18及び開口スリット31aの作用により、図14に示した誘電体突起18と開口スリット31bとの間で液晶分子は一定の方向に配向され、その結果ドット領域内の液晶層50が適切に配向制御される。
また、本例では、誘電体突起18と隣接する配向制御構造物が、ドット領域内に設けられた電極に開口スリット31bを形成した構成としているが、該開口スリットの内側に他の誘電体突起を設け、誘電率εt2がε//>εt2の関係を有する他の誘電体突起とを有する構成とすることもできる。この構成によれば、開口スリットの周辺で生じる斜め電界と、誘電体突起によって生じる電界歪みとにより液晶分子の配向制御を行う配向制御構造物を設けるので、配向制御構造物から離れた位置の液晶分子も良好に配向制御することができ、応答速度ないし開口率を向上させる上で有利な構成となる。
また、本例では誘電体突起18が対向電極9上に形成されている構成としたが、対向電極9を誘電体突起18に対応する平面形状に切り欠いてスリットを形成し、このスリットの内部に誘電体突起18を設けた構成とすることもできる。即ち、誘電体突起18が形成されている部分の下地とされる対向電極9の少なくとも一部が切り欠かれている(開口されている)構成とすることもできる。このような構成とすることで、電圧印加時に誘電体突起18の周辺で生じる電界の歪みを大きくすることができ、より大きな配向規制力を得られるようになるので、液晶表示装置の応答速度を向上させることができる。
In the liquid crystal display device of this configuration example, in a plan view, when an electric field is applied, liquid crystal molecules are inclined radially about the substantially band-shaped opening slit 31b. Further, the liquid crystal molecules 51 are inclined radially around the substantially band-shaped dielectric protrusion 18. Due to the action of the dielectric protrusion 18 and the opening slit 31a, the liquid crystal molecules are aligned in a certain direction between the dielectric protrusion 18 and the opening slit 31b shown in FIG. 14, and as a result, the liquid crystal layer 50 in the dot region is formed. The orientation is properly controlled.
Further, in this example, the alignment control structure adjacent to the dielectric protrusion 18 has a configuration in which the opening slit 31b is formed in the electrode provided in the dot region, but another dielectric protrusion is formed inside the opening slit. And having a dielectric constant ε t2 of other dielectric protrusions having a relationship of ε // > ε t2 . According to this configuration, since the alignment control structure that controls the alignment of the liquid crystal molecules by the oblique electric field generated around the opening slit and the electric field distortion generated by the dielectric protrusion is provided, the liquid crystal at a position away from the alignment control structure is provided. Molecules can be well controlled in orientation, which is advantageous for improving the response speed or aperture ratio.
In this example, the dielectric protrusion 18 is formed on the counter electrode 9. However, the counter electrode 9 is notched in a planar shape corresponding to the dielectric protrusion 18 to form a slit, and the inside of the slit is formed. It is also possible to adopt a configuration in which the dielectric protrusion 18 is provided. That is, at least a part of the counter electrode 9 serving as a base of the portion where the dielectric protrusions 18 are formed may be cut out (opened). By adopting such a configuration, it is possible to increase the distortion of the electric field generated around the dielectric protrusion 18 when a voltage is applied, and to obtain a larger alignment regulating force. Therefore, the response speed of the liquid crystal display device can be increased. Can be improved.

<構成例2>
次に、本発明に係る液晶表示装置の第2構成例について説明する。図15は、本構成例の液晶表示装置の1つのドット領域の長手(長辺)方向における断面構成図、図16は、同、3つのドット領域で構成される1画素領域を示す平面構成図である。本構成例の液晶表示装置は、半透過反射型の液晶表示装置である。尚、第1実施形態と同様の構成となる部分については、その詳細な説明を省略する。また図15に示す断面構造は、図16のB−B線に沿う断面構造に対応している。
<Configuration example 2>
Next, a second configuration example of the liquid crystal display device according to the present invention will be described. FIG. 15 is a cross-sectional configuration diagram in the longitudinal (long side) direction of one dot region of the liquid crystal display device according to the present configuration example, and FIG. 16 is a plan configuration diagram illustrating one pixel region including the three dot regions. It is. The liquid crystal display device of this configuration example is a transflective liquid crystal display device. Note that detailed description of portions having the same configuration as in the first embodiment is omitted. The cross-sectional structure shown in FIG. 15 corresponds to the cross-sectional structure along the line BB in FIG.

図15に示すように、第2構成例の液晶表示装置では、第2基板(対向基板)10の内側に、アルミニウムや銀等の反射率の高い金属膜等からなる反射膜20が形成されている。この反射膜20の一部には、透過表示領域に対応して切り欠いた開口部20aが形成されている。そして、画素電極(第1電極)31の形成領域と反射膜20の形成領域とのオーバーラップ部分が反射表示領域を成し、画素電極31の形成領域と反射膜20の非形成領域(すなわち開口部20aの形成領域)とのオーバーラップ部分が透過表示領域を成している。そして、反射膜20及び基板10の内側に、カラーフィルタ層22が設けられている。なお、反射表示と透過表示とで表示色の彩度が異なるのを補償すべく、反射表示領域と透過表示領域とで色純度を変えた色材層を別個に設けてもよい。
一方、素子基板(第1基板)25の液晶層側に、画素電極31と複数(3個)の誘電体突起18と、垂直配向膜33とがこの順で設けられている。
As shown in FIG. 15, in the liquid crystal display device of the second configuration example, a reflective film 20 made of a highly reflective metal film such as aluminum or silver is formed inside the second substrate (counter substrate) 10. Yes. A part of the reflective film 20 is formed with an opening 20a cut out corresponding to the transmissive display region. An overlapping portion between the formation region of the pixel electrode (first electrode) 31 and the formation region of the reflective film 20 forms a reflective display region, and the formation region of the pixel electrode 31 and the non-formation region (that is, the opening) of the reflective film 20 The overlapping portion with the formation region of the portion 20a forms a transmissive display region. A color filter layer 22 is provided inside the reflective film 20 and the substrate 10. In order to compensate for the difference in display color saturation between the reflective display and the transmissive display, a color material layer having different color purity may be provided in the reflective display area and the transmissive display area.
On the other hand, on the liquid crystal layer side of the element substrate (first substrate) 25, a pixel electrode 31, a plurality of (three) dielectric protrusions 18, and a vertical alignment film 33 are provided in this order.

カラーフィルタ層22上の、ほぼ反射表示領域に対応する平面位置には、絶縁膜21が形成されている。絶縁膜21は、例えばアクリル樹脂等の有機膜により、膜厚が2μm±1μm程度に形成されている。絶縁膜21が存在しない部分の液晶層50の厚みは2〜6μm程度であり、反射表示領域における液晶層50の厚みは透過表示領域における液晶層50の厚みの約半分となっている。つまり、絶縁膜21は、自身の膜厚によって反射表示領域と透過表示領域とにおける液晶層50の層厚を異ならせる液晶層厚調整層として機能し、もってマルチギャップ構造を実現するものとなっている。本例の液晶表示装置は、係る構成により明るく高コントラストの表示が得られるようになっている。尚、反射表示領域と透過表示領域との境界付近には、絶縁膜21の層厚を連続的に変化させる傾斜面が形成されている。   An insulating film 21 is formed on the color filter layer 22 at a plane position substantially corresponding to the reflective display region. The insulating film 21 is formed to a thickness of about 2 μm ± 1 μm by an organic film such as acrylic resin. The thickness of the liquid crystal layer 50 where the insulating film 21 does not exist is about 2 to 6 μm, and the thickness of the liquid crystal layer 50 in the reflective display region is about half the thickness of the liquid crystal layer 50 in the transmissive display region. That is, the insulating film 21 functions as a liquid crystal layer thickness adjusting layer that varies the thickness of the liquid crystal layer 50 in the reflective display region and the transmissive display region depending on the film thickness of the insulating film 21, thereby realizing a multi-gap structure. Yes. The liquid crystal display device of this example is configured to obtain a bright and high contrast display. An inclined surface that continuously changes the layer thickness of the insulating film 21 is formed in the vicinity of the boundary between the reflective display region and the transmissive display region.

図15に示す半透過反射型の液晶表示装置では、以下のようにして画像表示が行われる。まず、素子基板25の上方から反射表示領域に入射した光は、偏光板37および位相差板36を透過して円偏光に変換され、液晶層50に入射する。なお、電圧無印加時において基板と垂直に配向している液晶分子には屈折率異方性がないので、入射光は円偏光を保持したまま液晶層50を進行する。さらに反射膜20により反射され、位相差板36を再透過した入射光は、偏光板37の透過軸と直交する直線偏光に変換される。そして、この直線偏光は偏光板37を透過しない。一方、バックライト60から透過表示領域に入射した光も同様に、偏光板27および位相差板26を透過して円偏光に変換され、液晶層50に入射する。さらに位相差板36を透過した入射光は、偏光板37の透過軸と直交する直線偏光に変換される。そして、この直線偏光は偏光板37を透過しないので、本実施形態の液晶表示装置では、電圧無印加時において黒表示が行われる(ノーマリーブラックモード)。   In the transflective liquid crystal display device shown in FIG. 15, image display is performed as follows. First, light that has entered the reflective display region from above the element substrate 25 passes through the polarizing plate 37 and the retardation plate 36, is converted into circularly polarized light, and enters the liquid crystal layer 50. Since no liquid crystal molecules aligned perpendicular to the substrate have no refractive index anisotropy when no voltage is applied, incident light travels through the liquid crystal layer 50 while maintaining circular polarization. Further, the incident light reflected by the reflective film 20 and retransmitted through the phase difference plate 36 is converted into linearly polarized light orthogonal to the transmission axis of the polarizing plate 37. The linearly polarized light does not pass through the polarizing plate 37. On the other hand, the light incident on the transmissive display area from the backlight 60 is similarly transmitted through the polarizing plate 27 and the phase difference plate 26 to be converted into circularly polarized light, and is incident on the liquid crystal layer 50. Further, the incident light transmitted through the phase difference plate 36 is converted into linearly polarized light orthogonal to the transmission axis of the polarizing plate 37. Since this linearly polarized light does not pass through the polarizing plate 37, the liquid crystal display device of this embodiment performs black display when no voltage is applied (normally black mode).

一方、液晶層50に電界を印加すると、液晶分子が基板と平行に再配向して、透過光に対して複屈折作用を奏する。そのため、反射表示領域および透過表示領域において液晶層50に入射した円偏光は、液晶層50を透過する過程で楕円偏光に変換される。この入射光が位相差板36を透過しても、偏光板37の透過軸と直交する直線偏光には変換されず、その全部または一部が偏光板37を透過する。したがって、本実施形態の液晶表示装置では、電圧印加時において白表示が行われる。なお、液晶層50に印加する電圧を調整することにより、階調表示を行うことも可能である。   On the other hand, when an electric field is applied to the liquid crystal layer 50, the liquid crystal molecules are reoriented in parallel with the substrate, and have a birefringence effect on the transmitted light. Therefore, the circularly polarized light incident on the liquid crystal layer 50 in the reflective display region and the transmissive display region is converted into elliptically polarized light in the process of passing through the liquid crystal layer 50. Even if this incident light passes through the phase difference plate 36, it is not converted into linearly polarized light orthogonal to the transmission axis of the polarizing plate 37, and all or part of it is transmitted through the polarizing plate 37. Therefore, in the liquid crystal display device of this embodiment, white display is performed when a voltage is applied. Note that gradation display can be performed by adjusting the voltage applied to the liquid crystal layer 50.

このように、反射表示領域では入射光が液晶層50を2回透過するが、透過表示領域では入射光は液晶層50を1回しか透過しない。この場合、反射表示領域と透過表示領域との間で液晶層50のリタデーション(位相差値)が異なると、光透過率に差異を生じて均一な画像表示が得られないことになる。しかしながら、本実施形態の液晶表示装置には液晶層厚調整層21が設けられているので、反射表示領域においてリタデーションを調整することが可能となっている。従って、反射表示領域および透過表示領域において均一な画像表示を得ることができる。   In this way, incident light is transmitted through the liquid crystal layer 50 twice in the reflective display region, but incident light is transmitted through the liquid crystal layer 50 only once in the transmissive display region. In this case, if the retardation (phase difference value) of the liquid crystal layer 50 is different between the reflective display region and the transmissive display region, a difference occurs in the light transmittance and a uniform image display cannot be obtained. However, since the liquid crystal layer thickness adjusting layer 21 is provided in the liquid crystal display device of this embodiment, it is possible to adjust the retardation in the reflective display region. Accordingly, uniform image display can be obtained in the reflective display area and the transmissive display area.

[配向制御手段]
図16は、図15に示す液晶表示装置の1画素領域を示す平面構成図であり、素子基板における各構成要素を実線で、対向基板の構成要素を一点鎖線で示している。図16に示すように、画素電極31には、その長辺から中央部に向かって複数のスリット31cが形成されている。即ち、1ドット領域に対応して配置される画素電極31は、3つの島状のサブピクセル32と、これらを接続する連結部で構成され、この連結部が実質的に液晶分子の配向制御をなすスリット31c(電極の切り欠き)とされている。このスリット31cにより、画素電極31は3個のサブピクセル32に分割され、各サブピクセルは中央部で連結されている。なお、3個のサブピクセル32のうち少なくとも1個のサブピクセルは、反射表示領域に対応して割り当てられて形成されている。従って、画素電極31が形成された同一基板上に、誘電体突起18、スリット31c、誘電体突起18、スリッツ31c、及び誘電体突起18とこの順で画素電極31の長手(長辺)方向に配置された構成となっている。
また、各サブピクセル32の中心部に相当する画素電極31の表面には、それぞれ誘電体突起18が形成されている。この誘電体突起18は、平面視略円形状に形成されるとともに、図15に示すように側面視略三角形状に形成されている。すなわち、本構成例の液晶表示装置は、図2に示した第2実施形態の液晶表示装置200の基本構成及び作用を採用し、複数の誘電体突起18を、配向制御構造物である複数のスリット31cと同一の基板に設けたものである。
[Orientation control means]
FIG. 16 is a plan view showing one pixel region of the liquid crystal display device shown in FIG. 15, in which each component in the element substrate is indicated by a solid line, and each component of the counter substrate is indicated by a one-dot chain line. As shown in FIG. 16, the pixel electrode 31 is formed with a plurality of slits 31c from its long side toward the center. That is, the pixel electrode 31 arranged corresponding to one dot region is composed of three island-shaped subpixels 32 and a connecting portion connecting them, and this connecting portion substantially controls the alignment of liquid crystal molecules. The formed slit 31c (electrode notch). The pixel electrode 31 is divided into three subpixels 32 by the slits 31c, and each subpixel is connected at the center. Of the three subpixels 32, at least one subpixel is assigned and formed corresponding to the reflective display area. Accordingly, on the same substrate on which the pixel electrode 31 is formed, the dielectric protrusion 18, the slit 31 c, the dielectric protrusion 18, the slit 31 c, and the dielectric protrusion 18 are arranged in this order in the longitudinal (long side) direction of the pixel electrode 31. It is an arranged configuration.
Dielectric protrusions 18 are formed on the surface of the pixel electrode 31 corresponding to the center of each subpixel 32. The dielectric protrusions 18 are formed in a substantially circular shape in plan view, and are formed in a substantially triangular shape in side view as shown in FIG. That is, the liquid crystal display device of this configuration example adopts the basic configuration and operation of the liquid crystal display device 200 of the second embodiment shown in FIG. 2, and the plurality of dielectric protrusions 18 are a plurality of alignment control structures. The slit 31c is provided on the same substrate.

上記サブピクセルが形成された電極構造により、1つのドット領域内で複数の液晶ドメインを形成可能になっている。また、サブピクセル32の角部には面取り等が施され、サブピクセル32は平面視略八角形状ないし略円形状とされている。そして液晶層に電界を印加すると、サブピクセル32の輪郭(図1に示した縁端部31a)に対して垂直に液晶分子51が傾倒する。また誘電体突起18の周辺では、電圧無印加時には液晶分子51が誘電体突起18の傾斜面と垂直に配向し、電圧印加時には図16に示すように誘電体突起18に向かって液晶分子51が倒れ、それを中心とした平面放射状に液晶分子51が配向する。
従って、液晶分子のダイレクタを複数作り出すことが可能になり、視野角の広い液晶表示装置を提供することができる。尚、上記とは逆に、対向電極9に、スリット及び誘電体突起を形成してもよい。
A plurality of liquid crystal domains can be formed in one dot region by the electrode structure in which the subpixel is formed. Further, the corners of the subpixels 32 are chamfered and the like, and the subpixels 32 have a substantially octagonal shape or a substantially circular shape in plan view. When an electric field is applied to the liquid crystal layer, the liquid crystal molecules 51 are tilted perpendicularly to the contour of the subpixel 32 (the edge portion 31a shown in FIG. 1). In the vicinity of the dielectric protrusion 18, the liquid crystal molecules 51 are aligned perpendicularly to the inclined surface of the dielectric protrusion 18 when no voltage is applied, and when the voltage is applied, the liquid crystal molecules 51 are directed toward the dielectric protrusion 18 as shown in FIG. The liquid crystal molecules 51 are aligned so as to fall down and to have a planar radial shape centering on the tilted state.
Accordingly, a plurality of directors of liquid crystal molecules can be created, and a liquid crystal display device with a wide viewing angle can be provided. In contrast to the above, slits and dielectric protrusions may be formed on the counter electrode 9.

図15及び図16に示した本構成例の液晶表示装置では、画素電極31にスリット31c及び誘電体突起18が設けられるので、液晶層50を挟持するべく素子基板25と対向基板10とを貼り合わせるに際して、スリット31cと誘電体突起18との位置合わせを行う必要が無くなり、液晶表示装置の製造が容易になるとともに歩留まりの向上も期待できるという利点が得られる。   In the liquid crystal display device of this configuration example shown in FIGS. 15 and 16, since the pixel electrode 31 is provided with the slits 31c and the dielectric protrusions 18, the element substrate 25 and the counter substrate 10 are attached to sandwich the liquid crystal layer 50. At the time of alignment, there is no need to align the slit 31c and the dielectric protrusion 18, and it is easy to manufacture the liquid crystal display device, and it is possible to expect an improvement in yield.

(電子機器)
図17は、本発明に係る電子機器の一例を示す斜視図である。この図に示す携帯電話1300は、本発明の液晶表示装置を小サイズの表示部1301として備え、複数の操作ボタン1302、受話口1303、及び送話口1304を備えて構成されている。
上記各実施の形態の表示装置は、上記携帯電話に限らず、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、液晶テレビ、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々の画像表示手段として好適に用いることができ、いずれの電子機器においても、明るく、高コントラストであり、かつ広視野角の透過/反射表示が可能になっている。
(Electronics)
FIG. 17 is a perspective view showing an example of an electronic apparatus according to the invention. A cellular phone 1300 shown in this figure includes the liquid crystal display device of the present invention as a small-sized display portion 1301 and includes a plurality of operation buttons 1302, an earpiece 1303, and a mouthpiece 1304.
The display device of each of the above embodiments is not limited to the mobile phone, but is an electronic book, a personal computer, a digital still camera, a liquid crystal television, a viewfinder type or a monitor direct view type video tape recorder, a car navigation device, a pager, and an electronic notebook. , Calculators, word processors, workstations, videophones, POS terminals, devices equipped with touch panels, etc., and can be suitably used as image display means. In any electronic device, it is bright, has high contrast, and has a wide viewing angle. Transmissive / reflective display is possible.

図1は、本発明に係る液晶表示装置の基本構成を示す断面構成図。FIG. 1 is a cross-sectional configuration diagram showing a basic configuration of a liquid crystal display device according to the present invention. 図2は、本発明に係る液晶表示装置の基本構成を示す断面構成図。FIG. 2 is a cross-sectional configuration diagram showing a basic configuration of a liquid crystal display device according to the present invention. 図3は、実施形態に係るシミュレーション結果を示す図。FIG. 3 is a diagram illustrating a simulation result according to the embodiment. 図4は、実施形態に係るシミュレーション結果を示す図。FIG. 4 is a diagram illustrating a simulation result according to the embodiment. 図5は、実施形態に係るシミュレーション結果を示す図。FIG. 5 is a diagram illustrating a simulation result according to the embodiment. 図6は、実施形態に係るシミュレーション結果を示す図。FIG. 6 is a diagram illustrating a simulation result according to the embodiment. 図7は、実施形態に係るシミュレーション結果を示す図。FIG. 7 is a diagram illustrating a simulation result according to the embodiment. 図8は、実施形態に係るシミュレーション結果を示す図。FIG. 8 is a diagram illustrating a simulation result according to the embodiment. 図9は、実施形態に係るシミュレーション結果を示す図。FIG. 9 is a diagram illustrating a simulation result according to the embodiment. 図10は、実施形態に係るシミュレーション結果を示す図。FIG. 10 is a diagram illustrating a simulation result according to the embodiment. 図11は、本発明を適用できる液晶表示装置を例示する説明図。FIG. 11 is an explanatory diagram illustrating a liquid crystal display device to which the present invention can be applied. 図12は、構成例に係る液晶表示装置の斜視構成図。FIG. 12 is a perspective configuration diagram of a liquid crystal display device according to a configuration example. 図13は、第1構成例に係る液晶表示装置の断面構成図。FIG. 13 is a cross-sectional configuration diagram of a liquid crystal display device according to a first configuration example. 図14は、同、1画素領域の平面構成図。FIG. 14 is a plan configuration diagram of one pixel region. 図15は、第2構成例に係る液晶表示装置の断面構成図。FIG. 15 is a cross-sectional configuration diagram of a liquid crystal display device according to a second configuration example. 図16は、同、1画素領域の平面構成図。FIG. 16 is a plan configuration diagram of one pixel region. 図17は、電子機器の一例を示す斜視構成図。FIG. 17 is a perspective configuration diagram illustrating an example of an electronic apparatus.

符号の説明Explanation of symbols

9…第2電極(対向電極)、10…第2基板(対向基板)、18…誘電体突起、25…第1基板(素子基板)、31…第1電極(画素電極)、31a…縁端部(配向制御構造物)、31b…開口スリット(配向制御構造物)、31c…スリット(配向制御構造物)、50…液晶層、51…液晶分子。   DESCRIPTION OF SYMBOLS 9 ... 2nd electrode (counter electrode), 10 ... 2nd substrate (counter substrate), 18 ... Dielectric protrusion, 25 ... 1st substrate (element substrate), 31 ... 1st electrode (pixel electrode), 31a ... Edge Part (alignment control structure), 31b ... opening slit (alignment control structure), 31c ... slit (alignment control structure), 50 ... liquid crystal layer, 51 ... liquid crystal molecule.

Claims (3)

一対の基板間に誘電異方性が負の液晶を含む液晶層を挟持してなる液晶表示装置であって、
表示単位を構成するドット領域内において、前記一対の基板のうち一方の基板側にあっては、電極上に設けた誘電体突起と、前記電極に設けた開口スリット又は前記電極の縁端部が設けられてなり、前記液晶に電圧を印加したときに、平面視した前記誘電体突起と前記開口スリット又は前記縁端部とを結ぶ直線上において前記液晶が相反する方向に傾倒しないよう、前記誘電体突起の誘電率をεt1、前記液晶の長軸方向の誘電率をε//、短軸方向の誘電率をεとしたときに、εt1>ε//の関係を有していることを特徴とする液晶表示装置。
A liquid crystal display device in which a liquid crystal layer including a liquid crystal having negative dielectric anisotropy is sandwiched between a pair of substrates,
In the dot region constituting the display unit, on one of the pair of substrates, a dielectric protrusion provided on the electrode and an opening slit provided on the electrode or an edge of the electrode are provided. When the voltage is applied to the liquid crystal, the dielectric does not tilt in the opposite direction on a straight line connecting the dielectric protrusion and the opening slit or the edge in a plan view. When the dielectric constant of the body protrusion is ε t1 , the dielectric constant in the major axis direction of the liquid crystal is ε // , and the dielectric constant in the minor axis direction is ε , the relationship is ε t1 > ε // A liquid crystal display device characterized by the above.
前記開口スリットの内側に設けられ、誘電率εt2がε//>εt2の関係を有する他の誘電体突起を有することを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, further comprising another dielectric protrusion provided inside the opening slit and having a dielectric constant ε t2 of ε // > ε t2 . 請求項1又は2のいずれか1項に記載の液晶表示装置を備えたことを特徴とする電子機器。   An electronic apparatus comprising the liquid crystal display device according to claim 1.
JP2006283500A 2004-01-14 2006-10-18 Liquid crystal display device and electronic apparatus Pending JP2007018014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283500A JP2007018014A (en) 2004-01-14 2006-10-18 Liquid crystal display device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004006783 2004-01-14
JP2006283500A JP2007018014A (en) 2004-01-14 2006-10-18 Liquid crystal display device and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004251482A Division JP2005227745A (en) 2004-01-14 2004-08-31 Liquid crystal display device and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2007018014A true JP2007018014A (en) 2007-01-25
JP2007018014A5 JP2007018014A5 (en) 2009-01-08

Family

ID=37755165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283500A Pending JP2007018014A (en) 2004-01-14 2006-10-18 Liquid crystal display device and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2007018014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147793A (en) * 2005-11-25 2007-06-14 Hitachi Displays Ltd Liquid crystal display device
TWI385433B (en) * 2008-06-25 2013-02-11 Chimei Innolux Corp Liquid crystal display and substrate thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275645A (en) * 1999-03-19 2000-10-06 Fujitsu Ltd Liquid crystal display device and its production
JP2002214632A (en) * 2000-11-10 2002-07-31 Semiconductor Energy Lab Co Ltd Liquid crystal display
JP2003177384A (en) * 2001-12-11 2003-06-27 Fujitsu Display Technologies Corp Reflection type liquid crystal display device, manufacturing method therefor and transflective type liquid crystal display device
JP2003222869A (en) * 2002-01-31 2003-08-08 Toshiba Corp Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275645A (en) * 1999-03-19 2000-10-06 Fujitsu Ltd Liquid crystal display device and its production
JP2002214632A (en) * 2000-11-10 2002-07-31 Semiconductor Energy Lab Co Ltd Liquid crystal display
JP2003177384A (en) * 2001-12-11 2003-06-27 Fujitsu Display Technologies Corp Reflection type liquid crystal display device, manufacturing method therefor and transflective type liquid crystal display device
JP2003222869A (en) * 2002-01-31 2003-08-08 Toshiba Corp Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147793A (en) * 2005-11-25 2007-06-14 Hitachi Displays Ltd Liquid crystal display device
JP4648169B2 (en) * 2005-11-25 2011-03-09 株式会社 日立ディスプレイズ Liquid crystal display device
TWI385433B (en) * 2008-06-25 2013-02-11 Chimei Innolux Corp Liquid crystal display and substrate thereof

Similar Documents

Publication Publication Date Title
US8120738B2 (en) Liquid crystal display device and electronic apparatus
JP4123208B2 (en) Liquid crystal display device, electronic equipment
JP3849659B2 (en) Liquid crystal display device and electronic device
JP4249544B2 (en) Liquid crystal display device and electronic device
JP2007133293A (en) Liquid crystal device and electronic apparatus
JP3807375B2 (en) Liquid crystal display device and electronic device
JP3901172B2 (en) Liquid crystal display device and electronic device
JP2007171231A (en) Liquid crystal device and electronic device
JP3903980B2 (en) Liquid crystal display device and electronic device
JP2004333830A (en) Liquid crystal display and electronic device
JP3966221B2 (en) Liquid crystal display device and electronic device
JP2008077108A (en) Liquid crystal display and electronic apparatus
JP4483851B2 (en) Liquid crystal display device and electronic device
JP2009037267A (en) Liquid crystal display and electronic device
JP2007018014A (en) Liquid crystal display device and electronic apparatus
JP4379081B2 (en) Liquid crystal display device and electronic device
JP4211383B2 (en) Liquid crystal display device and electronic device
JP2007011410A (en) Liquid crystal display device and electronic device
JP4525259B2 (en) Liquid crystal display device and electronic device
JP2005128233A (en) Liquid crystal display device and electronic appliance
JP4314906B2 (en) Liquid crystal display device and electronic device
JP4144429B2 (en) Liquid crystal display device and electronic device
JP4249776B2 (en) Liquid crystal display device and electronic device
JP2006071868A (en) Liquid crystal display device and electronic apparatus
JP2007052455A (en) Liquid crystal display device, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100824

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101022