JP2007017345A - Method and apparatus for automatically detecting observation target - Google Patents

Method and apparatus for automatically detecting observation target Download PDF

Info

Publication number
JP2007017345A
JP2007017345A JP2005200524A JP2005200524A JP2007017345A JP 2007017345 A JP2007017345 A JP 2007017345A JP 2005200524 A JP2005200524 A JP 2005200524A JP 2005200524 A JP2005200524 A JP 2005200524A JP 2007017345 A JP2007017345 A JP 2007017345A
Authority
JP
Japan
Prior art keywords
aggregate
observation target
image
small particles
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005200524A
Other languages
Japanese (ja)
Other versions
JP4344862B2 (en
Inventor
Akira Furukawa
章 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2005200524A priority Critical patent/JP4344862B2/en
Publication of JP2007017345A publication Critical patent/JP2007017345A/en
Application granted granted Critical
Publication of JP4344862B2 publication Critical patent/JP4344862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform the automatic sorting of a metaphase cell capable of observing a chromosome with higher precision. <P>SOLUTION: When the metaphase cell being the aggregate of chromosomes is sorted from an image to be displayed, small particles having a size almost same to that of the chromosomes in the image are extracted to be binarized and the aggregate formed of the small particles gathered in the density of the degree of the chromosomes is extracted to be sorted based on feature quantity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、観察対象の自動検出方法及び装置に係り、特に、染色体分析を行なう際に分裂中期細胞(メタフェーズ)を検出するメタフェーズファインダとして用いるのに好適な、観察対象の自動検出方法及び装置に関する。   The present invention relates to an observation object automatic detection method and apparatus, and in particular, an observation object automatic detection method suitable for use as a metaphase finder for detecting metaphase cells (metaphase) when performing chromosome analysis, and Relates to the device.

生体が放射線に被曝した時に見られる染色体異常の発生頻度を観察することにより、被爆線量を推定することができる。特に、異常な染色体が出現する現象は、放射線被曝時に特異的に見られるものであり、又、光学顕微鏡を用いて通常の染色法で容易に観察することができるため、被曝線量推定のための有用な指標となっている。しかし、被曝線量が低い時には発生頻度も少なく、従って、多量の試料を観察する必要があるため、人力による観察が困難であり、自動化が期待されていた。   By observing the occurrence frequency of chromosomal abnormalities observed when a living body is exposed to radiation, the exposure dose can be estimated. In particular, the phenomenon of abnormal chromosomes appearing specifically at the time of radiation exposure, and can be easily observed with an ordinary staining method using an optical microscope. It is a useful indicator. However, when the exposure dose is low, the frequency of occurrence is low, and therefore, it is necessary to observe a large amount of specimens. Therefore, observation by human power is difficult, and automation has been expected.

顕微鏡下の試料から染色体が観察できる分裂中期細胞を自動的に選別して表示するメタフェーズファインダの機能を持つ装置は、外国企業によって市販されているが、その画像処理機能は公開されていないため不明で、少なくとも数理形態学的演算(モフォロジー演算とも称する)の構造要素を用いたものではなく、又、その処理結果は不正確なものであった。   A device with the metaphase finder function that automatically selects and displays metaphase cells that can observe chromosomes from a sample under a microscope is commercially available by foreign companies, but its image processing function is not disclosed. It is unknown, and at least the structural elements of mathematical morphological operations (also called morphological operations) are not used, and the processing results are inaccurate.

そこで発明者等は、非特許文献1に記載したように、メタフェーズファインダの画像処理にモフォロジー演算の構造要素を用いる装置を試作した。   Thus, as described in Non-Patent Document 1, the inventors made a prototype of an apparatus that uses a structural element of a morphological operation for metaphase finder image processing.

古川章他「染色体異常解析の自動化」Cytometry Research 7(1),pp1〜8,1997Akira Furukawa et al. “Automation of chromosome aberration analysis” Cytometry Research 7 (1), pp1-8, 1997

しかしながら、非特許文献1で構造要素を用いて画像処理をするのは、原画像を二値化した後の処理のみであり、入力画像を二値化する際の画像処理には構造要素が使われていなかったため、閾値と同程度に薄く染まった細胞核を染色体と分離することができず、誤った結果をしばしばもたらしていた。   However, in Non-Patent Document 1, image processing using structural elements is only performed after binarization of the original image, and structural elements are used for image processing when binarizing the input image. Because it was not known, cell nuclei that were stained as light as the threshold could not be separated from the chromosomes, often resulting in false results.

本発明は、前記従来の問題点を解消するべくなされたもので、多数の染色体を含む分裂中期細胞のような、観察対象の集合体の自動収集を、より高精度に行なえるようにすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and enables automatic collection of an aggregate to be observed, such as metaphase cells containing many chromosomes, with higher accuracy. Is an issue.

本発明は、画像から観察対象の集合体を選別して表示するための観察対象の自動検出方法において、画像中の観察対象程度の大きさの小粒子を抽出する手順と、これを二値化する手順と、前記小粒子が観察対象程度の密度で集まっている集合体を抽出する手順と、該集合体を特徴量に基づいて選別する手順とを含むことにより、前記課題を解決したものである。   The present invention relates to an automatic detection method of an observation object for selecting and displaying a collection of observation objects from an image, and a procedure for extracting small particles having the same size as an observation object in an image and binarization thereof. And a procedure for extracting an aggregate in which the small particles are gathered at a density of an observation target, and a procedure for selecting the aggregate based on a feature amount. is there.

又、前記小粒子を抽出する手順が、観察対象と同程度の大きさの構造要素を用いて、画像全体に接続処理を施すことにより、観察対象と同程度の大きさの小粒子を除去する手順と、その結果に収縮を加え、これを原画像から減算する手順と、を含むようにしたものである。   Further, the procedure for extracting the small particles removes small particles having the same size as the observation target by applying a connection process to the entire image using a structural element having the same size as the observation target. A procedure, and a procedure of adding a contraction to the result and subtracting it from the original image.

又、前記集合体を抽出する手順が、一つの集合体内に散らばる観察対象の間隙を埋めることができる程度の大きさの構造要素を用いて、前記抽出された小粒子を接続処理により結合する手順と、得られた画像に切断処理を施して、内部を埋めた集合体の輪郭形状を平滑化する手順と、を含むようにしたものである。   Further, the procedure for extracting the aggregate is a procedure for connecting the extracted small particles by a connection process using a structural element having a size that can fill a gap of an observation object scattered in one aggregate. And a procedure for performing a cutting process on the obtained image to smooth the outline shape of the aggregate in which the interior is filled.

又、前記観察対象が染色体、前記集合体が分裂中期細胞であることを特徴とする観察対象の自動検出方法を提供するものである。   Further, the present invention provides an automatic detection method for an observation object, wherein the observation object is a chromosome and the aggregate is a metaphase cell.

本発明は、又、画像から観察対象の集合体を選別して表示するための観察対象の自動検出装置において、画像中の観察対象程度の大きさの小粒子を抽出する手段と、これを二値化する手段と、前記小粒子が観察対象程度の密度で集まっている集合体を抽出する手段と、該集合体を特徴量に基づいて選別する手段とを備えることにより、前記課題を解決したものである。   The present invention also provides an automatic detection device for an observation target for selecting and displaying a collection of observation targets from an image, and means for extracting small particles having a size about the observation target in the image. The problem has been solved by comprising means for pricing, means for extracting an aggregate in which the small particles are gathered at a density about the observation target, and means for selecting the aggregate based on a feature amount. Is.

又、前記小粒子を抽出する手段が、観察対象と同程度の大きさの構造要素を用いて、画像全体に接続処理を施すことにより、観察対象と同程度の大きさの小粒子を除去する手段と、その結果に収縮を加え、これを原画像から減算する手段と、を備えるようにしたものである。   Further, the means for extracting small particles removes small particles having the same size as the observation object by applying a connection process to the entire image using a structural element having the same size as the observation object. Means and means for applying a contraction to the result and subtracting it from the original image.

又、前記集合体を抽出する手段が、一つの集合体内に散らばる観察対象の間隙を埋めることができる程度の大きさの構造要素を用いて、前記抽出された小粒子を接続処理により結合する手段と、得られた画像に切断処理を施して、内部を埋めた集合体の輪郭形状を平滑化する手段と、を備えるようにしたものである。   Further, the means for extracting the aggregate is a means for combining the extracted small particles by a connection process using a structural element having a size that can fill the gaps of the observation object scattered in one aggregate. And means for performing a cutting process on the obtained image and smoothing the outline shape of the aggregate in which the interior is filled.

又、前記観察対象が染色体、前記集合体が分裂中期細胞であることを特徴とする観察対象の自動検出装置を提供するものである。   The present invention also provides an automatic detection apparatus for an observation object, wherein the observation object is a chromosome and the aggregate is a metaphase cell.

本発明によれば、観察対象の集合体の自動収集を、より高精度に行なうことが可能となる。特に、二値化する前段階の処理により、小粒子のみを残すと共に、画像内の光源の不均一や、集合体の分布の偏りや、集合体の色や濃度のムラ等の影響を取り除くことができる。又、非特許文献1に記載した方法ではできなかった、閾値と同程度に薄く染まった細胞核を染色体と分離することができるようになる。   According to the present invention, it is possible to perform automatic collection of observation target aggregates with higher accuracy. In particular, the processing prior to binarization leaves only small particles and removes the effects of non-uniformity of light sources in the image, uneven distribution of aggregates, uneven color and density of aggregates, etc. Can do. In addition, cell nuclei stained as thin as the threshold, which could not be obtained by the method described in Non-Patent Document 1, can be separated from chromosomes.

以下図面を参照して、染色体異常解析装置のメタフェーズファインダに適用した本発明の実施形態を詳細に説明する。   Hereinafter, an embodiment of the present invention applied to a metaphase finder of a chromosome abnormality analysis apparatus will be described in detail with reference to the drawings.

本発明を実施するための染色体異常解析装置は、図1に示す如く、スライドグラス16の架台(図示省略)を搭載するための、例えばステッピングモータ(図示省略)により駆動されるXYステージ12及び自動焦点装置14を持つ小型顕微鏡10と、例えば通常のビデオカメラやハイビジョンカメラでなる撮像装置20と、例えばワークステーションでなる画像処理用コンピュータ30を備えている。   As shown in FIG. 1, the chromosomal abnormality analysis apparatus for carrying out the present invention includes an XY stage 12 driven by, for example, a stepping motor (not shown) for mounting a slide glass 16 mount (not shown) and an automatic A small microscope 10 having a focusing device 14, an imaging device 20 such as a normal video camera or a high-vision camera, and an image processing computer 30 such as a workstation are provided.

前記XYステージ12は、染色体の大きさと比べて十分な位置分解能及び位置再現性を有する。   The XY stage 12 has sufficient position resolution and position reproducibility compared with the size of the chromosome.

前記自動焦点装置14は、特に焦点合わせ用の光を照射しないパッシブ方式のものを用いる。なお、焦点合わせ用の例えば赤外光を照射するアクティブ方式のものを用いることもできる。   As the automatic focusing device 14, a passive type that does not emit light for focusing is used. For example, an active type that irradiates infrared light for focusing can also be used.

前記画像処理用コンピュータ30には、次の処理を行なうソフトウェアが内蔵されている。   The image processing computer 30 includes software for performing the following processing.

(1)本発明により、スライドグラス16上の分裂中期細胞を検出し、その位置を記録する。   (1) According to the present invention, metaphase cells on the slide glass 16 are detected and their positions are recorded.

(2)分裂中期細胞の拡大図を撮像し、以後の画像処理に適したものを選別する。   (2) Taking an enlarged view of metaphase cells and selecting those suitable for subsequent image processing.

(3)細胞中の個々の染色体を切り離し、染色体上の動原体の位置を検出する。   (3) Separate individual chromosomes in the cell and detect the location of the centromere on the chromosome.

(4)異常染色体の候補を画面に表示し、必要により人間の手で修正する。   (4) Display abnormal chromosome candidates on the screen and, if necessary, correct them with human hands.

(5)結果を集計し、異常染色体の発生率を求める。   (5) Aggregate the results and determine the incidence of abnormal chromosomes.

以下、図2を参照して、本発明に係るメタフェーズファインダの処理を説明する。   Hereinafter, the metaphase finder processing according to the present invention will be described with reference to FIG.

まずステップ100で、図3に示す如く、撮像装置20の視野22だけXYステージ12を動かしてスライドガラス16を移動し、自動焦点装置14で焦点を合わせた後、撮像することにより、図4に示すような撮影画像(原画像とも称する)を得る。   First, in step 100, as shown in FIG. 3, the XY stage 12 is moved only by the visual field 22 of the image pickup device 20, the slide glass 16 is moved, and after focusing is performed by the autofocus device 14, the image is taken. A photographed image (also referred to as an original image) as shown is obtained.

次にステップ110で、原画像中の観察対象である染色体程度の大きさの小粒子を抽出する。具体的には、まず画像全体に接続(Closing)処理を施すことにより、図5に示す如く、染色体と同程度の大きさの小粒子を除去する。この時の構造要素には、染色体の画像と同程度の大きさのものを用いる。   Next, in step 110, small particles having a size about the chromosome that is the observation target in the original image are extracted. Specifically, first, a small particle having the same size as a chromosome is removed as shown in FIG. At this time, a structural element having the same size as the chromosome image is used.

次いで、図5に示した接続処理結果に、やや収縮(Erosion)処理を加えて、図6に示すような画像を得て、これを原画像から減算することにより、図7に示す如く、図5の処理で消失した小粒子を抽出する。このときの構造要素は、抽出されるべき小粒子以外の物体の周辺部が、減算するときに残らないような大きさにする。   Next, a slight erosion process is added to the connection processing result shown in FIG. 5 to obtain an image as shown in FIG. 6 and subtracted from the original image, as shown in FIG. Extract the small particles that disappeared in step 5. The structural elements at this time are sized so that the peripheral portions of the object other than the small particles to be extracted do not remain when subtracting.

次いでステップ120に進み、適切な閾値で二値化して、図8に示すような二値化画像を得る。   Next, the routine proceeds to step 120 where binarization is performed with an appropriate threshold value to obtain a binarized image as shown in FIG.

次いでステップ130で、小粒子が細胞内の染色体程度の密度で集まっている部分を抽出する。具体的には、抽出された小粒子を、接続処理により結合して、図9に示すような集合体の輪郭画像を得る。このときの構造要素には、一つの分裂中期細胞の内部に散らばる染色体の間隔を埋めることができる程度の大きさのものを用いる。構造要素が小さすぎると、間隙を埋めることができず、逆に構造要素が大きすぎると、隣接した別個の分裂中期細胞を結合してしまうことが多くなるので、適切な大きさの構造要素を用いる必要がある。   Next, at step 130, a portion where small particles are gathered at a density of about the chromosome in the cell is extracted. Specifically, the extracted small particles are combined by a connection process to obtain an outline image of the aggregate as shown in FIG. As a structural element at this time, a structural element having a size that can fill a space between chromosomes scattered inside one metaphase cell is used. If the structuring element is too small, the gap cannot be filled, and conversely, if the structuring element is too large, it is likely to join adjacent separate metaphase cells. It is necessary to use it.

次に、得られた輪郭画像に切断(Opening)処理を行ない、内部を埋めた分裂中期細胞の輪郭形状を平滑化して、図10に示すような集合体の画像を得る。   Next, a cutting process (Opening) is performed on the obtained contour image to smooth the contour shape of the metaphase cells filled in the interior, thereby obtaining an image of an aggregate as shown in FIG.

次いでステップ140に進み、抽出された集合体を、形状(面積・縦横比・円形度等)についての特徴量に基づいて選別する。   Next, the routine proceeds to step 140, where the extracted aggregates are selected based on the feature values for the shape (area, aspect ratio, circularity, etc.).

その結果得られた測定値から、染色体を含む像であるかを判定し、スライドグラス16上の位置を求めて記録する。   From the measurement value obtained as a result, it is determined whether the image includes a chromosome, and the position on the slide glass 16 is obtained and recorded.

次いで、ステップ150で終了点か否かを判定し、終了点でない場合には、ステップ160に進み、図3に示した如く、スライドグラス16を移動して、次の画像を撮像する。   Next, it is determined in step 150 whether or not it is the end point. If it is not the end point, the process proceeds to step 160 where the slide glass 16 is moved and the next image is taken as shown in FIG.

以上のことを繰り返して、スライドグラス16上の試料が載っている部分を走査する。   By repeating the above, the portion on the slide glass 16 where the sample is placed is scanned.

走査した結果の記録を再生し、検出した細胞を顕微鏡の視野の中央に持ってくることにより、染色体の検出等、以降の処理を容易に行なうことができる。   By reproducing the scan result record and bringing the detected cells to the center of the field of view of the microscope, subsequent processing such as chromosome detection can be easily performed.

なお、前記実施形態においては、本発明が、染色体が観察できる分裂中期細胞を検出するメタフェーズファインダに適用されていたが、本発明の適用対象は、これに限定されず、例えば望遠鏡により得た画像から銀河群や球状星団を選別する際や、超音波画像から魚群を探知する際や、航空写真から人や船の集団を見つける際にも同様に適用できる。又、観察対象のサイズが違う時には、サイズ毎に本発明に係る処理を行なうことにより、サイズ毎の分布を知ることも可能である。   In the above embodiment, the present invention has been applied to a metaphase finder for detecting metaphase cells in which chromosomes can be observed. However, the application target of the present invention is not limited to this, and for example, obtained by a telescope The same applies to selecting galaxy groups and globular clusters from images, detecting fish schools from ultrasound images, and finding groups of people and ships from aerial photographs. In addition, when the size of the object to be observed is different, it is possible to know the distribution for each size by performing the processing according to the present invention for each size.

本発明の実施形態である染色体異常解析装置の構成を示すブロック図The block diagram which shows the structure of the chromosome abnormality analysis apparatus which is embodiment of this invention. 前記実施形態の処理手順を示す流れ図Flow chart showing the processing procedure of the embodiment 同じくスライドグラス上の走査位置を示す平面図The top view which similarly shows the scanning position on the slide glass 同じく撮影画像(原画像)の例を示す図The figure which shows the example of the same photographed image (original image) 図4に接続(Closing)処理を施した画像を示す図The figure which shows the image which performed connection (Closing) processing in FIG. 図5に収縮(Erosion)処理を施した画像を示す図FIG. 5 is a diagram showing an image subjected to the erosion process. 図6を原画像から減算した画像を示す図The figure which shows the image which subtracted FIG. 6 from the original image 図7を二値化して小粒子を抽出した画像を示す図The figure which shows the image which binarized FIG. 7 and extracted the small particle 図8に接続処理を施して得た集合体の輪郭画像を示す図The figure which shows the outline image of the aggregate | assembly obtained by giving a connection process to FIG. 図9に対して切断(Opening)処理を施し、平滑化して集合体を抽出した画像を示す図The figure which shows the image which performed the cutting (Opening) processing with respect to FIG. 9, and smoothed and extracted the aggregate | assembly

符号の説明Explanation of symbols

10…光学顕微鏡
12…XYステージ
14…自動焦点装置
16…スライドグラス
20…撮像装置
30…画像処理用コンピュータ
DESCRIPTION OF SYMBOLS 10 ... Optical microscope 12 ... XY stage 14 ... Automatic focus apparatus 16 ... Slide glass 20 ... Imaging device 30 ... Computer for image processing

Claims (8)

画像から観察対象の集合体を選別して表示するための観察対象の自動検出方法において、
画像中の観察対象程度の大きさの小粒子を抽出する手順と、
これを二値化する手順と、
前記小粒子が観察対象程度の密度で集まっている集合体を抽出する手順と、
該集合体を特徴量に基づいて選別する手順と、
を含むことを特徴とする観察対象の自動検出方法。
In the automatic detection method of the observation target for selecting and displaying the aggregate of the observation target from the image,
A procedure for extracting small particles about the size of the observation object in the image;
A procedure to binarize this,
A procedure for extracting an aggregate in which the small particles are gathered at a density of an observation target;
A procedure for selecting the aggregate based on the feature amount;
A method for automatically detecting an observation target, comprising:
前記小粒子を抽出する手順が、
観察対象と同程度の大きさの構造要素を用いて、画像全体に接続処理を施すことにより、観察対象と同程度の大きさの小粒子を除去する手順と、
その結果に収縮を加え、これを原画像から減算する手順と、
を含むことを特徴とする請求項1に記載の観察対象の自動検出方法。
The procedure for extracting the small particles comprises:
A procedure for removing small particles of the same size as the observation target by applying a connection process to the entire image using a structural element of the same size as the observation target;
A procedure to shrink the result and subtract it from the original image;
The method for automatically detecting an observation target according to claim 1, wherein:
前記集合体を抽出する手順が、
一つの集合体内に散らばる観察対象の間隙を埋めることができる程度の大きさの構造要素を用いて、前記抽出された小粒子を接続処理により結合する手順と、
得られた画像に切断処理を施して、内部を埋めた集合体の輪郭形状を平滑化する手順と、
を含むことを特徴とする請求項1に記載の観察対象の自動検出方法。
The procedure for extracting the aggregate is:
A procedure of combining the extracted small particles by a connection process using a structural element having a size that can fill the gaps of the observation object scattered in one aggregate,
A procedure for cutting the obtained image and smoothing the outline shape of the assembly filled in the interior,
The method for automatically detecting an observation target according to claim 1, wherein:
前記観察対象が染色体、前記集合体が分裂中期細胞であることを特徴とする請求項1乃至3のいずれかに記載の観察対象の自動検出方法。   The method for automatically detecting an observation target according to any one of claims 1 to 3, wherein the observation target is a chromosome and the aggregate is a metaphase cell. 画像から観察対象の集合体を選別して表示するための観察対象の自動検出装置において、
画像中の観察対象程度の大きさの小粒子を抽出する手段と、
これを二値化する手段と、
前記小粒子が観察対象程度の密度で集まっている集合体を抽出する手段と、
該集合体を特徴量に基づいて選別する手段と、
を備えたことを特徴とする観察対象の自動検出装置。
In the automatic detection device for the observation target for selecting and displaying the aggregate of the observation target from the image,
Means for extracting small particles about the size of the observation object in the image;
Means for binarizing this,
Means for extracting an aggregate in which the small particles are gathered at a density of an observation target;
Means for selecting the aggregate based on the feature amount;
A device for automatically detecting an observation target.
前記小粒子を抽出する手段が、
観察対象と同程度の大きさの構造要素を用いて、画像全体に接続処理を施すことにより、観察対象と同程度の大きさの小粒子を除去する手段と、
その結果に収縮を加え、これを原画像から減算する手段と、
を備えたことを特徴とする請求項5に記載の観察対象の自動検出装置。
Means for extracting the small particles;
Means for removing small particles of the same size as the observation target by applying a connection process to the entire image using a structural element of the same size as the observation target;
Means to add shrinkage to the result and subtract it from the original image;
The observation object automatic detection apparatus according to claim 5, comprising:
前記集合体を抽出する手段が、
一つの集合体内に散らばる観察対象の間隙を埋めることができる程度の大きさの構造要素を用いて、前記抽出された小粒子を接続処理により結合する手段と、
得られた画像に切断処理を施して、内部を埋めた集合体の輪郭形状を平滑化する手段と、
を備えたことを特徴とする請求項5に記載の観察対象の自動検出装置。
Means for extracting said aggregate;
Means for connecting the extracted small particles by a connection process using a structural element having a size sufficient to fill the gaps in the observation object scattered in one aggregate;
Means for performing a cutting process on the obtained image and smoothing the outline shape of the assembly filled in the interior;
The observation object automatic detection apparatus according to claim 5, comprising:
前記観察対象が染色体、前記集合体が分裂中期細胞であることを特徴とする請求項5乃至7のいずれかに記載の観察対象の自動検出装置。   8. The observation object automatic detection apparatus according to claim 5, wherein the observation object is a chromosome and the aggregate is a metaphase cell.
JP2005200524A 2005-07-08 2005-07-08 Method and apparatus for automatic detection of observation object Expired - Fee Related JP4344862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200524A JP4344862B2 (en) 2005-07-08 2005-07-08 Method and apparatus for automatic detection of observation object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200524A JP4344862B2 (en) 2005-07-08 2005-07-08 Method and apparatus for automatic detection of observation object

Publications (2)

Publication Number Publication Date
JP2007017345A true JP2007017345A (en) 2007-01-25
JP4344862B2 JP4344862B2 (en) 2009-10-14

Family

ID=37754628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200524A Expired - Fee Related JP4344862B2 (en) 2005-07-08 2005-07-08 Method and apparatus for automatic detection of observation object

Country Status (1)

Country Link
JP (1) JP4344862B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057595A (en) * 2011-09-08 2013-03-28 Dainippon Screen Mfg Co Ltd Detection method
JP5982532B1 (en) * 2015-05-18 2016-08-31 シャープ株式会社 Microparticle detection apparatus and microparticle detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057595A (en) * 2011-09-08 2013-03-28 Dainippon Screen Mfg Co Ltd Detection method
US8923596B2 (en) 2011-09-08 2014-12-30 SCREEN Holdings Co., Ltd. Method for detecting density of area in image
JP5982532B1 (en) * 2015-05-18 2016-08-31 シャープ株式会社 Microparticle detection apparatus and microparticle detection method
WO2016185892A1 (en) * 2015-05-18 2016-11-24 シャープ株式会社 Microparticle detection device and microparticle detection method

Also Published As

Publication number Publication date
JP4344862B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US6900426B2 (en) Reverse focusing methods and systems
JP4558047B2 (en) Microscope system, image generation method, and program
US6658143B2 (en) Ray-based image analysis for biological specimens
Thomann et al. Automatic fluorescent tag detection in 3D with super‐resolution: application to the analysis of chromosome movement
EP1484595B1 (en) Color space transformations for use in identifying objects of interest in biological specimens
JP5254441B2 (en) Flow type particle image analysis method and apparatus
US20190228519A1 (en) Anomaly detection using image-based physical characterization
WO2017150194A1 (en) Image processing device, image processing method, and program
WO2017221592A1 (en) Image processing device, image processing method, and image processing program
CN111399208B (en) Focusing shooting implementation method of biological fluorescence sample, microscope and storage medium
US20090169090A1 (en) Targeted edge detection method and apparatus for cytological image processing applications
JP6284024B2 (en) Cell viability determination system, cell viability determination method
WO2019171909A1 (en) Image processing method, image processing device, and program
WO2014196097A1 (en) Image processing system, image processing device, program, storage medium, and image processing method
CN113945175A (en) Rock three-dimensional data acquisition method and device
JP4344862B2 (en) Method and apparatus for automatic detection of observation object
JP2008139143A (en) Method and apparatus for forming specimen image
WO2020010634A1 (en) Cell image processing system and method, automatic smear reading device, and storage medium
JP2009041953A (en) Quantitative analyzer, quantitative analyzing method and quantitative analyzing program
Vojnovic et al. A High Sensitivity, High Throughput, Automated Single-Cell Gel Electrophoresis (‘Comet’) DNA Damage Assay
CN111951261A (en) Control method, computer device and control system for in-vitro biological sample examination process
Netten et al. Automation of fluorescent dot counting in cell nuclei
JPH1090163A (en) Particle analyzer
Jatti Segmentation of microscopic bone images
JP2006226916A (en) Quantitative analyzer, analytical method, and analytical program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

R150 Certificate of patent or registration of utility model

Ref document number: 4344862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees