JP2007017313A - Dissolving treatment apparatus of sample liquid and dissolving treatment method therefor - Google Patents
Dissolving treatment apparatus of sample liquid and dissolving treatment method therefor Download PDFInfo
- Publication number
- JP2007017313A JP2007017313A JP2005199685A JP2005199685A JP2007017313A JP 2007017313 A JP2007017313 A JP 2007017313A JP 2005199685 A JP2005199685 A JP 2005199685A JP 2005199685 A JP2005199685 A JP 2005199685A JP 2007017313 A JP2007017313 A JP 2007017313A
- Authority
- JP
- Japan
- Prior art keywords
- dissolution
- solution
- tank
- sample solution
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、懸濁物を含む排水等について、懸濁物を溶解して排水等の試料液を定量供給することができる試料液溶解処理システム(溶解処理装置および溶解処理方法)に関する。本発明の溶解処理システムは、排水等に含まれる有害金属イオン等の分析等において有用であり、例えば、連続流れ分析装置に連結することによって、工場での排水中に含まれる有害金属イオン濃度の管理や、河川や海水に含まれる有害金属イオン濃度の変化をモニタリングする調査などに有用である。 The present invention relates to a sample solution dissolution treatment system (dissolution treatment apparatus and dissolution treatment method) that can dissolve a suspension and quantitatively supply a sample solution such as wastewater for wastewater containing suspension. The dissolution treatment system of the present invention is useful for analysis of harmful metal ions contained in wastewater, etc., for example, by connecting to a continuous flow analyzer, the concentration of harmful metal ions contained in wastewater at a factory. This is useful for management and surveys that monitor changes in the concentration of harmful metal ions in rivers and seawater.
排水等に含まれる有害金属イオン等の測定方法として規格(JIS K 0102)に定める「工業排水試験方法」が知られている。この分析方法は、排水等が懸濁物を含む場合には、排水等を一定量採取した後に前処理として排水等の試料に酸類(硝酸や塩酸)を加えて懸濁物を溶解し、金属イオンを溶出させる。しかし、この一連の操作を手作業で実施するのは溶解時間が長いため連続作業が困難であり、また作業環境による試料汚染等の問題がある。さらに、試料を定量溶解して正確に一定量を分析計に送液するのも手間がかかる。 An “industrial wastewater test method” defined in the standard (JIS K 0102) is known as a method for measuring harmful metal ions contained in wastewater. In this analysis method, when wastewater contains suspension, after collecting a certain amount of wastewater, etc., acid (nitric acid or hydrochloric acid) is added to the wastewater sample as a pretreatment, and the suspension is dissolved. Elute ions. However, performing this series of operations manually is difficult because of the long melting time, and there are problems such as sample contamination due to the working environment. Furthermore, it takes time and labor to dissolve the sample quantitatively and to send a precise amount to the analyzer.
このような懸濁物を含む試料液の分析については、例えば次のような分析手段が従来知られている。
(イ)フローインジェクション分析において、分析部の前に前処理部を設け、この前処理部でキャリアー液によって管路を流れる試料液に懸濁物を溶解する酸またはアルカリを注入し、試料液が管路を流れる間に懸濁物を溶解して分析部に導入する(特許文献1)。
(ロ)分析計の直前にインラインフィルターと、サンプルの通過方向と逆方向から溶離液を流す洗浄手段を設け、フィルターに付着した懸濁物を溶離液によって洗浄する(特許文献2)。
For the analysis of a sample solution containing such a suspension, for example, the following analysis means are conventionally known.
(A) In flow injection analysis, a pretreatment unit is provided in front of the analysis unit, and an acid or alkali that dissolves the suspension is injected into the sample solution flowing through the pipeline by the carrier liquid in the pretreatment unit. The suspension is dissolved and introduced into the analysis section while flowing through the pipeline (Patent Document 1).
(B) An in-line filter and a washing means for flowing the eluent from the direction opposite to the sample passing direction are provided immediately before the analyzer, and the suspension adhering to the filter is washed with the eluent (Patent Document 2).
しかし、特許文献1の分析手段は、試料液が管路を流れる間に懸濁物を溶解するものであるが、溶解時間が十分に確保できないために懸濁物が残留しやすく、しかも管路を流れる試料液に分解用の酸またはアルカリを注入するために定量溶解することができない。一方、特許文献2の分析手段は、懸濁物を溶解するものではないので、懸濁物に付着している金属イオン等を含めた高精度の分析ができず、さらに懸濁物を含んだ状態で試料液が管路を流れるので管路の閉塞を生じやすく、試料液の定量分析にも適さない。
本発明は、従来の分析システムにおける上記問題を解決したものであり、懸濁物を含む試料液について、懸濁物を定量溶解し、試料液の濃度を一定に維持して分析計に送液することができ、さらに試料液の定量サンプリングと懸濁物の溶解および分析計への定量供給を自動的に行うことができる溶解処理システムを提供する。 The present invention solves the above-mentioned problem in the conventional analysis system, and for the sample liquid containing the suspension, the suspension is quantitatively dissolved, and the concentration of the sample liquid is kept constant and the solution is sent to the analyzer. Furthermore, a dissolution processing system capable of automatically performing quantitative sampling of a sample solution, dissolution of a suspension, and quantitative supply to an analyzer is provided.
本発明によれば以下の溶解処理システムが提供される。
(1)懸濁物を含む試料液を受け入れる溶解槽、懸濁物の溶解液を溶解槽に供給する手段、溶解槽の試料液を分析計に供給する手段を有する試料液の処理装置において、溶解槽内の試料液を定量にする手段と、溶解液を溶解槽に定量供給する手段と、分析計に供給する試料液を定量にする手段を備えており、溶解槽において懸濁物を溶解した試料液を分析計に定量供給することを特徴とする試料液溶解処理装置。
(2)溶解槽に吸引管路L1を通じてクッション槽が接続し、該吸引管路L1の管端が溶解槽内に挿入されており、試料液の液量を吸引管路L1の管端長さに応じた液面高さに制御することによって溶解槽内の試料液を定量にする手段が形成されている上記(1)の試料液溶解処理装置。
(3)溶解槽が吸引管路L2を通じて分析計に接続しており、溶解槽内の吸引管路L2の管端はクッション槽に通じる吸引管路L1の管端よりも下側に延びており、この管路L1と管路L2の管端長さの差に応じた液量を吸引して分析計に送る定量供給手段が形成されている上記(2)の試料液溶解処理装置。
(4)溶解液を溶解槽に供給する管路に切替バルブが設けられており、上記切替バルブには溶解液を溜める一定長さのループが設けられており、上記ループを供給管路に接続して一定量の溶解液を溶解槽に供給する定量供給手段が形成されている上記(1)〜(3)の何れかに記載する試料液溶解処理装置。
(5)上記(4)の装置において、切替バルブに吸引管路L3を通じてクッション槽が接続しており、吸引管路L3を通じて溶解液を吸引して上記ループに導入し、一定量の溶解液を該ループに溜めると共に、余剰に吸引した溶解液をクッション槽に導く、溶解液の定量手段が形成されている試料液溶解処理装置。
(6)試料液を溶解槽に供給する管路(試料液供給管路S1)と、溶解液を溶解槽に供給する管路(溶解液供給管路S2)とを洗浄する手段が設けられている上記(1)〜(5)の何れかに記載する試料液溶解処理装置。
(7)複数の試料液を選択して溶解槽に供給する手段、複数の溶解液を選択して溶解槽に定量供給する手段が設けられている(1)〜(6)の試料液溶解処理装置。
(8)溶解槽が吸引管路L2を通じて連続流れ分析計に接続している(1)〜(7)の何れかに記載する試料液溶解処理装置。
(9)試料液の供給、溶解液の供給、および洗浄手段を制御する自動制御系が設けられており、試料液の供給から懸濁物の溶解および分析計への試料液の定量供給が自動的に行われる(1)〜(8)の何れかに記載する試料液溶解処理装置。
(10)懸濁物を含む試料液を受け入れる溶解槽、懸濁物の溶解液を溶解槽に供給する手段、溶解槽の試料液を分析計に供給する手段、溶解槽中の試料液を定量にする手段、溶解液を溶解槽に定量供給する手段、分析計に供給する試料液を定量にする手段を有し、溶解槽において懸濁物を溶解した試料液を分析計に定量供給することを特徴とする試料液の溶解処理方法。
According to the present invention, the following dissolution processing system is provided.
(1) In a sample solution processing apparatus having a dissolution tank for receiving a sample solution containing a suspension, means for supplying the suspension solution to the dissolution tank, and means for supplying the sample solution in the dissolution tank to the analyzer, It has means for quantifying the sample solution in the dissolution tank, means for quantitatively supplying the solution to the dissolution tank, and means for quantifying the sample solution supplied to the analyzer, and dissolves the suspension in the dissolution tank. A sample solution dissolution treatment apparatus characterized in that the sample solution is quantitatively supplied to an analyzer.
(2) The cushion tank is connected to the dissolution tank through the suction pipe L1, the pipe end of the suction pipe L1 is inserted into the dissolution tank, and the amount of the sample liquid is calculated as the pipe end length of the suction pipe L1. (1) The sample solution dissolution treatment apparatus according to (1), wherein means for quantifying the sample solution in the dissolution tank is formed by controlling the liquid level according to the above.
(3) The dissolution tank is connected to the analyzer through the suction line L2, and the tube end of the suction line L2 in the dissolution tank extends below the tube end of the suction line L1 leading to the cushion tank. (2) The sample solution dissolution processing apparatus according to (2) above, wherein a quantitative supply means for sucking the amount of liquid corresponding to the difference between the tube end lengths of the conduit L1 and the conduit L2 and sending it to the analyzer is formed.
(4) A switching valve is provided in the pipeline for supplying the dissolution liquid to the dissolution tank. The switching valve is provided with a loop of a certain length for storing the dissolution liquid, and the loop is connected to the supply pipeline. Then, the sample solution dissolution processing apparatus according to any one of the above (1) to (3), wherein a quantitative supply means for supplying a fixed amount of the solution to the dissolution tank is formed.
(5) In the apparatus of (4) above, the cushion tank is connected to the switching valve through the suction line L3, and the solution is sucked through the suction line L3 and introduced into the loop. A sample solution dissolution processing apparatus in which a dissolution liquid quantification means is formed that accumulates in the loop and guides the excessively sucked solution to a cushion tank.
(6) Means are provided for cleaning the pipe (sample liquid supply pipe S1) for supplying the sample liquid to the dissolution tank and the pipe (solution supply pipe S2) for supplying the dissolution liquid to the dissolution tank. The sample solution dissolution treatment apparatus according to any one of (1) to (5) above.
(7) Means for selecting and supplying a plurality of sample liquids to the dissolution tank, and means for selecting a plurality of dissolution liquids and quantitatively supplying them to the dissolution tank are provided (1) to (6). apparatus.
(8) The sample solution dissolution treatment apparatus according to any one of (1) to (7), wherein the dissolution tank is connected to the continuous flow analyzer through the suction line L2.
(9) An automatic control system for controlling the supply of sample liquid, the supply of dissolved liquid, and the washing means is provided to automatically dissolve the suspension from the supply of the sample liquid and supply the sample liquid quantitatively to the analyzer. The sample solution dissolution treatment apparatus described in any one of (1) to (8).
(10) Dissolution tank for receiving a sample solution containing a suspension, means for supplying the suspension solution to the dissolution tank, means for supplying the sample solution in the dissolution tank to the analyzer, and quantifying the sample solution in the dissolution tank Means for quantitatively supplying the dissolution liquid to the dissolution tank, and means for quantitative determination of the sample liquid supplied to the analyzer, and quantitatively supplying the sample liquid in which the suspension is dissolved in the dissolution tank to the analyzer A method for dissolving a sample solution, characterized by
本発明に係る懸濁物含有試料液の溶解処理システムは、懸濁物を溶解して試料液を規格(JIS K 0102)に準じた方法で処理することができ、さらに懸濁液の溶解から試料液の定量供給までの一連の処理操作を自動化することができるので、分析処理時間を大幅に短縮できる。さらに、本発明の溶解処理システムは、例えば連続流れ分析装置に組み合わせることによって、工場での排水中に含まれる有害金属イオン濃度の管理や、河川や海水中の有害金属イオン濃度の変化をモニタリングする調査などに有用である。 The dissolution treatment system for a suspension-containing sample solution according to the present invention can dissolve a suspension and treat the sample solution by a method in accordance with a standard (JIS K 0102). Since a series of processing operations up to the quantitative supply of the sample solution can be automated, the analysis processing time can be greatly shortened. Furthermore, the dissolution treatment system of the present invention is combined with, for example, a continuous flow analyzer to monitor the concentration of harmful metal ions contained in factory wastewater and monitor changes in the concentration of harmful metal ions in rivers and seawater. Useful for research.
本発明の溶解処理システムは、溶解槽内の試料液を一定量にすると共に、試料液に含まれる懸濁物を溶解する硝酸や硫酸、塩酸などの酸類あるいはアルカリ液等(これらを溶解液と云う)を一定量にして試料液に添加し、懸濁物を溶解した試料液を分析計に定量供給するので、懸濁物に付着した金属イオン等も含めて分析することができ、また試料液の濃度を正確に制御することができるので高精度の分析を行うことができる。 In the dissolution treatment system of the present invention, the sample solution in the dissolution tank is made to be a constant amount, and acids such as nitric acid, sulfuric acid, hydrochloric acid, or alkaline solution that dissolves the suspension contained in the sample solution (these are referred to as solution solution). Is added to the sample solution in a fixed amount, and the sample solution in which the suspension is dissolved is quantitatively supplied to the analyzer, so that analysis including metal ions attached to the suspension is possible. Since the concentration of the liquid can be accurately controlled, highly accurate analysis can be performed.
以下、本発明を具体的に説明する。
本発明の試料液溶解処理システムの概要を図1に示す。図示するように、本発明の試料液溶解システムは、懸濁物を含む試料液を受け入れる溶解槽10、懸濁物を溶解する溶解液を溶解槽10に供給する手段20、溶解槽10の試料液を分析計に供給する手段30を有しており、さらに溶解槽内の試料液を定量にする手段40、溶解液を溶解槽10に定量供給する手段50、分析計に供給する試料液を定量にする手段60を備えており、溶解槽10において懸濁物を溶解した試料液を分析計に定量供給することを特徴とする試料液溶解処理装置である。
The present invention will be specifically described below.
An outline of the sample solution dissolution processing system of the present invention is shown in FIG. As shown in the figure, the sample solution dissolving system of the present invention includes a dissolving tank 10 that receives a sample solution containing a suspension, means 20 for supplying a dissolving solution for dissolving the suspension to the dissolving tank 10, and a sample in the dissolving tank 10. Means 30 for supplying the solution to the analyzer, means 40 for quantifying the sample solution in the dissolution tank, means 50 for supplying the solution to the dissolution tank 10 in a fixed amount, and sample solution supplied to the analyzer. A sample solution dissolution processing apparatus is provided with means 60 for quantification and quantitatively supplies a sample solution in which a suspension is dissolved in the dissolution tank 10 to an analyzer.
本発明の溶解処理システムは、試料液に含まれている懸濁物を溶解するための溶解槽10を有している。溶解槽10には攪拌機11およびヒータ12が設けられており、槽底には排液管が接続しており、該排液管にはバルブFが設けられている。
The dissolution treatment system of the present invention has a dissolution tank 10 for dissolving a suspension contained in a sample solution. The dissolving tank 10 is provided with a
溶解槽10には試料液を供給する管路S1が接続している。該管路S1にはバルブDが装着されている。この管路S1には、図示するように、複数の試料液(試料A、試料B、試料C、…試料n)を供給する管路を設け、これらの試料液を選択して溶解槽10に供給する手段を形成しても良い。これらの管路には開閉バルブ(A-1、A-2、…A-n)が装着されており、管路S1と選択的に連通され、各試料液がそれぞれ溶解槽10に供給される。 A line S1 for supplying a sample solution is connected to the dissolution tank 10. A valve D is attached to the pipe line S1. As shown in the figure, the pipe S1 is provided with pipes for supplying a plurality of sample liquids (sample A, sample B, sample C,... Sample n), and these sample liquids are selected and supplied to the dissolution tank 10. Means for supplying may be formed. These pipes are equipped with open / close valves (A-1, A-2,..., A-n), are selectively communicated with the pipe S1, and each sample solution is supplied to the dissolution tank 10, respectively.
溶解槽10には吸引管路L1を通じてクッション槽41が接続している。管路L1の管端は溶解槽10の槽内に挿入されており、試料液の液量を管路L1の管端長さに応じた液面高さに制御することによって溶解槽内の試料液を定量にする手段が形成されている。管路L1はクッション槽41の槽内上部に開口しており、さらにクッション槽41を経由してエアポンプP3に接続している。一方、クッション槽41の槽底には排液管および排気菅が接続しており、それぞれバルブI、バルブJが設けられている。クッション槽41に導入された余剰の試料液は排液管を通じて系外に排出される。 A cushion tank 41 is connected to the dissolution tank 10 through a suction line L1. The pipe end of the pipe L1 is inserted into the tank of the dissolution tank 10, and the sample in the dissolution tank is controlled by controlling the amount of the sample liquid to the liquid level according to the pipe end length of the pipe L1. A means for quantifying the liquid is formed. The pipe line L1 opens to the upper part in the tank of the cushion tank 41, and is further connected to the air pump P3 via the cushion tank 41. On the other hand, a drainage pipe and an exhaust pipe are connected to the tank bottom of the cushion tank 41, and a valve I and a valve J are provided respectively. Excess sample liquid introduced into the cushion tank 41 is discharged out of the system through a drain pipe.
溶解槽10は吸引管路L2を通じて分析計に接続している。管路L2の管端は溶解槽10の槽内に挿入されており、クッション槽41に通じる管路L1の管端よりも下側に延びており、この管路L1と管路L2の管端長さの差に応じた液量を吸引して分析計に送る定量供給手段が形成されている。 The dissolution tank 10 is connected to the analyzer through the suction line L2. The pipe end of the pipe line L2 is inserted into the tank of the dissolution tank 10 and extends below the pipe end of the pipe line L1 leading to the cushion tank 41. The pipe ends of the pipe line L1 and the pipe line L2 A fixed amount supply means for sucking the amount of liquid according to the difference in length and sending it to the analyzer is formed.
溶解槽10には溶解液を供給する管路S2が接続している。管路S2の他端は溶解液の貯槽53に接続している。また、この管路S2には溶解液を定量供給する手段50が設けられている。図2に示す定量供給手段50は、管路S2に設けた切替バルブ51と、切替バルブ51に装着された一定長さのループ52によって形成されている。図示する切替バルブ51は6個の通孔を有する六方バルブを用いると良い。相対向する2つの通孔はループ52によって連通されており、他の通孔は溶解液供給管路S2、洗浄液管路S3、吸引管路L3に接続するように形成されている。上記ループ52の長さによって溶解液量を調整することができる。
The dissolution tank 10 is connected to a pipeline S2 for supplying a solution. The other end of the pipe line S2 is connected to a
バルブ51を回してループ52の一端を貯槽53側の管路S2に接続し、ループ52の他端を吸引管路L3に接続して、溶解液をループ52に吸引することによってループ52に一定量の溶解液を保持することができる。次いで、バルブ51を回して管路の接続を切り替え、ループ52に保持した溶解液が溶解槽10に供給される。
By turning the
図示する例では、切替バルブ51には吸引管路L3を通じてクッション槽54が接続している。管路L3はクッション槽54の槽内上部に開口しており、さらにクッション槽54を経由してエアポンプP2に接続している。管路L3を通じて溶解液を吸引して上記ループ52に導入し、一定量の溶解液を該ループ52に溜めると共に、余剰に吸引した溶解液が管路L3を通じてクッション槽54に導かれる。クッション槽54の槽底には排液管および排気菅が接続しており、それぞれバルブL、バルブMが設けられている。クッション槽54に導入された余剰の溶解液は排液管を通じて系外に排出される。
In the illustrated example, the
この管路S2には、図示するように、複数の溶解液(溶解液A、溶解液B、溶解液C、溶解液D、…溶解液n)を供給する管路を設け、これらの溶解液を選択して溶解槽10に供給する手段を形成しても良い。これらの管路には開閉バルブ(N-1、N-2、…N-n)が装着されており、管路S2と選択的に連通され、各溶解液がそれぞれ溶解槽10に供給される。 As shown in the figure, this pipe S2 is provided with pipes for supplying a plurality of dissolution liquids (dissolution liquid A, dissolution liquid B, dissolution liquid C, dissolution liquid D,... Dissolution liquid n). A means for selecting and supplying to the dissolution tank 10 may be formed. These pipes are equipped with open / close valves (N-1, N-2,..., N-n), are selectively communicated with the pipe S2, and each solution is supplied to the dissolution tank 10, respectively.
図示する例では、試料液供給管路S1を洗浄する手段70が設けられている。この洗浄手段70は洗浄液の貯槽71、試料液供給管路S1に連通する管路72を有している。管路72には送液ポンプP1、バルブB、Cが介設されている。該管路72を通じて洗浄液を管路S1に導入して洗浄する。
In the example shown in the figure, means 70 for cleaning the sample solution supply pipe S1 is provided. The cleaning means 70 includes a cleaning
また、上記貯槽71には切替バルブ51に連通する管路73が接続しており、該管路73にポンプP4が介設されている。該バルブ51のループ52に溜めた溶解液を溶解槽10に供給するときには、該管路73が切替バルブ51に接続され、ポンプP4によって洗浄水が切替バルブ51のループ52に導入され、溶解液を溶解槽10に押し出すキャリアー液として用いられる。
Further, a
本発明の上記溶解処理システムは、試料液の供給、溶解液の供給、および洗浄手段を制御する自動制御系(図示省略)を設けることによって、試料液の供給から懸濁物の溶解および分析計への試料液の定量供給を自動的に行うとことができる。 The dissolution processing system of the present invention is provided with an automatic control system (not shown) for controlling the supply of the sample solution, the supply of the solution, and the washing means, thereby dissolving the suspension from the sample solution supply and the analyzer. It is possible to automatically perform a quantitative supply of the sample solution to the.
本発明の上記溶解処理システムは、吸引管路L2を通じて連続流れ分析計に接続することによって、懸濁物を含む試料液についても連続流れ分析を適用することができる。 The dissolution processing system of the present invention can apply the continuous flow analysis to the sample liquid containing the suspension by connecting to the continuous flow analyzer through the suction line L2.
本発明の溶解処理システムは上記構成を有する。上記構成に基づいた具体的な装置設計においては、以下のようにすると良い。
(1)溶解槽10はカバーが取り付けられる仕様であるものが好ましく、カバーは2口以上のものを使用すると良い。溶解槽10の排液管は内径1mm以上が適当である。(2)溶解槽10の攪拌機11はガラス製もしくはポリテトラフルオロエチレン製の攪拌棒と攪拌翼を備え、最大回転速度が50rpm以上のものが好ましい。(3)クッション槽はガラス製もしくはフッ素加工樹脂製のものが好ましい。(4)配管は内径2mm以上のシリコン製チューブ、ポリテトラフルオロエチレン製チューブ、タイゴン製チューブ、テフゼルチューブが適当であり、例えば、内径6mmのシリコンチューブ等を用いると良い。(5)洗浄水を流すポンプは大流量の送液ポンプが好ましい。また、溶解液を流すポンプはペリスタリックポンプ等を使用すると良い。
The dissolution treatment system of the present invention has the above configuration. In a specific device design based on the above configuration, the following is preferable.
(1) It is preferable that the melting tank 10 has a specification to which a cover is attached, and it is preferable to use two or more covers. The drainage pipe of the dissolution tank 10 has an inner diameter of 1 mm or more. (2) The
(6)バルブはピンチバルブまたはダイアフラムバルブを用いることができる。(7)切替バルブは6方バルブもしくはピンチバルブを使用すると良い。ループは概ね容量が10mlになる長さであれば良く、シリコン製、ポリテトラフルオロエチレン製、タイゴン製、テフゼルチューブ等を用いると良い。(8)エアポンプの作動を円滑に維持するように、クッション槽とエアポンプとの間にミストトラップを設けると良い。(9)必要に応じて試料を加熱および冷却する加熱・冷却手段を設けても良い。(10)洗浄水は、試料液管路S1および溶解液管路S2を洗浄しないときには、管路72を通じて常時循環させておくと良い。(11)溶解液は試料液に含まれる懸濁物を溶解すると共に測定対象元素の溶出および測定対象元素の測定条件に適した酸またはアルカリ等を用いる。
(6) A pinch valve or a diaphragm valve can be used as the valve. (7) A 6-way valve or a pinch valve may be used as the switching valve. The loop has only to have a length of approximately 10 ml, and it is preferable to use silicon, polytetrafluoroethylene, Tygon, Tefzel tube, or the like. (8) A mist trap may be provided between the cushion tank and the air pump so as to smoothly maintain the operation of the air pump. (9) A heating / cooling means for heating and cooling the sample may be provided as necessary. (10) The washing water may be circulated through the
上記溶解処理システムの操作手順を以下に示す。
〔試料液の供給〕
(1)管路S1のバルブA-1〜A-nおよびバルブDを開け、試料(120ml程度)を溶解槽10に流し込む。操作終了後、これらのバルブA-n、バルブDを閉じる。
(2)管路L1のバルブGを開け、エアポンプP3を作動させ、管路L1を通じて過剰量の試料液を吸引し、溶解槽10の試料液を管路L1の管端長さに応じた液面高にすることによって、溶解槽内の試料液を一定量にする。操作終了後、バルブGを閉じ、ポンプP3を停止し、バルブI、Jを開け、クッション槽41の試料液を排出する。その後、バルブIおよびバルブJを閉じる。
The operation procedure of the dissolution treatment system is shown below.
(Sample solution supply)
(1) The valves A-1 to An and the valve D of the pipe line S1 are opened, and the sample (about 120 ml) is poured into the dissolution tank 10. After the operation is completed, the valves An and D are closed.
(2) The valve G of the pipe line L1 is opened, the air pump P3 is operated, an excessive amount of sample liquid is sucked through the pipe line L1, and the liquid sample corresponding to the pipe end length of the pipe line L1 is drawn. By making the surface height, the sample solution in the dissolution tank is made a fixed amount. After the operation is completed, the valve G is closed, the pump P3 is stopped, the valves I and J are opened, and the sample liquid in the cushion tank 41 is discharged. Thereafter, the valve I and the valve J are closed.
〔溶解液の供給〕
(3)管路S2のバルブN-1〜N-n、管路L3のバルブKを開け、エアポンプP2を作動させて、溶解液を吸引し、切替バルブ51のループ52に一定量の溶解液を導入する。操作終了後にバルブN-nおよびバルブKを閉じ、エアポンプP2を停止し、バルブLおよびバルブMを開け、クッション槽54に流れた余剰の溶解液を排出する。その後、バルブL、Mを閉じる。
(4)切替バルブ51を回してループ52を溶解槽側の管路S2と管路73に接続し、管路S2のバルブEを開けて送液ポンプP4を作動させ、管路73を通じて貯槽71の水をループ52に導入し、ループ内の溶解液を溶解槽10に送り出す。操作終了後にバルブEを閉じ、ポンプP4を停止する。
[Supply of solution]
(3) Open the valves N-1 to Nn of the pipe line S2 and the valve K of the pipe line L3, operate the air pump P2, suck the solution, and introduce a certain amount of solution into the loop 52 of the switching
(4) The switching
〔溶解・定量供給〕
(5)ヒータ12で溶解槽10を80℃程度まで加熱し、攪拌機を回転(300rpm程度)させて槽内の試料液に含まれる懸濁物を溶解する。溶解操作終了後、攪拌機を停止し、管路L2のバルブHを開け、溶解槽内の試料液を分析装置に導入する。管路L2の管端は管路L1の管端よりも下側に延びているので、この管路L1と管路L2の管端長さの差に応じた一定量の試料液が分析装置に送られる。導入終了後、バルブHを閉じる。
(6)溶解槽10のバルブFを開け、槽内に残留した試料液と不溶性成分を排出する。排出終了後、バルブFを閉じる。
[Dissolution / Quantitative supply]
(5) The dissolution tank 10 is heated to about 80 ° C. with the
(6) Open the valve F of the dissolution tank 10 and discharge the sample liquid and insoluble components remaining in the tank. After the discharge is completed, the valve F is closed.
〔洗浄作業〕
(7)管路72のバルブBを閉じ、管路S1のバルブA-1〜A-n、管路72のバルブCを開けて、ポンプP1を作動させて洗浄液を管路S1に供給することによって管路S1を洗浄する。
(8)バルブA-1〜A-nを閉じ、バルブDを開け、溶解槽10に洗浄液(400ml程度)を流し入れる。その後、槽底のバルブFを開けて洗浄水を排出する。排出終了後、バルブFを閉じる。
(9)上記操作(7)(8)を繰り返して管路S1、溶解槽10を洗浄する。
(10)洗浄後、管路72のバルブC、管路S1のバルブDを閉じ、管路72のバルブBを開けて洗浄水を循環させておく。
なお、上記(1)〜(10)の一連の操作はプログラマブルコントローラー(シーケンサー、PLC)によって全自動運転させると良い。なお、溶解時間は1試料あたり約15分程度で良い。
[Cleaning work]
(7) The valve B of the
(8) The valves A-1 to An are closed, the valve D is opened, and the cleaning liquid (about 400 ml) is poured into the dissolution tank 10. Thereafter, the valve F at the bottom of the tank is opened to discharge the washing water. After the discharge is completed, the valve F is closed.
(9) The above operations (7) and (8) are repeated to wash the pipe line S1 and the dissolution tank 10.
(10) After washing, the valve C of the
The series of operations (1) to (10) may be fully automatic operation by a programmable controller (sequencer, PLC). The dissolution time may be about 15 minutes per sample.
試料液A〜Eについて、図1に示す溶解処理システムに基づいて懸濁物を溶解し、各試料液のカドミウム、ヒ素、セレン、アンチモンの各濃度を連続流れ分析によって測定した。溶解槽に導入した試料液量は120mlであり、余剰量20mlをクッション槽41に吸引した。一方、溶解液として硝酸10mlを吸引してバルブ51のループ52に保持させ、管路の接続を切り替えて上記硝酸を溶解槽に導入し、槽内の液を攪拌して懸濁物を溶解した。なお、アンチモンについては溶解液として塩酸10mlを用いた。溶解処理後に試料液を分析計に導入した。溶解槽内の残液および不溶性成分は槽底から系外に排出した。この結果を表1に示した。また、参考のため、公定法(JIS K 0102の分析法)による分析結果と、硝酸または塩酸を添加せずに測定した分析結果(比較法:懸濁物未溶解)を表1に併せて示した。
For sample solutions A to E, the suspension was dissolved based on the dissolution treatment system shown in FIG. 1, and the concentrations of cadmium, arsenic, selenium and antimony in each sample solution were measured by continuous flow analysis. The amount of the sample solution introduced into the dissolution tank was 120 ml, and an excess amount of 20 ml was sucked into the cushion tank 41. On the other hand, 10 ml of nitric acid was sucked as a dissolving liquid and held in the loop 52 of the
表1に示すように、本発明の溶解処理システムを適用した分析は公定法とほぼ一致した結果が得られる。一方、懸濁物を溶解しない比較法の分析結果は公定法および本発明法と大きく異なり、信頼性が低い。 As shown in Table 1, the analysis to which the dissolution processing system of the present invention is applied gives a result almost in agreement with the official method. On the other hand, the analysis result of the comparative method that does not dissolve the suspension is greatly different from the official method and the method of the present invention, and the reliability is low.
10−溶解槽、11−攪拌機、12−ヒータ、20−溶解液供給手段、30−分析計供給手段、40−試料液定量手段、41−クッション槽、50−溶解液定量供給手段、51−切替バルブ、52−ループ、53−溶解液貯槽、54−クッション槽、60−試料液定量手段、70−洗浄手段、71−洗浄液貯槽、72−管路、73−管路、S1−試料液供給管路、S2−溶解液供給管路、L1、L2、L3−吸引管路、
10-dissolution tank, 11-stirrer, 12-heater, 20-solution supply means, 30-analyzer supply means, 40-sample liquid quantification means, 41-cushion tank, 50-solution quantification supply means, 51-switching Valve, 52-loop, 53-solution storage tank, 54-cushion tank, 60-sample liquid quantification means, 70-cleaning means, 71-cleaning liquid storage tank, 72-line, 73-line, S1-sample liquid supply pipe Path, S2-solution supply line, L1, L2, L3-suction line,
Claims (10)
In a sample solution processing apparatus having a dissolution tank for receiving a sample solution containing a suspension, a means for supplying the suspension solution to the dissolution tank, and a means for supplying the sample solution in the dissolution tank to the analyzer. A sample solution in which the suspension is dissolved in the dissolution tank, and a means for quantitatively supplying the solution to the dissolution tank, and a means for quantitatively determining the sample solution supplied to the analyzer. A sample solution dissolution treatment apparatus characterized in that the sample solution is quantitatively supplied to an analyzer.
A cushion tank is connected to the dissolution tank through the suction pipe L1, and the pipe end of the suction pipe L1 is inserted into the dissolution tank, and the amount of the sample liquid is determined according to the pipe end length of the suction pipe L1. The sample solution dissolution treatment apparatus according to claim 1, wherein means for quantifying the sample solution in the dissolution tank is formed by controlling the height of the solution.
The dissolution tank is connected to the analyzer through the suction line L2, and the tube end of the suction line L2 in the dissolution tank extends below the tube end of the suction line L1 leading to the cushion tank. 3. The sample solution dissolution processing apparatus according to claim 2, wherein a fixed amount supply means is formed for sucking the amount of liquid corresponding to the difference between the tube end lengths of the passage L1 and the passage L2 and sending it to the analyzer.
A switching valve is provided in the pipeline for supplying the lysis solution to the lysis tank, and the switching valve is provided with a loop of a certain length for storing the lysis solution, and the loop is connected to the supply pipeline to be constant. The sample solution dissolution treatment apparatus according to any one of claims 1 to 3, wherein a quantitative supply means for supplying an amount of the dissolution solution to the dissolution tank is formed.
5. The apparatus according to claim 4, wherein a cushion tank is connected to the switching valve through a suction line L3, and a solution is sucked through the suction line L3 and introduced into the loop, and a certain amount of solution is stored in the loop. At the same time, a sample solution dissolution treatment apparatus in which a quantification means for the solution is formed to guide the excessively sucked solution to the cushion tank.
A means for cleaning a pipe (sample liquid supply pipe S1) for supplying the sample liquid to the dissolution tank and a pipe (solution supply pipe S2) for supplying the dissolution liquid to the dissolution tank are provided. The sample solution dissolution treatment apparatus according to any one of 1 to 5
7. The sample solution dissolution treatment apparatus according to claim 1, further comprising means for selecting and supplying a plurality of sample solutions to the dissolution tank and means for selecting and supplying a plurality of dissolution solutions to the dissolution tank.
The sample solution dissolution treatment apparatus according to any one of claims 1 to 7, wherein the dissolution tank is connected to the continuous flow analyzer through the suction line L2.
An automatic control system is provided to control sample solution supply, solution supply, and cleaning means, and it automatically performs sample solution supply to suspension dissolution and sample solution quantitative supply to the analyzer. The sample solution dissolution treatment apparatus according to claim 1.
Dissolution tank for receiving a sample solution containing a suspension, means for supplying the suspension solution to the dissolution tank, means for supplying the sample solution in the dissolution tank to the analyzer, means for quantifying the sample solution in the dissolution tank And a means for quantitatively supplying the dissolution liquid to the dissolution tank and a means for quantitatively determining the sample liquid supplied to the analyzer, characterized in that the sample liquid in which the suspension is dissolved in the dissolution tank is quantitatively supplied to the analyzer. A method for dissolving the sample solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005199685A JP4678250B2 (en) | 2005-07-08 | 2005-07-08 | Sample solution dissolution treatment apparatus and dissolution treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005199685A JP4678250B2 (en) | 2005-07-08 | 2005-07-08 | Sample solution dissolution treatment apparatus and dissolution treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007017313A true JP2007017313A (en) | 2007-01-25 |
JP4678250B2 JP4678250B2 (en) | 2011-04-27 |
Family
ID=37754600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005199685A Active JP4678250B2 (en) | 2005-07-08 | 2005-07-08 | Sample solution dissolution treatment apparatus and dissolution treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4678250B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110031272A (en) * | 2018-01-08 | 2019-07-19 | 基础科学公司 | Disappear molten and the multiple sample introduction systems of connection systems for automatic sampling, sample |
CN118112202A (en) * | 2024-03-05 | 2024-05-31 | 南方海洋科学与工程广东省实验室(广州) | Online monitoring device and method for source elements in river water body and suspended sand |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032563A (en) * | 1989-05-30 | 1991-01-08 | Nippon Oil & Fats Co Ltd | Automatic analyzer for soap |
JPH03248060A (en) * | 1990-02-27 | 1991-11-06 | Hitachi Ltd | Analyzing method of metallic impurity including insoluble fine particle and apparatus therefor |
JPH04371334A (en) * | 1991-06-17 | 1992-12-24 | Mitsubishi Materials Corp | Device for supplying lubricant for metallic die |
JPH0517550U (en) * | 1991-08-21 | 1993-03-05 | 日機装株式会社 | Continuous batch iron analyzer |
JPH05264413A (en) * | 1992-03-17 | 1993-10-12 | Fujikura Ltd | Method and apparatus for forming meniscus liquid surface |
JPH07333212A (en) * | 1994-06-10 | 1995-12-22 | Mitsubishi Materials Corp | Automatic measurement of concentration of very small amount of cadmium in waste water |
JPH1164343A (en) * | 1997-08-26 | 1999-03-05 | Dkk Corp | Flow injection analyzing apparatus |
JP3237312B2 (en) * | 1993-06-22 | 2001-12-10 | 横河電機株式会社 | Iron measurement device |
JP2003202331A (en) * | 2002-01-08 | 2003-07-18 | Yokogawa Electric Corp | On-line analyzer |
JP2004534654A (en) * | 2001-07-17 | 2004-11-18 | ジー.アイ.シー. ケーエフティー | Method and apparatus for underwater decomposition of organic components in conductive aqueous wastewater |
-
2005
- 2005-07-08 JP JP2005199685A patent/JP4678250B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032563A (en) * | 1989-05-30 | 1991-01-08 | Nippon Oil & Fats Co Ltd | Automatic analyzer for soap |
JPH03248060A (en) * | 1990-02-27 | 1991-11-06 | Hitachi Ltd | Analyzing method of metallic impurity including insoluble fine particle and apparatus therefor |
JPH04371334A (en) * | 1991-06-17 | 1992-12-24 | Mitsubishi Materials Corp | Device for supplying lubricant for metallic die |
JPH0517550U (en) * | 1991-08-21 | 1993-03-05 | 日機装株式会社 | Continuous batch iron analyzer |
JPH05264413A (en) * | 1992-03-17 | 1993-10-12 | Fujikura Ltd | Method and apparatus for forming meniscus liquid surface |
JP3237312B2 (en) * | 1993-06-22 | 2001-12-10 | 横河電機株式会社 | Iron measurement device |
JPH07333212A (en) * | 1994-06-10 | 1995-12-22 | Mitsubishi Materials Corp | Automatic measurement of concentration of very small amount of cadmium in waste water |
JPH1164343A (en) * | 1997-08-26 | 1999-03-05 | Dkk Corp | Flow injection analyzing apparatus |
JP2004534654A (en) * | 2001-07-17 | 2004-11-18 | ジー.アイ.シー. ケーエフティー | Method and apparatus for underwater decomposition of organic components in conductive aqueous wastewater |
JP2003202331A (en) * | 2002-01-08 | 2003-07-18 | Yokogawa Electric Corp | On-line analyzer |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110031272A (en) * | 2018-01-08 | 2019-07-19 | 基础科学公司 | Disappear molten and the multiple sample introduction systems of connection systems for automatic sampling, sample |
JP2019135486A (en) * | 2018-01-08 | 2019-08-15 | エレメンタル・サイエンティフィック・インコーポレイテッドElemental Scientific, Inc. | Automatic sampling, sample digestion, and system for joining multiple sample introduction system |
JP7361471B2 (en) | 2018-01-08 | 2023-10-16 | エレメンタル・サイエンティフィック・インコーポレイテッド | System for automated sampling, sample digestion, and joining of multiple sample introduction systems |
CN110031272B (en) * | 2018-01-08 | 2024-07-12 | 基础科学公司 | System for automatic sampling, sample desolventizing and linking multiple sample introduction systems |
CN118112202A (en) * | 2024-03-05 | 2024-05-31 | 南方海洋科学与工程广东省实验室(广州) | Online monitoring device and method for source elements in river water body and suspended sand |
Also Published As
Publication number | Publication date |
---|---|
JP4678250B2 (en) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4879485B2 (en) | Sample dilution apparatus and sample dilution method | |
CN105716933B (en) | A kind of constant volume dilution proportion device and method | |
US9518900B2 (en) | Sample preparation system for an analytical system for determining a measured variable of a liquid sample | |
CN105738287B (en) | Water Test Kits | |
US20060133964A1 (en) | Closed loop automated matrix removal | |
CN112444584B (en) | Online ion chromatographic analysis system and method for anions in steam generator wastewater | |
JP4764441B2 (en) | Pretreatment device for analyzing metal concentration in waste water and analysis system equipped with the pretreatment device | |
JP4678250B2 (en) | Sample solution dissolution treatment apparatus and dissolution treatment method | |
CN118794934A (en) | Sample detection device | |
CN209673712U (en) | BOD Quick testing instrument | |
JP4367240B2 (en) | Automatic water quality measuring instrument | |
US20190178834A1 (en) | Bead Mixer / Cleaner For Use With Sensor Devices | |
JP6568434B2 (en) | Iodine concentration measuring device | |
CN112816309A (en) | Automatic sample dilution system and dilution method | |
JP6390351B2 (en) | Analysis equipment | |
JP4996959B2 (en) | Automatic analyzer with dispensing probe and control method thereof | |
CN109709197A (en) | BOD Quick testing instrument and accurately compensate measuring method | |
JP7267360B2 (en) | Sample analysis device and sample analysis method | |
KR101769736B1 (en) | Apparatus for Automatically Analyzing Chemical Oxygen Demand | |
JP2001296305A (en) | Sample solution automatic analyzing device and method | |
WO2022075063A1 (en) | Analysis system and management system, analysis method, and analysis program | |
CN104865099B (en) | Suitable for the multifunction sampling pond of fermented sample treatment | |
JP5905302B2 (en) | Surface deposit measurement device | |
JPH03272464A (en) | Apparatus for automatically and continuously analyzing cod in waste water | |
CN206435545U (en) | A kind of suction needle purging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100922 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4678250 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |