JP2007017277A - Hydrogen pressure sensor - Google Patents

Hydrogen pressure sensor Download PDF

Info

Publication number
JP2007017277A
JP2007017277A JP2005198975A JP2005198975A JP2007017277A JP 2007017277 A JP2007017277 A JP 2007017277A JP 2005198975 A JP2005198975 A JP 2005198975A JP 2005198975 A JP2005198975 A JP 2005198975A JP 2007017277 A JP2007017277 A JP 2007017277A
Authority
JP
Japan
Prior art keywords
hydrogen
substrate
pressure sensor
hydrogen pressure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198975A
Other languages
Japanese (ja)
Other versions
JP4400521B2 (en
Inventor
Hidekazu Furukubo
英一 古久保
Takeshi Nobe
武 野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005198975A priority Critical patent/JP4400521B2/en
Publication of JP2007017277A publication Critical patent/JP2007017277A/en
Application granted granted Critical
Publication of JP4400521B2 publication Critical patent/JP4400521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the structure, to increase the accuracy, and to provide a sufficient responsiveness, in a hydrogen pressure sensor for detecting the hydrogen pressure in mixture gas. <P>SOLUTION: The periphery of a pair of mutually facing substrates 12 and 13 is sealed with a spacer 14 using an MEMS technology or the like, thereby forming a sealed inner volume as a vacuum atmosphere. At least one of the pair of substrates 12 and 13 has flexibility, and at least one has hydrogen permeability. Variation of the inner volume due to hydrogen permeation is detected based on the variation of capacitance between the facing electrodes 15 and 16. Therefore, this sensor can be prepared in a simple process, and has higher accuracy and more sufficient responsiveness than a strain gauge or the like. Consumed electric current for detection can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、共存ガス中の水素濃度のみを選択的に測定する水素圧センサに関する。   The present invention relates to a hydrogen pressure sensor that selectively measures only the hydrogen concentration in a coexisting gas.

典型的な従来技術の水素濃度センサは、たとえば特許文献1や特許文献2で示され、水素吸蔵合金や、安定化ジルコニアなどの特殊な材料が必要になり、コストが嵩むという問題がある。   A typical conventional hydrogen concentration sensor is disclosed in, for example, Patent Document 1 and Patent Document 2, and requires a special material such as a hydrogen storage alloy or stabilized zirconia, which increases the cost.

そこで、他の従来技術である特許文献3では、水素透過膜を用いて、選択的に水素を取出し、その濃度を測定している。図6は、その水素圧センサの構造を示す断面図である。この従来技術によれば、一端をダイヤフラム1で閉塞したステンレス製の筒状体2の他端に水素透過膜3を設けて減圧した密閉空間を形成し、水素透過による前記密閉空間の膨縮を前記ダイヤフラム1に貼付けた歪みゲージ4で検出している。   Therefore, in Patent Document 3 as another prior art, hydrogen is selectively taken out using a hydrogen permeable membrane and the concentration thereof is measured. FIG. 6 is a cross-sectional view showing the structure of the hydrogen pressure sensor. According to this prior art, a hydrogen permeable membrane 3 is provided on the other end of a stainless steel cylindrical body 2 whose one end is closed by a diaphragm 1 to form a reduced pressure sealed space, and expansion and contraction of the sealed space by hydrogen permeation is achieved. Detection is performed with a strain gauge 4 attached to the diaphragm 1.

なお、この従来技術では、多孔質セラミックス膜内にPd膜源やPd合金膜源を吸引させたものを水素透過膜3としているが、ガラス、樹脂、金属なども、膜厚が薄ければ、水素の透過が充分可能である。なお、水素よりも分子が細かいヘリウムがより透過し易いけれども、自然界に存在する割合が微小であるので、水素濃度の検出結果に影響を及ぼすことはない。
特開2004−233097号公報 特開平10−123093号公報 特開平9−145585号公報
In this prior art, the hydrogen permeable film 3 is a porous ceramic film in which a Pd film source or a Pd alloy film source is sucked. However, glass, resin, metal, etc., if the film thickness is thin, Permeation of hydrogen is sufficiently possible. Although helium, which has finer molecules than hydrogen, is easier to permeate, it does not affect the detection result of the hydrogen concentration because the ratio existing in nature is very small.
JP 2004-233097 A JP-A-10-123093 JP-A-9-145585

上述の従来技術は、半導体による水素圧センサの問題点を解決するためになされたものであり、前記水素透過膜を用いるものの、大掛かりであり、しかも歪みゲージを用いることで、精度が低く、かつ応答性が低いという問題がある。   The above-described prior art is made to solve the problem of a hydrogen pressure sensor using a semiconductor, and although using the hydrogen permeable membrane, it is large-scale and has a low accuracy by using a strain gauge, and There is a problem of low responsiveness.

本発明の目的は、簡単な工程で作製可能であり、しかも歪みゲージなどに比べて、高精度で、かつ良好な応答性を得ることができる水素圧センサを提供することである。   An object of the present invention is to provide a hydrogen pressure sensor that can be manufactured by a simple process and that can obtain high response and high responsiveness compared to a strain gauge or the like.

本発明の水素圧センサは、相互に対向して配置され、少なくとも一方が可撓性を有し、かつ少なくとも一方が水素透過性を有し、周囲を気密に封止することで、真空雰囲気となる密閉された内容積を形成する一対の基板と、前記一対の基板の少なくとも一部分に相互に対向して形成される対向電極とを含み、水素分子透過による内容積の圧力(=H分圧)の上昇によって前記可撓性の基板が撓み、その撓みによる対向電極間の静電容量の変化から、外部雰囲気の水素分圧を検出することを特徴とする。 The hydrogen pressure sensor of the present invention is disposed so as to face each other, at least one of which is flexible and at least one of which is hydrogen permeable, and the surroundings are hermetically sealed, thereby providing a vacuum atmosphere. A pair of substrates forming a sealed inner volume, and a counter electrode formed to face at least a part of the pair of substrates, the pressure of the inner volume by hydrogen molecule permeation (= H 2 partial pressure) ), The flexible substrate is bent, and the hydrogen partial pressure in the external atmosphere is detected from the change in capacitance between the counter electrodes due to the bending.

上記の構成によれば、MEMS(Micro Electro Mechanical Systems)技術などを用いて、相互に対向する一対の基板の周囲を気密に封止することで、真空雰囲気となる密閉された内容積を形成し、前記一対の基板の少なくとも一方が可撓性を有し、かつ少なくとも一方が水素透過性を有するように形成することで、外部雰囲気から水素分子が前記水素透過性を有する基板を透過して前記内容積を増大させ、その増大量から外部雰囲気の水素分圧を検出するようにした水素圧センサであって、前記内容積の増大量の検出のために、一対の基板の少なくとも一部分に相互に対向して、金属薄膜などの対向電極を形成しておき、その対向電極間の静電容量の変化から、外部雰囲気の水素分圧を検出する。   According to the above configuration, by using a micro electro mechanical systems (MEMS) technique or the like, a hermetically sealed inner volume that forms a vacuum atmosphere is formed by hermetically sealing the periphery of a pair of substrates facing each other. By forming at least one of the pair of substrates to be flexible and at least one to be hydrogen permeable, hydrogen molecules permeate the hydrogen permeable substrate from the outside atmosphere and A hydrogen pressure sensor that increases an internal volume and detects a hydrogen partial pressure of an external atmosphere from the increased amount, and detects at least a part of a pair of substrates for detecting an increased amount of the internal volume. A counter electrode such as a metal thin film is formed oppositely, and a hydrogen partial pressure in the external atmosphere is detected from a change in capacitance between the counter electrodes.

したがって、簡単な工程で作製可能であり、しかも歪みゲージなどに比べて、高精度で、かつ良好な応答性を得ることができる。また、検出のための消費電流を低減することができる。   Therefore, it can be manufactured by a simple process, and it is possible to obtain a high responsiveness with high accuracy as compared with a strain gauge or the like. Further, current consumption for detection can be reduced.

また、本発明の水素圧センサは、前記一対の基板のうちの一方の基板が可撓性を有し、かつ水素透過性を有し、他方の基板が剛性の基板であることを特徴とする。   In the hydrogen pressure sensor according to the present invention, one of the pair of substrates is flexible and has hydrogen permeability, and the other substrate is a rigid substrate. .

上記の構成によれば、可撓性のある基板が水素分子を透過させる構造とすることで、水素が透過し難い剛性の基板の方は厚みの精度が不要になり、加工コストを低減することができる。   According to the above configuration, since a flexible substrate allows hydrogen molecules to pass therethrough, a rigid substrate that does not easily transmit hydrogen does not require thickness accuracy, and processing costs can be reduced. Can do.

さらにまた、本発明の水素圧センサは、可撓性を有する前記一方の基板において、略中央部が剛性を有し、かつその部分に対向電極が形成され、周縁部が可撓性を有し、かつ水素透過性を有することを特徴とする。   Furthermore, in the hydrogen pressure sensor of the present invention, in the one substrate having flexibility, the substantially central portion has rigidity, a counter electrode is formed in the portion, and the peripheral portion has flexibility. And having hydrogen permeability.

上記の構成によれば、可撓性を有する前記一方の基板において、周縁部が可撓性を有し(たとえばべローズ状)、かつ水素透過性を有することで、前記水素分子の透過およびそれによる内容積の増大/縮小を可能とする。一方、略中央部を剛性にして、かつその部分に対向電極を形成することで、前記内容積の増大に対して対向電極に撓みが生じることなく、かつ前記内容積が同じ圧であれば、毎回同じように膨らみ、対向電極の平行度および間隔を同じように再現することができる。   According to the above configuration, in the one substrate having flexibility, the peripheral portion has flexibility (for example, a bellows shape) and has hydrogen permeability, so that the hydrogen molecules can be transmitted and It is possible to increase / decrease the internal volume. On the other hand, by making the substantially central portion rigid and forming the counter electrode in that portion, the counter electrode is not bent with respect to the increase in the internal volume, and the internal volume is the same pressure, Each time it swells in the same way, the parallelism and spacing of the counter electrodes can be reproduced in the same way.

したがって、検出精度を高めることができる。   Therefore, the detection accuracy can be increased.

また、本発明の水素圧センサは、可撓性を有する前記一方の基板において、略中央部が剛性を有し、かつその部分に対向電極が形成されて検出電極となり、その周縁部が可撓性を有し、かつ水素透過性を有し、さらに最外周部分が剛性を有し、かつ前記剛性を有する他方の基板への取付け部となるとともに、その部分に対向電極が形成されて参照電極となり、前記検出電極と前記他方の基板において対向する電極との間の容量成分と、前記参照電極と前記他方の基板において対向する電極との間の容量成分との差分を取る演算手段をさらに備えることを特徴とする。   In the hydrogen pressure sensor according to the present invention, in the one substrate having flexibility, the substantially central portion has rigidity, and a counter electrode is formed in that portion to form a detection electrode, and the peripheral portion thereof is flexible. And has hydrogen permeability, the outermost peripheral portion has rigidity, and becomes a mounting portion to the other substrate having the rigidity, and a counter electrode is formed in that portion, and a reference electrode And calculating means for calculating a difference between a capacitance component between the detection electrode and the opposite electrode on the other substrate and a capacitance component between the reference electrode and the opposite electrode on the other substrate. It is characterized by that.

上記の構成によれば、一対の前記対向電極を、可撓性を有する一方の基板の略中央部を剛性にしてその部分に設けるだけでなく、前記可撓性を実現する周縁部を介して、さらに外周側に設けられ、剛性を有する他方の基板への取付け部にも設け、それぞれ検出電極および参照電極とする。そして、演算手段を設け、それぞれの電極が他方の基板の対向電極との間で形成する容量成分の差分を求める。すなわち、差動容量型の静電センサとする。前記演算手段は、たとえば検出電極と参照電極との面積が相互に等しい場合には差分を求めることで寄生容量成分を除去することができ、前記面積に差がある場合には、差分を求めるにあたって、何れかに係数を掛ければよい。   According to the above-described configuration, the pair of counter electrodes are provided not only at the central portion of one of the flexible substrates with rigidity, but also through the peripheral portion that realizes the flexibility. Further, it is provided on the outer peripheral side, and is also provided on the attachment portion to the other substrate having rigidity, which are used as a detection electrode and a reference electrode, respectively. Then, a calculation means is provided, and a difference in capacitance component formed between each electrode and the counter electrode of the other substrate is obtained. That is, a differential capacitance type electrostatic sensor is provided. For example, when the areas of the detection electrode and the reference electrode are equal to each other, the calculation means can remove the parasitic capacitance component by obtaining the difference, and when the area is different, Any one of these may be multiplied by a coefficient.

したがって、寄生容量成分を除去することができ、検出精度を向上することができる。   Therefore, parasitic capacitance components can be removed and detection accuracy can be improved.

さらにまた、本発明の水素圧センサは、少なくとも前記水素透過性を有する基板が、樹脂またはガラス材料から成り、表面に前記対向電極となる導電性の膜を有することを特徴とする。   Furthermore, the hydrogen pressure sensor of the present invention is characterized in that at least the hydrogen-permeable substrate is made of a resin or glass material and has a conductive film serving as the counter electrode on the surface.

上記の構成によれば、前記水素透過性を有する基板としてガラスや樹脂系のものも利用でき、水素の透過性が高いために、高いセンサ感度を確保することができる。   According to said structure, glass or a resin-type thing can also be utilized as said board | substrate which has hydrogen permeability, and since the permeability | transmittance of hydrogen is high, high sensor sensitivity can be ensured.

また、本発明の水素圧センサは、少なくとも一方の基板が、導電性材料から成ることを特徴とする。   The hydrogen pressure sensor of the present invention is characterized in that at least one of the substrates is made of a conductive material.

上記の構成によれば、前記対向電極を形成するにあたっての成膜などの電極形成加工が不要になり、加工コストを低減することができる。   According to said structure, electrode formation processing, such as film-forming in forming the said counter electrode, becomes unnecessary, and processing cost can be reduced.

さらにまた、本発明の水素圧センサは、前記水素透過性を有する基板が、透過領域と非透過領域とに区分されていることを特徴とする。   Furthermore, the hydrogen pressure sensor of the present invention is characterized in that the hydrogen permeable substrate is divided into a transmission region and a non-transmission region.

上記の構成によれば、水素透過性を有する基板の全面を透過領域とするのではなく、たとえば水素が透過し難い材料で覆ったり、透過し難い厚みで形成するなどして、透過領域に制限を設ける。   According to the above configuration, the entire surface of the hydrogen permeable substrate is not used as a transmission region, but is limited to the transmission region, for example, by covering with a material that does not allow hydrogen to easily pass through or by forming a thickness that does not allow hydrogen to pass through. Is provided.

したがって、透過させる面積を予め定めることで感度の精度を上げることが可能となる。   Therefore, it is possible to increase the accuracy of sensitivity by predetermining the transmission area.

本発明の水素圧センサは、以上のように、MEMS技術などを用い、相互に対向する一対の基板の周囲を気密に封止することで、真空雰囲気となる密閉された内容積を形成し、前記一対の基板の少なくとも一方が可撓性を有し、かつ少なくとも一方が水素透過性を有するように形成することで、外部雰囲気から水素分子が前記水素透過性を有する基板を透過して前記内容積を増大させ、その増大量から外部雰囲気の水素分圧を検出するようにした水素圧センサであって、前記内容積の増大量の検出のために、一対の基板の少なくとも一部分に相互に対向して、金属薄膜などの対向電極を形成しておき、その対向電極間の静電容量の変化から、外部雰囲気の水素分圧を検出する。   As described above, the hydrogen pressure sensor of the present invention uses a MEMS technique or the like to hermetically seal the periphery of a pair of substrates facing each other, thereby forming a sealed internal volume that becomes a vacuum atmosphere, By forming at least one of the pair of substrates to be flexible and at least one to be hydrogen permeable, hydrogen molecules can permeate the hydrogen permeable substrate from the outside atmosphere and A hydrogen pressure sensor that increases a product and detects a hydrogen partial pressure of an external atmosphere from the increased amount, and is opposed to at least a part of a pair of substrates for detecting the increased amount of the internal volume. Then, a counter electrode such as a metal thin film is formed, and the hydrogen partial pressure in the external atmosphere is detected from the change in capacitance between the counter electrodes.

それゆえ、簡単な工程で作製可能であり、しかも歪みゲージなどに比べて、高精度で、かつ良好な応答性を得ることができる。また、検出のための消費電流を低減することができる。   Therefore, it can be manufactured by a simple process, and high response can be obtained with high accuracy as compared with a strain gauge or the like. Further, current consumption for detection can be reduced.

[実施の形態1]
図1は本発明の実施の第1の形態に係る水素圧センサ11の構造を示す図であり、図1(a)は平面図であり、図1(b)は縦断面図である。この水素圧センサ11は、剛性のガラスなどから成る一方の基板12と、可撓性のガラスや樹脂などから成る他方の基板13とが相互に対向して配置され、スペーサ14によって周囲を気密に封止することで構成されている。
[Embodiment 1]
FIG. 1 is a view showing the structure of a hydrogen pressure sensor 11 according to a first embodiment of the present invention, FIG. 1 (a) is a plan view, and FIG. 1 (b) is a longitudinal sectional view. In the hydrogen pressure sensor 11, one substrate 12 made of rigid glass and the other substrate 13 made of flexible glass, resin, or the like are arranged so as to face each other, and the surroundings are hermetically sealed by spacers 14. It is configured by sealing.

前記基板12は、前述のように剛性を有し、たとえば1mm程度の該水素圧センサ11に所望とする強度を得るための充分な厚さを有し、水素は殆ど透過することはできない。これに対して、基板13は、剛性を有する厚肉の検出部13aを中心に、その外周に前記可撓性を実現する薄肉のべローズ状の可撓部13bが延設され、さらにその外周が剛性を有する厚肉のリング状の取付け部13cに接続されることで、前述のように可撓性を有するように形成されている。前記可撓部13bは、たとえば0.1〜0.3mm、好ましくは0.2mm程度までの撓み変形可能で、かつ水素を透過させることができる厚さに形成される。剛性の検出部13aおよびそれに対向する基板12の部分には、相互に対向する表面に、金属薄膜などの対向電極15,16が形成されている。このような構造は、MEMS技術などを用いて作製することができ、たとえば3mm角の大きさである。   The substrate 12 has rigidity as described above, has a thickness sufficient to obtain a desired strength for the hydrogen pressure sensor 11 of, for example, about 1 mm, and hardly allows hydrogen to pass therethrough. On the other hand, the substrate 13 is provided with a thin bellows-like flexible portion 13b extending around the outer periphery of the thick detecting portion 13a having rigidity, and the outer periphery thereof. Is connected to the thick ring-shaped attachment portion 13c having rigidity, and is formed to have flexibility as described above. The flexible portion 13b is formed to a thickness that can be bent and deformed, for example, to about 0.1 to 0.3 mm, and preferably about 0.2 mm, and allows hydrogen to pass therethrough. On the rigid detection portion 13a and the portion of the substrate 12 facing it, counter electrodes 15 and 16 such as metal thin films are formed on the surfaces facing each other. Such a structure can be manufactured using MEMS technology or the like, and has a size of, for example, 3 mm square.

上述のように構成される水素圧センサ11では、相互に対向する一対の基板12,13の周囲をスペーサ14で気密に封止することで、真空雰囲気となる密閉された内容積を形成している。そして、一方の基板13を、可撓性および水素透過性を有するように形成することで、図2において参照符号17で示すような水素分子透過によって、前記内容積の圧力(=H分圧)が上昇し、図1(b)から図2で示すように、前記可撓性の基板13が撓み、対向電極15,16の静電容量の変化から、外部雰囲気の水素分圧を検出する。 In the hydrogen pressure sensor 11 configured as described above, the periphery of the pair of substrates 12 and 13 facing each other is hermetically sealed with a spacer 14 to form a sealed internal volume that becomes a vacuum atmosphere. Yes. Then, by forming one substrate 13 so as to have flexibility and hydrogen permeability, the pressure of the inner volume (= H 2 partial pressure) is obtained by hydrogen molecule permeation as indicated by reference numeral 17 in FIG. ) Rises, and as shown in FIGS. 1B to 2, the flexible substrate 13 is bent, and the hydrogen partial pressure in the external atmosphere is detected from the change in the capacitance of the counter electrodes 15 and 16. .

したがって、簡単な工程で作製可能であり、しかも歪みゲージなどに比べて、高精度で、かつ良好な応答性を得ることができる。また、検出のための消費電流を低減することができる。   Therefore, it can be manufactured by a simple process, and it is possible to obtain a high responsiveness with high accuracy as compared with a strain gauge or the like. Further, current consumption for detection can be reduced.

また、前記水素圧センサ11は、前記一対の基板12,13のうちの一方の基板13が可撓性を有し、かつ水素透過性を有し、他方の基板12が剛性の基板であり、可撓性のある基板13が水素分子を透過させる構造とすることで、水素が透過し難い剛性の基板12の方は厚みの精度が不要になり、加工コストを低減することができる。   In the hydrogen pressure sensor 11, one of the pair of substrates 12 and 13 has flexibility and hydrogen permeability, and the other substrate 12 is a rigid substrate. By adopting a structure in which the flexible substrate 13 allows hydrogen molecules to permeate, the rigid substrate 12 that is difficult to permeate hydrogen does not require thickness accuracy, and the processing cost can be reduced.

さらにまた、前記水素圧センサ11は、可撓性を有する前記一方の基板13において、可撓部13bが可撓性を有し、水素透過性を有することで、水素透過による前記内容積の増大/縮小を可能とする一方、可撓性があるだけでは、膨らみ方によって、静電容量に大きな差が生じるので、略中央部の検出部13aが剛性を有し、周縁の可撓部13bが可撓性を有するように、撓む領域と撓まない領域とを明確に分離し、かつ前記検出部13aに対向電極15を形成することで、内容積が同じ圧であれば、毎回同じように膨らみ、対向電極15,16の平行度および間隔を同じように再現することができる。したがって、検出精度を高めることができる。   Furthermore, the hydrogen pressure sensor 11 has an increase in the internal volume due to hydrogen permeation because the flexible portion 13b has flexibility and hydrogen permeability in the one substrate 13 having flexibility. On the other hand, if there is only flexibility, there will be a large difference in capacitance depending on how it swells. Therefore, the detection part 13a at the substantially central part is rigid, and the flexible part 13b at the periphery is If the internal volume is the same pressure by clearly separating the bending area and the non-flexing area so as to have flexibility, and forming the counter electrode 15 on the detection unit 13a, the same is applied each time. The parallelism and spacing of the counter electrodes 15 and 16 can be reproduced in the same way. Therefore, the detection accuracy can be increased.

前記対向電極15,16は、基板12,13の表面に限らず、該基板12,13内に埋込まれて形成されてもよい。   The counter electrodes 15 and 16 are not limited to the surfaces of the substrates 12 and 13 but may be formed by being embedded in the substrates 12 and 13.

[実施の形態2]
図3は本発明の実施の第2の形態に係る水素圧センサ21の構造を示す縦断面図であり、図3(a)は縮小(水素圧小)時を示し、図3(b)は膨張(水素圧大)時を示し、それぞれ前述の図1(b)および図2に対応している。注目すべきは、この水素圧センサ21では、剛性の基板22および可撓性の基板23が、共に金属材料から成り、厚肉の基板22ならびに基板23の検出部23aおよび取付け部23cが剛性を有し、薄肉の可撓部23bは可撓性を有するように形成されている。これらの基板22,23は、たとえば鉄から成り、水素透過性を有する。しかしながら、前記厚肉の基板22は、前記剛性および水素透過性を得るために、0.3mmまで、好ましくは0.2mm程度までに形成されており、可撓部23bは、良好な応答速度を実現するために、たとえば0.05mm以下の厚みに形成されている。基板23の検出部23aおよび取付け部23cも、水素透過性を有する厚さに形成されていてもよい。
[Embodiment 2]
FIG. 3 is a longitudinal sectional view showing the structure of the hydrogen pressure sensor 21 according to the second embodiment of the present invention. FIG. 3 (a) shows a reduced state (hydrogen pressure is reduced), and FIG. The time of expansion (hydrogen pressure increase) is shown, and corresponds to FIG. 1 (b) and FIG. 2, respectively. It should be noted that in this hydrogen pressure sensor 21, the rigid substrate 22 and the flexible substrate 23 are both made of a metal material, and the thick substrate 22 and the detector 23 a and the mounting portion 23 c of the substrate 23 are rigid. The thin-walled flexible portion 23b is formed to have flexibility. These substrates 22 and 23 are made of, for example, iron and have hydrogen permeability. However, in order to obtain the rigidity and hydrogen permeability, the thick substrate 22 is formed up to 0.3 mm, preferably up to about 0.2 mm, and the flexible portion 23b has a good response speed. In order to realize, it is formed to a thickness of 0.05 mm or less, for example. The detection part 23a and the attachment part 23c of the substrate 23 may also be formed to a thickness having hydrogen permeability.

なお、前記鉄は、前記樹脂やガラスには劣るけれども、基板22のように、0.3mm程度でも水素透過が可能であるが、応答速度の関係からすると、可撓部23bのように、0.05mm以下の厚みが好ましい。一方、Pd、Ni、Mo、ステンレス等は、水素を通し難い材料であるので、前記基板22,23には不適である。   Although iron is inferior to the resin and glass, hydrogen can be permeated even at about 0.3 mm like the substrate 22, but in terms of response speed, the iron is 0 like the flexible portion 23b. A thickness of 0.05 mm or less is preferable. On the other hand, Pd, Ni, Mo, stainless steel, and the like are unsuitable for the substrates 22 and 23 because they are difficult to pass hydrogen.

前述の水素圧センサ11のように基板12,13を共にガラスや樹脂で形成すると、水素透過性が高いために、高いセンサ感度を確保することができる。しかしながら、導電性の対向電極15,16が必要になり、この水素圧センサ21のように基板22,23を共に金属材料で形成することで、前記対向電極15,16を不要にすることができ、前記対向電極15,16を形成するための成膜などの電極形成加工が不要になり、加工コストを低減することができる。本発明は、少なくとも一方の基板が水素透過性を有し、かつ少なくとも一方の基板が可撓性を有していればよい。   When both the substrates 12 and 13 are formed of glass or resin like the hydrogen pressure sensor 11 described above, high sensor sensitivity can be ensured because of high hydrogen permeability. However, the conductive counter electrodes 15 and 16 are necessary, and the counter electrodes 15 and 16 can be made unnecessary by forming the substrates 22 and 23 together with a metal material like the hydrogen pressure sensor 21. Electrode forming processing such as film formation for forming the counter electrodes 15 and 16 becomes unnecessary, and processing costs can be reduced. In the present invention, it is sufficient that at least one substrate has hydrogen permeability and at least one substrate has flexibility.

[実施の形態3]
図4は本発明の実施の第3の形態に係る水素圧センサ31の構造を示す図であり、図4(a)は縦断面図であり、図4(b)は基板32の平面図である。図4(b)において、図4(a)の切断面を、参照符号A−Aで示す。この水素圧センサ31は、前述の水素圧センサ11,21に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この水素圧センサ31では、金属材料から成る可撓性の基板33が、略中央部が剛性を有する検出部33aとなり、その周縁部が可撓性を有し、かつ水素透過性を有する可撓部33bとなり、さらに最外周部分が剛性を有し、かつ前記剛性を有する他方の基板への取付け部33cとなっていることに対応して、基板32側では、ガラス製の該基板32の略中央部に前記検出部33aに対応した検出電極16が形成されるだけでなく、前記取付け部33cに対向する表面において、前記検出電極16と同面積の参照電極36が形成されていることである。前記取付け部33cでは、環状の前記参照電極36の対向部分を除く外周部分が、スペーサ34によって基板32に保持されている。
[Embodiment 3]
4A and 4B are views showing the structure of the hydrogen pressure sensor 31 according to the third embodiment of the present invention. FIG. 4A is a longitudinal sectional view, and FIG. 4B is a plan view of the substrate 32. is there. In FIG. 4B, the cut surface of FIG. The hydrogen pressure sensor 31 is similar to the hydrogen pressure sensors 11 and 21 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this hydrogen pressure sensor 31, a flexible substrate 33 made of a metal material becomes a detection portion 33a having a substantially central portion having rigidity, a peripheral portion thereof having flexibility, and hydrogen permeation. In correspondence with the fact that the outermost peripheral portion has rigidity and the mounting portion 33c to the other substrate having rigidity, the substrate 32 side is made of glass. In addition to the detection electrode 16 corresponding to the detection portion 33a being formed at a substantially central portion of the substrate 32, a reference electrode 36 having the same area as the detection electrode 16 is formed on the surface facing the attachment portion 33c. It is that. In the mounting portion 33 c, the outer peripheral portion excluding the facing portion of the annular reference electrode 36 is held on the substrate 32 by the spacer 34.

そして、前記電極16,36は外部接続端子37,38に接続され、その外部接続端子37,38の電位は、演算手段である演算回路39に入力される。演算回路39は、それぞれの電極16,36が基板33側と形成する容量成分の差分を求める。ここで、基板32の検出電極16−基板33の検出部33a間の静電容量をC1、基板32の参照電極36−基板33の取付け部33c間の静電容量をC2とすると、C1の中で周囲から発生する浮遊容量成分は、C1,C2の面積がほぼ同じであれば、C2の浮遊容量成分と同等であり、差動容量C1−C2として演算することで、不安定浮遊成分を除去することが可能になる。   The electrodes 16 and 36 are connected to external connection terminals 37 and 38, and the potentials of the external connection terminals 37 and 38 are input to an arithmetic circuit 39 which is arithmetic means. The arithmetic circuit 39 obtains the difference between the capacitance components formed by the electrodes 16 and 36 and the substrate 33 side. Here, when the capacitance between the detection electrode 16 of the substrate 32 and the detection portion 33a of the substrate 33 is C1, and the capacitance between the reference electrode 36 of the substrate 32 and the mounting portion 33c of the substrate 33 is C2, If the area of C1 and C2 is almost the same, the stray capacitance component generated from the surrounding area is equivalent to the stray capacitance component of C2, and the unstable stray component is removed by calculating as the differential capacitance C1-C2. It becomes possible to do.

こうして、該水素圧センサ31は、差動容量型の静電センサとなり、前記演算回路39は、上述のように検出電極16と参照電極36との面積が相互に等しい場合には差分を求めることで寄生容量成分を除去することができ、前記面積に差がある場合には、差分を求めるにあたって、アンプなどを介在して、何れかに係数を掛ければよい。   Thus, the hydrogen pressure sensor 31 becomes a differential capacitance type electrostatic sensor, and the arithmetic circuit 39 obtains a difference when the areas of the detection electrode 16 and the reference electrode 36 are equal to each other as described above. In the case where the parasitic capacitance component can be removed and there is a difference in the area, when the difference is obtained, an amplifier or the like may be used to multiply one of them by a coefficient.

このように構成することで、撓みにほとんど依存しない前記寄生容量成分を除去することができ、検出精度を向上することができる。   With this configuration, the parasitic capacitance component that hardly depends on bending can be removed, and detection accuracy can be improved.

[実施の形態4]
図5は本発明の実施の第4の形態に係る水素圧センサ41の構造を示す図であり、図5(a)は縦断面図であり、図5(b)は基板42の底面図である。注目すべきは、この水素圧センサ41では、剛性の基板42および可撓性の基板43が、共に金属材料から成り、基板43が前記Pd、Ni、Mo、ステンレス等の水素を通し難い材料から成り、基板42が前記鉄などの水素を通し易い材料および厚さから成り、ただし基板42の底面の一部が、前記Pd、Ni、Mo、ステンレス等の水素を通し難い材料から成る被覆層44で覆われていることである。
[Embodiment 4]
FIG. 5 is a view showing the structure of a hydrogen pressure sensor 41 according to a fourth embodiment of the present invention, FIG. 5 (a) is a longitudinal sectional view, and FIG. 5 (b) is a bottom view of the substrate 42. is there. It should be noted that in this hydrogen pressure sensor 41, the rigid substrate 42 and the flexible substrate 43 are both made of a metal material, and the substrate 43 is made of a material that is difficult to pass hydrogen, such as Pd, Ni, Mo, and stainless steel. The substrate 42 is made of a material and thickness that facilitates the passage of hydrogen, such as iron, but a part of the bottom surface of the substrate 42 is made of a material that is difficult for hydrogen to penetrate, such as Pd, Ni, Mo, and stainless steel. It is covered with.

したがって、図5において、参照符号45で示すように、開口部46からしか水素は透過することができず、こうして水素透過性を有する基板42が、透過領域と非透過領域とに区分されている。なお、水素が透過し難い前記被覆層44で覆うのではなく、基板42を、透過領域となる前記開口部46は薄肉に形成し、非透過領域となる残余の部分は厚肉に形成してもよい。   Accordingly, in FIG. 5, as indicated by reference numeral 45, hydrogen can only pass through the opening 46, and thus the substrate 42 having hydrogen permeability is divided into a transmission region and a non-transmission region. . Instead of covering with the coating layer 44 that is difficult for hydrogen to permeate, the substrate 42 is formed so that the opening 46 serving as a transmission region is thin and the remaining portion serving as a non-transmission region is formed thick. Also good.

このように透過させる面積を予め定めることで、感度の精度を上げることが可能となる。   Thus, it becomes possible to raise the precision of a sensitivity by predetermining the area which permeate | transmits.

本発明の実施の第1の形態に係る水素圧センサの構造を示す図である。It is a figure which shows the structure of the hydrogen pressure sensor which concerns on the 1st Embodiment of this invention. 図1で示す水素圧センサが膨張した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the hydrogen pressure sensor shown in FIG. 1 expanded. 本発明の実施の第2の形態に係る水素圧センサの構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the hydrogen pressure sensor which concerns on the 2nd Embodiment of this invention. 本発明の実施の第3の形態に係る水素圧センサの構造を示す図である。It is a figure which shows the structure of the hydrogen pressure sensor which concerns on the 3rd Embodiment of this invention. 本発明の実施の第4の形態に係る水素圧センサ41の構造を示す図である。It is a figure which shows the structure of the hydrogen pressure sensor 41 which concerns on the 4th Embodiment of this invention. 典型的な従来技術の水素圧センサの構造を示す断面図である。It is sectional drawing which shows the structure of a typical prior art hydrogen pressure sensor.

符号の説明Explanation of symbols

11,21,31,41, 水素圧センサ
12,22,32,42 基板
13,23,43 基板
14,34 スペーサ
13a,23a,33a 検出部
13b,23b,33b 可撓部
13c,23c,33c 取付け部
15,16 対向電極
36 参照電極
37,38 外部接続端子
39 演算回路
44 被覆層
11, 21, 31, 41, Hydrogen pressure sensor 12, 22, 32, 42 Substrate 13, 23, 43 Substrate 14, 34 Spacer 13a, 23a, 33a Detection unit 13b, 23b, 33b Flexible portion 13c, 23c, 33c Attachment 15 and 16 Counter electrode 36 Reference electrode 37 and 38 External connection terminal 39 Arithmetic circuit 44 Cover layer

Claims (7)

相互に対向して配置され、少なくとも一方が可撓性を有し、かつ少なくとも一方が水素透過性を有し、周囲を気密に封止することで、真空雰囲気となる密閉された内容積を形成する一対の基板と、
前記一対の基板の少なくとも一部分に相互に対向して形成される対向電極とを含み、
水素分子透過による内容積の圧力の上昇によって前記可撓性の基板が撓み、その撓みによる対向電極間の静電容量の変化から、外部雰囲気の水素分圧を検出することを特徴とする水素圧センサ。
Arranged to face each other, at least one has flexibility and at least one has hydrogen permeability, and hermetically seals the surroundings to form a sealed internal volume that creates a vacuum atmosphere A pair of substrates,
A counter electrode formed on at least a part of the pair of substrates so as to face each other,
The hydrogen pressure is characterized by detecting the hydrogen partial pressure in the external atmosphere from the change in the capacitance between the counter electrodes due to the deflection of the flexible substrate due to the increase in the internal volume pressure due to the permeation of hydrogen molecules. Sensor.
前記一対の基板のうちの一方の基板が可撓性を有し、かつ水素透過性を有し、他方の基板が剛性の基板であることを特徴とする請求項1記載の水素圧センサ。   2. The hydrogen pressure sensor according to claim 1, wherein one of the pair of substrates is flexible and has hydrogen permeability, and the other substrate is a rigid substrate. 可撓性を有する前記一方の基板において、略中央部が剛性を有し、かつその部分に対向電極が形成され、周縁部が可撓性を有し、かつ水素透過性を有することを特徴とする請求項2記載の水素圧センサ。   The one substrate having flexibility is characterized in that a substantially central portion has rigidity, a counter electrode is formed in that portion, a peripheral portion has flexibility, and hydrogen permeability. The hydrogen pressure sensor according to claim 2. 可撓性を有する前記一方の基板において、略中央部が剛性を有し、かつその部分に対向電極が形成されて検出電極となり、その周縁部が可撓性を有し、かつ水素透過性を有し、さらに最外周部分が剛性を有し、かつ前記剛性を有する他方の基板への取付け部となるとともに、その部分に対向電極が形成されて参照電極となり、
前記検出電極と前記他方の基板において対向する電極との間の容量成分と、前記参照電極と前記他方の基板において対向する電極との間の容量成分との差分を取る演算手段をさらに備えることを特徴とする請求項2記載の水素圧センサ。
In the one substrate having flexibility, the substantially central portion has rigidity, and a counter electrode is formed in that portion to become a detection electrode, and its peripheral portion has flexibility and hydrogen permeability. And the outermost peripheral portion has rigidity, and becomes a mounting portion to the other substrate having the rigidity, and a counter electrode is formed in that portion as a reference electrode,
And an arithmetic means for calculating a difference between a capacitance component between the detection electrode and the opposite electrode on the other substrate and a capacitance component between the reference electrode and the opposite electrode on the other substrate. The hydrogen pressure sensor according to claim 2, wherein:
少なくとも前記水素透過性を有する基板が、樹脂またはガラス材料から成り、表面に前記対向電極となる導電性の膜を有することを特徴とする請求項1〜4のいずれか1項に記載の水素圧センサ。   5. The hydrogen pressure according to claim 1, wherein at least the substrate having hydrogen permeability is made of a resin or a glass material, and has a conductive film serving as the counter electrode on a surface thereof. Sensor. 少なくとも一方の基板が、導電性材料から成ることを特徴とする請求項1〜4のいずれか1項に記載の水素圧センサ。   The hydrogen pressure sensor according to claim 1, wherein at least one of the substrates is made of a conductive material. 前記水素透過性を有する基板が、透過領域と非透過領域とに区分されていることを特徴とする請求項1〜6のいずれか1項に記載の水素圧センサ。   The hydrogen pressure sensor according to claim 1, wherein the hydrogen permeable substrate is divided into a permeable region and a non-permeable region.
JP2005198975A 2005-07-07 2005-07-07 Hydrogen pressure sensor Expired - Fee Related JP4400521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198975A JP4400521B2 (en) 2005-07-07 2005-07-07 Hydrogen pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198975A JP4400521B2 (en) 2005-07-07 2005-07-07 Hydrogen pressure sensor

Publications (2)

Publication Number Publication Date
JP2007017277A true JP2007017277A (en) 2007-01-25
JP4400521B2 JP4400521B2 (en) 2010-01-20

Family

ID=37754566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198975A Expired - Fee Related JP4400521B2 (en) 2005-07-07 2005-07-07 Hydrogen pressure sensor

Country Status (1)

Country Link
JP (1) JP4400521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953635A2 (en) 2007-01-29 2008-08-06 Hitachi, Ltd. Storage system comprising function for alleviating performance bottleneck
JP2016133515A (en) * 2015-01-22 2016-07-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Sensor and method for identifying hydrogen content in sample gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306107A (en) * 1994-05-16 1995-11-21 Yazaki Corp Capacitance-type differential-pressure measuring pressure sensor and manufacture thereof
JPH09145585A (en) * 1995-11-22 1997-06-06 Nok Corp Method for measuring concentration of hydrogen and hydrogen sensor being employed therein
JPH10123093A (en) * 1996-10-18 1998-05-15 Figaro Eng Inc Solid electrolytic hydrogen sensor
JP2000292296A (en) * 1999-04-02 2000-10-20 Nec Yamagata Ltd Diaphragm vacuum gauge
JP2002202235A (en) * 2001-01-04 2002-07-19 Horiba Ltd Instrument for measuring gas concentration
JP2004233097A (en) * 2003-01-28 2004-08-19 Ip Trading Japan Co Ltd Hydrogen sensor and hydrogen concentration measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306107A (en) * 1994-05-16 1995-11-21 Yazaki Corp Capacitance-type differential-pressure measuring pressure sensor and manufacture thereof
JPH09145585A (en) * 1995-11-22 1997-06-06 Nok Corp Method for measuring concentration of hydrogen and hydrogen sensor being employed therein
JPH10123093A (en) * 1996-10-18 1998-05-15 Figaro Eng Inc Solid electrolytic hydrogen sensor
JP2000292296A (en) * 1999-04-02 2000-10-20 Nec Yamagata Ltd Diaphragm vacuum gauge
JP2002202235A (en) * 2001-01-04 2002-07-19 Horiba Ltd Instrument for measuring gas concentration
JP2004233097A (en) * 2003-01-28 2004-08-19 Ip Trading Japan Co Ltd Hydrogen sensor and hydrogen concentration measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953635A2 (en) 2007-01-29 2008-08-06 Hitachi, Ltd. Storage system comprising function for alleviating performance bottleneck
JP2016133515A (en) * 2015-01-22 2016-07-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Sensor and method for identifying hydrogen content in sample gas

Also Published As

Publication number Publication date
JP4400521B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
KR102207406B1 (en) System and method for a wind speed meter
US7992443B2 (en) Sensor element for capacitive differential-pressure sensing
JP4726481B2 (en) Barometric pressure sensor
CN101248339B (en) Surface acoustic wave (saw) based pressure sensor
US20080314118A1 (en) Packaging multiple measurands into a combinational sensor system using elastomeric seals
US9470594B2 (en) Differential pressure sensor with dual output using a double-sided capacitive sensing element
JP2010048798A (en) Pressure sensor
Pedersen et al. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance
JP2014126504A (en) Capacitance type pressure sensor
CA2960242C (en) Optimized epoxy die attach geometry for mems die
JP4993345B2 (en) Capacitive pressure sensor
JP2018132485A (en) Capacitive pressure sensor
JP2006170984A (en) System and method for detecting pressure
JP4400521B2 (en) Hydrogen pressure sensor
US8371180B2 (en) Micromechanical sensor element for capacitive differential pressure detection
JP5712674B2 (en) Force detector housing case, force measuring device
JPH0933372A (en) Electrostatic capacity type pressure sensor
US8146439B2 (en) Sensor system and method for manufacturing a sensor system
JP4549085B2 (en) Capacitance type pressure sensor and manufacturing method thereof
JP2896728B2 (en) Capacitive pressure sensor
JP2001083030A (en) Electrostatic capacity type pressure sensor
JP2005337774A (en) Capacitance sensor
JP2014126502A (en) Capacitance type pressure sensor
JP5718140B2 (en) Pressure sensor
JP3623859B2 (en) Fluid vibration detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees