JP2007016960A - Linear motion bearing - Google Patents

Linear motion bearing Download PDF

Info

Publication number
JP2007016960A
JP2007016960A JP2005201119A JP2005201119A JP2007016960A JP 2007016960 A JP2007016960 A JP 2007016960A JP 2005201119 A JP2005201119 A JP 2005201119A JP 2005201119 A JP2005201119 A JP 2005201119A JP 2007016960 A JP2007016960 A JP 2007016960A
Authority
JP
Japan
Prior art keywords
linear motion
raceway
rolling
motion bearing
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005201119A
Other languages
Japanese (ja)
Inventor
Masakazu Ozaki
尾崎正和
Shigeo Shimizu
清水茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OZAK SEIKO CO Ltd
Original Assignee
OZAK SEIKO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OZAK SEIKO CO Ltd filed Critical OZAK SEIKO CO Ltd
Priority to JP2005201119A priority Critical patent/JP2007016960A/en
Publication of JP2007016960A publication Critical patent/JP2007016960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bearings For Parts Moving Linearly (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a service life of a linear motion bearing by forming a boundary part of a circulating raceway track into such a shape as to smoothly change in a rolling direction. <P>SOLUTION: As final finish machining to the surface of the circulating raceway track 6 in the linear motion bearing, fluid polishing is performed in the rolling direction to form the boundary part 9 into such a shape as to smoothly change in the rolling direction while making a polishing line direction the same as the rolling direction of rolling elements. The service life of the linear motion bearing can thereby be miraculously extended. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、転動体が循環軌道内を循環するようにされている直線運動軸受に関するものである。     The present invention relates to a linear motion bearing in which rolling elements circulate in a circulation track.

直線運動軸受は、直線運動をする軸体に対する軸受であり、例えば、ボールブッシュ,リニアガイド,ボールスプラインあるいはボールネジ等の装置に用いられている。
図4は、直線運動軸受の概要を示す図である。図4において、1は直線運動軸受、2は軸体、3A,3Bは軸溝、4は外筒体、5は転動体、6は循環軌道である。この図では循環軌道6の付近の様子を分かり易くするため、一部を断面で現している。
外筒体4の内部に循環軌道6が形成され、その中を転動体5が循環している。外筒体4の中央には、軸体2が挿通されており、この軸体2の外周には、軸方向に軸溝3A,3Bが設けられている。図示されている軸溝の本数は2本であるが、外周上に設けられる軸溝の本数は適宜決定される。
The linear motion bearing is a bearing for a shaft body that performs linear motion, and is used in, for example, a device such as a ball bush, a linear guide, a ball spline, or a ball screw.
FIG. 4 is a diagram showing an outline of the linear motion bearing. In FIG. 4, 1 is a linear motion bearing, 2 is a shaft body, 3A and 3B are shaft grooves, 4 is an outer cylindrical body, 5 is a rolling element, and 6 is a circulation track. In this figure, in order to make it easy to understand the state of the vicinity of the circulation track 6, a part is shown in a cross section.
A circulation track 6 is formed inside the outer cylindrical body 4, and the rolling elements 5 circulate therein. The shaft body 2 is inserted through the center of the outer cylinder body 4, and shaft grooves 3A and 3B are provided on the outer periphery of the shaft body 2 in the axial direction. Although the number of shaft grooves shown in the figure is two, the number of shaft grooves provided on the outer periphery is appropriately determined.

転動体5は軸溝3A,3Bに嵌まり込むように配設され、軸体2と外筒体4とは、転動体5を介して接している。従って、軸体2が外筒体4に対し、矢印Aの方向(軸方向)に相対的に移動する時、受ける摩擦は転動体5の転がり摩擦であるので、滑らかに移動することが出来る。転動体5は、循環軌道6内を移動し、循環する。 図5は、直線運動軸受の軸方向に直角の断面(図4でX−X線での断面)の概要を示す図である。符号は図5のものに対応し、3Cは軸溝である。この例では、軸体2の外周には、略等間隔で軸溝3A,3B,3Cが設けられている。それに対応させて、外筒体4に内蔵される転動体5も、3組とされている。
特開2004−084822号公報
The rolling element 5 is disposed so as to fit into the shaft grooves 3 </ b> A and 3 </ b> B, and the shaft body 2 and the outer cylindrical body 4 are in contact with each other via the rolling element 5. Therefore, when the shaft body 2 moves relative to the outer cylindrical body 4 in the direction of the arrow A (axial direction), the friction received is the rolling friction of the rolling element 5, and therefore can move smoothly. The rolling element 5 moves in the circulation track 6 and circulates. FIG. 5 is a diagram showing an outline of a cross section perpendicular to the axial direction of the linear motion bearing (cross section taken along line XX in FIG. 4). The reference numerals correspond to those in FIG. 5, and 3C is a shaft groove. In this example, shaft grooves 3A, 3B, and 3C are provided on the outer periphery of the shaft body 2 at substantially equal intervals. Correspondingly, there are also three sets of rolling elements 5 incorporated in the outer cylinder 4.
JP 2004-048222 A

(問題点)
前記した従来の直線運動軸受には、循環軌道の軌道面負荷領域と軌道面無負荷領域との境界部付近の表面が傷つけられ易く、それが直線運動軸受の寿命を短くしていたという問題点があった。
(problem)
The conventional linear motion bearing described above has a problem that the surface near the boundary between the raceway load area and the raceway no-load area of the circulation raceway is easily damaged, which shortens the life of the linear motion bearing. was there.

(問題点の説明)
図2は、従来の直線運動軸受(ボールブッシュ)の循環軌道を説明する図である。符号は図4のものに対応し、7は軌道面負荷領域、7Aは研磨目、8は軌道面無負荷領域、8Aは切削目、9は境界部、10は外筒体切断面である。なお、軌道面負荷領域7とは、循環軌道6の領域の内、転動体5が軸体2に接しているために転動体5からの負荷がかかる(即ち、圧力がかかる)領域を言い、軌道面無負荷領域8とは、転動体5が軸体2に接していないために、負荷がかかっていない領域のことを言う。境界部9は、それらの領域の境界に当たる部分である。
(Explanation of problem)
FIG. 2 is a diagram for explaining a circulation track of a conventional linear motion bearing (ball bush). The reference numerals correspond to those in FIG. 4, 7 is a raceway surface loading area, 7A is a grinding eye, 8 is a raceway no-load area, 8A is a cutting eye, 9 is a boundary portion, and 10 is a cut surface of the outer cylinder. In addition, the raceway surface load area | region 7 means the area | region where the load from the rolling element 5 is applied (namely, pressure is applied) since the rolling element 5 is in contact with the shaft body 2, among the area | regions of the circulation track 6; The raceway no-load region 8 refers to a region where no load is applied because the rolling element 5 is not in contact with the shaft body 2. The boundary portion 9 is a portion corresponding to the boundary between these regions.

図2(1)は、循環軌道6の境界部9に近い部分を側方から見た拡大模式図である。転動体5の転動方向は、図で言えば左右の方向である。軌道面無負荷領域8にある転動体5は軸体2に接してはいないので、軌道面無負荷領域8の表面に軸体2からの負荷(圧力)がかかることはない。一方、軌道面負荷領域7にある転動体5は軸体2に接しているので、軌道面負荷領域7の表面には、軸体2からの負荷がかかる。従来の直線運動軸受1では、軌道面無負荷領域8から軌道面負荷領域7へは明確に変わるよう画然と形成されていたので、境界部9はエッジ状となっていた。   FIG. 2A is an enlarged schematic view of a portion near the boundary portion 9 of the circulation track 6 as viewed from the side. The rolling direction of the rolling element 5 is the left-right direction in the drawing. Since the rolling element 5 in the raceway no-load region 8 is not in contact with the shaft body 2, no load (pressure) from the shaft body 2 is applied to the surface of the raceway no-load region 8. On the other hand, since the rolling element 5 in the raceway surface load region 7 is in contact with the shaft body 2, a load from the shaft body 2 is applied to the surface of the raceway surface load region 7. In the conventional linear motion bearing 1, the boundary portion 9 has an edge shape because it is clearly formed so as to clearly change from the raceway no-load region 8 to the raceway load region 7.

図2(2)は、循環軌道6の表面の内、転動体が接して移動する表面部分の拡大模式図である(この図では、循環軌道6の表面を分かり易く説明するため転動体5は省略してある)。転動体の転動方向は、図では左右方向である。外筒体切断面10は、外筒体を厚み方向に切った断面を示している。循環軌道6を形成する際には、先ず切削加工により傾斜部が形成され、次いで、より一層表面に滑らかさが要求される部分には、研磨加工が施されて形成される。
軌道面無負荷領域8の表面は転動体から受ける負荷が少ないので、それほど滑らかさは要求されず、切削加工をしたままの状態に留められることが多い。一方、軌道面負荷領域7の表面は転動体から受ける負荷が大きいので、破損防止のためにその領域は出来るだけ滑らかに動くのが望ましく、より一層表面の滑らかさが要求される。従って、そこには更に研磨加工が施される。
FIG. 2 (2) is an enlarged schematic view of the surface portion of the surface of the circulating track 6 where the rolling element contacts and moves (in this figure, the rolling element 5 is shown for easy understanding of the surface of the circulating track 6). Omitted). The rolling direction of the rolling elements is the left-right direction in the figure. The outer cylinder cut surface 10 shows a cross section of the outer cylinder cut in the thickness direction. When the circulation track 6 is formed, an inclined portion is first formed by cutting, and then a portion that requires even smoother surface is polished and formed.
Since the surface of the raceway no-load region 8 receives a small load from the rolling elements, it is not required to be so smooth and often remains in a state of being cut. On the other hand, since the surface of the raceway load region 7 receives a large load from the rolling elements, it is desirable that the region move as smoothly as possible in order to prevent breakage, and further smoothness of the surface is required. Therefore, further polishing is performed there.

これら切削加工,研磨加工は、加工対象物と工具とを相対的に回転させて行われる。このやり方は、コストが安く、古くから行われている。相対的に回転させるので、切削加工をした軌道面無負荷領域8には切削目8Aが残り、研磨加工まで施す軌道面負荷領域7には研磨目7Aが残ることになる。当然のことながら、切削目8Aの方が粗く、研磨目7Aの方が細かい。
これらの目の方向は、上記の回転方向となるが、この方向は、転動体の転動方向(図で左右方向)に対して直角の方向となる。従って、循環軌道6の表面を、転動方向のW−W線で切って見た場合、これらの目による無数の凹凸が生じている。
図2(3)は、境界部9付近の循環軌道6の表面の高さの変化を、拡大して模式的に示した図である。横軸は循環軌道の長さ(転動方向の長さ)を示し、縦軸は表面アラサを示している。
These cutting and polishing processes are performed by relatively rotating the workpiece and the tool. This method is cheap and has been used for a long time. Since the rotation is relatively performed, the cut surface 8A remains in the raceway no-load region 8 that has been subjected to the cutting process, and the polishing surface 7A remains in the raceway surface load region 7 that is subjected to the polishing process. As a matter of course, the cutting eye 8A is coarser and the polishing eye 7A is finer.
The direction of these eyes is the rotation direction described above, and this direction is a direction perpendicular to the rolling direction of the rolling elements (the left-right direction in the figure). Therefore, when the surface of the circulation track 6 is cut along the WW line in the rolling direction, countless irregularities due to these eyes are generated.
FIG. 2 (3) is an enlarged view schematically showing a change in the height of the surface of the circulation track 6 near the boundary 9. The horizontal axis indicates the length of the circulation track (length in the rolling direction), and the vertical axis indicates the surface roughness.

転動体5が軌道面負荷領域7を転動して行く時には、研磨目7Aによって生じている無数の凹凸を乗り越えながら転動して行くことになるわけだが、その凹凸に応じた応力を、軌道面負荷領域7から受けることになる。同時に、軌道面負荷領域7の表面も、同じ応力を転動体5から受けることになる。
図2(1)で、転動体5が軌道面無負荷領域8から軌道面負荷領域7へと転動して行くことを考えた場合、循環軌道6の表面に作用する応力が最も変化する箇所は、エッジ状となっている境界部9の所である。なぜなら、軌道面無負荷領域8を転動している間は、転動体5は軸体2と接触していないから応力は殆どないが、境界部9の所から軸体2に接触し始め、ここで急激に増大するからである。そのため、循環軌道6が破損するのは、境界部9の付近が最も多い。
When the rolling element 5 rolls on the raceway surface load region 7, it rolls over the innumerable irregularities generated by the polishing eyes 7A, and the stress corresponding to the irregularities is applied to the orbit. It will be received from the surface load area 7. At the same time, the surface of the raceway load region 7 receives the same stress from the rolling elements 5.
In FIG. 2 (1), when the rolling element 5 rolls from the raceway surface unloaded region 8 to the raceway surface loaded region 7, the place where the stress acting on the surface of the circulating track 6 changes most. Is the boundary 9 that is edge-shaped. Because, while rolling on the raceway surface no-load region 8, there is almost no stress because the rolling element 5 is not in contact with the shaft body 2, but it starts to contact the shaft body 2 from the boundary portion 9, It is because it increases rapidly here. For this reason, the circulation track 6 is damaged most in the vicinity of the boundary portion 9.

図3は、循環軌道に生ずる破損の例を示す図である。符号は図2のものに対応し、11はフレーキング(ころがり疲れ破損)である。フレーキング11は、直線運動軸受の循環軌道6に生ずる破損の1例であり、循環軌道6の表面が一部ウロコ状に剥がされた状態となる。表面が剥がされると、転動体5は滑らかには転動しなくなり、振動や騒音が発生する。図4の軸体2も滑らかに直線運動し得なくなり、移動の精度も悪化する。従って、このような破損が生じた時をもって、直線運動軸受の寿命は尽きたということにされている。
このように、従来の直線運動軸受における循環軌道6での破損は、殆ど境界部9付近で生じており、ここで破損が生じ易いということが、従来の直線運動軸受の寿命を短くしている主たる原因となっていた。
本発明は、以上のような問題点を解決することを課題とするものである。
FIG. 3 is a diagram illustrating an example of breakage occurring in the circulation track. The reference numerals correspond to those in FIG. 2, and 11 is flaking (rolling fatigue damage). The flaking 11 is an example of breakage occurring in the circulation track 6 of the linear motion bearing, and the surface of the circulation track 6 is partially peeled off. When the surface is peeled off, the rolling element 5 does not roll smoothly, and vibration and noise are generated. The shaft body 2 shown in FIG. 4 cannot move smoothly in a straight line, and the accuracy of movement deteriorates. Therefore, it is said that the life of the linear motion bearing is exhausted when such a breakage occurs.
As described above, the breakage in the circulation track 6 in the conventional linear motion bearing occurs almost in the vicinity of the boundary portion 9, and the fact that the breakage easily occurs here shortens the life of the conventional linear motion bearing. It was the main cause.
An object of the present invention is to solve the above problems.

前記課題を解決するため、本発明では、転動体が循環し、軌道面負荷領域と軌道面無負荷領域と両者の境界部とから成る循環軌道を具えた直線運動軸受において、前記境界部を転動方向に滑らかに変化する形状とすることとした。
なお、循環軌道の表面の最後の仕上加工として、転動方向への流体研磨を行うことにより、前記境界部を転動方向に滑らかに変化する形状とすると共に、研磨目の方向を転動体の転動方向と同一方向とすることが出来る。
In order to solve the above-mentioned problems, in the present invention, in a linear motion bearing having a circulation track in which a rolling element circulates and includes a raceway load region, a raceway no-load region, and a boundary portion therebetween, the boundary portion is rolled. The shape smoothly changes in the moving direction.
In addition, as the final finishing of the surface of the circulation track, by performing fluid polishing in the rolling direction, the boundary portion has a shape that smoothly changes in the rolling direction, and the direction of the polishing eye is changed to the direction of the rolling element. The direction can be the same as the rolling direction.

本発明の直線運動軸受によれば、循環軌道の境界部を転動方向に滑らかに変化する形状とすることにより、直線運動軸受の致命的な破損であったところの境界部付近での破損を、従来より大幅に生じなくすることが出来た。そのため、直線運動軸受の寿命を驚異的に(例えば、約11倍に)伸ばすことが可能となった。
また、循環軌道の表面を転動方向へ流体研磨することにより境界部を滑らかに変化する形状に加工する場合、循環軌道全体にわたっても流体研磨すれば、軌道面に残る研磨目は、転動方向の滑らかなものとなるので、転動体から軌道面に作用する応力は従来に比べて激減し、軌道面に破損を生ずることが極めて少なくなる。
According to the linear motion bearing of the present invention, the boundary portion of the circular orbit is formed into a shape that smoothly changes in the rolling direction, so that the linear motion bearing can be damaged near the boundary portion, which was a fatal failure. , It was possible to make it much less than before. For this reason, it has become possible to extend the life of the linear motion bearing in an astonishing manner (for example, about 11 times).
Also, if the boundary is processed into a shape that smoothly changes the boundary by fluid polishing the surface of the circulating track in the rolling direction, the polishing marks remaining on the track surface will be the rolling direction if the entire circulating track is fluid polished. Therefore, the stress acting on the raceway surface from the rolling elements is drastically reduced as compared with the prior art, and the occurrence of damage to the raceway surface is extremely reduced.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の直線運動軸受の循環軌道を説明する図である。符号は図2のものに対応し、12は研磨目である。図1の(1),(2),(3)は、それぞれ図2の(1),(2),(3)に対応する図である。
従来の直線運動軸受と相違する点は、循環軌道6の表面に対する最終加工として、流体研磨を行い、これにより境界部9の形状を転動方向に滑らかに変化するR(アール)形状としたという点である。
流体研磨は、研磨材を含ませた流体を流すことにより行う研磨であり、この研磨方法は既に公知である。循環軌道6に対して行う流体研磨は、循環軌道6の構造上、研磨材を含ませた流体を循環軌道6に沿って(つまり転動方向に)流すことにより行われることになる(転動方向に対して直角に流すということはしない)。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a circulation track of a linear motion bearing according to the present invention. Reference numerals correspond to those in FIG. 2, and 12 is a polishing eye. (1), (2), and (3) in FIG. 1 correspond to (1), (2), and (3) in FIG. 2, respectively.
The difference from the conventional linear motion bearing is that, as the final processing on the surface of the circulation track 6, fluid polishing is performed, and thereby the shape of the boundary portion 9 is changed to an R shape that smoothly changes in the rolling direction. Is a point.
Fluid polishing is polishing performed by flowing a fluid containing an abrasive, and this polishing method is already known. The fluid polishing performed on the circulation track 6 is performed by flowing a fluid containing an abrasive along the circulation track 6 (that is, in the rolling direction) due to the structure of the circulation track 6 (rolling). Do not flow at right angles to the direction).

直線運動軸受を製造するに際し、循環軌道6の最終加工として流体研磨を行う場合、次のような2通りのやり方がある。
(第1のやり方)
(1)先ず切削加工により循環軌道6を形成する
(2)次に軌道面負荷領域7に対しては転動方向に直角な方向の研磨加工を施す(ここまでは図2の従来例と同じ)
(3)最後に循環軌道6全体に対し転動方向に流体研磨を施す
(第2のやり方)
(1)先ず切削加工により循環軌道6を形成する
(2)次に循環軌道6全体に対し流体研磨を施す
第2のやり方は、流体研磨だけで充分な研磨状態とされることが期待できる場合に採用される。
When manufacturing a linear motion bearing, when performing fluid polishing as the final processing of the circulation track 6, there are the following two methods.
(First way)
(1) First, the circulating track 6 is formed by cutting. (2) Next, the track surface load region 7 is polished in a direction perpendicular to the rolling direction (the process up to this point is the same as the conventional example in FIG. 2). )
(3) Finally, fluid polishing is applied to the entire circulation track 6 in the rolling direction (second method).
(1) First, the circulation track 6 is formed by cutting. (2) Next, the second method of applying fluid polishing to the entire circulation track 6 is a case where it can be expected that the polishing state is sufficient only by fluid polishing. Adopted.

循環軌道形成のための切削加工により、転動方向に対して直角方向に延びるエッジとなっていた境界部9は、この流体研磨により転動方向に研削され、図1(1)に示すように、軌道面無負荷領域8から軌道面負荷領域7へと滑らかに変化する形状となる。そのため、転動体5が境界部9を通過する際、応力が一点で急激に増大するということがなくなり、破損を生ずることが少なくなる。
また、図2(2)に示したような、転動方向に直角な切削目8Aや研磨目7Aも、転動方向に流体研磨され、殆どなくなる。そして、最終的に付いている研磨の目は、研磨材を含ませた流体が流れて行く方向(転動方向)のものとなる。図1(2)の研磨目12は、それを示している。
The boundary portion 9 that has become an edge extending in a direction perpendicular to the rolling direction by the cutting process for forming the circular track is ground in the rolling direction by this fluid polishing, as shown in FIG. The shape changes smoothly from the raceway surface unloaded region 8 to the raceway surface loaded region 7. Therefore, when the rolling element 5 passes through the boundary portion 9, the stress does not increase suddenly at one point, and the occurrence of breakage is reduced.
Further, the cutting eyes 8A and the polishing eyes 7A perpendicular to the rolling direction as shown in FIG. 2B are also fluidly polished in the rolling direction and are almost eliminated. The final polishing eye is in the direction (rolling direction) in which the fluid containing the abrasive flows. This is shown by the polishing marks 12 in FIG.

図1(2)の循環軌道6を転動方向のW−W線で切って見た場合の表面アラサの変化は、研磨目12に沿った変化となるので、滑らかなものとなる。
図1(3)は、境界部9付近の循環軌道6の表面アラサの変化を、拡大して模式的に示した図である。横軸は循環軌道の長さを示し、縦軸は表面アラサを示している。境界部9はエッジ状ではなくなっているから、その部分のアラサは滑らかに変化し、また、研磨目12は循環軌道6の長さ方向についているので、該長さ方向でのアラサの変化は滑らかなものとなっている。
The change in the surface roughness when the circular orbit 6 in FIG. 1 (2) is cut along the WW line in the rolling direction is a change along the polishing eye 12, and thus becomes smooth.
FIG. 1 (3) is an enlarged schematic view of the surface roughness of the circulation track 6 near the boundary 9. The horizontal axis indicates the length of the circulation track, and the vertical axis indicates the surface roughness. Since the boundary portion 9 is no longer edge-shaped, the roughness of the portion changes smoothly, and the polishing eye 12 is in the length direction of the circulation track 6, so that the variation of the roughness in the length direction is smooth. It has become a thing.

このように流体研磨された循環軌道6において、図1(1)に示すように、転動体5が軌道面無負荷領域8から軌道面負荷領域7へと転動して行くことを考えた場合、境界部9はエッジ状ではなく滑らかに変化する領域となっているので、応力が一点で急激に増大するということがなくなる。そのため、境界部9で破損が起こる確率は、他の領域と同様に減少することとなる。循環軌道6の破損の殆どは境界部9付近で生じていたので、ここでの破損を生じなくすることにより、直線運動軸受の寿命を大幅に長くすることが可能となる。 因みに、耐久試験を行って当社の従来製品と比較したところ、寿命は11倍に伸びた。1個で11個分に相当するわけであるから、コスト削減率で言えば1100%ということになる。これは驚異的な効果である。   When it is considered that the rolling element 5 rolls from the raceway no-load region 8 to the raceway load region 7 in the fluid-polished circulation raceway 6 as shown in FIG. Since the boundary portion 9 is not an edge but a region that changes smoothly, the stress does not increase suddenly at one point. Therefore, the probability that breakage will occur at the boundary portion 9 will decrease as in other areas. Since most of the breakage of the circulation track 6 occurred in the vicinity of the boundary portion 9, the life of the linear motion bearing can be greatly prolonged by preventing the breakage here. Incidentally, when the durability test was conducted and compared with our conventional product, the lifespan increased 11 times. Since one piece corresponds to 11 pieces, the cost reduction rate is 1100%. This is a phenomenal effect.

なお、上例では、境界部9を転動方向に滑らかに変化する形状とする手段として、転動方向に行う流体研磨を採用した例を示したが、前記形状となし得る他の手段(例、レーザ加工手段等)を採用してもよいことは、言うまでもない。   In the above example, as an example of adopting fluid polishing performed in the rolling direction as the means for making the boundary portion 9 smoothly change in the rolling direction, other means (examples) that can be the above-described shape are shown. Needless to say, laser processing means or the like may be employed.

本発明の直線運動軸受の循環軌道を説明する図The figure explaining the circulation track of the linear motion bearing of the present invention 従来の直線運動軸受の循環軌道を説明する図The figure explaining the circulation track of the conventional linear motion bearing 循環軌道に生ずるフレーキングの例を示す図Diagram showing an example of flaking that occurs in a circular orbit 直線運動軸受の概要を示す図Diagram showing outline of linear motion bearing 直線運動軸受の軸方向に直角の断面の概要を示す図Diagram showing the outline of a cross section perpendicular to the axial direction of a linear motion bearing

符号の説明Explanation of symbols

1…直線運動軸受、2…軸体、3A,3B,3C…軸溝、4…外筒体、5…転動体、6…循環軌道、7…軌道面負荷領域、7A…研磨目、8…軌道面無負荷領域、8A…切削目、9…境界部、10…外筒体切断面、11…フレーキング、12…研磨目
DESCRIPTION OF SYMBOLS 1 ... Linear motion bearing, 2 ... Shaft body, 3A, 3B, 3C ... Shaft groove, 4 ... Outer cylinder body, 5 ... Rolling body, 6 ... Circulation track, 7 ... Track surface load area, 7A ... Polishing eye, 8 ... No-load area on raceway surface, 8A ... cutting eyes, 9 ... boundary portion, 10 ... cutting surface of outer cylindrical body, 11 ... flaking, 12 ... polishing eyes

Claims (2)

転動体が循環し、軌道面負荷領域と軌道面無負荷領域と両者の境界部とから成る循環軌道を具えた直線運動軸受において、
前記境界部を転動方向に滑らかに変化する形状とした
ことを特徴とする直線運動軸受。
In a linear motion bearing with a circulating raceway, the rolling element circulates and consists of a raceway load area, a raceway no-load area, and a boundary between both,
A linear motion bearing characterized in that the boundary portion has a shape that smoothly changes in a rolling direction.
転動体が循環し、軌道面負荷領域と軌道面無負荷領域と両者の境界部とから成る循環軌道を具えた直線運動軸受において、
循環軌道の表面の最後の仕上加工として転動方向への流体研磨を行うことにより、前記境界部を転動方向に滑らかに変化する形状とすると共に、研磨目の方向を転動体の転動方向と同一方向にした
ことを特徴とする直線運動軸受。
In a linear motion bearing with a circulating raceway, the rolling element circulates and consists of a raceway load area, a raceway no-load area, and a boundary between both,
By performing fluid polishing in the rolling direction as the final finishing of the surface of the circulation track, the boundary portion is shaped to smoothly change in the rolling direction, and the direction of the polishing eye is set to the rolling direction of the rolling element. Linear motion bearings characterized in that they are in the same direction.
JP2005201119A 2005-07-11 2005-07-11 Linear motion bearing Pending JP2007016960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201119A JP2007016960A (en) 2005-07-11 2005-07-11 Linear motion bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201119A JP2007016960A (en) 2005-07-11 2005-07-11 Linear motion bearing

Publications (1)

Publication Number Publication Date
JP2007016960A true JP2007016960A (en) 2007-01-25

Family

ID=37754289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201119A Pending JP2007016960A (en) 2005-07-11 2005-07-11 Linear motion bearing

Country Status (1)

Country Link
JP (1) JP2007016960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190365A (en) * 2009-02-19 2010-09-02 Nsk Ltd Linear motion device
JP2010190298A (en) * 2009-02-17 2010-09-02 Strawberry Corporation Method of manufacturing slide device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190298A (en) * 2009-02-17 2010-09-02 Strawberry Corporation Method of manufacturing slide device
JP2010190365A (en) * 2009-02-19 2010-09-02 Nsk Ltd Linear motion device

Similar Documents

Publication Publication Date Title
JP6798780B2 (en) Tapered roller bearing
JP5444642B2 (en) Combination bearing
US6394658B1 (en) Bearing systems having reduced noise and axial preload
JP2010240807A (en) Workpiece supply device for machining roller end face, roller end face working machine, and roller for rolling bearing
JP2005106234A (en) Conical roller bearing and method for working conical roller bearing
JP2007016960A (en) Linear motion bearing
JP2008002659A (en) High-speed rotation single row cylindrical roller bearing
JP2006009891A (en) Roller bearing
US8336210B2 (en) Method for manufacturing spacers for spindle device
JP2003083337A (en) Needle roller thrust bearing
KR100774237B1 (en) Self-aligning roller bearing and method of processing the same
JP2007301700A (en) Grinding wheel having multilayer structure
JP5163512B2 (en) Rolling bearing
JP2006329388A (en) Rolling bearing with seal
JP6970454B2 (en) Bearing device
JP2006064037A (en) Roller bearing
JP2005299702A (en) Automatic aligning roller bearing
JP5200988B2 (en) Linear motion device
JP2006283921A (en) Sealed rolling bearing
JP4492101B2 (en) Spherical roller bearing
JP5344299B2 (en) Bearing device for extremely low speed rotation
WO2016121419A1 (en) Tapered roller bearing
JP2009222166A (en) Automatic aligning roller bearing
CN118057038A (en) Bearing
JP2021008940A (en) Cross roller bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209