JP2007015315A - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
JP2007015315A
JP2007015315A JP2005201325A JP2005201325A JP2007015315A JP 2007015315 A JP2007015315 A JP 2007015315A JP 2005201325 A JP2005201325 A JP 2005201325A JP 2005201325 A JP2005201325 A JP 2005201325A JP 2007015315 A JP2007015315 A JP 2007015315A
Authority
JP
Japan
Prior art keywords
layer
film
weight
mol
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201325A
Other languages
Japanese (ja)
Other versions
JP4896454B2 (en
Inventor
Hiroshi Kusume
博 楠目
Atsushi Koyamamatsu
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2005201325A priority Critical patent/JP4896454B2/en
Publication of JP2007015315A publication Critical patent/JP2007015315A/en
Application granted granted Critical
Publication of JP4896454B2 publication Critical patent/JP4896454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white laminated film which has practically sufficient reflectivity in a visible light region, can be stably manufactured, is inhibited in the deterioration (yellowing) by an ultraviolet ray, and is hardly deformed by heat. <P>SOLUTION: The laminated film comprises a layer A of a composition composed of 3 to 50 wt.% of an inert particles having an average diameter of 0.3 to 3.0 μm and 50 to 97 wt.% of a polyester from dicarboxylic acids containing 3 to 20 mol% of isophthalic acid and 80 to 97 mol% of terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component and a layer B of a composition composed of 31 to 60 wt.% of inert particles having an average diameter of 0.3 to 3.0 μm and 40 to 69 wt.% of a polyester from dicarboxylic acids containing 3 to 100 mol% of naphthalene dicarboxylic acid and 0 to 97 mol% of terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、積層フィルムに関し、詳しくは、高い反射率を備えかつ耐光性および耐熱性に優れる積層フィルムに関する。   The present invention relates to a laminated film, and in particular, relates to a laminated film that has a high reflectance and is excellent in light resistance and heat resistance.

液晶ディスプレイにおいて従来、ディスプレイの背面からライトを当てるバックライト方式が採用されていたが、近年、特開昭63−62104号公報に示されるようなサイドライト方式が、薄型で均一に照明できるメリットから、広く用いられるようになっている。このサイドライト方式では背面に反射板を設置するが、この反射板には光の高い反射性および高い拡散性が要求される。   In the past, a backlight system in which light is applied from the back of the display has been adopted in liquid crystal displays. However, in recent years, the sidelight system as disclosed in JP-A-63-62104 is thin and can be illuminated uniformly. , Has come to be widely used. In this side light system, a reflector is installed on the back surface, and this reflector is required to have high light reflectivity and high diffusibility.

側面もしくは背面から直接当てるライトとして用いられる光源の冷陰極管からは紫外線が発生するため、液晶ディスプレイの使用時間が長くなると、反射板のフィルムが紫外線によって劣化し、画面の輝度が低下する。また、近年、液晶ディスプレイの大画面化と高輝度化が強く求められ、光源から発せられる熱量が増大し、熱によるフィルムの変形を抑制することが必要になってきた。   Ultraviolet rays are generated from a cold cathode tube, which is a light source used as a light directly applied from the side or the back surface. Therefore, when the usage time of the liquid crystal display is prolonged, the film of the reflector is deteriorated by the ultraviolet rays, and the luminance of the screen is lowered. In recent years, there has been a strong demand for larger screens and higher brightness of liquid crystal displays, and the amount of heat emitted from light sources has increased, making it necessary to suppress film deformation due to heat.

特開昭63−62104号公報JP 63-62104 A 特公平8−16175号公報Japanese Patent Publication No. 8-16175 特開2001−226501号公報JP 2001-226501 A 特開2002−90515号公報JP 2002-90515 A

本発明は、かかる従来技術の問題点を解決することを課題とし、実用上十分な可視光領域の反射性能を備え、安定して製膜することができ、紫外線による劣化(黄変)が抑制され、熱による変形が少ない、液晶ディスプレイや内照式電飾看板用の反射板基材として好適に用いることのできる、白色の積層フィルムを提供することを目的とする。   An object of the present invention is to solve the problems of the prior art, and has a practically sufficient visible light region reflection performance, can be stably formed, and suppresses deterioration (yellowing) due to ultraviolet rays. It is an object of the present invention to provide a white laminated film that can be suitably used as a reflector substrate for liquid crystal displays and internally illuminated signboards that is less likely to be deformed by heat.

すなわち本発明は、平均粒径0.3〜3.0μmの不活性粒子3〜50重量%ならびにイソフタル酸3〜20モル%およびテレフタル酸80〜97モル%をジカルボン酸成分としエチレングリコールをジオール成分としてなるポリエステル50〜97重量%からなる組成物の層Aと、この層Aに接し平均粒径0.3〜3.0μmの不活性粒子31〜60重量%ならびにナフタレンジカルボン酸3〜100モル%およびテレフタル酸0〜97モル%をジカルボン酸成分としエチレングリコールをジオール成分としてなるポリエステル40〜69重量%からなる組成物の層Bから構成される積層フィルムである。   That is, the present invention relates to 3 to 50% by weight of inert particles having an average particle size of 0.3 to 3.0 μm, 3 to 20% by mole of isophthalic acid and 80 to 97% by mole of terephthalic acid, and ethylene glycol as a diol component. Layer A of a composition comprising 50 to 97% by weight of polyester, 31 to 60% by weight of inert particles having an average particle size of 0.3 to 3.0 μm in contact with this layer A, and 3 to 100% by mole of naphthalenedicarboxylic acid And a laminated film composed of layer B of a composition comprising 40 to 69% by weight of a polyester comprising 0 to 97 mol% of terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component.

本発明によれば、実用上十分な可視光領域の反射性能を備え、安定して製膜することができ、紫外線による劣化(黄変)が抑制され、熱による変形が少ない、液晶ディスプレイや内照式電飾看板用の反射板基材として好適に用いることのできる、白色の積層フィルムを提供することができる。   According to the present invention, it is possible to stably form a film with a practically sufficient visible light region reflection performance, suppress deterioration (yellowing) due to ultraviolet rays, and reduce deformation due to heat. It is possible to provide a white laminated film that can be suitably used as a reflector substrate for a lighting type electric signboard.

以下、本発明を詳細に説明する。
[ポリエステル]
本発明の積層フィルムは、層Aとこの層Aに接する層Bから構成される。
層Aは、平均粒径0.3〜3.0μmの不活性粒子3〜50重量%ならびにイソフタル酸3〜20モル%およびテレフタル酸80〜97モル%をジカルボン酸成分としエチレングリコールをジオール成分としてなるポリエステル50〜97重量%からなる組成物の層である。
Hereinafter, the present invention will be described in detail.
[polyester]
The laminated film of the present invention comprises a layer A and a layer B in contact with the layer A.
Layer A comprises 3 to 50% by weight of inert particles having an average particle size of 0.3 to 3.0 μm, 3 to 20% by mole of isophthalic acid and 80 to 97% by mole of terephthalic acid, and ethylene glycol as a diol component. It is a layer of a composition comprising 50 to 97% by weight of polyester.

このポリエステルにおいて、ジカルボン酸成分のイソフタル酸の割合は、3〜20モル%、好ましくは、4〜19モル%、さらに好ましくは5〜18モル%、特に好ましくは6〜15モル%である。3モル%未満であると、層Aが例えば31重量%以上の不活性粒子を含有する場合に製膜できないことがあり、20モル%を超えると熱寸法安定性が損なわれ、さらには製膜できないことがある。   In this polyester, the proportion of isophthalic acid as the dicarboxylic acid component is 3 to 20 mol%, preferably 4 to 19 mol%, more preferably 5 to 18 mol%, and particularly preferably 6 to 15 mol%. If it is less than 3 mol%, film formation may not be possible when layer A contains, for example, 31% by weight or more of inert particles, and if it exceeds 20 mol%, thermal dimensional stability is impaired, and further, film formation There are things that cannot be done.

このポリエステルにおいて、ジカルボン酸成分のテレフタル酸の割合は、80〜97モル%である。80モル%未満であると熱寸法安定性が損なわれ、さらには製膜できないことがあり、97モル%を超えると層Aが例えば31重量%以上の不活性粒子を含有する場合に製膜できないことがある。   In this polyester, the ratio of terephthalic acid as the dicarboxylic acid component is 80 to 97 mol%. If it is less than 80 mol%, thermal dimensional stability is impaired, and film formation may not be possible. If it exceeds 97 mol%, film formation cannot be performed when layer A contains, for example, 31% by weight or more of inert particles. Sometimes.

層Aのポリエステルは、好ましくはアンチモン元素を実質的に含有しない。実質的に含有しないとは、含有量が20ppm以下、好ましくは15ppm以下、さらに好ましくは10ppm以下をいう。アンチモン元素を実質的に含有すると白色フィルムの場合、黒く筋状に見え、フィルム外観を著しく損なってしまい好ましくない。   The polyester of layer A is preferably substantially free of antimony elements. “Substantially not contained” means that the content is 20 ppm or less, preferably 15 ppm or less, more preferably 10 ppm or less. When the antimony element is substantially contained, in the case of a white film, it looks black and streaks, which is not preferable because the film appearance is remarkably impaired.

アンチモン元素を実質的に含有しないポリエステルを得るためには、ポリエステルをアンチモン化合物以外の触媒を用いて重合する。ポリエステルの重合に使用する触媒としては、マンガン(Mn)化合物、チタン(Ti)化合物、ゲルマニウム(Ge)化合物のいずれかを用いることが好ましい。   In order to obtain a polyester substantially free of an antimony element, the polyester is polymerized using a catalyst other than the antimony compound. As a catalyst used for polymerization of polyester, it is preferable to use any one of a manganese (Mn) compound, a titanium (Ti) compound, and a germanium (Ge) compound.

チタン化合物としては、例えば、チタンテトラブトキシド、酢酸チタンを用いることができる。   As the titanium compound, for example, titanium tetrabutoxide and titanium acetate can be used.

ゲルマニウム化合物としては、例えば、無定形酸化ゲルマニウム、微細な結晶性酸化ゲルマニウム、酸化ゲルマニウムをアルカリ金属またはアルカリ土類金属もしくはそれらの化合物の存在化にグリコールに溶解した溶液、酸化ゲルマニウムを水に溶解した溶液を用いることができる。   Examples of germanium compounds include amorphous germanium oxide, fine crystalline germanium oxide, a solution in which germanium oxide is dissolved in glycol in the presence of an alkali metal or alkaline earth metal or a compound thereof, and germanium oxide is dissolved in water. A solution can be used.

他方、層Bは、平均粒径0.3〜3.0μmの不活性粒子31〜60重量%ならびにナフタレンジカルボン酸3〜100モル%およびテレフタル酸0〜97モル%をジカルボン酸成分としエチレングリコールをジオール成分としてなるポリエステル40〜69重量%からなる組成物の層である。   On the other hand, the layer B is composed of 31 to 60% by weight of inert particles having an average particle size of 0.3 to 3.0 μm, 3 to 100% by mole of naphthalenedicarboxylic acid and 0 to 97% by mole of terephthalic acid as a dicarboxylic acid component. It is a layer of a composition comprising 40 to 69% by weight of a polyester as a diol component.

このポリエステルにおいて、ジカルボン酸成分としてさらにイソフタル酸が含まれていてもよい。この場合イソフタル酸の含有量は、全ジカルボン酸成分あたり例えば1〜12モル%、さらに例えば2〜11モル%である。このイソフタル酸成分は、製造工程で発生する積層フィルムの端部分を再原料化して使用すると不可避的に混ざりこんでしまうが、端部分を再原料化して使用するかどうかは任意であり、イソフタル酸がポリエステルに含まれる必要はない。   This polyester may further contain isophthalic acid as a dicarboxylic acid component. In this case, the content of isophthalic acid is, for example, 1 to 12 mol%, more preferably 2 to 11 mol%, based on the total dicarboxylic acid component. This isophthalic acid component is inevitably mixed when used as a raw material at the end of the laminated film generated in the manufacturing process, but it is optional whether the end portion is used as a raw material. Need not be included in the polyester.

[不活性粒子]
層Aの組成物は平均粒径0.3〜3.0μmの不活性粒子を3〜50重量%、好ましくは3〜50重量%、さらに好ましくは10〜49重量%、さらに好ましくは15〜48重量%、特に好ましくは20〜47重量%含有する。3重量%未満であると反射率が低下したり、フィルムの滑り性や光沢が悪く、紫外線による黄変が防げず、50重量%を超えるとフィルムが破れやすい。
[Inert particles]
The composition of layer A contains 3 to 50% by weight, preferably 3 to 50% by weight, more preferably 10 to 49% by weight, more preferably 15 to 48% of inert particles having an average particle size of 0.3 to 3.0 μm. % By weight, particularly preferably 20 to 47% by weight. If it is less than 3% by weight, the reflectance is lowered, the slipperiness and gloss of the film are poor, yellowing due to ultraviolet rays cannot be prevented, and if it exceeds 50% by weight, the film is easily broken.

層Bの組成物は平均粒径0.3〜3.0μmの不活性粒子31〜60重量%、好ましくは31〜60重量%、さらに好ましくは34〜58重量%、さらに好ましくは38〜56重量%、特に好ましくは40〜54重量%含有する。31重量%未満であると反射率の低下を招き、60重量%を超えるとフィルムが破れやすくなる。   The composition of layer B is 31 to 60% by weight, preferably 31 to 60% by weight, more preferably 34 to 58% by weight, more preferably 38 to 56% by weight, of inert particles having an average particle size of 0.3 to 3.0 μm. %, Particularly preferably 40 to 54% by weight. If it is less than 31% by weight, the reflectance is lowered, and if it exceeds 60% by weight, the film is easily broken.

層Aおよび層Bに含有される不活性粒子の平均粒径は、いずれも0.3〜3.0μm、好ましくは0.5〜2.5μm、さらに好ましくは0.7〜2.0μmである。平均粒径が0.3μm未満であると、粒子の分散性が極端に悪くなり粒子の凝集が起こるため生産工程上のトラブルが発生し易いうえ、フィルムに粗大突起を形成し光沢の劣ったフィルムになる可能性がある。他方、平均粒径が3.0μmを超えるとフィルムの表面が粗くなり光沢が低下するばかりか、適切な範囲に光沢度をコントロールすることが困難となる。
なお、不活性粒子の粒度分布の半値幅は、好ましくは0.3〜3.0μm、さらに好ましくは0.3〜2.5μmである。
The average particle diameter of the inert particles contained in the layer A and the layer B is 0.3 to 3.0 μm, preferably 0.5 to 2.5 μm, more preferably 0.7 to 2.0 μm. . When the average particle size is less than 0.3 μm, the dispersibility of the particles becomes extremely poor and the particles are aggregated, so that troubles in the production process are likely to occur, and the film has poor gloss by forming coarse protrusions on the film. There is a possibility. On the other hand, if the average particle size exceeds 3.0 μm, the surface of the film becomes rough and the gloss decreases, and it becomes difficult to control the gloss to an appropriate range.
The half-value width of the particle size distribution of the inert particles is preferably 0.3 to 3.0 μm, more preferably 0.3 to 2.5 μm.

不活性粒子としては、高い反射性能を得る観点から、好ましくは白色顔料を用いる。白色顔料としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、二酸化珪素などがあり、反射率の観点から特に好ましくは、硫酸バリウムを用いる。この硫酸バリウムは板状、球状いずれの粒子形状でもよい。硫酸バリウムを用いることで一層良好な反射率を得ることができる。   As the inert particles, a white pigment is preferably used from the viewpoint of obtaining high reflection performance. Examples of white pigments include titanium oxide, barium sulfate, calcium carbonate, and silicon dioxide. Barium sulfate is particularly preferably used from the viewpoint of reflectance. The barium sulfate may have a plate shape or a spherical particle shape. By using barium sulfate, better reflectance can be obtained.

不活性粒子として、酸化チタンを用いる場合、好ましくはルチル型酸化チタンを用いる。ルチル型酸化チタンを用いると、アナターゼ型酸化チタンを用いた場合よりも、光線を長時間ポリエステルフィルムに照射した後の黄変が少なく、色差の変化を抑制することができるので好ましい。このルチル型酸化チタンは、ステアリン酸等の脂肪酸およびその誘導体等を用いて処理して用いると、分散性を向上させることができ、フィルムの光沢度を一層向上させることができるので好ましい。   When titanium oxide is used as the inert particles, rutile titanium oxide is preferably used. It is preferable to use rutile type titanium oxide because, compared with the case of using anatase type titanium oxide, there is less yellowing after irradiating the polyester film with light for a long time, and the change in color difference can be suppressed. This rutile type titanium oxide is preferably used after being treated with a fatty acid such as stearic acid and its derivatives, etc., since the dispersibility can be improved and the glossiness of the film can be further improved.

なお、ルチル型酸化チタンを用いる場合には、ポリエステルに添加する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行うことが好ましい。精製プロセスの工業的手段としては、粉砕手段としては、例えばジェットミル、ボールミルを適用することができ、分級手段としては、例えば乾式もしくは湿式の遠心分離を適用することができる。これらの手段は2種以上を組み合わせ、段階的に精製しても良い。   In addition, when using a rutile type titanium oxide, it is preferable to perform a particle size adjustment and coarse particle removal using a refinement | purification process, before adding to polyester. As industrial means of the refining process, for example, a jet mill or a ball mill can be applied as the pulverizing means, and for example, dry or wet centrifugation can be applied as the classification means. Two or more of these means may be combined and purified step by step.

不活性粒子をポリエステルに含有させる方法としては、下記のいずれかの方法をとることが好ましい。
(ア)ポリエステル合成時のエステル交換反応もしくはエステル化反応終了前に添加、もしくは重縮合反応開始前に添加する方法。
(イ)ポリエステルに添加し、溶融混練する方法。
(ウ)上記(ア)または(イ)の方法において不活性粒子を多量添加したマスターペレットを製造し、これらと添加剤を含有しないポリエステルとを混練して所定量の添加物を含有させる方法。
(エ)上記(ウ)のマスターペレットをそのまま使用する方法。
As a method of incorporating the inert particles into the polyester, it is preferable to take any of the following methods.
(A) A method of adding before transesterification or esterification reaction at the time of polyester synthesis or adding before the start of polycondensation reaction.
(A) A method of adding to polyester and melt-kneading.
(C) A method of producing master pellets to which a large amount of inert particles are added in the method (a) or (b) above, and kneading these with a polyester not containing an additive to contain a predetermined amount of additive.
(D) A method of using the master pellet of (c) as it is.

なお、前記(ア)のポリエステル合成時に添加する方法を用いる場合には、酸化チタンにおいてはグリコールに分散したスラリーとして、反応系に添加することが好ましい。
特に上記(ウ)または(エ)の方法をとることが好ましい。
In addition, when using the method added at the time of the said polyester synthesis | combination of (a), it is preferable to add to a reaction system as a slurry disperse | distributed to glycol in titanium oxide.
In particular, it is preferable to take the above method (c) or (d).

本発明では、製膜時のフィルターとして線径15μm以下のステンレス鋼細線よりなる平均目開き10〜100μm、好ましくは平均目開き20〜50μmの不織布型フィルターを用い、溶融ポリマーを濾過することが好ましい。この濾過を行なうことにより、一般的には凝集して粗大凝集粒子となやすい粒子の凝集を抑えて、粗大異物の少ないフィルムを得ることができる。   In the present invention, it is preferable to filter the molten polymer by using a nonwoven fabric type filter having an average opening of 10 to 100 μm, preferably an average opening of 20 to 50 μm made of a stainless steel fine wire having a wire diameter of 15 μm or less as a filter during film formation. . By performing this filtration, it is possible to obtain a film with less coarse foreign matters by suppressing aggregation of particles that are generally likely to aggregate to become coarse aggregate particles.

[添加剤]
本発明の積層フィルムには、蛍光増白剤を配合してもよい。蛍光増白剤は、層Aまたは層Bのポリエステル組成物に対する濃度として、好ましくは0.005〜0.2重量%、さらに好ましくは0.01〜0.1重量%の範囲で配合するといよい。蛍光増白剤の添加量が0.01重量%未満では350nm付近の波長域の反射率が十分でないので添加する意味が乏しく、0.2重量%を越えると、蛍光増白剤の持つ特有の色が現れてしまうため好ましくない。
[Additive]
You may mix | blend a fluorescent whitening agent with the laminated | multilayer film of this invention. The fluorescent whitening agent is preferably added in a range of 0.005 to 0.2% by weight, more preferably 0.01 to 0.1% by weight as a concentration with respect to the polyester composition of layer A or layer B. . If the addition amount of the fluorescent whitening agent is less than 0.01% by weight, the reflectance in the wavelength region near 350 nm is not sufficient, so the meaning of adding is poor. Since color appears, it is not preferable.

蛍光増白剤としては、例えばOB−1(イーストマン社製)、Uvitex−MD(チバガイギー社製)、JP−Conc(日本化学工業所製)を用いることができる。
また、必要に応じて更に性能を上げるために、酸化防止剤、紫外線吸収剤、蛍光増白剤等を有する塗剤を本フィルムの少なくとも片面に塗布することもできる。
As the fluorescent brightening agent, for example, OB-1 (manufactured by Eastman), Uvitex-MD (manufactured by Ciba Geigy), or JP-Conc (manufactured by Nippon Chemical Industry Co., Ltd.) can be used.
Further, in order to further improve the performance as required, a coating agent containing an antioxidant, an ultraviolet absorber, a fluorescent brightening agent, and the like can be applied to at least one surface of the film.

[層構成]
本発明の積層フィルムは、層Aとこの層Aに接する層Bからなる積層フィルムである。
この構成を含む構成であれば、さらに他の層が積層されていてもよい。例えば、層A/層Bの2層構成であってもよく、層A/層B/層Aの3層構成、あるいは層A/層B/層A/層Bの4層構成であってもよく、これらの構成を含む5層以上の構成であってもよい。
製膜上の容易さと効果を考慮すると層A/層Bからなる2層または層A/層B/層Aからなる3層の構成が特に良好である。
[Layer structure]
The laminated film of the present invention is a laminated film comprising a layer A and a layer B in contact with the layer A.
As long as the configuration includes this configuration, another layer may be further stacked. For example, it may be a two-layer configuration of layer A / layer B, a three-layer configuration of layer A / layer B / layer A, or a four-layer configuration of layer A / layer B / layer A / layer B. It may be a structure of five layers or more including these structures.
Considering easiness and effect on film formation, the configuration of two layers consisting of layer A / layer B or three layers consisting of layer A / layer B / layer A is particularly good.

層Aの厚みは、層Aおよび層Bの合計厚み100に対して、好ましくは3〜30、さらに好ましくは4〜28である。3未満であると紫外線による劣化の観点から好ましくなく、30を超えると反射率の観点から好ましくない。   The thickness of the layer A is preferably 3 to 30 and more preferably 4 to 28 with respect to the total thickness 100 of the layer A and the layer B. If it is less than 3, it is not preferable from the viewpoint of deterioration by ultraviolet rays, and if it exceeds 30, it is not preferable from the viewpoint of reflectance.

フィルムの片面または両面に、他の機能を付与するために、他の層をさらに積層した積層体としてもよい。ここでいう他の層としては、例えば透明なポリエステル樹脂層、金属薄膜やハードコート層、インク受容層を例示することができる。   In order to impart other functions to one side or both sides of the film, a laminate in which other layers are further laminated may be used. Examples of other layers herein include a transparent polyester resin layer, a metal thin film, a hard coat layer, and an ink receiving layer.

以下、本発明の積層フィルムを製造する方法の一例として、層A/層B/層Aの積層フィルムの製造方法の一例を説明する。ダイから溶融したポリマーをフィードブロックを用いた同時多層押出し法により、積層未延伸シートを製造する。すなわち層Aを形成するポリマーの溶融物と層Bを形成するポリマーの溶融物を、フィードブロックを用いて例えば層A/層B/層Aとなるように積層し、ダイに展開して押出しを実施する。この時、フィードブロックで積層されたポリマーは積層された形態を維持している。   Hereinafter, as an example of a method for producing a laminated film of the present invention, an example of a method for producing a laminated film of layer A / layer B / layer A will be described. A laminated unstretched sheet is produced by a simultaneous multilayer extrusion method using a feed block from a polymer melted from a die. That is, the polymer melt for forming layer A and the polymer melt for forming layer B are laminated using a feed block so as to be, for example, layer A / layer B / layer A, and are spread on a die and extruded. carry out. At this time, the polymer laminated by the feed block maintains the laminated form.

ダイより押出された未延伸シートは、キャスティングドラムで冷却固化され、未延伸フィルムとなる。この未延伸状フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。延伸温度はポリエステルのガラス転移点(Tg)以上の温度、さらにはTg〜70℃高い温度とするのが好ましい。延伸倍率は、用途の要求特性にもよるが、縦方向、縦方向と直交する方向(以降、横方向と呼ぶ)ともに、好ましくは2.5〜4.0倍、さらに好ましくは2.8〜3.9倍である。2.5倍未満とするとフィルムの厚み斑が悪くなり良好なフィルムが得られず、4.0倍を超えると製膜中に破断が発生し易くなり好ましくない。   The unstretched sheet extruded from the die is cooled and solidified by a casting drum to form an unstretched film. This unstretched film is heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The stretching temperature is preferably a temperature equal to or higher than the glass transition point (Tg) of the polyester, and more preferably a temperature higher by Tg to 70 ° C. The draw ratio is preferably 2.5 to 4.0 times, more preferably 2.8 to both the longitudinal direction and the direction orthogonal to the longitudinal direction (hereinafter referred to as the transverse direction), although it depends on the required characteristics of the application. 3.9 times. If the thickness is less than 2.5 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained.

縦延伸後のフィルムは、続いて、横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、これら処理はフィルムを走行させながら行う。横延伸の処理はポリエステルのガラス転移点(Tg)より高い温度から始める。そしてTgより(5〜70)℃高い温度まで昇温しながら行う。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。横延伸の倍率は、この用途の要求特性にもよるが、好ましくは2.5〜4.5倍、さらに好ましくは2.8〜3.9倍である。2.5倍未満であるとフィルムの厚み斑が悪くなり良好なフィルムが得られず、4.5倍を超えると製膜中に破断が発生し易くなる。   Subsequently, the film after longitudinal stretching is subjected to lateral stretching, heat setting, and thermal relaxation in order to form a biaxially oriented film. These processes are performed while the film is running. The transverse stretching process starts from a temperature higher than the glass transition point (Tg) of the polyester. And it is performed while raising the temperature to (5 to 70) ° C. higher than Tg. Although the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone. The transverse stretching ratio is preferably 2.5 to 4.5 times, more preferably 2.8 to 3.9 times, although it depends on the required characteristics of this application. If it is less than 2.5 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained, and if it exceeds 4.5 times, breakage tends to occur during film formation.

横延伸後のフィルムは両端を把持したまま(Tm―20〜100)℃で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのがよい。これより高い温度であるとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。また、熱処理温度が(Tm―80)℃より低いと熱収縮率が大きくなることがある。また、熱固定後フィルム温度を常温に戻す過程で(Tm―20〜100)℃以下の領域の熱収縮量を調整するために、把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1〜1.5%、さらに好ましくは0.2〜1.2%、特に好ましくは0.3〜1.0%の速度ダウンを実施してフィルムを弛緩(この値を「弛緩率」という)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることもできる。   The film after transverse stretching is preferably heat treated at a constant width or a width reduction of 10% or less at a temperature (Tm-20 to 100) while holding both ends to reduce the thermal shrinkage. When the temperature is higher than this, the flatness of the film is deteriorated, and the thickness unevenness becomes large, which is not preferable. On the other hand, if the heat treatment temperature is lower than (Tm-80) ° C., the thermal shrinkage rate may increase. Also, in order to adjust the amount of thermal shrinkage in the region of (Tm-20-100) ° C. or lower during the process of returning the film temperature to room temperature after heat setting, both ends of the film being gripped are cut off, and the take-up speed in the film vertical direction Can be adjusted and relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 1.5%, more preferably 0.2 to 1.2%, particularly preferably 0.3. The film is relaxed by performing a speed reduction of ˜1.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, so that a desired heat shrinkage rate can be obtained.

このようにして得られる本発明の積層フィルムは、85℃の熱収縮率が、直交する2方向ともに0.5%以下、さらに好ましくは0.4%以下、最も好ましくは0.3%以下とすることができる。   The laminated film of the present invention thus obtained has a heat shrinkage rate of 85 ° C. of 0.5% or less, more preferably 0.4% or less, and most preferably 0.3% or less in two orthogonal directions. can do.

2軸延伸後の積層フィルムの厚みは、好ましくは25〜250μm、さらに好ましくは30〜250μm、特に好ましくは40〜250μmである。25μm未満であると反射率が低下し、250μmを超えるとこれ以上厚くしても反射率の上昇が望めないことから好ましくない。   The thickness of the laminated film after biaxial stretching is preferably 25 to 250 μm, more preferably 30 to 250 μm, and particularly preferably 40 to 250 μm. If the thickness is less than 25 μm, the reflectivity is lowered, and if it exceeds 250 μm, the increase in the reflectivity cannot be expected even if the thickness is further increased.

このようにして得られる本発明の積層フィルムは、その少なくとも一方の表面の反射率が波長400〜700nmの平均反射率でみて90%以上、さらに好ましくは92%以上、特に好ましくは94%以上である。90%未満であると十分な画面の輝度を得ることができないので好ましくない。   The thus-obtained laminated film of the present invention has a reflectance of at least one surface of 90% or more, more preferably 92% or more, particularly preferably 94% or more in terms of an average reflectance of a wavelength of 400 to 700 nm. is there. If it is less than 90%, it is not preferable because sufficient screen brightness cannot be obtained.

以下、実施例により本発明を詳述する。なお、各特性値は以下の方法で測定した。
(1)フィルム厚み
フィルムサンプルをエレクトリックマイクロメーター(アンリツ製 K−402B)にて、10点厚みを測定し、平均値をフィルムの厚みとした。
Hereinafter, the present invention will be described in detail by way of examples. Each characteristic value was measured by the following method.
(1) Film thickness A film sample was measured for 10-point thickness with an electric micrometer (K-402B manufactured by Anritsu), and the average value was taken as the thickness of the film.

(2)各層の厚み
サンプルを三角形に切り出し、包埋カプセルに固定後、エポキシ樹脂にて包埋した。そして、包埋されたサンプルをミクロトーム(ULTRACUT−S)で縦方向に平行な断面を50nm厚の薄膜切片にした後、透過型電子顕微鏡を用いて、加速電圧100kvにて観察撮影し、写真から各層の厚みを測定し、平均厚みを求めた。
(2) Thickness of each layer A sample was cut into a triangle, fixed in an embedded capsule, and then embedded in an epoxy resin. Then, after embedding the sample with a microtome (ULTRACUT-S) into a thin film section having a thickness of 50 nm in parallel with the microtome, the specimen was observed and photographed with a transmission electron microscope at an acceleration voltage of 100 kv. The thickness of each layer was measured and the average thickness was determined.

(3)反射率
分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaSO白板を100%とした時の反射率を400〜700nmにわたって測定した。得られたチャートより2nm間隔で反射率を読み取った。上記の範囲内で平均値を求めた上、次の基準で判定した。
○:全測定領域において反射率90%以上
△:測定領域において平均反射率90%以上で1部分90%未満がある
×:全測定領域において平均反射率が90%未満
(3) Reflectance An integrating sphere was attached to a spectrophotometer (Shimadzu Corporation UV-3101PC), and the reflectance when the BaSO 4 white plate was 100% was measured over 400 to 700 nm. The reflectance was read from the obtained chart at intervals of 2 nm. The average value was determined within the above range, and then judged according to the following criteria.
○: Reflectance 90% or more in the entire measurement region Δ: Average reflectance 90% or more in the measurement region and less than 90% in one part ×: Average reflectance in the entire measurement region is less than 90%

(4)延伸性
縦方向2.5〜3.4倍、横方向3.4〜3.8倍に延伸して製膜し、安定に製膜できるか観察した。下記基準で評価した。
○:1時間以上安定に製膜できる
×:1時間以内に切断が発生し、安定な製膜ができない
(4) Stretchability The film was stretched 2.5 to 3.4 times in the longitudinal direction and 3.4 to 3.8 times in the transverse direction to form a film, and it was observed whether the film could be stably formed. Evaluation was made according to the following criteria.
○: Stable film formation for 1 hour or more ×: Cutting occurs within 1 hour, and stable film formation is not possible

(5)熱収縮率
85℃に設定されたオーブン中でフィルムを無緊張状態で30分間保持し、加熱処理前後の標点間距離を測定し、下記式により熱収縮率(85℃熱収縮率)を算出した。
熱収縮率%=((L0−L)/L0)×100
L0:熱処理前の標点間距離
L :熱処理後の標点間距離
(5) Thermal shrinkage rate The film was held in an oven set at 85 ° C. for 30 minutes in an unstrained state, the distance between the gauge points before and after the heat treatment was measured, and the thermal shrinkage rate (85 ° C. thermal shrinkage rate) according to the following formula: ) Was calculated.
Thermal shrinkage% = ((L0−L) / L0) × 100
L0: Distance between gauge points before heat treatment L: Distance between gauge points after heat treatment

(6)ガラス転移点(Tg)、融点(Tm)
示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20m/分で測定を行った。
(6) Glass transition point (Tg), melting point (Tm)
Using a differential scanning calorimeter (TA Instruments 2100 DSC), the measurement was performed at a heating rate of 20 m / min.

(7)紫外線による劣化(耐光性の評価)
キセノンランプ照射(SUNTEST CPS+)にてパネル温度60℃、照射時間300時間にて前後の色変化をみた。
初期のフィルム色相(L1*、a1*、b1*)と照射後のフィルム色相(L2*、a2*、b2*)とを色差計(日本電飾製SZS−Σ90 COLOR MEASURING SYSTEM)にて測定し色変化dE*(式1)にて下記のように評価した。
(式1)
dE*={(L1*−L2*)+(a1*−a2*)+(b1*−b2*)1/2
○: dE*≦10
△:10<dE*≦15
×:15<dE*
(7) Deterioration by ultraviolet rays (evaluation of light resistance)
With a xenon lamp irradiation (SUNTEST CPS +), the color change before and after the panel temperature was 60 ° C. and the irradiation time was 300 hours.
Measure the initial film hue (L1 *, a1 *, b1 *) and the film hue after irradiation (L2 *, a2 *, b2 *) with a color difference meter (Nippon Denka SZS-Σ90 COLOR MEASURING SYSTEM). The color change dE * (formula 1) was evaluated as follows.
(Formula 1)
dE * = {(L1 * -L2 *) 2 + (a1 * -a2 *) 2 + (b1 * -b2 *) 2} 1/2
○: dE * ≦ 10
Δ: 10 <dE * ≦ 15
×: 15 <dE *

(8)熱による変形(たわみの評価)
フィルムサンプルをA4版に切り出し、フィルムの4辺を金枠で固定したまま、80℃に加熱したオーブンで30分間処理した後、変形(フィルムのたわみ状態)を目視にて観察した。
○:たわんだ状態が観察されない。
△:一部に軽微なたわみが観察される。
×:たわんだ部分があり、たわみの凹凸が5mm以上の隆起として観察される。
(8) Deformation due to heat (evaluation of deflection)
The film sample was cut into A4 plate, and after processing for 30 minutes in an oven heated to 80 ° C. while the four sides of the film were fixed with a metal frame, the deformation (deflection state of the film) was visually observed.
○: A bent state is not observed.
Δ: Slight deflection is observed in part.
X: There is a bent portion, and unevenness of the deflection is observed as a bulge of 5 mm or more.

[実施例1]
テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの酸成分に対して12モル%)、エチレングリコール96重量部、ジエチレングリコール3.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150〜235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し重縮合反応を行った。得られた共重合ポリエステルのジエチレングリコール成分量は2.5wt%、ゲルマニウム元素量は50ppm、リチウム元素量は5ppmであった。このポリエステル樹脂を層Aに用い、表1に示す不活性粒子を添加した。また上述のジカルボン酸成分としてイソフタル酸ジメチルに替えて2,6−ナフタレンジカルボン酸ジメチルを23重量部(ポリエステルの酸成分として12モル%)用いて重合したポリエステル樹脂を層Bに用い、同じく表1に示す不活性粒子を添加した。それぞれ280℃に加熱された2台の押出機に供給し、層Aポリマー、層Bポリマーを層Aと層BがA/B/Aとなるような3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを記載された温度にて加熱し長手方向(縦方向)に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手に垂直な方向(横方向)に延伸した。その後テンター内で表2の温度で熱固定を行い、表2に示す条件にて縦方向の弛緩、横方向の幅入れを行い、室温まで冷やして二軸延伸フィルムを得た。得られたフィルムの反射板基材としての物性は表2の通りであった。
[Example 1]
132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the acid component of the polyester), 96 parts by weight of ethylene glycol, 3.0 parts by weight of diethylene glycol, 0.05 part by weight of manganese acetate, 0 parts of lithium acetate .012 parts by weight were charged into a rectifying column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor. Subsequently, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg and the temperature was raised to 290 ° C. to carry out a polycondensation reaction. The obtained copolymer polyester had a diethylene glycol component amount of 2.5 wt%, a germanium element amount of 50 ppm, and a lithium element amount of 5 ppm. This polyester resin was used for layer A, and the inert particles shown in Table 1 were added. In addition, a polyester resin obtained by polymerizing 23 parts by weight of dimethyl 2,6-naphthalenedicarboxylate (12 mol% as an acid component of the polyester) instead of dimethyl isophthalate as the dicarboxylic acid component described above is used for layer B. Table 1 Inert particles shown in Table 2 were added. Supply them to two extruders each heated to 280 ° C., and combine the layer A polymer and layer B polymer using a three-layer feedblock device in which layer A and layer B are A / B / A. The sheet was molded from a die while maintaining the laminated state. Further, an unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 25 ° C. was heated at the described temperature, stretched in the longitudinal direction (longitudinal direction), and cooled by a roll group at 25 ° C. Subsequently, the film was stretched in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, heat setting was performed in the tenter at the temperature shown in Table 2, and longitudinal relaxation was performed and lateral width was placed under the conditions shown in Table 2, followed by cooling to room temperature to obtain a biaxially stretched film. Table 2 shows the physical properties of the obtained film as a reflector substrate.

Figure 2007015315
Figure 2007015315

Figure 2007015315
Figure 2007015315

[実施例2〜8]
表1に示す添加量、不活性粒子に変更した以外は実施例1に準じて層Aポリマー、層Bポリマーを準備した。表2に示す通りの製膜条件にてフィルムを作製し、評価を行った。
[Examples 2 to 8]
Layer A polymer and layer B polymer were prepared in the same manner as in Example 1 except that the addition amount shown in Table 1 was changed to inert particles. Films were prepared and evaluated under the film forming conditions as shown in Table 2.

[実施例9]
層Aのポリマー作製において酢酸マンガンを0.05重量部を酢酸チタン0.02重量部に変更し、イソフタル酸ジメチルを表に示す通りに変更し、共重合ポリエステルを得た。得られた共重合ポリエステルの固有粘度は0.64dl/g、融点は225℃、ジエチレングリコール成分量は2.5wt%、チタン元素量は15ppm、リチウム元素量は5ppmであった。層Bのポリマー作製において実施例1にて作製した層Aのポリマーと層Bのポリマーをポリエステルの酸成分として1/11モル%となるようにブレンドを行い準備した。このポリエステル樹脂に表1に示す不活性粒子を添加し、表2に示すようにフィルムを作製し評価を行った。
[Example 9]
In the production of the polymer of layer A, 0.05 part by weight of manganese acetate was changed to 0.02 part by weight of titanium acetate, and dimethyl isophthalate was changed as shown in the table to obtain a copolyester. The obtained copolyester had an intrinsic viscosity of 0.64 dl / g, a melting point of 225 ° C., a diethylene glycol component amount of 2.5 wt%, a titanium element amount of 15 ppm, and a lithium element amount of 5 ppm. In the preparation of the polymer of layer B, the polymer of layer A and the polymer of layer B prepared in Example 1 were blended and prepared so that the acid component of the polyester was 1/11 mol%. Inert particles shown in Table 1 were added to this polyester resin, and a film was prepared and evaluated as shown in Table 2.

[実施例10〜11]
層Aとしてイソフタル酸ジメチルを表1に示す通り6モル%、層Bとしてナフタレンジカルボン酸ジメチルをポリエステルの酸成分として100モル%に変更した以外は実施例1に準じて層A、層Bのポリマーを作製した。表2に示す通りフィルムを作製し評価を行った。
[Examples 10 to 11]
The polymer of layer A and layer B according to Example 1 except that dimethyl isophthalate was changed to 6 mol% as shown in Table 1 as layer A and dimethyl naphthalenedicarboxylate was changed to 100 mol% as the acid component of the polyester as layer B. Was made. Films were prepared and evaluated as shown in Table 2.

[比較例1]
ジメチルテレフタレート85重量部、エチレングリコール60重量部とを酢酸カルシウム0.09重量部を触媒として常法に従い、エステル交換反応をせしめた後、リン化合物としてポリマーに対し0.18重量%となるようにトリメチルホスフェート10重量%含有するエチレングリコール溶液を添加し、次いで重合触媒として三酸化アンチモン0.03重量部を添加した。その後、高温減圧下にて常法に従い重縮合反応を行い極限粘度0.60のポリエチレンテレフタレートを得た。このポリエステルの固有粘度は0.65dl/g、融点は257℃、ジエチレングリコール成分量は1.2wt%、アンチモン元素量は30ppm、カルシウム元素量は10ppmであった。この樹脂に表1に示した不活性粒子を添加し、A、Bの層とした。表2に記載した条件にて作製し評価を行った。熱に対してたわみ易く、また紫外線による劣化も大きかった。
[Comparative Example 1]
After transesterification according to a conventional method using 85 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as a catalyst using 0.09 part by weight of calcium acetate, 0.18% by weight as a phosphorus compound with respect to the polymer is obtained. An ethylene glycol solution containing 10% by weight of trimethyl phosphate was added, and then 0.03 part by weight of antimony trioxide was added as a polymerization catalyst. Thereafter, a polycondensation reaction was performed according to a conventional method under high temperature and reduced pressure to obtain polyethylene terephthalate having an intrinsic viscosity of 0.60. This polyester had an intrinsic viscosity of 0.65 dl / g, a melting point of 257 ° C., a diethylene glycol component amount of 1.2 wt%, an antimony element amount of 30 ppm, and a calcium element amount of 10 ppm. Inert particles shown in Table 1 were added to this resin to form layers A and B. It produced and evaluated on the conditions described in Table 2. It was easy to bend with respect to heat and deteriorated due to ultraviolet rays.

[比較例2]
表1、2に示す条件で製膜し評価を行った。熱に対してたわみ易く、また紫外線による劣化も大きかった。
[Comparative Example 2]
Films were formed and evaluated under the conditions shown in Tables 1 and 2. It was easy to bend with respect to heat and deteriorated due to ultraviolet rays.

[比較例3]
比較例1に記載のジメチルテレフタレートをジメチルナフタレートに変更して層Bのポリマーを準備した。層Aのポリマーは比較例1に記載の通り準備し、これ以外は表1、2通り実施したが、延伸性が悪くフィルム作製ができなかった。
[Comparative Example 3]
The polymer of layer B was prepared by changing dimethyl terephthalate described in Comparative Example 1 to dimethyl naphthalate. The polymer of layer A was prepared as described in Comparative Example 1 and the other processes were carried out as shown in Tables 1 and 2, but the film was not able to be produced because of poor stretchability.

[比較例4]
比較例3で得たポリマーを層A、層Bともに使用し、表1、2に記載の通り、実施したが延伸性が悪くフィルム作製ができなかった。
[Comparative Example 4]
The polymer obtained in Comparative Example 3 was used for both layer A and layer B and carried out as described in Tables 1 and 2. However, the film was not able to be produced because of poor stretchability.

[比較例5]
実施例1の層Bで得られたポリマーのみを用い、表1、2に記載の通り単層にて実施したが延伸性が悪くフィルム作製ができなかった。
[Comparative Example 5]
Using only the polymer obtained in layer B of Example 1 and carrying out with a single layer as described in Tables 1 and 2, the film was not able to be produced due to poor stretchability.

[比較例6、7]
二酸化ゲルマニウム0.04重量部を三酸化アンチモン0.04重量部に変更する以外は実施例1同様にイソフタル酸共重合ポリマー、2,6−ナフタレンジカルボン酸共重合ポリマーを得て、それぞれ層A、層Bに用いる共重合ポリエステル樹脂を得た。このときのアンチモン元素量は40ppmであった。この樹脂を用いて表1、2に示す通り実施した。熱に対するたわみ、あるいは紫外線による劣化が大きかった。
[Comparative Examples 6 and 7]
Except for changing 0.04 parts by weight of germanium dioxide to 0.04 parts by weight of antimony trioxide, an isophthalic acid copolymer and a 2,6-naphthalenedicarboxylic acid copolymer were obtained in the same manner as in Example 1, and each of layers A, A copolyester resin used for layer B was obtained. The amount of antimony element at this time was 40 ppm. This resin was used as shown in Tables 1 and 2. Deflection due to heat or deterioration due to ultraviolet rays was large.

[比較例8]
比較例1の樹脂を用い、3層フィルムの表層(表面と裏面)として無機微粒子として炭酸カルシウムを14重量%添加し、芯層の樹脂としてポリエチレンテレフタレートに非相溶樹脂であるポリメチルペンテン樹脂を10重量%、ポリエチレングリコール1重量%混合し、フィルムを作製した。筋が目立ち、反射率、たわみ、紫外線による劣化が大きかった。
評価結果を表1および2にまとめて示す。
[Comparative Example 8]
Using the resin of Comparative Example 1, 14% by weight of calcium carbonate was added as inorganic fine particles as the surface layers (front and back surfaces) of the three-layer film, and polymethylpentene resin, which is an incompatible resin with polyethylene terephthalate, was used as the core layer resin. A film was prepared by mixing 10% by weight and 1% by weight of polyethylene glycol. The streaks were conspicuous, and reflectivity, deflection, and deterioration due to ultraviolet rays were large.
The evaluation results are summarized in Tables 1 and 2.

本発明の積層フィルムは、光線の反射率が高く、各種の反射板、中でも特に液晶ディスプレイの反射板や太陽電池のバックシートに最適に用いることができる。これらの反射板として用いる場合には、層Aを反射面として用いることが好ましい。   The laminated film of the present invention has a high light reflectivity, and can be optimally used for various reflectors, particularly a reflector for liquid crystal displays and a back sheet for solar cells. When using as these reflecting plates, it is preferable to use the layer A as a reflecting surface.

他の用途としては、紙代替、すなわちカード、ラベル、シール、宅配伝票、ビデオプリンタ用受像紙、インクジェット、バーコードプリンタ用受像紙、ポスター、地図、無塵紙、表示板、白板、感熱転写、オフセット印刷、テレフォンカード、ICカードなどの各種印刷記録に用いられる受容シートの基材として用いることができる。   Other uses include paper substitution, ie cards, labels, stickers, home delivery slips, video printer paper, inkjets, barcode printer paper, posters, maps, dust-free paper, display boards, white boards, thermal transfer, offset It can be used as a base material for receiving sheets used for various printing records such as printing, telephone cards and IC cards.

Claims (3)

平均粒径0.3〜3.0μmの不活性粒子3〜50重量%ならびにイソフタル酸3〜20モル%およびテレフタル酸80〜97モル%をジカルボン酸成分としエチレングリコールをジオール成分としてなるポリエステル50〜97重量%からなる組成物の層Aと、この層Aに接し平均粒径0.3〜3.0μmの不活性粒子31〜60重量%ならびにナフタレンジカルボン酸3〜100モル%およびテレフタル酸0〜97モル%をジカルボン酸成分としエチレングリコールをジオール成分としてなるポリエステル40〜69重量%からなる組成物の層Bから構成される積層フィルム。   3 to 50% by weight of inert particles having an average particle size of 0.3 to 3.0 μm, polyester 50 to 30 containing isophthalic acid 3 to 20 mol% and terephthalic acid 80 to 97 mol% as a dicarboxylic acid component and ethylene glycol as a diol component 97% by weight of the composition A, 31-60% by weight of inert particles having an average particle size of 0.3-3.0 μm, 3-100 mol% of naphthalenedicarboxylic acid and 0-terephthalic acid 0 A laminated film comprising a layer B of a composition comprising 40 to 69% by weight of a polyester comprising 97 mol% of a dicarboxylic acid component and ethylene glycol as a diol component. 層Aの厚みが層Aおよび層Bの合計厚み100に対して3〜30である、請求項1記載の積層フィルム。   The laminated film according to claim 1, wherein the thickness of the layer A is 3 to 30 with respect to the total thickness 100 of the layer A and the layer B. 反射板として用いられる、請求項1または2記載の積層フィルム。   The laminated film according to claim 1 or 2, which is used as a reflector.
JP2005201325A 2005-07-11 2005-07-11 Laminated film Expired - Fee Related JP4896454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201325A JP4896454B2 (en) 2005-07-11 2005-07-11 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201325A JP4896454B2 (en) 2005-07-11 2005-07-11 Laminated film

Publications (2)

Publication Number Publication Date
JP2007015315A true JP2007015315A (en) 2007-01-25
JP4896454B2 JP4896454B2 (en) 2012-03-14

Family

ID=37752874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201325A Expired - Fee Related JP4896454B2 (en) 2005-07-11 2005-07-11 Laminated film

Country Status (1)

Country Link
JP (1) JP4896454B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320238A (en) * 2006-06-02 2007-12-13 Teijin Dupont Films Japan Ltd Laminated film
JP2009262512A (en) * 2008-04-30 2009-11-12 Teijin Dupont Films Japan Ltd Laminated film
JP2010224446A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd White film for reflection film of backlight unit of liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225433A (en) * 2000-02-16 2001-08-21 Toyobo Co Ltd White polyester film, light reflecting sheet, and sheet for printing/recording
JP2002098808A (en) * 2000-09-25 2002-04-05 Toray Ind Inc White laminated polyester film for reflecting member of planar light source
JP2002137350A (en) * 2000-11-02 2002-05-14 Teijin Ltd Laminated white polyester film
WO2005026241A1 (en) * 2003-09-11 2005-03-24 Teijin Dupont Films Japan Limited Polyester film
JP2005125700A (en) * 2003-10-27 2005-05-19 Teijin Dupont Films Japan Ltd White polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225433A (en) * 2000-02-16 2001-08-21 Toyobo Co Ltd White polyester film, light reflecting sheet, and sheet for printing/recording
JP2002098808A (en) * 2000-09-25 2002-04-05 Toray Ind Inc White laminated polyester film for reflecting member of planar light source
JP2002137350A (en) * 2000-11-02 2002-05-14 Teijin Ltd Laminated white polyester film
WO2005026241A1 (en) * 2003-09-11 2005-03-24 Teijin Dupont Films Japan Limited Polyester film
JP2005125700A (en) * 2003-10-27 2005-05-19 Teijin Dupont Films Japan Ltd White polyester film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320238A (en) * 2006-06-02 2007-12-13 Teijin Dupont Films Japan Ltd Laminated film
JP2009262512A (en) * 2008-04-30 2009-11-12 Teijin Dupont Films Japan Ltd Laminated film
JP2010224446A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd White film for reflection film of backlight unit of liquid crystal display device

Also Published As

Publication number Publication date
JP4896454B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5173417B2 (en) Laminated film
JP4275138B2 (en) Polyester film for reflector
JP3946183B2 (en) White polyester film
US8268215B2 (en) Laminated film for reflection plate
JP4971690B2 (en) Biaxially stretched film
JP4971689B2 (en) Laminated film
JP4933737B2 (en) Laminated polyester film
JP2007328150A (en) White reflection film
JP4782617B2 (en) Polyester laminated film roll
JP5021974B2 (en) Laminated film
JP2010224446A (en) White film for reflection film of backlight unit of liquid crystal display device
JP4896454B2 (en) Laminated film
JP4563822B2 (en) Biaxially oriented laminated film
JP2010221455A (en) White laminated polyester film
JP2009126970A (en) Polyester film
JP5108271B2 (en) Biaxially stretched laminated polyester film
KR20120044957A (en) Polyester resin composition and white film made of it
JP2007322875A (en) Reflection film
JP2009122220A (en) Laminated film
JP5456962B2 (en) Laminated film
JP5108438B2 (en) Polyester film for reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees