JP2007015202A - Composite structure and filter using the same - Google Patents

Composite structure and filter using the same Download PDF

Info

Publication number
JP2007015202A
JP2007015202A JP2005198489A JP2005198489A JP2007015202A JP 2007015202 A JP2007015202 A JP 2007015202A JP 2005198489 A JP2005198489 A JP 2005198489A JP 2005198489 A JP2005198489 A JP 2005198489A JP 2007015202 A JP2007015202 A JP 2007015202A
Authority
JP
Japan
Prior art keywords
fiber
composite structure
ultrafine
fibers
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198489A
Other languages
Japanese (ja)
Other versions
JP4880929B2 (en
Inventor
Yasuhiro Iwashige
安泰 岩重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2005198489A priority Critical patent/JP4880929B2/en
Publication of JP2007015202A publication Critical patent/JP2007015202A/en
Application granted granted Critical
Publication of JP4880929B2 publication Critical patent/JP4880929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite structure that excels in deodorant and antibacterial properties and efficiently removes harmful substances, and a filter using it. <P>SOLUTION: The composite structure is formed by laminating an ultrafine fiber and a fiber structure. The ultrafine fiber has a diameter of 1-1,000 nm, the fiber composing the fiber structure has a diameter of 1-100 μm, and an inorganic material that decomposes substances by photoexcitation is supported on the composite structure. The filter using the composite structure is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は極細繊維と繊維構造体とが積層してなる複合構造体およびそれを用いたフィルターに関するものである。また、室内の空気や排水中に含まれる有害化学物質を除去するフィルター、マスクなどに好適に使用できる複合構造体に関するものである。   The present invention relates to a composite structure formed by laminating ultrafine fibers and a fiber structure, and a filter using the same. The present invention also relates to a composite structure that can be suitably used for filters, masks, and the like that remove harmful chemical substances contained in indoor air and wastewater.

従来、消臭、抗菌機能を繊維布帛に付与するため、光触媒層を設けたものが提案されている(例えば、特許文献1など)。   Conventionally, in order to impart a deodorant and antibacterial function to a fiber fabric, one having a photocatalyst layer has been proposed (for example, Patent Document 1).

これに対し市場においては高いレベルの消臭、抗菌機能の求められており、また、有害物質を効率よく除去したいといった要求が出ている。しかしながら、従来、こうした光触媒を担持させる基材としてはポリエステルなどの汎用の合成繊維からなる織物や不織布が用いられており、これらに担持可能な光触媒量に限界があり、有害化学物質を除去するフィルターやシートなどの用途に使用する場合、その性能が十分に発揮されないという欠点がある。
特開平10−1879号公報
In contrast, the market demands a high level of deodorization and antibacterial functions, and there is a demand for efficient removal of harmful substances. However, conventionally, as a substrate for supporting such a photocatalyst, a woven fabric or a non-woven fabric made of general-purpose synthetic fibers such as polyester has been used, and there is a limit to the amount of photocatalyst that can be supported on these, and a filter that removes harmful chemical substances. When used in applications such as sheet and sheet, there is a drawback that the performance is not sufficiently exhibited.
Japanese Patent Laid-Open No. 10-1879

本発明の目的は、上記背景技術の有する問題点を解決し、消臭、抗菌性能に優れ、有害物質を効率よく除去する複合構造体及びそれを用いたフィルターを提供することにある。   An object of the present invention is to solve the above-described problems of the background art and provide a composite structure excellent in deodorization and antibacterial performance and efficiently removing harmful substances, and a filter using the same.

本発明者らは上記目的を達成するために鋭意検討した結果、ナノレベルの極めて細い繊度の極細繊維を積層した繊維構造体に光励起により物質を分解する無機物質(光触媒)を該極細繊維に担持させ、これをフィルターなどとして用いたとき、従来にない優れた抗菌消臭性能を発揮し、しかも効率よく有害物質を除去できることがわかった。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have supported an inorganic substance (photocatalyst) that decomposes a substance by photoexcitation on a fiber structure in which ultrafine fibers with extremely fine nano-levels are laminated. When this was used as a filter, it was found that it exhibited excellent antibacterial deodorization performance that was not possible in the past, and that it could efficiently remove harmful substances.

かくして本発明によれば、極細繊維と繊維構造体とが積層してなる複合構造体であって、該極細繊維の直径が1〜1000nm、該繊維構造体を構成する繊維の直径が1〜100μmであり、かつ該複合構造体に光励起により物質を分解する無機材料が担持されていることを特徴とする複合構造体が提供される。   Thus, according to the present invention, a composite structure is formed by laminating ultrafine fibers and a fiber structure, the diameter of the ultrafine fibers being 1 to 1000 nm, and the diameter of the fibers constituting the fiber structure being 1 to 100 μm. And a composite structure characterized in that an inorganic material that decomposes a substance by photoexcitation is supported on the composite structure.

本発明においては、上記の特定の繊度を有する極細繊維と繊維構造体とが積層された構造が有害物質を吸着させながら分解するのに適しており、特に比表面積の極めて大きい極細繊維に光触媒が担持されていることによってガス状有害物質などを該複合構造体に流した際、接触効率が極めて高くため、効率よく有害物質を分解することができる。これにより、本発明の複合構造体は、優れた抗菌、消臭効果を発揮することができる。   In the present invention, a structure in which ultrafine fibers having a specific fineness and a fiber structure are laminated is suitable for decomposing while adsorbing harmful substances. In particular, a photocatalyst is applied to ultrafine fibers having a very large specific surface area. When gaseous harmful substances and the like are caused to flow through the composite structure by being supported, the contact efficiency is extremely high, so that the harmful substances can be efficiently decomposed. Thereby, the composite structure of this invention can exhibit the outstanding antimicrobial and deodorizing effect.

本発明の複合構造体は、極細繊維と繊維構造体とが積層してなる複合構造体である。本発明においては、極細繊維の直径が1〜1000nm、繊維構造体を構成する繊維の直径が1〜100μmであり、しかも複合構造体に光励起により物質を分解する無機材料(光触媒)が担持されていることが肝要である。このように、特に比表面積の極めて大きい極細繊維に光触媒が担持されていることによってガス状有害物質など該複合構造体これに流した際、接触効率が高くなり、効率よく有害物質を分解することができる。また、上記のように極細繊維と繊維構造体との積層された構造は、有害物質を吸着させながら分解するのに適しており、しかも圧力損失の低下が少なく高い通気性を長時間維持できるといったメリットも有している。   The composite structure of the present invention is a composite structure formed by laminating ultrafine fibers and a fiber structure. In the present invention, the diameter of the ultrafine fiber is 1-1000 nm, the diameter of the fiber constituting the fiber structure is 1-100 μm, and the composite structure carries an inorganic material (photocatalyst) that decomposes the substance by photoexcitation. It is important to be. In this way, especially when the photocatalyst is supported on an ultrafine fiber with a very large specific surface area, when the composite structure such as a gaseous harmful substance is flowed to the composite structure, the contact efficiency becomes high and the harmful substance is efficiently decomposed. Can do. In addition, the laminated structure of the ultrafine fibers and the fiber structure as described above is suitable for decomposing while adsorbing harmful substances, and can maintain a high air permeability for a long time with little decrease in pressure loss. It also has merit.

よって、本発明においては、極細繊維の単繊維の直径が1〜1000nm、好ましくは10〜800nmである必要がある。上記の単繊維の直径が1nm未満の場合は、複合構造体の強力が低下し、一方、単繊維の直径が1000nmを超える場合は、本発明の目的とする高い消臭、抗菌性能などの機能が得られない。   Therefore, in the present invention, the diameter of the ultrafine fiber single fiber needs to be 1-1000 nm, preferably 10-800 nm. When the diameter of the single fiber is less than 1 nm, the strength of the composite structure is reduced. On the other hand, when the diameter of the single fiber exceeds 1000 nm, functions such as high deodorization and antibacterial performance, which are the objects of the present invention. Cannot be obtained.

また、極細繊維の目付を0.001〜1.0g/m、好ましくは0.001〜0.5g/mとするのが望ましい。0.001g/m未満では、繊維構造体表面に一様に極細繊維を被覆するのが難しくなる傾向にあり、一方、0.5g/mを超えると、十分な通気性が得られなくなる傾向にある。 Also, the basis weight of the microfine fibers 0.001~1.0g / m 2, preferably it is desirable to 0.001 to 0.5 g / m 2. If it is less than 0.001 g / m 2 , it tends to be difficult to uniformly coat the fine fiber on the surface of the fiber structure. On the other hand, if it exceeds 0.5 g / m 2 , sufficient air permeability cannot be obtained. There is a tendency.

なお、本発明の複合構造体をフィルターに用いる場合は、それを設置するフィルターユニットの構造に応じて極細繊維の目付を適宜変えることができる。具体的には、図1に示すような複合構造体表面に対し、垂直(複合構造体の断面方向)にガス状有害化学物質を流す垂直流ユニットに用いる場合、十分な通気性を確保し、圧力損失を小さくするために、極細繊維の目付を0.001〜0.1g/mの範囲とするのが好ましい。一方、図2に示すような複合構造体表面に対し、平行(複合構造体表面方向)にガス状有害化学物質を流す平行流ユニットに用いる場合、ガス状有害化学物質と複合構造体の接触効率を向上させるため、極細繊維の目付を0.001〜0.5g/mの範囲とするのが好ましい。 In addition, when using the composite structure of this invention for a filter, the fabric weight of a microfiber can be suitably changed according to the structure of the filter unit which installs it. Specifically, when used in a vertical flow unit that allows gaseous harmful chemicals to flow vertically (cross-sectional direction of the composite structure) with respect to the surface of the composite structure as shown in FIG. In order to reduce the pressure loss, the basis weight of the ultrafine fibers is preferably in the range of 0.001 to 0.1 g / m 2 . On the other hand, when used in a parallel flow unit that allows gaseous hazardous chemicals to flow parallel to the composite structure surface as shown in FIG. 2 (in the direction of the composite structure surface), the contact efficiency between the gaseous harmful chemicals and the composite structure In order to improve the weight, the basis weight of the ultrafine fiber is preferably in the range of 0.001 to 0.5 g / m 2 .

上記極細繊維は、1種あるいは2種以上のポリマーから、エレクトロスピニング法により形成されるものが好ましい。なお、このエレクトロスピニング法については、後で詳しく述べる。   The ultrafine fibers are preferably formed from one or more polymers by electrospinning. This electrospinning method will be described in detail later.

本発明において、極細繊維を構成するポリマーとして上記エレクトロスピンニング法などにより前述した繊度の極細繊維とすることができるものであれば良い。特に、成形性やフィルターなどと実用化できるだけでなく、耐熱性などのさらなる他の性能を付与できる点でアクリロニトリルや、芳香族ポリアミド、特にポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミドが好ましい。   In the present invention, any polymer capable of forming the ultrafine fiber having the fineness described above by the electrospinning method or the like may be used as the polymer constituting the ultrafine fiber. In particular, acrylonitrile and aromatic polyamides, particularly aromatic polyamides based mainly on polymetaphenylene isophthalamide are preferred in that they can be put into practical use as moldability, filters, etc., and can also provide other performance such as heat resistance. .

次に、本発明において使用する繊維構造体とは、織編物、不織布、紙状物などをいう。また、上記繊維構造体を構成する繊維としては、木綿、麻などの天然繊維、ガラス繊維、カーボン繊維、金属繊維などの無機繊維、及び、ポリアミド繊維、ポリエステル繊維、芳香族ポリアミド繊維、アクリル繊維、ポリ塩化ビニル繊維、ポリオレフィン繊維、ポリアクリロニトリル繊維などの合成繊維を挙げることができ、複合繊維構造体により高い耐熱性、耐薬品性が必要とされる場合は無機繊維や、合成繊維では芳香族ポリアミド繊維がより好ましい。   Next, the fiber structure used in the present invention refers to a woven or knitted fabric, a nonwoven fabric, a paper-like material, or the like. The fibers constituting the fiber structure include natural fibers such as cotton and hemp, inorganic fibers such as glass fibers, carbon fibers, and metal fibers, and polyamide fibers, polyester fibers, aromatic polyamide fibers, acrylic fibers, Synthetic fibers such as polyvinyl chloride fiber, polyolefin fiber, and polyacrylonitrile fiber can be mentioned. When high heat resistance and chemical resistance are required for the composite fiber structure, inorganic fiber or aromatic polyamide is used for synthetic fiber. Fiber is more preferred.

また、前述したようにポリアクリロニトリル系重合体の極細繊維の場合は、これを積層する繊維構造体として1000℃以上の耐熱性を持つ耐熱繊維、例えば、ガラス繊維、カーボン繊維、金属繊維などを選択するにより、これらを積層した後で1000℃以上での焼成することが可能となり、ポリアクリロニトリル極細繊維を炭素化して、ガス状有害化学物質などの吸着性能をさらに向上した複合構造物とすることができる。   In addition, as described above, in the case of ultrafine fibers of a polyacrylonitrile-based polymer, a heat-resistant fiber having a heat resistance of 1000 ° C. or higher, for example, glass fiber, carbon fiber, metal fiber, etc., is selected as the fiber structure to be laminated. Thus, after laminating them, it becomes possible to fire at 1000 ° C. or higher, and polyacrylonitrile ultrafine fibers can be carbonized to form a composite structure further improving the adsorption performance of gaseous harmful chemical substances and the like. it can.

上記の繊維構造体を構成する繊維の直径は、好ましくは1〜100μm、さらに好ましくは3〜50μmである。上記の繊維の直径が1μm未満では、繊維構造体全体が、目が詰まった構造となりやすく十分な通気性が得られにくくなり、抗菌、消臭効果も低下する傾向にある。一方、100μmを超えると、繊維間空隙が大きくなり、捕集対象粒子の繊維への衝突機会の減少により、捕集効率や、抗菌、消臭効果も低下する傾向にある。   The diameter of the fiber constituting the fiber structure is preferably 1 to 100 μm, more preferably 3 to 50 μm. If the diameter of the fiber is less than 1 μm, the entire fiber structure tends to have a clogged structure, and it becomes difficult to obtain sufficient air permeability, and the antibacterial and deodorizing effects tend to be reduced. On the other hand, when it exceeds 100 μm, the inter-fiber voids become large, and the collection efficiency, antibacterial effect, and deodorizing effect tend to be reduced due to a decrease in the chance of collision of the particles to be collected with the fibers.

また、上記の繊維の形状としては、短繊維糸条、長繊維糸条、スプリットヤーン、テープヤーンなどのいずれの形状であってもよい。   The shape of the fiber may be any shape such as a short fiber yarn, a long fiber yarn, a split yarn, or a tape yarn.

本発明においては、上記複合構造体の極細繊維に、光励起により物質を分解する無機材料が担持されている必要がある。ここで、光励起により物質を分解する無機材料とは、TiO、ZnO、SnO、SrTiO、WO、Bi、Feなどから選ばれる無機材料であって、紫外光や可視光により光励起作用を発現するものをいう。 In the present invention, the ultrafine fiber of the composite structure needs to carry an inorganic material that decomposes a substance by photoexcitation. Here, the inorganic material that decomposes a substance by photoexcitation is an inorganic material selected from TiO 2 , ZnO, SnO 2 , SrTiO 3 , WO 3 , Bi 2 O 3 , Fe 2 O 3, etc. A substance that exhibits a photoexcitation effect by visible light.

また、本発明において、上記無機材料を極細繊維の表面に担持させるためのバインダーとしては、シリコン原子に結合された有機基の少なくとも一部が水酸基に置換されたシリコーン樹脂であることが好ましい。上記シリコーン樹脂とは、オルガノアルコキシシランとして、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリイソプロポキシシラン、フェニルトリイソプロポキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、フェニルメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジエチルジイソプロポキシシラン、フェニルメチルジイソプロポキシシランなどやそれらの混合物が例示される。   In the present invention, the binder for supporting the inorganic material on the surface of the ultrafine fiber is preferably a silicone resin in which at least a part of the organic group bonded to the silicon atom is substituted with a hydroxyl group. The silicone resin is, for example, methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, methyltriisopropoxysilane, ethyl as organoalkoxysilane. Triisopropoxysilane, phenyltriisopropoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, phenylmethyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, phenylmethyldiethoxysilane, dimethyldiisopropoxy Examples include silane, diethyldiisopropoxysilane, phenylmethyldiisopropoxysilane, and mixtures thereof.

上記該光触媒の担持量は、複合構造体の重量に対して、0.1〜10重量%、好ましくは4〜8重量%である。0.1重量%未満では、ガス状有害化学物質を吸着分解する能力が不十分であり、一方、10重量%を超えると、過剰な光触媒により繊維間空隙がつぶれ易く、フィルターとした際、圧力損失が大きくなるといった問題が起こりやすい。   The amount of the photocatalyst supported is 0.1 to 10% by weight, preferably 4 to 8% by weight, based on the weight of the composite structure. If the amount is less than 0.1% by weight, the ability to adsorb and decompose gaseous harmful chemicals is insufficient. On the other hand, if the amount exceeds 10% by weight, voids between fibers are easily crushed by an excess photocatalyst. Problems such as increased loss are likely to occur.

以上に説明した複合構造体を製造する方法としては、次の方法を採用することができる。すなわち、繊維構造体に極細繊維を積層する方法としては、前述したエレクトロスピニング法を好ましく採用することができる。エレクトロスピニング法とは、ポリマー溶液に高電圧を印加することによって、溶液をスプレーし、極細繊維を形成させるものである。極細繊維の太さは、印加電圧、溶液濃度、スプレーの飛散距離に依存する。基板上に連続的に極細繊維を作製することによって、立体的な網目を持つ三次元構造の薄膜が得られる。例えば、これまで研究されてきた機能性薄膜を三次元構造にすることで、新しい特性や機能の向上が期待される。また、この方法により、膜を不織布などの布帛のように厚くすることが可能であり、サブミクロンの網目を持つ不織布を製造することができる。   As a method for manufacturing the composite structure described above, the following method can be employed. That is, as a method of laminating ultrafine fibers on the fiber structure, the above-described electrospinning method can be preferably employed. In the electrospinning method, a high voltage is applied to a polymer solution to spray the solution to form ultrafine fibers. The thickness of the ultrafine fiber depends on the applied voltage, the solution concentration, and the spray scattering distance. By producing ultrafine fibers continuously on a substrate, a thin film having a three-dimensional structure with a three-dimensional network can be obtained. For example, new properties and functions are expected to be improved by making the functional thin film that has been studied so far into a three-dimensional structure. In addition, this method makes it possible to increase the thickness of the membrane like a fabric such as a nonwoven fabric, and a nonwoven fabric having a submicron network can be manufactured.

具体的には、ポリアクリロニトリルを主成分とするポリマーの粉末状体を溶媒N,N−ジメチルホルムアミドに0.1〜20重量%の重量比で溶解させ、印加電圧0.1〜30kVの範囲のうち最適な条件を選択して繊維構造体上に紡糸することにより得ることができる。   Specifically, a powder of a polymer mainly composed of polyacrylonitrile is dissolved in a solvent N, N-dimethylformamide at a weight ratio of 0.1 to 20% by weight, and the applied voltage is in the range of 0.1 to 30 kV. It can be obtained by selecting optimum conditions and spinning on the fiber structure.

ここで、上記ポリアクリロニトリルを主成分とするポリマーの粉末状体を溶解させる溶媒は、沸点が低く極性の高い溶媒が好適である。例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、テトラメチル尿素、N−メチルカプロラクタム、N−メチルビペリジンなどが例示されるが、好ましくは、N,N−ジメチルホルムアミドを選択する。   Here, a solvent having a low boiling point and a high polarity is preferable as the solvent for dissolving the polymer powder containing polyacrylonitrile as a main component. For example, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, tetramethylurea, N-methylcaprolactam, N-methylbiperidine and the like are exemplified, but preferably N, N- Select dimethylformamide.

また、ポリマー濃度(粘度)についても、粘度を下げるために低濃度にすると、帯電するポリマーの絶対量が減り、ポリマーの帯電量減少により溶液の変形が起こりにくくなるため、極細繊維が形成されずにフィルム状になる。逆に高濃度にすると、ポリマー帯電量増加により、容易に極細繊維を形成可能だが、溶媒量が減り、蒸発速度が早まる為に固化が急速に進み、繊維径が大きくなる。   In addition, if the polymer concentration (viscosity) is decreased to reduce the viscosity, the absolute amount of the polymer to be charged decreases, and the deformation of the solution does not easily occur due to the decrease in the amount of charge of the polymer. It becomes a film. On the other hand, if the concentration is high, ultrafine fibers can be easily formed due to an increase in the charge amount of the polymer, but the amount of solvent decreases and the evaporation rate increases, so that solidification proceeds rapidly and the fiber diameter increases.

以上のことを考慮し、ポリアクリロニトリル極細繊維の作製においては、溶媒はN,N−ジメチルホルムアミドを選択し、ポリマー濃度を10〜15重量%とするのが好ましい。   Considering the above, it is preferable to select N, N-dimethylformamide as a solvent and make the polymer concentration 10 to 15% by weight in the production of polyacrylonitrile microfibers.

また、他の例として芳香族ポリアミド極細繊維の場合は、ポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミドを溶媒に0.1〜20重量%の濃度で溶解させた溶液に1〜50kVの電圧を印加して紡糸し芳香族ポリアミド極細繊維を成形し、これを繊維構造体上に積層させる方法が好ましく採用される。   As another example, in the case of an aromatic polyamide ultrafine fiber, 1-50 kV of a solution in which an aromatic polyamide containing polymetaphenylene isophthalamide as a main component is dissolved in a solvent at a concentration of 0.1 to 20% by weight. A method is preferably employed in which an aromatic polyamide ultrafine fiber is formed by applying a voltage to spin, and then laminated on the fiber structure.

上記の芳香族ポリアミド繊維を溶解させる溶媒は、沸点が低く極性の高い極性溶媒が好適である。例えば、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラメチル尿素、N−メチルカプロラクタム、N−メチルビペリジンなどが例示され、特にN,N−ジメチルアセトアミド、N−メチル−2−ピロリドンが好ましい。   The solvent for dissolving the aromatic polyamide fiber is preferably a polar solvent having a low boiling point and a high polarity. For example, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetramethylurea, N-methylcaprolactam, N-methylbiperidine and the like are exemplified, and in particular, N, N-dimethylacetamide, N -Methyl-2-pyrrolidone is preferred.

また、アルカリ金属塩を溶液に添加することにより、帯電し易くなり、紡糸状態が非常に安定する。アルカリ金属塩は、塩化リチウム、塩化カルシウム、塩化ナトリウム、塩化カリウム、塩化マグネシウムなどが例示されるが、特に塩化リチウム、塩化カルシウムが好ましい。上記のアルカリ金属塩の添加量としては、溶媒の重量に対して0.1〜1.0重量%が好ましい。   Further, by adding an alkali metal salt to the solution, it becomes easy to be charged and the spinning state is very stable. Examples of the alkali metal salt include lithium chloride, calcium chloride, sodium chloride, potassium chloride, and magnesium chloride, with lithium chloride and calcium chloride being particularly preferable. As addition amount of said alkali metal salt, 0.1 to 1.0 weight% is preferable with respect to the weight of a solvent.

極細繊維には、ガス状有害化学物質との接触機会を向上させるため、繊維表面に微細孔を持たせてもよい。また、かかる観点から、極細繊維を不織布状に積層する際、エレクトロスピニングの製糸条件を選んで嵩高な構造にすることが好ましい。   The ultrafine fiber may have fine pores on the fiber surface in order to improve the contact opportunity with the gaseous harmful chemical substance. From this point of view, when the ultrafine fibers are laminated in a non-woven shape, it is preferable to select a spinning condition for electrospinning to make the structure bulky.

さらに、得られた複合繊維に光触媒を、前述したバインダーを介して複合構造体、特に極細繊維に担持させる方法としては、スプレーコーティング法、ロールコーティング法、スピンコーティング法、フローコーティング法、ディップコーティング法の他公知のコーティング法等が例示できる。特に、極細繊維表面に均一に光触媒を塗布するには、ディップコーティング法が好ましい。また、該光触媒層の厚みは濃度によって調整でき、極細繊維複合フィルターの目付に応じて調整する。さらに、使用する光触媒は、一次粒子の平均径が0.1μm以下のものが好ましく、光触媒溶液の最適濃度は、1〜4重量%の範囲が好ましい。   Furthermore, as a method for supporting the photocatalyst on the obtained composite fiber on the composite structure, particularly the ultrafine fiber through the above-mentioned binder, spray coating method, roll coating method, spin coating method, flow coating method, dip coating method Other known coating methods can be exemplified. In particular, the dip coating method is preferable for uniformly applying the photocatalyst to the surface of the ultrafine fiber. The thickness of the photocatalyst layer can be adjusted by the concentration, and is adjusted according to the basis weight of the ultrafine fiber composite filter. Furthermore, the photocatalyst used preferably has an average primary particle size of 0.1 μm or less, and the optimum concentration of the photocatalyst solution is preferably in the range of 1 to 4% by weight.

かくして得られた複合構造体は、室内空気清浄用フィルター、排水浄化用フィルターなど大気中および水中に含まれる有害化学物質の吸着分解を必要とする用途に使用することが望ましい。フィルターなどに付着した有害化学物質は吸着するだけでは大気中および水中から完全に除去することができないため、吸着をさせながら同時に分解もしなければならないが、本発明の複合構造体は、極細繊維と繊維構造体とが積層されていることにより、ガスの吸着と分解が容易に起こることがわかった。   The composite structure thus obtained is preferably used for applications that require the adsorption and decomposition of harmful chemical substances contained in the air and water, such as a filter for purifying indoor air and a filter for purifying wastewater. Hazardous chemical substances adhering to a filter or the like cannot be completely removed from the atmosphere and water by simply adsorbing them, so they must be decomposed at the same time while being adsorbed. It was found that gas adsorption and decomposition easily occur due to the lamination of the fiber structure.

また、光触媒の酸化還元反応によるガス状有害化学物質の分解能力においては、一般的フィルターなど使用される繊維に比べ、たとえ極細繊維の積層量が少量であっても、光触媒の担持量が増加し、比表面積が大きくなることで光触媒活性が著しく高くなり、分解効率が格段に向上する。例えば、アンモニアガスを処理した場合に生成、発生する一酸化窒素(NO)、二酸化窒素(NO)などの窒素酸化物(NO)やフィルターより検出されるアンモニウムイオン(NH4)、硝酸イオン(NO3)の濃度を測定した場合、極細繊維を積層したフィルターは、高い分解能力を示す。 In addition, in terms of the ability of photocatalysts to decompose gaseous hazardous chemicals, the amount of photocatalyst supported increases even when the amount of ultrafine fibers stacked is small compared to fibers used in general filters. As the specific surface area is increased, the photocatalytic activity is remarkably increased, and the decomposition efficiency is remarkably improved. For example, nitrogen oxides (NO x ) such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) generated and generated when ammonia gas is treated, ammonium ions (NH 4 + ) and nitrate ions detected from a filter When the concentration of (NO 3 ) is measured, a filter in which ultrafine fibers are laminated exhibits a high decomposition ability.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、実施例における各物性は以下の方法により求めたものである。   Hereinafter, the present invention will be described in more detail based on examples. In addition, each physical property in an Example is calculated | required with the following method.

有害化学物質としてアンモニアガス(下記、実施例1及び比較例1では10ppm、実施例2及び比較例2では100ppm)を図1、図2に示す複合構造体を設置するフィルターユニット内をガス風量5.0L/分にて流し、紫外線ランプ(強度2mW/m)を照射しながら、評価装置内のガス排出口側のガス濃度を一定時間ごとに測定した。アンモニアガス濃度、NO濃度についてはガス検知管を用い、同時に、分解の進行度を確認するため、試験後のフィルターに残存する分解生成物(アンモニウムイオン(NH4)、硝酸イオン(NO3))をイオンクロマトグラフィーにて測定した。また、アンモニアの除去性能については、次式を用いて除去率として算出した。一定時間経過後の除去率が高い程、性能が優れていると言える。(表1及び3)
(除去率)=[1−(一定時間後のアンモニア濃度/初期アンモニア濃度)]×100
さらに、ガス検知管による測定結果及びイオンクロマトグラフィーによる測定結果から分解の進行度を窒素のマスバランスとして算出した。(表2)
Ammonia gas (10 ppm in Example 1 and Comparative Example 1 below, 100 ppm in Example 2 and Comparative Example 2) as a harmful chemical substance is placed inside the filter unit in which the composite structure shown in FIGS. The gas concentration at the gas outlet in the evaluation apparatus was measured at regular intervals while flowing at 0.0 L / min and irradiating with an ultraviolet lamp (intensity 2 mW / m 2 ). For the ammonia gas concentration and NO x concentration, a gas detector tube was used, and at the same time, in order to confirm the progress of decomposition, decomposition products (ammonium ions (NH4 + ), nitrate ions (NO3 ) remaining in the filter after the test were used. ) Was measured by ion chromatography. Moreover, about the removal performance of ammonia, it calculated as a removal rate using following Formula. It can be said that the higher the removal rate after a certain period of time, the better the performance. (Tables 1 and 3)
(Removal rate) = [1− (ammonia concentration after a fixed time / initial ammonia concentration)] × 100
Furthermore, the degree of progress of decomposition was calculated as the mass balance of nitrogen from the measurement results obtained by the gas detector tube and the ion chromatography. (Table 2)

[実施例1]
ポリエステル繊維不織布(繊維径25μm、目付11.2g/m)表面にポリアクリロニトリルを主成分とするポリマーの粉末状体と溶媒N,N−ジメチルホルムアミドとを11:89の重量比で溶解させたポリマー溶液を調製し、エレクトロスピニング法にて印加電圧20kV下で繊維径が約200nmのポリアクリロニトリル極細繊維を目付0.5g/m積層させ、複合構造体(目付11.7g/m)を作製した。この複合構造体に、イソプロピルアルコールとメタノールの混合溶媒(重量比50/50)と4%光触媒二酸化チタンスラリー溶液(パルチタン3607;日本パーカライジング(株)製)を50/50で混合して作製した溶液を5.5重量%塗布し、光触媒を担持させた複合構造体(目付12.4g/m)を作製した。
[Example 1]
A polyester fiber non-woven fabric (fiber diameter: 25 μm, basis weight: 11.2 g / m 2 ) was dissolved in a weight ratio of 11:89 with a polymer powder containing polyacrylonitrile as a main component and solvent N, N-dimethylformamide. the polymer solution was prepared, the fiber diameter under applied voltage 20kV by electrospinning method are laminated basis weight 0.5 g / m 2 to about 200nm polyacrylonitrile ultrafine fibers, the composite structure (basis weight 11.7 g / m 2) Produced. A solution prepared by mixing this composite structure with a mixed solvent of isopropyl alcohol and methanol (weight ratio 50/50) and 4% photocatalytic titanium dioxide slurry solution (Pal titanium 3607; manufactured by Nihon Parkerizing Co., Ltd.) at 50/50. A composite structure (weight per unit area: 12.4 g / m 2 ) carrying a photocatalyst was prepared.

次いで、図1に示すような複合構造体表面に対し、垂直(複合構造体断面方向)にガス状有害化学物質を流す垂直流ユニット、および、図2に示すような複合構造体面に対し、平行(複合構造体表面方向)にガス状有害化学物質を流す平行流ユニットに上記の光触媒を担持させた複合構造体を4枚(20cm角)設置し、ガス分解性能試験を実施した。結果を表1及び2に示す。   Next, a vertical flow unit that allows gaseous harmful chemicals to flow perpendicularly (cross-sectional direction of the composite structure) to the surface of the composite structure as shown in FIG. 1 and parallel to the surface of the composite structure as shown in FIG. Four composite structures (20 cm square) carrying the above-mentioned photocatalyst were installed in a parallel flow unit in which a gaseous harmful chemical substance flows in the (composite structure surface direction), and a gas decomposition performance test was performed. The results are shown in Tables 1 and 2.

[比較例1]
ポリアクリロニトリル極細繊維を積層しない以外は、実施例1と同様にして、ポリエステル繊維不織布にイソプロピルアルコールとメタノールの混合溶媒と、4%光触媒二酸化チタンスラリー溶液混合して作製した溶液を塗布し、光触媒を担持させた不織布を作製した。次いで、実施例1と同様にしてこの不織布のガス分解性能試験を実施した。結果を表1及び2に示す。
[Comparative Example 1]
Except for not laminating polyacrylonitrile microfibers, a solution prepared by mixing a mixed solvent of isopropyl alcohol and methanol and a 4% photocatalyst titanium dioxide slurry solution was applied to the polyester fiber nonwoven fabric in the same manner as in Example 1, and the photocatalyst was applied. A supported nonwoven fabric was produced. Subsequently, the gas decomposition performance test of this nonwoven fabric was implemented like Example 1. FIG. The results are shown in Tables 1 and 2.

Figure 2007015202
Figure 2007015202

Figure 2007015202
Figure 2007015202

[実施例2]
ポリエステル繊維不織布(繊度0.2dtex:0.3dtex:1.2dtex=35:50:15の混率、目付7.5g/m)表面にポリメタフェニレンイソフタルアミドを主成分とする粉末状体と塩化リチウム、溶媒N,N−ジメチルアセトアミドを10:89:1の重量比で溶解させたポリマー溶液を調製し、エレクトロスピニング法にて印加電圧20kV下で繊維径が65nmの芳香族ポリアミド極細繊維を目付0.5g/m積層させ、複合構造体(目付8.0g/m)を作製した。得られた複合構造体に、イソプロピルアルコールとメタノールの混合溶媒(重量比50/50)と4%光触媒二酸化チタンスラリー溶液(パルチタン3607;日本パーカライジング(株)製)を50/50で混合して作製した溶液を1.0g/m塗布し、光触媒を担持した複合構造体を作製した。次いで、図1に示すような複合構造体表面に対し、垂直(複合構造体断面方向)にガス状有害化学物質を流す垂直流ユニットに上記の光触媒を担持した複合構造体を4枚(20cm角)設置し、ガス分解性能試験を実施した。結果を表3に示す。
[Example 2]
Polyester fiber non-woven fabric (fineness 0.2 dtex: 0.3 dtex: 1.2 dtex = 35: 50: 15 mixing ratio, basis weight 7.5 g / m 2 ) powdered body mainly composed of polymetaphenylene isophthalamide and chlorinated A polymer solution in which lithium and a solvent N, N-dimethylacetamide are dissolved at a weight ratio of 10: 89: 1 is prepared, and an aromatic polyamide ultrafine fiber having a fiber diameter of 65 nm is applied under an applied voltage of 20 kV by an electrospinning method. 0.5 g / m 2 was laminated to produce a composite structure (weight per unit area: 8.0 g / m 2 ). Prepared by mixing 50/50 with a mixed solvent of isopropyl alcohol and methanol (weight ratio 50/50) and 4% photocatalytic titanium dioxide slurry solution (Pal titanium 3607; manufactured by Nihon Parkerizing Co., Ltd.) to the obtained composite structure. The resulting solution was applied at 1.0 g / m 2 to prepare a composite structure carrying a photocatalyst. Next, four composite structures (20 cm square) carrying the above-mentioned photocatalyst in a vertical flow unit that allows gaseous harmful chemicals to flow vertically (in the direction of the cross section of the composite structure) with respect to the surface of the composite structure as shown in FIG. ) Installed and conducted a gas decomposition performance test. The results are shown in Table 3.

[比較例2]
芳香族ポリアミド極細繊維を積層しない以外は、実施例2と同様にして、ポリエステル繊維不織布にイソプロピルアルコールとメタノールの混合溶媒と、4%光触媒二酸化チタンスラリー溶液を混合して作製した溶液を塗布して、光触媒を担持した不織布を作製した。次いで、実施例2と同様にしてこの不織布のガス分解性能試験を実施した。結果を表3に示す。
[Comparative Example 2]
Except for not laminating aromatic polyamide ultrafine fibers, a solution prepared by mixing a mixed solvent of isopropyl alcohol and methanol with a 4% photocatalytic titanium dioxide slurry solution was applied to a polyester fiber nonwoven fabric in the same manner as in Example 2. A nonwoven fabric carrying a photocatalyst was prepared. Subsequently, the gas decomposition performance test of this nonwoven fabric was implemented like Example 2. FIG. The results are shown in Table 3.

Figure 2007015202
Figure 2007015202

本発明においては、前述した特定の直径を有する極細繊維と繊維構造体とが積層された構造が、有害物質を吸着させながら分解するのに適しており、特に比表面積の極めて大きい極細繊維に光触媒が担持されていることによってガス状有害物質などを該複合構造体に流した際、接触効率が極めて高く、効率よく有害物質を分解することができる。これにより、本発明の複合構造体は優れた抗菌、消臭効果を発揮し、フィルター、マスクなどに好ましく用いることができる。特に、上記繊維構造体を用いたフィルターとしたとき、従来にない極めて高い抗菌、消臭性能を発揮する。   In the present invention, the structure in which the ultrafine fibers having a specific diameter and the fiber structure described above are laminated is suitable for decomposing while adsorbing harmful substances, and is particularly suitable for ultrafine fibers having a very large specific surface area. When gaseous harmful substances and the like are caused to flow through the composite structure due to the support, the contact efficiency is extremely high and the harmful substances can be efficiently decomposed. Thereby, the composite structure of this invention exhibits the outstanding antibacterial and deodorizing effect, and can be preferably used for a filter, a mask, etc. In particular, when a filter using the above-mentioned fiber structure is used, it exhibits extremely high antibacterial and deodorizing performances that have not been achieved in the past.

フィルターのガス分解性能を評価する垂直流ユニット装置の一例を示す概略図である。It is the schematic which shows an example of the vertical flow unit apparatus which evaluates the gas decomposition | disassembly performance of a filter. フィルターのガス分解性能を評価する平行流ユニット装置の一例を示す概略図である。It is the schematic which shows an example of the parallel flow unit apparatus which evaluates the gas decomposition | disassembly performance of a filter.

符号の説明Explanation of symbols

1:UVランプ
2:光触媒担持複合構造体
3:試験ガス封入口
4:試験ガス排出口
5:ガス流れ
1: UV lamp 2: Photocatalyst carrying composite structure 3: Test gas filling port 4: Test gas discharge port 5: Gas flow

Claims (6)

極細繊維と繊維構造体とが積層してなる複合構造体であって、該極細繊維の直径が1〜1000nm、該繊維構造体を構成する繊維の直径が1〜100μmであり、かつ該複合構造体に光励起により物質を分解する無機材料が担持されていることを特徴とする複合構造体。   A composite structure formed by laminating ultrafine fibers and a fiber structure, wherein the diameter of the ultrafine fibers is 1 to 1000 nm, the diameter of the fibers constituting the fiber structure is 1 to 100 μm, and the composite structure A composite structure characterized in that an inorganic material that decomposes a substance by photoexcitation is supported on the body. 繊維構造体の目付が0.001〜1.0g/mの範囲である請求項1記載の複合構造体。 The composite structure of claim 1, wherein the basis weight of the fiber structure is in a range of 0.001~1.0g / m 2. 無機材料の担持されている量が複合構造体の重量に対して0.1〜10重量%である請求項1記載の複合構造体。   The composite structure according to claim 1, wherein the amount of the inorganic material supported is 0.1 to 10% by weight based on the weight of the composite structure. 極細繊維がポリアクリロニトリル系重合体からなる極細繊維である請求項1記載の複合構造体。   The composite structure according to claim 1, wherein the ultrafine fiber is an ultrafine fiber made of a polyacrylonitrile-based polymer. 極細繊維がポリメタフェニレンイソフタルアミド系芳香族ポリアミドからなる極細繊維である請求項1記載の複合構造体。   The composite structure according to claim 1, wherein the ultrafine fiber is an ultrafine fiber made of polymetaphenylene isophthalamide-based aromatic polyamide. 請求項1〜5の複合構造体を用いたフィルター。   A filter using the composite structure according to claim 1.
JP2005198489A 2005-07-07 2005-07-07 Composite structure and filter using the same Expired - Fee Related JP4880929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198489A JP4880929B2 (en) 2005-07-07 2005-07-07 Composite structure and filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198489A JP4880929B2 (en) 2005-07-07 2005-07-07 Composite structure and filter using the same

Publications (2)

Publication Number Publication Date
JP2007015202A true JP2007015202A (en) 2007-01-25
JP4880929B2 JP4880929B2 (en) 2012-02-22

Family

ID=37752771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198489A Expired - Fee Related JP4880929B2 (en) 2005-07-07 2005-07-07 Composite structure and filter using the same

Country Status (1)

Country Link
JP (1) JP4880929B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214824A (en) * 2007-03-07 2008-09-18 Toyobo Co Ltd Carbon nanofiber sheet
WO2008123345A1 (en) 2007-04-03 2008-10-16 Nisshinbo Industries, Inc. Antibacterial nanofiber
WO2010024423A1 (en) * 2008-08-27 2010-03-04 帝人ファイバー株式会社 Ultrafine fibers containing deodorizing agent and manufacturing method therefor
JP2010059569A (en) * 2008-09-03 2010-03-18 Teijin Fibers Ltd Fiber structure and textile product
JP2014012915A (en) * 2012-06-08 2014-01-23 Japan Exlan Co Ltd Crosslinked acrylate based super extra fine fiber structure
CN109772145A (en) * 2017-11-13 2019-05-21 霍尼韦尔国际公司 For removing the material of air pollutants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312809A (en) * 1999-04-28 2000-11-14 Toray Ind Inc Filter material
JP2002235268A (en) * 2000-12-06 2002-08-23 Japan Vilene Co Ltd Nonwoven fabric comprising powder fixed thereto, method for producing the same, and sheet material comprising the same
JP2004508447A (en) * 2000-09-05 2004-03-18 ドナルドソン カンパニー,インコーポレイティド Applications including polymers, polymer microfibers, polymer nanofibers, and filter structures
JP2004322440A (en) * 2003-04-24 2004-11-18 Oji Paper Co Ltd Laminate and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312809A (en) * 1999-04-28 2000-11-14 Toray Ind Inc Filter material
JP2004508447A (en) * 2000-09-05 2004-03-18 ドナルドソン カンパニー,インコーポレイティド Applications including polymers, polymer microfibers, polymer nanofibers, and filter structures
JP2002235268A (en) * 2000-12-06 2002-08-23 Japan Vilene Co Ltd Nonwoven fabric comprising powder fixed thereto, method for producing the same, and sheet material comprising the same
JP2004322440A (en) * 2003-04-24 2004-11-18 Oji Paper Co Ltd Laminate and its production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214824A (en) * 2007-03-07 2008-09-18 Toyobo Co Ltd Carbon nanofiber sheet
WO2008123345A1 (en) 2007-04-03 2008-10-16 Nisshinbo Industries, Inc. Antibacterial nanofiber
US9090995B2 (en) 2007-04-03 2015-07-28 Nisshinbo Holdings, Inc. Process of making an antibacterial nanofiber
WO2010024423A1 (en) * 2008-08-27 2010-03-04 帝人ファイバー株式会社 Ultrafine fibers containing deodorizing agent and manufacturing method therefor
JP2010053470A (en) * 2008-08-27 2010-03-11 Teijin Fibers Ltd Photocatalyst-containing ultrafine fiber and method for producing the same
CN102131966B (en) * 2008-08-27 2013-01-23 帝人纤维株式会社 Ultrafine fibers containing deodorizing agent and manufacturing method therefor
RU2500841C2 (en) * 2008-08-27 2013-12-10 Тейдзин Файберз Лимитед Ultra-thin thread containing deodorant and method for production thereof
JP2010059569A (en) * 2008-09-03 2010-03-18 Teijin Fibers Ltd Fiber structure and textile product
JP2014012915A (en) * 2012-06-08 2014-01-23 Japan Exlan Co Ltd Crosslinked acrylate based super extra fine fiber structure
CN109772145A (en) * 2017-11-13 2019-05-21 霍尼韦尔国际公司 For removing the material of air pollutants

Also Published As

Publication number Publication date
JP4880929B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Zhang et al. Structural design and environmental applications of electrospun nanofibers
JP4880929B2 (en) Composite structure and filter using the same
JP2022045928A (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
US9808751B2 (en) Complex filter and water purifier including complex filter
KR101334294B1 (en) Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
US11338249B2 (en) Anti-haze anti-harmful gas air filter membrane as well as preparation method and application thereof
JP2008284411A (en) Photocatalyst included in hollow porous shell layer and its manufacturing method
KR102230448B1 (en) Non-woven fabric filter for reducing particulate matter and Method for preparing the same
KR101991509B1 (en) Renewable air filter for cleaning fine dust and air pollution prevention device containing the same
CN108147457A (en) Prepare the application of the method and bismuth system oxide nanometer sheet of bismuth system oxide nanometer sheet
US20200276560A1 (en) Nanofiber surfaces
Moon et al. Efficient removal of dyes from aqueous solutions using short-length bimodal mesoporous carbon adsorbents
Jiang et al. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration
Aamer et al. Characterization of multifunctional PAN/ZnO nanofibrous composite filter for fine dust capture and photocatalytic activity
Wang et al. Activated carbon fibers functionalized with superhydrophilic coated pDA/TiO2/SiO2 with photoluminescent self-cleaning properties for efficient oil-water separation
Ge et al. Electrospun polyurethane/loess powder hybrids and their absorption of volatile organic compounds
Lee et al. Multi-scale nanofiber membrane functionalized with metal-organic frameworks for efficient filtration of both PM2. 5 and CH3CHO with colorimetric NH3 detection
KR20170112589A (en) Catridge filter of multilayer type and directly water purifier comprising the same
RU2112582C1 (en) Filter material for cleaning liquid and gaseous agents, methods for making such material, articles made from this materials and device produced with this material
Gezmis-Yavuz et al. Fabrication of mixed matrix nanofibers with electrospraying and electrospinning techniques and their application to gas toluene removal
CN112781164B (en) Photocatalytic air purification and sterilization fiber, manufacturing method and application thereof, photocatalytic air purification and sterilization filter and manufacturing method thereof
Li et al. Design and Preparation of Porous Meta-Aramid Fibers Filled with Highly Exposed Activated Carbon for Chemical Hazard Protection Fabrics
CN114762801A (en) Flexible composite membrane material, preparation method thereof and electrifiable composite membrane coiled material with efficient air purification function
JP2002292287A (en) Sheet for removing harmful substance and manufacturing method thereof
KR100741170B1 (en) Zeolite photocatalytic paper and its manufacturing method therof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees