JP2007014871A - Method for regenerating ion exchange resin - Google Patents

Method for regenerating ion exchange resin Download PDF

Info

Publication number
JP2007014871A
JP2007014871A JP2005198200A JP2005198200A JP2007014871A JP 2007014871 A JP2007014871 A JP 2007014871A JP 2005198200 A JP2005198200 A JP 2005198200A JP 2005198200 A JP2005198200 A JP 2005198200A JP 2007014871 A JP2007014871 A JP 2007014871A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
resin
treatment
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005198200A
Other languages
Japanese (ja)
Inventor
Toshikuni Yonemoto
年邦 米本
Naomi Kitagawa
尚美 北川
Hironori Honda
浩紀 本田
Homare Kuribayashi
誉 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005198200A priority Critical patent/JP2007014871A/en
Publication of JP2007014871A publication Critical patent/JP2007014871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a catalytic activity of an ion exchange resin used as a catalyst in preparing a fatty acid ester. <P>SOLUTION: The method comprises steps of washing an ion exchange resin having a decreased catalyst activity with a weak acid solution and subsequently substituting its functional group. Thereby the catalytic activity of the ion exchange resin can be regenerated to its initial state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は脂肪酸エステルの製造、更に詳しくは、油脂類を原料として、陰イオン交換体を使用してエステル交換法による脂肪酸エステルを製造に用いられたイオン交換樹脂の触媒活性を再生する方法に関する。   The present invention relates to the production of fatty acid esters, and more particularly to a method for regenerating the catalytic activity of an ion exchange resin used in the production of fatty acid esters by transesterification using an anion exchanger using oils and fats as raw materials.

油脂類とアルコールとのエステル交換反応によって合成される脂肪酸エステルは、バイオディーゼル燃料として注目されている。バイオディーゼル燃料は、従来の石油系ディーゼル燃料(軽油)に比べて、燃焼した際の排ガスがクリーンであること、一酸化炭素や炭化水素、粒子状物質等の排出量が減少すること、排出ガス中に硫黄酸化物や硫酸塩を含まないこと、潤滑性能が高いなど多くの特長を有している。また、環境汚染の一因となる廃食用油からも合成できるため、環境調和型の廃棄物処理技術としても期待されている。   Fatty acid esters synthesized by transesterification of fats and alcohols have attracted attention as biodiesel fuels. Compared to conventional petroleum diesel fuel (light oil), biodiesel fuel has cleaner exhaust gas, reduced emissions of carbon monoxide, hydrocarbons, particulate matter, etc., exhaust gas It has many features such as not containing sulfur oxides and sulfates and high lubrication performance. In addition, since it can be synthesized from waste cooking oil that contributes to environmental pollution, it is also expected as an environmentally friendly waste treatment technology.

この燃料は、どんなディーゼルエンジンにもそのまま使用することができる利点がある。アメリカやヨーロッパでは、既に、石油系ディーゼル燃料に1〜20%程度バイオディーゼル燃料を混合したものを使用しはじめており、それだけでも、高潤滑性のためにエンジンに与える負荷が軽減し、かつ、環境や健康に与える負荷も軽減していることが報告されている。このようにあらゆる点で石油系ディーゼル燃料よりも優れたバイオディーゼル燃料を積極的に利用しようとする動きは、近年徐々に活発化している。   This fuel has the advantage that it can be used as is in any diesel engine. In the United States and Europe, we have already started using petroleum diesel fuel mixed with about 1 to 20% biodiesel fuel, and that alone reduces the load on the engine due to its high lubricity, and the environment. It has been reported that the burden on health and health has also been reduced. Thus, the movement to actively use biodiesel fuel that is superior to petroleum-based diesel fuel in every respect has been gradually activated in recent years.

しかし,これらバイオディーゼル燃料は,石油系ディーゼル燃料の2,3倍という高コストであることが大きな問題となっている。現在の製造プロセスでは、植物油の主成分であるトリグリセリドとアルコールとのエステル交換反応によって合成する際の触媒として、水酸化ナトリウムや水酸化カリウムのような均相アルカリが用いられており,これらのアルカリが残留したグリセリンが副生成物となる。グリセリンは食品や化粧品の原料となる価値のある物質であるため、通常は他用途に用いることが考えられる。しかし,均相アルカリを触媒として用いる製造法により得られたグリセリンは,製造過程で混入したアルカリ成分を分離除去する必要がある。この触媒分離のためのコストが付加され、バイオディーゼル燃料のコストは一般に軽油よりも高いものとなっている。また、均相アルカリを用いた場合、バイオディーゼル燃料の生成反応以外に、副反応である鹸化が生じ、燃料の収率が低下する。このように均相アルカリ触媒を用いる現在の製造プロセスでは、製造コストや環境負荷の増大を招くことになっている。このような課題の解決のため,触媒分離プロセスが不要であり,副反応を伴わず,かつ活性の高い不均相固体触媒が求められてきた。   However, these biodiesel fuels have a big problem that they are two or three times as expensive as petroleum diesel fuels. In the current production process, a homogeneous alkali such as sodium hydroxide or potassium hydroxide is used as a catalyst for synthesis by transesterification of triglyceride, which is the main component of vegetable oil, with alcohol. The glycerin that remains is a by-product. Since glycerin is a valuable substance that can be used as a raw material for foods and cosmetics, it is usually considered to be used for other purposes. However, glycerin obtained by a production method using a soaking alkali as a catalyst needs to separate and remove alkali components mixed in during the production process. The cost for this catalyst separation is added, and the cost of biodiesel fuel is generally higher than that of light oil. In addition, when a soaking alkali is used, saponification, which is a side reaction, occurs in addition to the biodiesel fuel production reaction, resulting in a decrease in fuel yield. As described above, in the current production process using the phase-homogeneous alkali catalyst, the production cost and the environmental load are increased. In order to solve such problems, there has been a demand for a heterogeneous solid catalyst that does not require a catalyst separation process, has no side reactions, and has high activity.

バイオディーゼル燃料となる脂肪酸エステルの製造に用いられる新規な不均相触媒としては、エステル交換反応の触媒活性を持つイオン交換樹脂が有効であることが確認されている(非特許1文献参照)。イオン交換樹脂は、酵素触媒よりも安価で活性が安定である利点に加え、遊離のOH基も持たないため副反応である鹸化も生じないなどの利点を有する。しかし、バイオディーゼル燃料として脂肪酸エステルの製造に用いられたイオン交換樹脂は、その使用により触媒性能が劣化することは避けられず、工業的な利用のためには、触媒性能を回復する再生方法の確立が望まれる。   It has been confirmed that an ion exchange resin having a catalytic activity for transesterification is effective as a novel heterogeneous phase catalyst used in the production of a fatty acid ester as a biodiesel fuel (see Non-Patent Document 1). In addition to the advantage of being cheaper and more stable than the enzyme catalyst, the ion exchange resin has the advantage that it does not have a free OH group and therefore does not cause saponification as a side reaction. However, the ion exchange resin used in the production of fatty acid esters as biodiesel fuel inevitably deteriorates the catalyst performance due to its use, and for industrial use, a regeneration method for recovering the catalyst performance. Establishment is desired.

イオン交換樹脂は,通常の用途としては,半導体の製造に必須の超純水製造など,水系の液体に用いられることがほとんどである。この場合には,使用後に目的とする交換基に応じて,塩酸などを用いてR−H型,もしくは水酸化ナトリウム溶液を用いてR−OH型に再生して,樹脂自体の触媒活性を初期状態まで還元して利用する。イオン交換樹脂を、澱粉糖化液やソルビット、ゼラチンなどの有機物の脱塩精製に用いる場合もあるが、この場合においても純水製造と同じくイオン交換による反応であり、再生は酸もしくはアルカリを用いて行われる。なお、酸もしくはアルカリによる再生が十分に行われない場合は、アルコール溶媒を加えて再生を行う方法が一般的である。   In general, ion exchange resins are used for water-based liquids such as ultrapure water production essential for semiconductor production. In this case, depending on the desired exchange group after use, the catalyst activity of the resin itself is initially recovered by regenerating to RH type using hydrochloric acid or the like or using the sodium hydroxide solution to R-OH type. Reduce to the state and use. In some cases, ion-exchange resins are used for desalting and purifying organic substances such as starch saccharified solution, sorbit, and gelatin. In this case as well, pure ion production is a reaction by ion exchange, and regeneration is performed using acid or alkali. Done. When regeneration with an acid or alkali is not sufficiently performed, a method of performing regeneration by adding an alcohol solvent is common.

また、バイオディーゼル燃料の製造とは離れて、古くから、トリグリセリドとアルコールから脂肪酸エステルを製造する方法が知られている。例えば、トリグリセリドにアルコール類および必要に応じて溶剤を加え、塩基性イオン交換樹脂(アニオン交換樹脂)と接触させる方法(特許文献1参照)はイオン交換樹脂との接触に際して多量のアルコールが使用され、目的とする脂肪酸エステルを高濃度で取得することができず、また、イオン交換樹脂当たりの脂肪酸エステルの生成量が充分ではないという問題がある。本手法による使用後の触媒活性の再生については、希釈溶剤と同組成の酸性溶液を通水するという記述があるものの、効果的な再生については全く述べられていない。   Further, apart from the production of biodiesel fuel, a method for producing a fatty acid ester from triglyceride and alcohol has been known for a long time. For example, a method of adding alcohols to triglyceride and, if necessary, a solvent, and bringing it into contact with a basic ion exchange resin (anion exchange resin) (see Patent Document 1) uses a large amount of alcohol upon contact with the ion exchange resin. There is a problem that the target fatty acid ester cannot be obtained at a high concentration, and the amount of fatty acid ester produced per ion exchange resin is not sufficient. Regarding the regeneration of the catalytic activity after use by this method, there is a description that an acidic solution having the same composition as the diluting solvent is passed through, but there is no mention of effective regeneration.

特開昭62−218495号公報JP-A-62-218495 H.Toda et al., Conference Proceedings of 10th the APCChE Congress, 2D-8 (2004)H. Toda et al., Conference Proceedings of 10th the APCChE Congress, 2D-8 (2004)

バイオディーゼル燃料製造において,不均相触媒としてイオン交換樹脂を用いた際には,樹脂の性能劣化が問題となる。例えば、イオン交換樹脂をエステル交換反応の触媒として用いた場合、再生処理を行わなければ、5時間程度の連続処理により、樹脂の触媒としての性能は死活してしまう。これは、通常は水系で用いられているイオン交換樹脂を油系で用いることから起こるものであり、触媒活性の安定性確保,触媒としての再生利用ができなければ,イオン交換樹脂はバイオディーゼル燃料を製造するたびに交換が必要となり,工業的な価値が低くなる。本発明の目的は、脂肪酸エステル製造に利用されたイオン交換樹脂の触媒活性を再生する方法を提供し、イオン交換樹脂を用いたエステル交換手法の工業的な価値を高めることにある。   In the production of biodiesel fuel, when ion exchange resin is used as a heterogeneous phase catalyst, degradation of resin performance becomes a problem. For example, when an ion exchange resin is used as a catalyst for the transesterification reaction, if the regeneration treatment is not performed, the performance of the resin as a catalyst is vitalized by continuous treatment for about 5 hours. This is because the ion exchange resin that is usually used in water is used in oil, and if the stability of the catalyst activity cannot be ensured and recycled as a catalyst, the ion exchange resin is biodiesel fuel. Every time it is manufactured, it needs to be replaced, which reduces the industrial value. An object of the present invention is to provide a method for regenerating the catalytic activity of an ion exchange resin used for fatty acid ester production, and to increase the industrial value of a transesterification technique using an ion exchange resin.

本発明によれば、脂肪酸エステルの製造に使用したイオン交換樹脂を再生する方法において、使用したイオン交換樹脂を弱酸溶液によって洗浄し、アルカリ水溶液によって活性部位の置換を行うことを特徴とするイオン交換樹脂の再生方法が得られる。
また本発明は、前記弱酸溶液が、クエン酸である請求項1に記載のイオン交換樹脂の再生方法を提供する。
また本発明は、アルカリ水溶液が水酸化ナトリウムである請求項1又は2に記載のイオン交換樹脂の再生方法を提供する。
また本発明は、エクスパンデットベッドカラム型反応器を使用してイオン交換樹脂の再生を行うことを特徴とする請求項1〜3のいずれか1項に記載のイオン交換樹脂の再生方法を提供する。
また本発明は、請求項4に記載の再生方法を特徴とする、イオン交換樹脂の再生装置を提供する。
According to the present invention, in a method for regenerating an ion exchange resin used in the production of a fatty acid ester, the ion exchange resin used is washed with a weak acid solution and the active site is replaced with an alkaline aqueous solution. A resin regeneration method is obtained.
Moreover, this invention provides the regeneration method of the ion exchange resin of Claim 1 whose said weak acid solution is a citric acid.
The present invention also provides the method for regenerating an ion exchange resin according to claim 1 or 2, wherein the alkaline aqueous solution is sodium hydroxide.
Further, the present invention provides the method for regenerating an ion exchange resin according to any one of claims 1 to 3, wherein the ion exchange resin is regenerated using an expanded bed column type reactor. To do.
The present invention also provides an ion exchange resin regeneration device characterized by the regeneration method according to claim 4.

本発明によれば、脂肪酸エステル製造に用いて触媒性能が劣化したイオン交換樹脂を、初期の触媒性能まで再生できる効果が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the effect which can reproduce | regenerate to the initial catalyst performance is obtained for the ion exchange resin in which the catalyst performance deteriorated using for fatty acid ester manufacture.

以下、本発明の実施の形態について図面と表を参照しながら説明する。
(1)イオン交換樹脂を用いたエステル交換反応
本発明においては、イオン交換樹脂を用いたエステル交換反応から説明を始める。本発明に用いた反応物の原料としては、トリオレイン(Sigma-Aldrich Corporation, approx. 99%)とエタノール(和光純薬工業(株)、特級、 99.5 %)を用いた。触媒には、陰イオン交換樹脂(三菱化学株式会社、Diaion PA306S)を用いた。この樹脂の物性値を表1に示す。これは、ポーラス型の陰イオン交換樹脂であり、入手可能な樹脂の中で架橋度が最小であり、これまでの研究で、最もエステル交換活性が高いことが分かっている。

Figure 2007014871
Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables.
(1) Transesterification Reaction Using Ion Exchange Resin In the present invention, the explanation starts from the transesterification reaction using ion exchange resin. Triolein (Sigma-Aldrich Corporation, approx. 99%) and ethanol (Wako Pure Chemical Industries, Ltd., special grade, 99.5%) were used as raw materials for the reactants used in the present invention. An anion exchange resin (Mitsubishi Chemical Corporation, Diaion PA306S) was used as the catalyst. The physical properties of this resin are shown in Table 1. This is a porous anion exchange resin, which has the smallest degree of cross-linking among the available resins, and previous studies have shown that it has the highest transesterification activity.
Figure 2007014871

なお、本発明に適用されるイオン交換樹脂はアニオン交換体であればよく、アニオン交換体としては、アニオン交換樹脂、アニオン交換膜等が挙げられるが、アニオン交換樹脂が好ましい。アニオン交換樹脂は、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂などが挙げられるが、強塩基性アニオン交換樹脂が好ましい。アニオン交換樹脂を架橋度又は多孔度から分類した場合、ゲル型、ポーラス型、ハイポーラス型等が挙げられるが、ポーラス型、ハイポーラス型が好ましい。また、本実施例においては、アニオン交換樹脂を用いているが、本発明の再生方法は、油脂成分の除去後の官能基再生を−Hに置換して再利用するカチオン交換体においても同様の効果が期待される。   In addition, the ion exchange resin applied to this invention should just be an anion exchanger, and an anion exchange resin, an anion exchange membrane, etc. are mentioned as an anion exchanger, An anion exchange resin is preferable. Examples of the anion exchange resin include strong base anion exchange resins and weak base anion exchange resins, and strong base anion exchange resins are preferred. When the anion exchange resin is classified according to the degree of crosslinking or porosity, a gel type, a porous type, a high porous type and the like can be mentioned, and a porous type and a high porous type are preferable. In this example, an anion exchange resin is used. However, the regeneration method of the present invention is the same for a cation exchanger that is reused by substituting the functional group regeneration after removal of the fat and oil component with -H. Expected to be effective.

エステル交換反応は、陰イオン交換樹脂の活性部位であるOH基によって触媒される。出荷時のイオン交換樹脂の官能基はCl基であるため、これをOH基に置換する必要がある。官能基の置換は、ビュレットを用い、これに樹脂を充填し、置換剤を通液することで行った。置換剤には、1MのNaOH(和光純薬工業(株)、特級、 96.0 %)水溶液を用い、ビュレットから流出する溶媒のpHが置換剤と同じpHとなる時点まで行った。実施例においては、通液速度を約3 cm3/min、供給量を5 cm3/cm3-resinとした。置換終了後、ビュレットから樹脂を取り出し、余分な置換剤を除去するために、減圧ろ過用フィルターホルダー(Advantech Japan Co., Ltd., KG-47)上でReverse Osmosis Water(RO水)を用いて洗浄した。洗浄後のろ液のpHを測定し、洗浄前のRO水と同じpHとなったことを確認した。続いて、エステル交換反応の反応物であるエタノール溶液で膨潤させた状態で反応に用いた。
回分エステル交換の例としては、トリオレインとエタノールモル比を1:10とした反応液に40%(w/w)の樹脂を添加し、50℃の恒温槽中150spmで振とうすることで行った。各反応後、反応物と生成物濃度をダイオードアレイ検出器を備えた高速液体クロマトグラフィー(HPLC)で測定した。
また、得られたオレイン酸エチル濃度と初期トリオレイン濃度を用い、(反応時間tでのオレイン酸エチル濃度)/(初期トリオレイン濃度)によって反応率(転化率)を算出した。
The transesterification reaction is catalyzed by OH groups, which are the active sites of an anion exchange resin. Since the functional group of the ion exchange resin at the time of shipment is a Cl group, it is necessary to replace this with an OH group. The functional group was replaced by using a buret, filling it with resin, and passing a substituent. A 1M NaOH (Wako Pure Chemical Industries, Ltd., special grade, 96.0%) aqueous solution was used as the replacement agent, and the reaction was carried out until the pH of the solvent flowing out from the burette reached the same pH as the replacement agent. In the examples, the flow rate was about 3 cm3 / min, and the supply rate was 5 cm3 / cm3-resin. After the replacement, remove the resin from the burette and use Reverse Osmosis Water (RO water) on the filter holder for vacuum filtration (Advantech Japan Co., Ltd., KG-47) to remove the excess replacement agent. Washed. The pH of the filtrate after washing was measured, and it was confirmed that the pH was the same as that of RO water before washing. Then, it was used for reaction in the state swollen with the ethanol solution which is the reaction material of transesterification.
As an example of batch transesterification, 40% (w / w) resin was added to a reaction solution having a molar ratio of triolein and ethanol of 1:10, and the mixture was shaken at 150 spm in a constant temperature bath at 50 ° C. It was. After each reaction, the reactant and product concentrations were measured by high performance liquid chromatography (HPLC) equipped with a diode array detector.
The obtained ethyl oleate concentration and initial triolein concentration were used to calculate the reaction rate (conversion rate) by (ethyl oleate concentration at reaction time t) / (initial triolein concentration).

(2)イオン交換樹脂の再生処理
回分エステル交換実施後、その後樹脂を回収し、図1に模式的に示すように、処理1:付着した油成分を除去するための5%(v/v)クエン酸エタノール溶液洗浄、処理2:1M NaOH水溶液の通液による交換基の再置換と水洗浄、処理3:初期膨潤状態に戻すためのエタノール洗浄、を組み合わせて再生処理を行った。
(2) Regeneration treatment of ion exchange resin After carrying out batch transesterification, the resin is then recovered, and as shown schematically in FIG. 1, treatment 1: 5% (v / v) for removing the adhered oil component Regeneration treatment was performed by combining ethanol citrate solution washing, treatment 2: replacement of exchange groups by passing 1 M NaOH aqueous solution and washing with water, treatment 3: ethanol washing for returning to the initial swelling state.

例えば今回の実施した例においては、処理1から処理3は以下のような条件で行った。
処理1.樹脂に付着した油成分の除去を目的とし、5 %(v/v)クエン酸(和光純薬工業(株)、特級、 98.0 %)エタノール溶液50 cm3を用いて減圧ろ過用フィルターホルダー上で洗浄した。この際、減圧せずに溶液を溜めた状態で10分程度攪拌した後、ポンプ(ULVAC SINKU KIKO, Inc., MDA-015)を用いて減圧ろ過するという操作を5回繰り返した。
処理2.活性部位であるOH基の再置換を目的とし、樹脂をビュレットに充填し、1MのNaOH水溶液を通液した。そして、RO水で洗浄を行った。これらの操作は、全て前節で述べた官能基の置換の場合と同様に行った。
処理3.樹脂を反応前のエタノールで膨潤させた状態に戻すことを目的とし、フィルターホルダー上でエタノール溶液50 cm3で洗浄した。この際、前述のクエン酸エタノール溶液を用いた場合と同様の手順で4回繰り返し行った。
以上の処理を行った後の樹脂を用いて、前記と同条件下で、再びエステル交換を行った。実施方法や分析手順は全て同様である。ここで、NaOH水溶液以外の処理で得られたろ液中のトリオレイン、オレイン酸エチル、および副生成物であるオレイン酸濃度をHPLCシステムにより測定した。このシステムおよび分析条件は、全て同様である。
For example, in the example carried out this time, processing 1 to processing 3 were performed under the following conditions.
Process 1. Washed on a filter holder for vacuum filtration using 50 cm3 of 5% (v / v) citric acid (Wako Pure Chemical Industries, Ltd., special grade, 98.0%) ethanol solution for the purpose of removing oil components adhering to the resin. did. At this time, after stirring for about 10 minutes in a state where the solution was stored without reducing pressure, the operation of vacuum filtration using a pump (ULVAC SINKU KIKO, Inc., MDA-015) was repeated five times.
Process 2. For the purpose of re-substitution of the OH group which is the active site, the resin was filled into a burette and a 1M NaOH aqueous solution was passed therethrough. And it washed with RO water. All of these operations were performed in the same manner as in the case of the functional group substitution described in the previous section.
Process 3. The resin was washed with 50 cm3 of ethanol solution on the filter holder for the purpose of returning the resin to a state swollen with ethanol before the reaction. At this time, the same procedure as that in the case of using the ethanol solution of citrate was repeated four times.
Using the resin after the above treatment, transesterification was performed again under the same conditions as described above. The implementation method and analysis procedure are all the same. Here, the concentration of triolein, ethyl oleate, and by-product oleic acid in the filtrate obtained by the treatment other than the NaOH aqueous solution was measured by an HPLC system. The system and analysis conditions are all the same.

なお、処理1に用いた弱酸はクエン酸とエタノールの混合溶液であるが、エステル交換反応で副生成物として生成するオレイン酸などの油成分の除去を目的としていることから、クエン酸以外の酢酸、リンゴ酸等の有機酸を使用することも可能である。特に副生成物のグリセリンを食用もしくは化粧用材料として利用することを想定した場合、人の体内に取り込んでも安全な材料であることは有効である。副生成物を工業的な原料として用いる場合には、食用の酸である必要はなく、蟻酸、塩酸、硝酸など、本明細書中に記載されていない酸性の溶液を用いてもよい。同様にエタノール以外のメタノール、イソプロピルアルコールなど弱酸を混和させることのできるアルコールを用いてもよい。   The weak acid used in treatment 1 is a mixed solution of citric acid and ethanol, but it is intended to remove oil components such as oleic acid produced as a by-product in the transesterification reaction. It is also possible to use organic acids such as malic acid. In particular, when it is assumed that glycerin, a by-product, is used as an edible or cosmetic material, it is effective to be a safe material even if taken into the human body. When the by-product is used as an industrial raw material, it is not necessary to be an edible acid, and an acidic solution that is not described in this specification, such as formic acid, hydrochloric acid, or nitric acid, may be used. Similarly, alcohols that can be mixed with weak acids such as methanol and isopropyl alcohol other than ethanol may be used.

クエン酸を用いた場合は、クエン酸とオレイン酸の分離が容易にできるため、処理後に廃水として生じるクエン酸とオレイン酸混合物の処理、クエン酸を再利用が容易である。
工業的に考えた場合は、使用する酸については塩酸や硝酸の希釈溶液、アルコールについてはメタノールを用いることが経済的に有効である。
また、処理2のOH基の再置換目的に用いたアルカリ溶液としては、水酸化ナトリウム(NaOH)を用いているが、通常塩基性のイオン交換樹脂の官能基を再生する手法に用いられるアルカリ溶液を用いてもよい。
When citric acid is used, it is easy to separate citric acid and oleic acid, so that it is easy to treat citric acid and oleic acid mixture generated as waste water after the treatment and reuse citric acid.
From an industrial point of view, it is economically effective to use a diluted solution of hydrochloric acid or nitric acid for the acid used and methanol for the alcohol.
In addition, sodium hydroxide (NaOH) is used as an alkaline solution for the purpose of resubstitution of the OH group in treatment 2, but it is usually used in a method for regenerating the functional group of a basic ion exchange resin. May be used.

同様に、処理3で樹脂の膨潤に用いているエタノールも、本実施例中で用いた溶媒がエタノールであるために、製造開始時にエタノールでの膨潤を行い、処理3においても同様のプロセスを用いている。エタノール以外でも、メタノール、水、アセトンなど、脂肪酸エステル製造および樹脂再生に適当と思われる溶媒を用いてもよい。
例えば、全ての溶媒が水である場合には、処理1および処理2において樹脂は十分に膨潤していることから、処理3のプロセスは不要となる。
また、イオン交換樹脂の再生において、膨潤させなくとも脂肪酸エタノールの製造が十分に行われる場合には、膨潤させるプロセスそのものが不要となる。
Similarly, the ethanol used for swelling the resin in the treatment 3 is also the same as the solvent used in the treatment 3 because the solvent used in this example is ethanol, and the ethanol is swollen at the start of production. ing. In addition to ethanol, a solvent that seems to be suitable for fatty acid ester production and resin regeneration, such as methanol, water, and acetone, may be used.
For example, when all the solvents are water, the process 3 is not necessary because the resin is sufficiently swollen in the processes 1 and 2.
Further, in the regeneration of the ion exchange resin, when the fatty acid ethanol is sufficiently produced without swelling, the swelling process itself becomes unnecessary.

(3)カラムを用いた再生処理
樹脂を充填したエクスパンデッドベッド型リアクターを用いて連続エステル交換を行う場合、樹脂の再生処理プロセスも連続化することが望ましい。そのための実施例の一つとして、使用後の樹脂をカラムに充填した状態で、前述の再生処理を行った。
図2にカラムを用いた再生処理システムを模式的に示す。カラムには、これまでの連続試験で使用した内径11 mm、長さ150 mmのガラスカラムを用い、その上下に三方コックをそれぞれ設置した。再生処理溶液はポンプ(Tokyo Rikakikai Co., Ltd., Micro Tube Pump MP-3)を用いて、一定流量でリアクター底部から連続的に供給した。本リアクターでは、カラム内を洗浄溶液が上向きに流れるため、充填した樹脂が浮遊した状態となる。従って、本系のような樹脂の膨潤が生じる場合においても、圧力損失が小さく、樹脂の破損を防止することが出来る。ここでは、処理1のクエン酸エタノール溶液、処理2のNaOH水溶液およびRO水、処理3のエタノールを順にカラム底部から供給することにより、イオン交換樹脂の再生処理を行った。
(3) Regeneration treatment using a column When continuous transesterification is performed using an expanded bed reactor filled with a resin, it is desirable that the resin regeneration treatment process is also continued. As one of the examples for that purpose, the above-mentioned regeneration treatment was performed in a state where the column was filled with the used resin.
FIG. 2 schematically shows a regeneration processing system using a column. As the column, a glass column having an inner diameter of 11 mm and a length of 150 mm used in the conventional tests was used, and three-way cocks were installed above and below the glass column. The regeneration treatment solution was continuously supplied from the bottom of the reactor at a constant flow rate using a pump (Tokyo Rikakikai Co., Ltd., Micro Tube Pump MP-3). In this reactor, since the washing solution flows upward in the column, the filled resin is in a floating state. Therefore, even when the resin swells as in the present system, the pressure loss is small, and the resin can be prevented from being damaged. Here, the regeneration treatment of the ion exchange resin was performed by sequentially supplying the ethanol solution of citrate of treatment 1, the aqueous NaOH solution and RO water of treatment 2, and ethanol of treatment 3 from the bottom of the column.

再生処理は、流出液に、付着していた油成分(オレイン酸など)が検出されなくなるまで行った。NaOH水溶液やRO水は入り口と出口の溶液のpHが等しくなるまで行えばよい。エタノール供給も水と置き換わるまで行えばよい。
その後に、本カラムで再生処理を行ったイオン交換樹脂を用いて、再びエステル交換を行った。実施方法や分析の手順は全て前述と同じである。
The regeneration treatment was performed until no oil component (such as oleic acid) adhering to the effluent was detected. NaOH aqueous solution or RO water may be used until the pH of the solution at the inlet and outlet becomes equal. The ethanol supply may be performed until it is replaced with water.
Thereafter, the transesterification was performed again using the ion exchange resin that had been regenerated by this column. The implementation method and analysis procedure are all the same as described above.

(4)再生処理方法の検討
図3に、各実施例で得られた目的生成物オレイン酸エチルへの転化率を示す。ここでは、各処理の影響を検討するため、種々の組み合わせで再生処理を行った。処理3のエタノール洗浄のみを行った場合(◆)、反応率の増加が僅かであったことから、一回の回分反応で樹脂の触媒活性が著しく低下したことが分かる。そこで、処理3に加え処理2の交換基の再置換を行ったところ(▼)、転化率は5時間で約0.4に達した。これより、活性部位であるOH基の漏洩が活性低下の一因であると考えられる。しかし、活性の回復が完全ではないため、処理2と処理3に加え、処理1のクエン酸エタノール溶液洗浄を行ったところ(▲)、未使用樹脂を用いた場合(□)とほぼ同程度の転化率となった。洗浄後のクエン酸エタノール溶液中には副生成物と考えられるオレイン酸が含まれていた。これより、オレイン酸付着による活性部位の被覆や孔の詰まりも活性低下の一因であると考えられる。さらに、オレイン酸付着を取り除き交換基の再置換を行わない場合にどの程度活性が回復するかを検討するため、処理1と処理3のみを行ったところ(●)、転化率はほとんど増加しなかった。これより、クエン酸エタノール溶液洗浄によって樹脂のOH基が全てクエン酸基と置換されている可能性がある。以上より、樹脂の触媒活性を完全に回復するためには、処理1と2が必須であると考えられる。なお、クエン酸による処理を行わなくとも、40%程度の活性は回復していることから、工業的に処理2、処理3のみの再生で連続プロセスが成立する可能性もある。
(4) Examination of Regeneration Treatment Method FIG. 3 shows the conversion rate to the target product ethyl oleate obtained in each Example. Here, in order to examine the influence of each process, the reproduction process was performed in various combinations. When only ethanol washing of treatment 3 was performed (♦), the increase in the reaction rate was slight, indicating that the catalytic activity of the resin was remarkably reduced by one batch reaction. Therefore, when the replacement group in the treatment 2 was re-substituted in addition to the treatment 3 (▼), the conversion rate reached about 0.4 in 5 hours. From this, it is considered that leakage of the OH group, which is the active site, contributes to the decrease in activity. However, since the recovery of activity was not complete, washing with the citric acid ethanol solution of treatment 1 in addition to treatment 2 and treatment 3 (▲) was almost the same as when using an unused resin (□). Conversion was achieved. The citrate ethanol solution after washing contained oleic acid which is considered as a by-product. From this, it is considered that the active site coating and pore clogging due to oleic acid adhesion also contribute to the decrease in activity. Furthermore, in order to examine how much activity is restored when the oleic acid adhesion is removed and the exchange group is not re-substituted, only the treatment 1 and the treatment 3 are performed (●), and the conversion rate hardly increases. It was. Accordingly, there is a possibility that all OH groups of the resin are replaced with citric acid groups by washing with citric acid ethanol solution. From the above, it is considered that treatments 1 and 2 are essential in order to completely recover the catalytic activity of the resin. Even if the treatment with citric acid is not performed, the activity of about 40% has been recovered. Therefore, there is a possibility that a continuous process can be established by industrial regeneration only of treatment 2 and treatment 3.

(5)繰り返し利用の検討
図4に、前述の処理1から処理3までの再生処理を行った後に脂肪酸エステル製造の回分反応を行う操作を5回繰り返した結果を示す。横軸は反応回数であり、縦軸は5時間での転化率である。樹脂を5回繰り返し利用しても、転化率がほぼ一定に保たれていることが分かる。通常のイオン交換樹脂においては、5回程度の再生回数において触媒活性が初期状態に戻る場合には、工業的に有効な再生処理方法と見ることができる。これより、前述の再生処理操作を行うことにより、触媒活性の低下なしに本樹脂を繰り返し利用できると考えられる。
本発明では、再生処理として、ラボレベルで使用可能なサイズの装置を用いているが、イオン交換樹脂の再生として考えた場合、このままスケールアップを行うことが容易であり、実際のプラントにおいては、カラム、ベッドともに工業的に有効なサイズとして適用されることは自明である。
(5) Examination of repetitive use FIG. 4 shows the result of repeating the operation of carrying out the batch reaction of fatty acid ester production after performing the regeneration treatment from the above treatment 1 to treatment 3 above. The horizontal axis is the number of reactions, and the vertical axis is the conversion rate in 5 hours. It can be seen that even when the resin is repeatedly used 5 times, the conversion rate is kept almost constant. In a normal ion exchange resin, when the catalyst activity returns to the initial state after the number of regenerations of about 5 times, it can be regarded as an industrially effective regeneration treatment method. From this, it is considered that the present resin can be repeatedly used by performing the above-described regeneration treatment operation without lowering the catalytic activity.
In the present invention, an apparatus having a size that can be used at a laboratory level is used as a regeneration process, but when considered as regeneration of an ion exchange resin, it is easy to scale up as it is, and in an actual plant, It is obvious that both the column and the bed are applied as industrially effective sizes.

(6)カラムによる再生処理結果
図5に、カラムで再生処理を行った樹脂を用いた回分エステル交換結果を、未使用樹脂の場合と比較して示す。縦軸はトリオレインのオレイン酸エチルへの反応率である。カラムでの処理を行った樹脂を用いた場合、反応率が未使用樹脂を用いた場合よりも、若干緩やかに増加していることが分かる。このことから、未使用樹脂を本発明による再生方法を施すことで、初期の反応率の向上を図ることも可能である。
(6) Result of regeneration treatment by column FIG. 5 shows the results of batch transesterification using a resin subjected to regeneration treatment by a column in comparison with the case of an unused resin. The vertical axis represents the reaction rate of triolein to ethyl oleate. It can be seen that when the resin treated with the column is used, the reaction rate increases slightly more slowly than when the unused resin is used. From this, it is also possible to improve the initial reaction rate by subjecting the unused resin to the regeneration method according to the present invention.

本発明の再生方法は、環境負荷の小さいバイオディーゼル燃料として利用可能な脂肪酸エステルの製造に用いられるイオン交換樹脂の触媒性能の回復方法として利用される。   The regeneration method of the present invention is used as a method for recovering the catalytic performance of an ion exchange resin used in the production of a fatty acid ester that can be used as a biodiesel fuel with a low environmental load.

本発明における樹脂の再生の一例の模式図を示す。The schematic diagram of an example of reproduction | regeneration of resin in this invention is shown. 連続式の樹脂再生の一例の模式図を示す。The schematic diagram of an example of continuous type resin reproduction | regeneration is shown. それぞれの処理ステップを行った際の、目的生成物への転化率を示す。The conversion rate to the target product when each processing step is performed is shown. 再生回数に対する、目的生成物への転化率を示す。The conversion rate to the target product with respect to the number of regenerations is shown. 未使用樹脂を用いた転化率と、再生処理を行った樹脂の転化率を示す。The conversion rate using the unused resin and the conversion rate of the resin subjected to the regeneration treatment are shown.

Claims (5)

脂肪酸エステルの製造に使用したイオン交換樹脂を再生する方法において、使用したイオン交換樹脂を弱酸溶液によって洗浄し、アルカリ水溶液によって活性部位の置換を行うことを特徴とするイオン交換樹脂の再生方法。   A method for regenerating an ion exchange resin used for producing a fatty acid ester, comprising washing the used ion exchange resin with a weak acid solution and substituting an active site with an aqueous alkaline solution. 前記弱酸溶液が、クエン酸であることを特徴とする請求項1に記載のイオン交換樹脂の再生方法。   The method for regenerating an ion exchange resin according to claim 1, wherein the weak acid solution is citric acid. アルカリ水溶液が水酸化ナトリウムであることを特徴とする請求項1または2に記載のイオン交換樹脂の再生方法。   The method for regenerating an ion exchange resin according to claim 1 or 2, wherein the alkaline aqueous solution is sodium hydroxide. エクスパンデットベッドカラム型反応器を使用してイオン交換樹脂の再生を行うことを特徴とする請求項1ないし3のいずれかに記載のイオン交換樹脂の再生方法。   The method for regenerating an ion exchange resin according to any one of claims 1 to 3, wherein the ion exchange resin is regenerated using an expanded bed column type reactor. 請求項4に記載の再生方法を特徴とするイオン交換樹脂の再生装置。   An ion exchange resin regeneration device characterized by the regeneration method according to claim 4.
JP2005198200A 2005-07-07 2005-07-07 Method for regenerating ion exchange resin Pending JP2007014871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198200A JP2007014871A (en) 2005-07-07 2005-07-07 Method for regenerating ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198200A JP2007014871A (en) 2005-07-07 2005-07-07 Method for regenerating ion exchange resin

Publications (1)

Publication Number Publication Date
JP2007014871A true JP2007014871A (en) 2007-01-25

Family

ID=37752482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198200A Pending JP2007014871A (en) 2005-07-07 2005-07-07 Method for regenerating ion exchange resin

Country Status (1)

Country Link
JP (1) JP2007014871A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190989A (en) * 2008-02-13 2009-08-27 Tohoku Univ Method for simultaneously producing tocotrienol and biodiesel fuel from oils and fats
WO2010074291A1 (en) * 2008-12-25 2010-07-01 花王株式会社 Method for manufacturing glycerin
WO2010109244A3 (en) * 2009-03-27 2011-01-13 Lucite International Uk Limited Process for the treatment of an ion exchange resin
CN104289258A (en) * 2014-10-08 2015-01-21 於承志 Acid pickling regenerating liquid for denitration catalyst and regenerating method
JP2016059833A (en) * 2014-09-16 2016-04-25 国立大学法人東北大学 Regeneration processing method of anion exchange resin catalyst for continuous production of fatty acid ester
WO2017119007A1 (en) 2016-01-07 2017-07-13 Institute Of Chemical Technology Process for purification and refining of glycerol
US11014903B2 (en) 2017-02-17 2021-05-25 Phytochem Products Inc. Vitamin E production method and vitamin E production device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200219A (en) * 1981-06-05 1982-12-08 Kurita Water Ind Ltd Purification of saline water
JPS602102B2 (en) * 1977-12-29 1985-01-19 オルガノ株式会社 How to regenerate ion exchange resin
JPH066718B2 (en) * 1986-03-19 1994-01-26 日清製油株式会社 Method for producing fatty acid ester
JP2002102711A (en) * 2000-09-29 2002-04-09 Mitsubishi Gas Chem Co Inc Method for regenerating highly basic anion exchange resin
JP2006104316A (en) * 2004-10-05 2006-04-20 Tohoku Techno Arch Co Ltd Method for producing fatty acid ester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602102B2 (en) * 1977-12-29 1985-01-19 オルガノ株式会社 How to regenerate ion exchange resin
JPS57200219A (en) * 1981-06-05 1982-12-08 Kurita Water Ind Ltd Purification of saline water
JPH066718B2 (en) * 1986-03-19 1994-01-26 日清製油株式会社 Method for producing fatty acid ester
JP2002102711A (en) * 2000-09-29 2002-04-09 Mitsubishi Gas Chem Co Inc Method for regenerating highly basic anion exchange resin
JP2006104316A (en) * 2004-10-05 2006-04-20 Tohoku Techno Arch Co Ltd Method for producing fatty acid ester

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190989A (en) * 2008-02-13 2009-08-27 Tohoku Univ Method for simultaneously producing tocotrienol and biodiesel fuel from oils and fats
US8609905B2 (en) 2008-12-25 2013-12-17 Kao Corporation Method for producing glycerol
WO2010074291A1 (en) * 2008-12-25 2010-07-01 花王株式会社 Method for manufacturing glycerin
JP2010168350A (en) * 2008-12-25 2010-08-05 Kao Corp Method for producing glycerin
AU2010227277B2 (en) * 2009-03-27 2014-09-18 Lucite International Uk Limited Process for the treatment of an ion exchange resin
TWI483779B (en) * 2009-03-27 2015-05-11 Lucite Int Uk Ltd Process for the treatment of an ion exchange resin
US20120059073A1 (en) * 2009-03-27 2012-03-08 Lucite International Uk Limited Process for the treatment of an ion exchange resin
JP2012521867A (en) * 2009-03-27 2012-09-20 ルーサイト インターナショナル ユーケー リミテッド Treatment method of ion exchange resin
KR20110133620A (en) * 2009-03-27 2011-12-13 루사이트 인터내셔널 유케이 리미티드 Process for the treatment of an ion exchange resin
US8835518B2 (en) 2009-03-27 2014-09-16 Lucite International Uk Limited Process for the treatment of an ion exchange resin
WO2010109244A3 (en) * 2009-03-27 2011-01-13 Lucite International Uk Limited Process for the treatment of an ion exchange resin
US20140343176A1 (en) * 2009-03-27 2014-11-20 Lucite International Uk Limited Process for the treatment of an ion exchange resin
EP4219008A1 (en) * 2009-03-27 2023-08-02 Mitsubishi Chemical UK Limited Use for the treatment of an ion exchange resin
CN102361695A (en) * 2009-03-27 2012-02-22 璐彩特国际英国有限公司 Process for the treatment of an ion exchange resin
EP4049754A1 (en) * 2009-03-27 2022-08-31 Mitsubishi Chemical UK Limited Process for the treatment of an ion exchange resin
KR101719617B1 (en) * 2009-03-27 2017-04-04 루사이트 인터내셔널 유케이 리미티드 Process for the treatment of an ion exchange resin
EP3862085A1 (en) * 2009-03-27 2021-08-11 Mitsubishi Chemical UK Limited Process for the treatment of an ion exchange resin
US9821304B2 (en) * 2009-03-27 2017-11-21 Lucite International Uk Limited Process for the treatment of an ion exchange resin
JP2016059833A (en) * 2014-09-16 2016-04-25 国立大学法人東北大学 Regeneration processing method of anion exchange resin catalyst for continuous production of fatty acid ester
CN104289258A (en) * 2014-10-08 2015-01-21 於承志 Acid pickling regenerating liquid for denitration catalyst and regenerating method
WO2017119007A1 (en) 2016-01-07 2017-07-13 Institute Of Chemical Technology Process for purification and refining of glycerol
US11014903B2 (en) 2017-02-17 2021-05-25 Phytochem Products Inc. Vitamin E production method and vitamin E production device

Similar Documents

Publication Publication Date Title
Ardi et al. Progress, prospect and challenges in glycerol purification process: A review
Atadashi Purification of crude biodiesel using dry washing and membrane technologies
JP2008178871A (en) Regeneration method of strong basic anionic ion exchange resin
JP2007014871A (en) Method for regenerating ion exchange resin
Veljković et al. Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification
Atadashi et al. Refining technologies for the purification of crude biodiesel
Stojković et al. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification
Marinković et al. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives
Sokač et al. Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms
JP4515840B2 (en) Method for producing fatty acid alkyl ester
ES2912749T3 (en) Catalyst regeneration for the hydrogenation of sugars
JP4198663B2 (en) Method for producing fatty acid ester
JP5700188B2 (en) Method for simultaneous production of tocotrienol and biodiesel fuel from fats and oils
Govindaraju et al. Significance of membrane applications for high-quality biodiesel and byproduct (glycerol) in biofuel industries
JP5595719B2 (en) Method for producing glycerin
Changmai et al. Heterogeneous system in organic synthesis: A review
JP2007297611A (en) Method for producing fatty acid ester
JP2016059833A (en) Regeneration processing method of anion exchange resin catalyst for continuous production of fatty acid ester
RU2554866C2 (en) Method of catalyst regeneration
JP5167110B2 (en) Catalyst for producing biodiesel, method for producing the same, and method for producing biodiesel
WO2018038103A1 (en) Process for producing sugar fatty acid ester using anion exchanger as catalyst
Kushwaha et al. A way from biofuels to biorefinery: nanotechnological perspectives
Borges et al. Improvement of biodiesel production through microstructural engineering of a heterogeneous catalyst
JP4537486B2 (en) Method for producing rice bran leachate from which bad smell was removed, method for producing rice bran leachate from which bad smell was removed, and method for producing γ-aminobutyric acid
JP2009203343A (en) Method for producing fatty acid ester

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207