JP2007012142A - Magnetic transfer method and device thereof - Google Patents

Magnetic transfer method and device thereof Download PDF

Info

Publication number
JP2007012142A
JP2007012142A JP2005190381A JP2005190381A JP2007012142A JP 2007012142 A JP2007012142 A JP 2007012142A JP 2005190381 A JP2005190381 A JP 2005190381A JP 2005190381 A JP2005190381 A JP 2005190381A JP 2007012142 A JP2007012142 A JP 2007012142A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
transfer
recording medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005190381A
Other languages
Japanese (ja)
Inventor
Tatsuya Fujinami
達也 藤浪
Makoto Nagao
信 長尾
Kazunori Komatsu
和則 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005190381A priority Critical patent/JP2007012142A/en
Priority to US11/476,857 priority patent/US20070002480A1/en
Publication of JP2007012142A publication Critical patent/JP2007012142A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic transfer method and device that can obtain uniform output over the whole surface of the disk to print. <P>SOLUTION: This method makes close contact of an initially DC magnetized magnetic recording medium 40 to be magnetically transferred and the master medium 48 having the magnetic pattern, then those recording medium to be magnetically transferred and master medium both in a close contact are moved relative to a magnetic field generator 30 to circumferentially apply magnetic fields. It transfers the magnetic pattern of the master medium to the magnetic recording medium to be magnetically transferred by making the applied magnetic field intensity between the 0.7 times maximum and the maximum almost over the whole surface of the magnetic recording medium to transfer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気転写方法及び装置に係り、特に、ハードディスク装置等に用いられる磁気ディスクに、マスターディスクからフォーマット情報等の磁気情報パターンを転写するのに好適な磁気転写方法及び装置に関する。   The present invention relates to a magnetic transfer method and apparatus, and more particularly to a magnetic transfer method and apparatus suitable for transferring a magnetic information pattern such as format information from a master disk to a magnetic disk used in a hard disk device or the like.

近年、急速に普及しているハードディスクドライブに使用される磁気ディスク(ハードディスク)は、磁気ディスクメーカーよりドライブメーカーに納入された後、ドライブに組み込まれる前に、フォーマット情報やアドレス情報が書き込まれるのが一般的である。この書き込みは、磁気ヘッドにより行うこともできるが、これらのフォーマット情報やアドレス情報が書き込まれているマスターディスクより一括転写する方法が効率的であり、好ましい。   In recent years, magnetic disks (hard disks) used in hard disk drives, which have been rapidly spreading, are written with format information and address information before being installed in the drive after being delivered to the drive manufacturer by the magnetic disk manufacturer. It is common. Although this writing can be performed by a magnetic head, a method of batch transfer from a master disk in which these format information and address information are written is efficient and preferable.

この磁気転写技術は、マスターディスクと被転写ディスク(スレーブディスク)とを密着させた状態で、片側又は両側に電磁石装置、永久磁石装置等の磁界生成手段を配設して転写用磁界を印加し、マスターディスクの有する情報(たとえばサーボ信号)に対応する磁化パターンの転写を行うものである。   This magnetic transfer technology applies a magnetic field for transfer by arranging magnetic field generating means such as an electromagnet device or a permanent magnet device on one side or both sides in a state where a master disk and a disk to be transferred (slave disk) are in close contact with each other. The magnetic pattern corresponding to the information (for example, servo signal) of the master disk is transferred.

従来、この種の磁気転写技術として各種の提案がなされている(たとえば、特許文献1等。)。この特許文献1の提案は、転写用磁界の印加強度をスレーブディスクの保磁力に対して0.6〜1.3倍とするものである。そしてこれにより、高品位のパターンを正確に転写できる効果が得られるとされている。   Conventionally, various proposals have been made as this type of magnetic transfer technology (for example, Patent Document 1). The proposal of Patent Document 1 is such that the applied intensity of the transfer magnetic field is 0.6 to 1.3 times the coercivity of the slave disk. As a result, an effect of accurately transferring a high-quality pattern can be obtained.

特許文献2の提案は、磁石装置と被転写ディスクとを相対的に回転させながら、印加する磁界強度を上げていくものである。そしてこれにより、信号劣化が発生せず、信頼性の高い転写が行えるとされている。
特開2001−28127号公報 特開2002−237031号公報
The proposal of Patent Document 2 is to increase the applied magnetic field strength while relatively rotating the magnet device and the transfer disk. As a result, signal degradation does not occur and highly reliable transfer can be performed.
JP 2001-28127 A Japanese Patent Laid-Open No. 2002-237031

しかしながら、特許文献1、2のような従来技術において、磁気転写の際に印加する磁界のディスク表面における媒体保磁力に対する相対的な磁界強度が変化するために、被転写ディスクの再生信号のC/N比を低下させるという問題がある。   However, in the conventional techniques such as Patent Documents 1 and 2, the relative magnetic field strength with respect to the medium coercive force on the disk surface of the magnetic field applied during magnetic transfer changes. There is a problem of reducing the N ratio.

ところが、特許文献1において、磁界強度の変化(ばらつき)が実用上許容されうる範囲の指針はなく、上記問題点の解決にはなり得なかった。   However, in Patent Document 1, there is no guideline for a range in which a change (variation) in magnetic field strength is practically acceptable, and the above problem cannot be solved.

また、特許文献2においては、磁気粘性や磁界印加回数の影響が考慮されておらず、被転写ディスクの全面において均一な出力を得ることが困難である。   Further, in Patent Document 2, the influence of magnetic viscosity and the number of applied magnetic fields is not taken into consideration, and it is difficult to obtain a uniform output over the entire surface of the transferred disk.

本発明は、このような事情に鑑みてなされたもので、被転写ディスクの全面において均一な出力を得ることができる磁気転写方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a magnetic transfer method and apparatus capable of obtaining a uniform output over the entire surface of a transfer target disk.

前記目的を達成するために、本発明は、初期直流磁化された被転写用磁気記録媒体と磁気パターンを有するマスター媒体とを密着させる密着工程と、磁界生成手段を設けるとともに、該磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させながら、前記被転写用磁気記録媒体と前記マスター媒体の円周方向に磁界を印加し、媒体各部に対して印加する磁界強度の最大値が前記被転写用磁気記録媒体の略全面において最大磁界強度×0.7〜最大磁界強度の範囲になるようにして前記マスター媒体の磁気パターンを前記被転写用磁気記録媒体に転写させる磁気転写工程と、を備えることを特徴とする磁気転写方法を提供する。   In order to achieve the above object, the present invention provides an adhesion step for bringing a magnetic recording medium to be transferred and a master medium having a magnetic pattern into close contact with each other, a magnetic field generating means, and a magnetic field generating means. Applying a magnetic field in the circumferential direction of the magnetic recording medium to be transferred and the master medium while moving the magnetic recording medium to be transferred and the master medium in close contact with each other, and applying them to each part of the medium The magnetic pattern of the master medium is transferred to the magnetic recording medium for transfer so that the maximum value of the magnetic field strength to be applied is in the range of the maximum magnetic field strength x 0.7 to the maximum magnetic field strength over substantially the entire surface of the magnetic recording medium for transfer. And a magnetic transfer step for transferring to the magnetic transfer method.

また、このために、本発明は、初期直流磁化された被転写用磁気記録媒体と磁気パターンを有するマスター媒体とを密着させる密着手段と、磁界生成手段を設けるとともに、該磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させながら、前記被転写用磁気記録媒体と前記マスター媒体の円周方向に磁界を印加し、媒体各部に対して印加する磁界強度の最大値が前記被転写用磁気記録媒体の略全面において最大磁界強度×0.7〜最大磁界強度の範囲になるようにして前記マスター媒体の磁気パターンを前記被転写用磁気記録媒体に転写させる磁気転写手段と、を備えることを特徴とする磁気転写装置を提供する。   In addition, for this purpose, the present invention is provided with a close contact means for bringing the magnetic recording medium to be transferred, which has been initially DC magnetized, and a master medium having a magnetic pattern, and a magnetic field generating means into close contact with the magnetic field generating means. Magnetic field applied to each part of the medium by applying a magnetic field in the circumferential direction of the transferred magnetic recording medium and the master medium while relatively moving the transferred magnetic recording medium and the master medium in a state The magnetic pattern of the master medium is transferred to the magnetic recording medium for transfer so that the maximum value of the intensity is in the range of maximum magnetic field strength × 0.7 to maximum magnetic field strength over substantially the entire surface of the magnetic recording medium for transfer. And a magnetic transfer means.

本発明によれば、媒体各部に対して印加する磁界強度の最大値が、磁気記録媒体の略全面において最大磁界強度×0.7〜最大磁界強度の範囲になるように制御するので、磁気転写の際に印加する媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   According to the present invention, since the maximum value of the magnetic field strength applied to each part of the medium is controlled so as to be in the range of the maximum magnetic field strength × 0.7 to the maximum magnetic field strength over substantially the entire surface of the magnetic recording medium. In this case, there is little change in the magnetic field strength relative to the medium coercive force applied, and uniform magnetic transfer can be performed on substantially the entire surface.

また、本発明は、保磁力が印加する磁界の印加時間に依存する被転写用磁気記録媒体であって、初期直流磁化された被転写用磁気記録媒体と磁気パターンを有するマスター媒体とを密着させる密着工程と、磁界生成手段を設けるとともに、該磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させながら、前記被転写用磁気記録媒体と前記マスター媒体の円周方向に磁界を印加し、前記保磁力が、前記被転写用磁気記録媒体の略全面において最大保磁力×0.7〜最大保磁力の範囲になるようにして前記マスター媒体の磁気パターンを前記被転写用磁気記録媒体に転写させる磁気転写工程と、を備えることを特徴とする磁気転写方法を提供する。   The present invention also relates to a magnetic recording medium to be transferred that depends on the application time of the magnetic field to which the coercive force is applied, and closely attaches the magnetic recording medium to be transferred that has been initially DC magnetized to the master medium having a magnetic pattern. The magnetic recording medium for transfer and the master medium are provided while providing an adhesion step, a magnetic field generation means, and relatively moving the magnetic recording medium for transfer and the master medium in close contact with the magnetic field generation means The magnetic pattern of the master medium is applied so that the coercive force is in the range of maximum coercive force × 0.7 to maximum coercive force over substantially the entire surface of the magnetic recording medium to be transferred. And a magnetic transfer step for transferring the image to the magnetic recording medium to be transferred.

本発明によれば、保磁力が、磁気記録媒体の略全面において最大保磁力×0.7〜最大保磁力の範囲になるように磁界を印加するので、磁気転写の際に印加する媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   According to the present invention, the magnetic field is applied so that the coercive force is in the range of the maximum coercive force × 0.7 to the maximum coercive force over substantially the entire surface of the magnetic recording medium. The relative magnetic field strength is relatively small, and uniform magnetic transfer can be performed on substantially the entire surface.

本発明において、前記磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させる相対移動速度の速度変動を±15%以内に制御することが好ましい。   In the present invention, it is preferable to control the speed fluctuation of the relative movement speed for moving the transferred magnetic recording medium and the master medium in close contact with the magnetic field generating means within ± 15%.

このように、相対移動速度の速度変動を±15%以内に制御すれば、磁気記録媒体の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   As described above, if the fluctuation of the relative moving speed is controlled within ± 15%, the change in the magnetic field strength relative to the coercive force of the medium is small on almost the entire surface of the magnetic recording medium, and uniform magnetic transfer can be performed on the almost entire surface. .

また、本発明において、前記磁界生成手段を前記被転写用磁気記録媒体の半径と略同一長さとし、前記磁界生成手段の印加磁界強度を前記被転写用磁気記録媒体の内周側から外周側に向って増加させることが好ましい。   In the present invention, the magnetic field generating means has substantially the same length as the radius of the transferred magnetic recording medium, and the applied magnetic field strength of the magnetic field generating means is changed from the inner peripheral side to the outer peripheral side of the transferred magnetic recording medium. It is preferable to increase it.

このように、磁界生成手段の印加磁界強度を磁気記録媒体の内周側から外周側に向って増加させれば、磁気記録媒体の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   Thus, if the applied magnetic field strength of the magnetic field generating means is increased from the inner circumference side to the outer circumference side of the magnetic recording medium, the change in the relative magnetic field strength with respect to the medium coercive force is small over almost the entire surface of the magnetic recording medium. Uniform magnetic transfer can be performed on almost the entire surface.

また、本発明において、前記磁界生成手段を前記磁気記録媒体の半径より短い長さとし、前記磁界生成手段を前記被転写用磁気記録媒体の半径方向に移動させながら、前記磁界生成手段の印加磁界強度を前記被転写用磁気記録媒体の内周側から外周側に向って増加させることが好ましい。   Further, in the present invention, the magnetic field generating means has a length shorter than the radius of the magnetic recording medium, and the applied magnetic field strength of the magnetic field generating means is moved while moving the magnetic field generating means in the radial direction of the magnetic recording medium for transfer. Is preferably increased from the inner circumference side toward the outer circumference side of the magnetic recording medium for transfer.

このように、磁界生成手段を磁気記録媒体の半径方向に移動させながら、印加磁界強度を磁気記録媒体の内周側から外周側に向って増加させれば、磁気記録媒体の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   In this way, if the applied magnetic field strength is increased from the inner circumference side to the outer circumference side of the magnetic recording medium while moving the magnetic field generating means in the radial direction of the magnetic recording medium, the medium is maintained on almost the entire surface of the magnetic recording medium. There is little change in the magnetic field strength relative to the magnetic force, and uniform magnetic transfer can be performed on substantially the entire surface.

また、本発明において、前記磁界生成手段を前記磁気記録媒体の半径より短い長さとし、前記磁界生成手段を前記被転写用磁気記録媒体の半径方向に移動させるとともに、前記磁界生成手段と前記被転写用磁気記録媒体及び前記マスター媒体との相対回転速度を前記被転写用磁気記録媒体の内周側から外周側に向って減少させることが好ましい。   Further, in the present invention, the magnetic field generating means has a length shorter than the radius of the magnetic recording medium, the magnetic field generating means is moved in the radial direction of the magnetic recording medium for transfer, and the magnetic field generating means and the transferred object are transferred. It is preferable that the relative rotational speed between the magnetic recording medium for recording and the master medium is decreased from the inner circumference side to the outer circumference side of the magnetic recording medium for transfer.

このように、磁界生成手段を磁気記録媒体の半径方向に移動させるとともに、磁界生成手段と磁気記録媒体との相対回転速度(相対回転数)を内周側から外周側に向って減少させれば、磁気記録媒体の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   In this way, the magnetic field generating means is moved in the radial direction of the magnetic recording medium, and the relative rotational speed (relative rotational speed) between the magnetic field generating means and the magnetic recording medium is decreased from the inner circumference side toward the outer circumference side. Thus, there is little change in the magnetic field strength relative to the coercive force of the magnetic recording medium over the entire surface, and uniform magnetic transfer can be performed over the entire surface.

また、本発明において、前記被転写用磁気記録媒体及び前記マスター媒体の円周方向に磁界を印加する回数を、該被転写用磁気記録媒体の面内の各部分において同一回数とすることが好ましい。   In the present invention, it is preferable that the number of times the magnetic field is applied in the circumferential direction of the magnetic recording medium to be transferred and the master medium is the same as the number of times in each part of the surface of the magnetic recording medium to be transferred. .

このように、磁気記録媒体の円周方向に磁界を印加する回数を面内の各部分において同一回数とすれば、磁気記録媒体の略全面において媒体磁化の変化が少なく、略全面において均一な磁気転写が行える。   As described above, if the number of times of applying the magnetic field in the circumferential direction of the magnetic recording medium is the same number in each portion in the plane, the change in the magnetization of the medium is small over almost the entire surface of the magnetic recording medium, and the magnetic field is uniform over the entire surface. Transcription is possible.

また、本発明において、前記被転写用磁気記録媒体及び前記マスター媒体の円周方向に磁界を印加する回数を、該被転写用磁気記録媒体の面内の各部分において一回とすることが好ましい。   In the present invention, it is preferable that the number of times the magnetic field is applied in the circumferential direction of the magnetic recording medium for transfer and the master medium is set once in each portion in the plane of the magnetic recording medium for transfer. .

このように、磁気記録媒体の円周方向に磁界を印加する回数を面内の各部分において一回とすれば、磁気記録媒体の略全面において媒体磁化の変化が少なく、略全面において均一な磁気転写が行える。   In this way, if the number of times the magnetic field is applied in the circumferential direction of the magnetic recording medium is set to once in each part of the surface, the change in the magnetization of the medium is small over the substantially entire surface of the magnetic recording medium, and the magnetic field is uniform over the substantially entire surface. Transcription is possible.

また、本発明において、前記被転写用磁気記録媒体及び前記マスター媒体の円周方向に磁界を印加する回数の、該被転写用磁気記録媒体の面内において同一回数とならない部分を円周方向の角度で1度未満とすることが好ましい。   Further, in the present invention, a portion of the number of times of applying a magnetic field in the circumferential direction of the magnetic recording medium for transfer and the master medium that is not the same number of times in the plane of the magnetic recording medium for transfer is The angle is preferably less than 1 degree.

このように、磁気記録媒体の円周方向に磁界を印加する回数の面内において同一回数とならない部分を円周方向の角度で1度未満とすれば、磁気記録媒体の略全面において媒体磁化の変化が少なく、略全面において均一な磁気転写が行える。   As described above, if a portion that does not have the same number of times in the plane of the number of times of applying the magnetic field in the circumferential direction of the magnetic recording medium is set to be less than 1 degree in the circumferential direction, the magnetization of the medium is almost entirely on the magnetic recording medium. There is little change and uniform magnetic transfer can be performed on almost the entire surface.

また、本発明において、前記磁界強度を前記磁気転写に必要な強度まで上昇させる磁気転写準備段階の際の、又は、前記磁界強度を前記磁気転写に必要な強度より下降させる磁気転写終了段階の際の前記磁界生成手段と密着状態にある前記被転写用磁気記録媒体及び前記マスター媒体との相対移動速度を、前記磁気転写の際の前記磁界生成手段と密着状態にある前記被転写用磁気記録媒体及び前記マスター媒体との相対移動速度より大きくすることが好ましい。   Further, in the present invention, during the magnetic transfer preparation stage in which the magnetic field intensity is increased to the intensity required for the magnetic transfer, or during the magnetic transfer end stage in which the magnetic field intensity is decreased from the intensity required for the magnetic transfer. The magnetic recording medium for transfer that is in close contact with the magnetic field generation means during the magnetic transfer is set so that the relative movement speed of the magnetic recording medium for transfer and the master medium in close contact with the magnetic field generation means of It is preferable that the relative moving speed with respect to the master medium is larger.

磁界を印加する際、永久磁石であった場合は磁石を近づける(その後遠ざける)、電磁石である場合は電流値を上げていく(その後下げていく)という過程がどうしても必要になる。そのときに媒体に印加される磁界は非定常なものであり、影響を小さくするのが望ましい。これを実現する方法として、このように、印加磁界強度を上げる(永久磁石であれば距離を近づける、電磁石であれば、電流値を上げる)際の回転速度を速くすると、磁気粘性の影響で、媒体の保磁力が増大するので、相対的に印加磁界の強度が下がることになり、非定常状態の磁界の影響を低減できる効果が得られる。   When a magnetic field is applied, a process of moving the magnet closer (or moving away from it) if it is a permanent magnet, or increasing (decrease) the current value if it is an electromagnet is inevitably required. The magnetic field applied to the medium at that time is unsteady, and it is desirable to reduce the influence. As a method for realizing this, when the rotational speed at the time of increasing the applied magnetic field strength (in the case of a permanent magnet, the distance is reduced, and in the case of an electromagnet, the current value is increased) is increased. Since the coercive force of the medium is increased, the strength of the applied magnetic field is relatively lowered, and the effect of reducing the influence of the unsteady state magnetic field can be obtained.

以上説明したように、本発明によれば、磁気転写の際に印加する媒体保磁力に対する相対的な磁界強度や媒体磁化の変化が少なく、略全面において均一な磁気転写が行える。   As described above, according to the present invention, there is little change in the magnetic field strength and medium magnetization relative to the medium coercive force applied during magnetic transfer, and uniform magnetic transfer can be performed over substantially the entire surface.

以下、添付図面に従って、本発明に係る磁気転写方法及び装置の好ましい実施の形態について詳説する。図1は、本発明に係る磁気転写装置10の要部斜視図である。図2は、転写用磁界の印加方法を示す平面図である。   Hereinafter, preferred embodiments of a magnetic transfer method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view of a main part of a magnetic transfer apparatus 10 according to the present invention. FIG. 2 is a plan view showing a method for applying a magnetic field for transfer.

図3は、磁気転写方法の基本工程を示す図である。図3のうち(a)は、磁場を一方向に印加して被転写用磁気記録媒体であるスレーブディスク40を初期直流磁化する工程を、(b)は、マスター媒体であるマスターディスク46とスレーブディスク40とを密着して反対方向に磁界を印加する工程を、(c)は、は磁気転写後の状態をそれぞれ示す。なお、各図は模式図であり各部の寸法は実際とは異なる比率で示している。   FIG. 3 is a diagram showing the basic steps of the magnetic transfer method. 3A shows a process in which a magnetic field is applied in one direction and the slave disk 40, which is a magnetic recording medium to be transferred, is initially DC magnetized. FIG. 3B shows a process in which the master disk 46, which is a master medium, and a slave. (C) shows the state after magnetic transfer, in which the magnetic field is applied in the opposite direction with the disk 40 in close contact. Each figure is a schematic diagram, and the dimensions of each part are shown in proportions different from actual ones.

図1の磁気転写装置10において、磁気転写時には、図3(a)に示される後述する初期直流磁化を行った後の、スレーブディスク(被転写用磁気記録媒体)40のスレーブ面(磁気記録面)を、マスターディスク(マスター媒体)46の情報担持面に接触させ、所定の押圧力で密着させることができるようになっている。そして、このスレーブディスク40とマスターディスク46との密着状態で、磁界生成手段30により転写用磁界を印加してサーボ信号等の磁化パターンを転写記録することができるようになっている。   In the magnetic transfer apparatus 10 of FIG. 1, at the time of magnetic transfer, a slave surface (magnetic recording surface) of a slave disk (magnetic recording medium for transfer) 40 after initial DC magnetization described later shown in FIG. ) Is brought into contact with the information carrying surface of the master disk (master medium) 46 and can be brought into close contact with a predetermined pressing force. Then, with the slave disk 40 and the master disk 46 in close contact with each other, a magnetic field for transfer can be applied by the magnetic field generating means 30 to transfer and record a magnetic pattern such as a servo signal.

スレーブディスク40は、両面又は片面に磁気記録層が形成されたハードディスク、フレキシブルディスク等の円盤状磁気記録媒体であり、マスターディスク46に密着させる以前に、グライドヘッド、研磨体などにより表面の微小突起又は付着塵埃を除去するクリーニング処理(バーニッシィング等)が必要に応じて施される。また、スレーブディスク40には予め初期磁化が施される。この詳細は後述する。   The slave disk 40 is a disk-shaped magnetic recording medium such as a hard disk or a flexible disk having a magnetic recording layer formed on both sides or one side. Or the cleaning process (burnishing etc.) which removes adhering dust is given as needed. The slave disk 40 is preliminarily magnetized in advance. Details of this will be described later.

スレーブディスク40としては、ハードディスク、高密度フレキシブルディスク等の円盤状磁気記録媒体が使用できる。スレーブディスク40の磁気記録層には、塗布型磁気記録層、メッキ型磁気記録層、又は金属薄膜型磁気記録層が採用できる。   As the slave disk 40, a disk-shaped magnetic recording medium such as a hard disk or a high-density flexible disk can be used. As the magnetic recording layer of the slave disk 40, a coating type magnetic recording layer, a plating type magnetic recording layer, or a metal thin film type magnetic recording layer can be adopted.

金属薄膜型磁気記録層の磁性材料としては、Co、Co合金(CoPtCr、CoCr、CoPtCrTa、CoPtCrNbTa、CoCrB、CoNi等)、Fe、Fe合金(FeCo、FePt、FeCoNi)を用いることができる。これらは、磁束密度が大きいこと、磁界印加方向と同じ方向(面内記録なら面内方向)の磁気異方性を有していることより、明瞭な転写が行えるため好ましい。   As the magnetic material of the metal thin film type magnetic recording layer, Co, Co alloy (CoPtCr, CoCr, CoPtCrTa, CoPtCrNbTa, CoCrB, CoNi, etc.), Fe, Fe alloy (FeCo, FePt, FeCoNi) can be used. These are preferable because clear transfer can be performed because of high magnetic flux density and magnetic anisotropy in the same direction as the magnetic field application direction (in-plane direction for in-plane recording).

そして磁性材料の下(支持体側)に必要な磁気異方性を付与するために、非磁性の下地層を設けることが好ましい。この下地層には、結晶構造と格子定数を磁性層に合わすことが必要である。そのためには、Cr、CrTi、CoCr、CrTa、CrMo、NiAl、Ru等を用いることが好ましい。   In order to provide the necessary magnetic anisotropy under the magnetic material (on the support side), it is preferable to provide a nonmagnetic underlayer. For this underlayer, it is necessary to match the crystal structure and lattice constant to the magnetic layer. For that purpose, it is preferable to use Cr, CrTi, CoCr, CrTa, CrMo, NiAl, Ru or the like.

マスターディスク46は円盤状に形成され、基板47の片面に磁性層48(図3(b)参照)による微細凹凸パターンが形成された転写情報担持面が形成されており、基板47の反対側の面が不図示の密着手段に保持されている。このマスターディスク46の片面(転写情報担持面)は、スレーブディスク40と密着される。   The master disk 46 is formed in a disk shape, and a transfer information carrying surface on which a fine uneven pattern is formed on one surface of the substrate 47 by a magnetic layer 48 (see FIG. 3B) is formed. The surface is held by contact means (not shown). One side (transfer information carrying surface) of the master disk 46 is in close contact with the slave disk 40.

基板47がNi等を主体とした強磁性体の場合には、この基板47のみで磁気転写が可能であり、磁性層48は被覆しなくてもよいが、転写特性のよい磁性層48を設けることにより、より良好な磁気転写が行える。基板47が非磁性体の場合には、磁性層48を設けることが必要である。マスターディスク46の磁性層48は、保磁力Hcが48kA/m(≒600Oe)以下の軟磁性層であることが好ましい。   When the substrate 47 is a ferromagnetic material mainly composed of Ni or the like, the magnetic transfer is possible only by the substrate 47 and the magnetic layer 48 may not be covered, but the magnetic layer 48 having good transfer characteristics is provided. Therefore, better magnetic transfer can be performed. When the substrate 47 is a nonmagnetic material, it is necessary to provide the magnetic layer 48. The magnetic layer 48 of the master disk 46 is preferably a soft magnetic layer having a coercive force Hc of 48 kA / m (≈600 Oe) or less.

マスターディスク46の基板47としては、ニッケル、シリコン、石英ガラス等各種組成のガラス、アルミニウム、合金、各種組成のセラミックス、合成樹脂等が使用できる。この基板47表面の凹凸パターンの形成は、フォトファブリケーション法や、フォトファブリケーション法等で形成した原盤によるスタンパー法、等によって行える。   As the substrate 47 of the master disk 46, glass of various compositions such as nickel, silicon, quartz glass, aluminum, alloys, ceramics of various compositions, synthetic resins, and the like can be used. The uneven pattern on the surface of the substrate 47 can be formed by a photofabrication method, a stamper method using a master disk formed by a photofabrication method, or the like.

スタンパー法における原盤の形成は、たとえば、以下のように行える。表面が平滑なガラス板(又は石英ガラス板)の上にスピンコート法等によりフォトレジストの層を形成し、プレベーク後に、このガラス板を回転させながら、サーボ信号に対応して変調したレーザー光(又は電子ビーム)を照射し、フォトレジスト層の略全面に所定のパターン、たとえば各トラックに回転中心から半径方向に線状に延びるサーボ信号に相当するパターンを円周上の各フレームに対応する部分に露光する。   Formation of the master in the stamper method can be performed, for example, as follows. A photoresist layer is formed on a glass plate (or quartz glass plate) having a smooth surface by spin coating or the like, and after pre-baking, the laser plate is rotated in response to a servo signal while rotating the glass plate ( Or a portion corresponding to each frame on the circumference of a predetermined pattern, for example, a pattern corresponding to a servo signal extending linearly in the radial direction from the center of rotation to each track. To expose.

その後、フォトレジストの層を現像処理し、露光部分が除去されたフォトレジストの層により形成された凹凸形状を有するガラス原盤を得る。次いで、ガラス原盤の表面の凹凸パターンを基に、この表面にメッキ(電鋳)を施し所定厚さまで形成することにより、表面にポジ状の凹凸パターンを有するNi基板を作成する。そして、この基板をガラス原盤から剥離する。   Thereafter, the photoresist layer is developed to obtain a glass master having a concavo-convex shape formed by the photoresist layer from which the exposed portion has been removed. Next, based on the concavo-convex pattern on the surface of the glass master, the surface is plated (electroformed) to form a predetermined thickness, thereby creating a Ni substrate having a positive concavo-convex pattern on the surface. Then, the substrate is peeled from the glass master.

この基板をそのままプレス原盤とするか、凹凸パターン上に必要に応じて軟磁性層、保護膜等を被覆してプレス原盤とする。   This substrate is used as a press master as it is, or a soft master layer, a protective film, etc. are coated on the concavo-convex pattern as necessary to form a press master.

また、ガラス原盤にメッキを施して、電鋳により第2の原盤を作成し、この第2の原盤に更にメッキを施して、電鋳によりネガ状凹凸パターンを有する反転原盤を作成してもよい。更に、第2の原盤にメッキを施して電鋳を行うか、低粘度の樹脂を押し付けて硬化させるかした、第3の原盤を作成し、第3の原盤にメッキを施して電鋳を行い、ポジ状凹凸パターンを有する基板を作成してもよい。   Alternatively, the glass master may be plated to create a second master by electroforming, and the second master may be further plated to create a reversing master having a negative uneven pattern by electroforming. . Furthermore, the second master is plated and electroformed, or a low-viscosity resin is pressed and cured to create a third master, and the third master is plated and electroformed. A substrate having a positive uneven pattern may be formed.

基板の材料としては、金属ではNi又はNi合金を使用することができる。この基板を作成するメッキ法としては、無電解メッキ、電鋳、スパッタリング、イオンプレーティングを含む各種の金属成膜法等が適用できる。   As the material of the substrate, Ni or Ni alloy can be used as the metal. As a plating method for producing this substrate, various metal film forming methods including electroless plating, electroforming, sputtering, and ion plating can be applied.

基板表面の凹凸パターンの深さ(突起の高さ)は、80〜800nmの範囲が好ましく、100〜600nmの範囲がより好ましい。この凹凸パターンはサーボ信号の場合は、半径方向に長く形成される。この場合、たとえば、半径方向の長さが0.05〜20μm、円周方向の長さが0.05〜5μmであることが好ましい。この範囲で半径方向の方が長いパターンを選ぶことが、サーボ信号の情報を担持するパターンとしては好ましい。   The depth of the concavo-convex pattern on the substrate surface (projection height) is preferably in the range of 80 to 800 nm, and more preferably in the range of 100 to 600 nm. In the case of a servo signal, the uneven pattern is formed long in the radial direction. In this case, for example, the length in the radial direction is preferably 0.05 to 20 μm, and the length in the circumferential direction is preferably 0.05 to 5 μm. It is preferable to select a pattern having a longer radial direction within this range as a pattern carrying servo signal information.

磁性層48(軟磁性層)の形成は、磁性材料を真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜手段、メッキ法などにより成膜する。磁性層の磁性材料としては、Co、Co合金(CoNi、CoNiZr、CoNbTaZr等)、Fe、Fe合金(FeCo、FeCoNi、FeNiMo、FeAlSi、FeAl、FeTaN)、Ni、Ni合金(NiFe)を用いることができる。特に、FeCo、FeCoNiが好ましく用いることができる。磁性層の厚さは、50nm〜500nmの範囲が好ましく、100nm〜400nmの範囲が更に好ましい。   The magnetic layer 48 (soft magnetic layer) is formed by depositing a magnetic material by a vacuum film forming means such as a vacuum deposition method, a sputtering method, an ion plating method, a plating method, or the like. As the magnetic material of the magnetic layer, Co, Co alloy (CoNi, CoNiZr, CoNbTaZr, etc.), Fe, Fe alloy (FeCo, FeCoNi, FeNiMo, FeAlSi, FeAl, FeTaN), Ni, Ni alloy (NiFe) may be used. it can. In particular, FeCo and FeCoNi can be preferably used. The thickness of the magnetic layer is preferably in the range of 50 nm to 500 nm, and more preferably in the range of 100 nm to 400 nm.

なお、磁性層48の上にダイヤモンドライクカーボン等の保護膜を設けることが好ましく、保護膜の上に更に潤滑剤層を設けてもよい。この場合、保護膜として厚さが5〜30nmのダイヤモンドライクカーボン膜と潤滑剤層とする構成が好ましい。また、磁性層48と保護膜との間に、Si等の密着強化層を設けてもよい。潤滑剤は、スレーブディスク40との接触過程で生じるずれを補正する際の、摩擦による傷の発生などの耐久性の劣化を改善する効果を有する。   A protective film such as diamond-like carbon is preferably provided on the magnetic layer 48, and a lubricant layer may be further provided on the protective film. In this case, the protective film is preferably a diamond-like carbon film having a thickness of 5 to 30 nm and a lubricant layer. Further, an adhesion strengthening layer such as Si may be provided between the magnetic layer 48 and the protective film. The lubricant has an effect of improving the deterioration of durability such as the occurrence of scratches due to friction when correcting the deviation caused in the contact process with the slave disk 40.

マスターディスク46として、前記のプレス原盤を用いて樹脂基板を作製し、その表面に磁性層を設けて形成してもよい。樹脂基板の樹脂材料としては、ポリカーボネート、ポリメチルメタクリレートなどのアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体などの塩化ビニル樹脂、エポキシ樹脂、アモルファスポリオレフィン及びポリエステルなどが使用できる。   The master disk 46 may be formed by producing a resin substrate using the above-mentioned press master and providing a magnetic layer on the surface thereof. As the resin material of the resin substrate, acrylic resin such as polycarbonate and polymethyl methacrylate, vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer, epoxy resin, amorphous polyolefin, and polyester can be used.

このうち、耐湿性、寸法安定性及び価格などの点からポリカーボネートが好ましい。成形品にバリがある場合は、これをバーニシュ又は研磨加工により除去する。また、紫外線硬化樹脂、電子線硬化樹脂などを使用して、プレス原盤にスピンコート、バーコート等の塗布によりマスターディスク46を形成してもよい。樹脂基板のパターン突起の高さは、50〜1000nmの範囲が好ましく、100〜500nmの範囲が更に好ましい。   Of these, polycarbonate is preferable from the viewpoints of moisture resistance, dimensional stability, and price. If there are burrs in the molded product, they are removed by burnishing or polishing. Alternatively, the master disk 46 may be formed on the press master by spin coating, bar coating, or the like using an ultraviolet curable resin, an electron beam curable resin, or the like. The height of the pattern protrusions on the resin substrate is preferably in the range of 50 to 1000 nm, and more preferably in the range of 100 to 500 nm.

この樹脂基板の表面の微細パターンの上に磁性層48を被覆しマスターディスク46を得る。磁性層48の形成は、磁性材料を真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜方法、メッキ法などによる成膜方法で行える。   A magnetic layer 48 is coated on the fine pattern on the surface of the resin substrate to obtain a master disk 46. The magnetic layer 48 can be formed by depositing a magnetic material using a vacuum deposition method such as vacuum deposition, sputtering, or ion plating, or a deposition method such as plating.

一方、マスターディスク46の形成方法の1種であるフォトファブリケーション法は、以下の手順で行う。先ず、たとえば、平板状の基板の平滑な表面にフォトレジストを塗布し、サーボ信号のパターンに応じたフォトマスクを用いた露光、現像処理により、情報に応じたパターンを形成させる。   On the other hand, the photofabrication method, which is one of the methods for forming the master disk 46, is performed according to the following procedure. First, for example, a photoresist is applied to a smooth surface of a flat substrate, and a pattern corresponding to information is formed by exposure and development processing using a photomask corresponding to a servo signal pattern.

次いで、エッチング工程により、パターンに応じて基板のエッチングを行い、磁性層48の厚さに相当する深さの穴を形成する。次いで、真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜方法、メッキ法等により、形成した穴に対応した厚さで基板の表面まで磁性材料を成膜する。   Next, in the etching process, the substrate is etched according to the pattern to form a hole having a depth corresponding to the thickness of the magnetic layer 48. Next, a magnetic material is formed on the surface of the substrate with a thickness corresponding to the formed hole by a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, a plating method, or the like.

次いで、フォトレジストをリフトオフ法で除去し、表面を研磨して、ばりがある場合には、これを取り除くとともに、表面を平滑化する。   Next, the photoresist is removed by a lift-off method, and the surface is polished to remove any flash, and the surface is smoothed.

マスターディスク46による磁気転写は、図1に示されるように、スレーブディスク40の片面にマスターディスク46を密着させて片面に逐次転写を行う場合と、スレーブディスク40の両面にそれぞれマスターディスク46、46を密着させて両面で同時転写を行う場合とがある。なお、マスターディスク46には、スレーブディスク40と密着させる前に、付着した塵埃を除去するクリーニング処理が必要に応じて施される。   As shown in FIG. 1, the magnetic transfer by the master disk 46 includes a case where the master disk 46 is brought into close contact with one side of the slave disk 40 and sequential transfer is performed on one side, and a case where the master disks 46 and 46 are respectively applied to both sides of the slave disk 40. May be used for simultaneous transfer on both sides. The master disk 46 is subjected to a cleaning process to remove the adhering dust as needed before being brought into close contact with the slave disk 40.

転写用磁界を印加する磁界生成手段30は、密着手段に保持されたスレーブディスク40及びマスターディスク46の半径方向に延びるギャップ31を有するコア32にコイル33が巻き付けられた電磁石装置34、34が上下両側に配設されてなり、上下で同じ方向にトラック方向と平行な磁力線G(図2、図3参照)を有する転写用磁界を印加できるようになっている。   The magnetic field generating means 30 for applying the transfer magnetic field includes electromagnet devices 34 and 34 each having a coil 33 wound around a core 32 having a gap 31 extending in the radial direction of the slave disk 40 and the master disk 46 held by the contact means. A transfer magnetic field is provided on both sides, and has a magnetic force line G (see FIGS. 2 and 3) parallel to the track direction in the same direction in the vertical direction.

磁界印加時には、スレーブディスク40及びマスターディスク46を一体に回転させつつ磁界生成手段30によって転写用磁界を印加し、マスターディスク46の転写情報をスレーブディスク40のスレーブ面に磁気的に転写記録できるように回転手段が設けられている。なお、この構成以外に、磁界生成手段30を回転移動させるように設ける構成も採用できる。   When a magnetic field is applied, a transfer magnetic field is applied by the magnetic field generating means 30 while rotating the slave disk 40 and the master disk 46 together so that the transfer information of the master disk 46 can be magnetically transferred and recorded on the slave surface of the slave disk 40. The rotating means is provided. In addition to this configuration, a configuration in which the magnetic field generation unit 30 is provided to be rotationally moved can be employed.

転写用磁界は、最適転写磁界強度範囲(スレーブディスク40の保磁力Hcの0.6〜1.3倍)の最大値を越える磁界強度がトラック方向のいずれにも存在せず、最適転写磁界強度範囲内の磁界強度となる部分が1つのトラック方向で少なくとも1カ所以上存在し、これと逆向きのトラック方向の磁界強度がいずれのトラック方向位置においても最適転写磁界強度範囲の最小値未満である磁界強度分布の磁界をトラック方向の一部分で発生させている。   The transfer magnetic field does not have any magnetic field strength exceeding the maximum value in the optimum transfer magnetic field strength range (0.6 to 1.3 times the coercive force Hc of the slave disk 40) in any of the track directions. There are at least one portion having a magnetic field strength within the range in one track direction, and the magnetic field strength in the opposite track direction is less than the minimum value of the optimum transfer magnetic field strength range at any track position. A magnetic field having a magnetic field strength distribution is generated in a part of the track direction.

磁界生成手段30は、図1の構成と異なり、スレーブディスク40の片側にのみ配設するように構成してもよい。また、磁界生成手段30の他の構成として、以下に各種の構成(1〜3)が列挙できる。   Unlike the configuration of FIG. 1, the magnetic field generation unit 30 may be configured to be disposed only on one side of the slave disk 40. In addition, as other configurations of the magnetic field generating unit 30, various configurations (1 to 3) can be listed below.

1)磁界生成手段30(ギャップ31の長さ)をスレーブディスク40の半径と略同一長さとし、磁界生成手段30の印加磁界強度をスレーブディスク40の内周側から外周側に向って増加させる構成。   1) Configuration in which the magnetic field generating means 30 (the length of the gap 31) is substantially the same as the radius of the slave disk 40, and the applied magnetic field strength of the magnetic field generating means 30 is increased from the inner peripheral side to the outer peripheral side of the slave disk 40. .

このように、磁界生成手段30の印加磁界強度をスレーブディスク40の内周側から外周側に向って増加させれば、スレーブディスク40の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   In this way, if the applied magnetic field strength of the magnetic field generating means 30 is increased from the inner circumference side to the outer circumference side of the slave disk 40, the change in the relative magnetic field strength with respect to the medium coercive force on the substantially entire surface of the slave disk 40. There are few, and uniform magnetic transfer can be performed on substantially the entire surface.

2)磁界生成手段30(ギャップ31の長さ)をスレーブディスク40の半径より短い長さとし、磁界生成手段30をスレーブディスク40の半径方向に移動させながら、磁界生成手段30の印加磁界強度をスレーブディスク40の内周側から外周側に向って増加させる構成。   2) The magnetic field generating means 30 (the length of the gap 31) is shorter than the radius of the slave disk 40, and the applied magnetic field strength of the magnetic field generating means 30 is set to the slave while moving the magnetic field generating means 30 in the radial direction of the slave disk 40. A configuration in which the disk 40 is increased from the inner peripheral side toward the outer peripheral side.

このように、磁界生成手段30をスレーブディスク40の半径方向に移動させながら、印加磁界強度をスレーブディスク40の内周側から外周側に向って増加させれば、スレーブディスク40の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   In this way, if the applied magnetic field strength is increased from the inner circumference side to the outer circumference side of the slave disk 40 while moving the magnetic field generating means 30 in the radial direction of the slave disk 40, the medium is almost entirely on the slave disk 40. There is little change in the magnetic field strength relative to the coercive force, and uniform magnetic transfer can be performed on substantially the entire surface.

3)磁界生成手段30(ギャップ31の長さ)をスレーブディスク40の半径より短い長さとし、磁界生成手段30をスレーブディスク40の半径方向に移動させるとともに、磁界生成手段30とスレーブディスク40との相対回転速度をスレーブディスク40の内周側から外周側に向って減少させる構成。   3) The magnetic field generating means 30 (the length of the gap 31) is made shorter than the radius of the slave disk 40, and the magnetic field generating means 30 is moved in the radial direction of the slave disk 40, and the magnetic field generating means 30 and the slave disk 40 A configuration in which the relative rotational speed is decreased from the inner circumference side to the outer circumference side of the slave disk 40.

このように、磁界生成手段30をスレーブディスク40の半径方向に移動させるとともに、磁界生成手段30とスレーブディスク40との相対回転速度(相対回転数)を内周側から外周側に向って減少させれば、スレーブディスク40の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   In this way, the magnetic field generating means 30 is moved in the radial direction of the slave disk 40, and the relative rotational speed (relative rotational speed) between the magnetic field generating means 30 and the slave disk 40 is decreased from the inner circumference side toward the outer circumference side. Thus, there is little change in the magnetic field intensity relative to the coercive force of the medium on the substantially entire surface of the slave disk 40, and uniform magnetic transfer can be performed on the substantially entire surface.

更に他の構成として、図4(a)〜(c)に示されるような転写用磁界を生成する電磁石装置又は永久磁石装置を、スレーブディスク40の両側又は片側に配設してもよい。   As another configuration, an electromagnet device or a permanent magnet device that generates a transfer magnetic field as shown in FIGS. 4A to 4C may be arranged on both sides or one side of the slave disk 40.

図4(a)の磁界生成手段22は、スレーブディスク40の半径方向に延びる1つの電磁石90(又は永久磁石)のスレーブ面と平行な両側部が反対磁極に構成され、トラック方向に磁界を生成する。   The magnetic field generation means 22 in FIG. 4A is configured such that both sides parallel to the slave surface of one electromagnet 90 (or permanent magnet) extending in the radial direction of the slave disk 40 are configured as opposite magnetic poles, and generates a magnetic field in the track direction. To do.

図4(b)の磁界生成手段24は、所定間隔でスレーブディスク40の半径方向に延びる2つの平行電磁石92、93(又は永久磁石)のスレーブ面に向かう端面が反対磁極に構成され、トラック方向に磁界を生成する。   In the magnetic field generating means 24 in FIG. 4B, the end faces of the two parallel electromagnets 92 and 93 (or permanent magnets) extending in the radial direction of the slave disk 40 at predetermined intervals are configured as opposite magnetic poles, and the track direction To generate a magnetic field.

図4(c)の磁界生成手段26は、断面U字状で半径方向に延びる永久磁石94(又は電磁石)のスレーブ面に向かう2つの平行端面が反対磁極に構成され、トラック方向に磁界を生成する。   The magnetic field generating means 26 in FIG. 4C is configured such that two parallel end faces toward the slave surface of a permanent magnet 94 (or electromagnet) extending in the radial direction with a U-shaped cross section are configured as opposite magnetic poles, and generate a magnetic field in the track direction. To do.

次に、上記のように構成された磁気転写装置10による磁気転写方法について説明する。   Next, a magnetic transfer method using the magnetic transfer apparatus 10 configured as described above will be described.

先ず、磁気転写の基本態様を示す既述の図3において、(a)に示されるように、スレーブディスク40に初期磁界Hiをトラック方向の一方向に印加して予め初期磁化(直流消磁)を行う。この初期磁化は、スレーブディスク40の保磁力Hc以上の磁界強度部分をトラック方向位置で少なくとも1カ所以上有する磁界、好ましくは、スレーブディスク40の保磁力Hc以上の磁界強度部分をトラック方向位置で一方向のみで有しており、逆方向の磁界強度はいずれのトラック方向位置でのスレーブディスク40の保磁力未満である磁界強度分布の磁界を使用する。この磁界を、トラック方向の一部分で発生させ、スレーブディスク40又は磁界をトラック方向に回転させることにより、全トラックの初期磁化(直流消磁)を行う。   First, in FIG. 3 described above showing the basic mode of magnetic transfer, as shown in FIG. 3A, an initial magnetic field Hi is applied to the slave disk 40 in one direction in the track direction to perform initial magnetization (DC demagnetization) in advance. Do. This initial magnetization is a magnetic field having at least one magnetic field strength portion of the slave disk 40 that is equal to or greater than the coercive force Hc in the track direction position. A magnetic field having a magnetic field strength distribution that is only in the direction and whose magnetic field strength in the reverse direction is less than the coercive force of the slave disk 40 at any track position is used. This magnetic field is generated in a part in the track direction, and the slave disk 40 or the magnetic field is rotated in the track direction, whereby initial magnetization (DC demagnetization) of all tracks is performed.

図3(a)の初期磁化に次いで、図3(b)に示されるように、このスレーブディスク40のスレーブ面(磁気記録面)とマスターディスク46の基板47の微細凹凸パターンに磁性層48が被覆されてなる情報担持面とを密着させ、スレーブディスク40のトラック方向に初期磁界Hiとは逆方向に転写用磁界Hdを印加して磁気転写を行う。   After the initial magnetization of FIG. 3A, as shown in FIG. 3B, the magnetic layer 48 is formed on the fine uneven pattern of the slave surface (magnetic recording surface) of the slave disk 40 and the substrate 47 of the master disk 46. The coated information carrying surface is brought into close contact, and a magnetic field for transfer Hd is applied in the direction opposite to the initial magnetic field Hi in the track direction of the slave disk 40 to perform magnetic transfer.

その結果、図3(c)に示されるように、スレーブディスク40のスレーブ面(トラック)にはマスターディスク46の情報担持面の磁性層48の密着凸部と凹部空間との形成パターンに応じた磁化パターンが転写記録される。   As a result, as shown in FIG. 3C, the slave surface (track) of the slave disk 40 corresponds to the formation pattern of the close-contact convexity and the concave space of the magnetic layer 48 on the information carrying surface of the master disk 46. A magnetization pattern is transferred and recorded.

なお、マスターディスク46の基板47の凹凸パターンが、図3のポジパターンと逆の凹凸形状のネガパターンの場合であっても、初期磁界Hiの方向及び転写用磁界Hdの方向をこれと逆方向にすることによって、同様の磁化パターンが転写記録できる。   Even if the concave / convex pattern of the substrate 47 of the master disk 46 is a negative pattern having a concave / convex shape opposite to the positive pattern of FIG. 3, the direction of the initial magnetic field Hi and the direction of the transfer magnetic field Hd are opposite to this. By doing so, the same magnetization pattern can be transferred and recorded.

この磁気転写を行う際に重要なことは、印加する磁界強度が、スレーブディスク40の略全面において最大磁界強度×0.7〜最大磁界強度の範囲になるように制御することである。このようにすれば磁気転写の際に印加する媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   What is important when performing this magnetic transfer is to control the applied magnetic field intensity to be in the range of maximum magnetic field intensity × 0.7 to maximum magnetic field intensity on substantially the entire surface of the slave disk 40. In this way, there is little change in the magnetic field strength relative to the medium coercive force applied during magnetic transfer, and uniform magnetic transfer can be performed over substantially the entire surface.

また、重要なことは、保磁力が印加する磁界の印加時間に依存するスレーブディスク40の場合に、保磁力が、スレーブディスク40の略全面において最大保磁力×0.7〜最大保磁力の範囲になるように磁界を印加することである。このようにすれば、磁気転写の際に印加する媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   What is important is that, in the case of the slave disk 40 that depends on the application time of the magnetic field to which the coercive force is applied, the coercive force is in the range of maximum coercive force × 0.7 to maximum coercive force on substantially the entire surface of the slave disk 40. Is to apply a magnetic field. In this way, there is little change in the magnetic field strength relative to the medium coercive force applied during magnetic transfer, and uniform magnetic transfer can be performed over substantially the entire surface.

また、磁気転写を行う際に、スレーブディスク40と磁界生成手段30との相対移動速度の速度変動を±15%以内に制御することが好ましい。このように制御すれば、磁気転写の際に印加する媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   Further, when performing magnetic transfer, it is preferable to control the speed fluctuation of the relative moving speed between the slave disk 40 and the magnetic field generating means 30 within ± 15%. By controlling in this way, there is little change in the magnetic field strength relative to the medium coercive force applied during magnetic transfer, and uniform magnetic transfer can be performed on substantially the entire surface.

また、スレーブディスク40の円周方向に磁界を印加する回数を、スレーブディスク40の面内の各部分において同一回数とすることが好ましい。このようにすれば、スレーブディスク40の略全面において媒体保磁力に対する相対的な磁界強度の変化が少なく、略全面において均一な磁気転写が行える。   Further, it is preferable that the number of times of applying the magnetic field in the circumferential direction of the slave disk 40 is the same number in each portion in the plane of the slave disk 40. In this way, there is little change in the magnetic field strength relative to the medium coercive force on substantially the entire surface of the slave disk 40, and uniform magnetic transfer can be performed on the substantially entire surface.

また、スレーブディスク40の円周方向に磁界を印加する回数を、スレーブディスク40の面内の各部分において一回とすることが好ましい。このようにすれば、スレーブディスク40の略全面において媒体磁化の変化が少なく、略全面において均一な磁気転写が行える。   Further, it is preferable that the number of times of applying the magnetic field in the circumferential direction of the slave disk 40 is once in each portion in the plane of the slave disk 40. In this way, there is little change in medium magnetization on the substantially entire surface of the slave disk 40, and uniform magnetic transfer can be performed on the substantially entire surface.

また、スレーブディスク40の円周方向に磁界を印加する回数の、スレーブディスク40の面内において同一回数とならない部分を円周方向の角度で1度未満とすることが好ましい。このようにすれば、スレーブディスク40の略全面において媒体磁化の変化が少なく、略全面において均一な磁気転写が行える。   Further, it is preferable that the portion of the number of times of applying the magnetic field in the circumferential direction of the slave disk 40 that is not the same number in the plane of the slave disk 40 is less than 1 degree in the circumferential direction. In this way, there is little change in medium magnetization on the substantially entire surface of the slave disk 40, and uniform magnetic transfer can be performed on the substantially entire surface.

このような磁気転写によれば、印加する媒体保磁力に対する相対的な磁界強度や媒体磁化の変化が少なく、略全面において均一な磁気転写を行うので、転写されたスレーブディスク40の再生信号のC/N比は良好になる。   According to such magnetic transfer, there is little change in the magnetic field strength and medium magnetization relative to the applied medium coercive force, and uniform magnetic transfer is performed on almost the entire surface. Therefore, C of the reproduction signal of the transferred slave disk 40 The / N ratio becomes good.

このスレーブディスク40は、磁気記録装置(ハードディスクドライブ)に組み込んで好適に使用できる。これに使用されるハードディスクドライブとしては、各ドライブメーカーより販売されている公知の各種装置を使用すればよい。
以上、本発明に係る磁気転写方法及び装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各種の態様が採り得る。
The slave disk 40 can be suitably used by being incorporated in a magnetic recording device (hard disk drive). As the hard disk drive used for this, various known devices sold by each drive manufacturer may be used.
The embodiments of the magnetic transfer method and apparatus according to the present invention have been described above. However, the present invention is not limited to the above embodiments, and various aspects can be adopted.

たとえば、上記実施形態においては、スレーブディスク40(密着したマスターディスク46も)を連続回転させながら、磁界生成手段30によりスレーブディスク40に磁気転写を行っているが、スレーブディスク40及びマスターディスク46への磁界印加を円周方向に1周以上行った後に、磁界強度を所定値まで減少させ、その後にスレーブディスク40及びマスターディスク46の回転を停止させる構成も採用できる。   For example, in the above embodiment, magnetic transfer is performed to the slave disk 40 by the magnetic field generation means 30 while the slave disk 40 (also the closely attached master disk 46) is continuously rotated. It is also possible to adopt a configuration in which the magnetic field strength is reduced to a predetermined value after the magnetic field application of 1 or more in the circumferential direction is performed, and then the rotation of the slave disk 40 and the master disk 46 is stopped.

このように、円周方向に1周分の転写後に、磁界強度を所定値まで漸減させ、しかる後に回転を停止させるのであれば、転写精度が受ける影響は非常に少なくなり、再生信号のC/N比は良好になる。   As described above, if the magnetic field strength is gradually reduced to a predetermined value after one round of transfer in the circumferential direction and then the rotation is stopped, the influence of the transfer accuracy is very small, and the C / The N ratio becomes good.

[磁気転写用マスターディスクの作成]
真空成膜装置を使用して、室温下で1.33×10−5Pa(10−7Torr)まで減圧した後に、アルゴンガスを導入して0.4Pa(3×10−3Torr)とした条件下で、シリコン基板上に厚さ200nmのFeCo膜を形成し、外径95mm(3.5型)の円盤状の磁気転写用マスターディスク46とした。また、このマスターディスク46には、半径35mmから70mmまでの範囲で、放射状ラインパターンを等間隔に150本(2.4°間隔)設けた。このマスターディスク46の保磁力Hcは8kA/m(100Oe)、磁束密度Msは28.9T(23000Gauss)であった。
[スレーブディスクの作製]
スレーブディスク40は、薄膜のガラスハードディスクとした。真空成膜装置を使用して、室温下で1.33×10−5Pa(10−7Torr)まで減圧した後に、アルゴンガスを導入して0.4Pa(3×10−3Torr)とした条件下で、ガラス板を200°Cに加熱し、CoCrPtの膜厚が25nm、磁束密度Msが5.7T(4500Gauss)の磁性層を有する外径95mm(3.5型)のハードディスクを作製した。
[初期磁化(直流消磁)方法]
スレーブディスク40に対し、図5に示されるような電磁石50を片側に配置した装置を使用して、磁界を印加した。ピーク磁界強度がスレーブディスク40の表面において397kA/m(5000Oe)となるように、スレーブディスク40の初期直流磁化を行った。
[実施例1及び比較例1]
(磁気転写方法)
初期直流磁化したスレーブディスク40とマスターディスク46とを密着させ、図6に示されるような永久磁石60を両面に配置した装置を使用して、スレーブディスク40の磁化とは逆の方向に磁界を印加した。このとき、図6中の永久磁石60、60を回転させながらマスターディスク46及びスレーブディスク40に近づけて行き、永久磁石60が最もスレーブディスク40に近づいたときの磁界ピーク強度が238kA/m(3000Oe)となるように印加した。その他の条件は、図7の表に示す。
[Making a master disk for magnetic transfer]
After reducing the pressure to 1.33 × 10 −5 Pa (10 −7 Torr) at room temperature using a vacuum film forming apparatus, argon gas was introduced to obtain 0.4 Pa (3 × 10 −3 Torr). Under the conditions, a FeCo film having a thickness of 200 nm was formed on a silicon substrate to obtain a disk-shaped magnetic transfer master disk 46 having an outer diameter of 95 mm (3.5 type). The master disk 46 was provided with 150 radial line patterns (at intervals of 2.4 °) at regular intervals within a radius of 35 mm to 70 mm. This master disk 46 had a coercive force Hc of 8 kA / m (100 Oe) and a magnetic flux density Ms of 28.9 T (23000 Gauss).
[Production of slave disk]
The slave disk 40 was a thin glass hard disk. After reducing the pressure to 1.33 × 10 −5 Pa (10 −7 Torr) at room temperature using a vacuum film forming apparatus, argon gas was introduced to obtain 0.4 Pa (3 × 10 −3 Torr). Under the conditions, the glass plate was heated to 200 ° C., and a hard disk having an outer diameter of 95 mm (3.5 type) having a magnetic layer with a CoCrPt film thickness of 25 nm and a magnetic flux density Ms of 5.7 T (4500 Gauss) was produced. .
[Initial magnetization (DC demagnetization) method]
A magnetic field was applied to the slave disk 40 using a device in which an electromagnet 50 as shown in FIG. The initial DC magnetization of the slave disk 40 was performed so that the peak magnetic field intensity was 397 kA / m (5000 Oe) on the surface of the slave disk 40.
[Example 1 and Comparative Example 1]
(Magnetic transfer method)
A magnetic disk is applied in a direction opposite to the magnetization of the slave disk 40 by using an apparatus in which the slave disk 40 and the master disk 46 that have been initially DC magnetized are brought into close contact with each other and permanent magnets 60 as shown in FIG. Applied. At this time, the permanent magnets 60, 60 in FIG. 6 are moved closer to the master disk 46 and the slave disk 40 while rotating, and the magnetic field peak intensity when the permanent magnet 60 is closest to the slave disk 40 is 238 kA / m (3000 Oe). ) Was applied. Other conditions are shown in the table of FIG.

図7の表に示されるように、スレーブディスク40(マスターディスク46)の回転数は80rpm(一部では160rpm)とし、回転速度ムラが5〜40%になるように変化させた。すなわち、実施例1において回転速度ムラが5%(実施例1−1)〜30%(実施例1−3)になるように変化させ、比較例1において回転速度ムラが15%(比較例1−3)〜40%(比較例1−1)になるように変化させた。   As shown in the table of FIG. 7, the rotational speed of the slave disk 40 (master disk 46) was 80 rpm (in part, 160 rpm), and the rotational speed unevenness was changed to 5 to 40%. That is, in Example 1, the rotational speed unevenness was changed to 5% (Example 1-1) to 30% (Example 1-3), and in Comparative Example 1, the rotational speed unevenness was 15% (Comparative Example 1). -3) to 40% (Comparative Example 1-1).

また、ピーク磁界強度が印加されている際のスレーブディスク40の回転は、360°を基準とし、一部において変化させた(実施例1−4では3600°、比較例1−3では365°)。
(電磁特性評価)
電磁変換特性測定装置(協同電子製、型番:SS・60)によりスレーブディスク40の転写信号の評価を行った。ヘッドには、ヘッドギャップ0.32μm、トラック幅3.0μmであるインダクティブヘッドを使用した。スレーブディスク40の半径50mmの位置を1周側定し、そのときの最大出力電圧V1MAXと最小出力電圧V1MINとを求めた。各条件におけるV1MAX/V1MINの値を図7の表に示す。
In addition, the rotation of the slave disk 40 when the peak magnetic field strength was applied was changed in part with respect to 360 ° (3600 ° in Example 1-4, 365 ° in Comparative Example 1-3). .
(Electromagnetic characteristic evaluation)
The transfer signal of the slave disk 40 was evaluated using an electromagnetic conversion characteristic measuring device (manufactured by Kyodo Electronics, model number: SS · 60). As the head, an inductive head having a head gap of 0.32 μm and a track width of 3.0 μm was used. The position of the radius 50 mm of the slave disk 40 was determined for one round, and the maximum output voltage V 1MAX and the minimum output voltage V 1MIN at that time were determined. The value of V 1MAX / V 1MIN under each condition is shown in the table of FIG.

図7の表によれば、各実施例のV1MAX/V1MINの値は良好で、最大でも1.32である。これに対し、比較例のV1MAX/V1MINの値は大きく、各実施例の結果より劣っている。
[実施例2及び比較例2]
(実施例2の磁気転写方法)
初期直流磁化したスレーブディスク40とマスターディスク46とを密着させ、図8のグラフに示されるような磁界強度分布を持つ永久磁石60を両面に配置した図6の装置を使用して、スレーブディスク40の磁化とは逆の方向に磁界を印加した。すなわち、永久磁石60により、磁界強度はスレーブディスク40の半径方向位置35mmより半径方向位置70mmまで直線的に増加している。このときの磁界印加条件は、実施例1−2と同一にした。
(比較例2の磁気転写方法)
初期直流磁化したスレーブディスク40とマスターディスク46とを密着させ、図9のグラフに示されるような磁界強度分布を持つ永久磁石70を両面に配置した図6の装置を使用して、スレーブディスク40の磁化とは逆の方向に磁界を印加した。すなわち、永久磁石70により、磁界強度はスレーブディスク40の半径方向位置35mmより半径方向位置70mmまで略均一強度になっている。このときの磁界印加条件は、実施例1−2と同一にした。
(電磁特性評価方法)
電磁変換特性測定装置(協同電子製、型番:SS・60)によりスレーブディスク40の転写信号の評価を行った。ヘッドには、ヘッドギャップ0.32μm、トラック幅乱3.0μmであるインダクティブヘッドを使用した。スレーブディスク40の半径35mmから70mmまでを1mmピッチで測定し、各周の平均値を算出した。これらの最大値をV2MAXとし、最小値をV2MINとし、V2MAX/V2MINを求めた。
According to the table of FIG. 7, the value of V 1MAX / V 1MIN in each example is good and is 1.32 at the maximum. On the other hand, the value of V 1MAX / V 1MIN in the comparative example is large and inferior to the results of the examples.
[Example 2 and Comparative Example 2]
(Magnetic transfer method of Example 2)
Using the apparatus of FIG. 6 in which the slave disk 40 and the master disk 46 that have been initially DC magnetized are brought into close contact with each other and the permanent magnets 60 having a magnetic field intensity distribution as shown in the graph of FIG. A magnetic field was applied in the direction opposite to the magnetization of. That is, the permanent magnet 60 linearly increases the magnetic field strength from the radial position 35 mm of the slave disk 40 to the radial position 70 mm. The magnetic field application conditions at this time were the same as those in Example 1-2.
(Magnetic transfer method of Comparative Example 2)
The slave disk 40 using the apparatus shown in FIG. 6 in which the slave disk 40 and the master disk 46 that have been initially DC magnetized are brought into close contact with each other, and permanent magnets 70 having a magnetic field intensity distribution as shown in the graph of FIG. A magnetic field was applied in the direction opposite to the magnetization of. That is, the permanent magnet 70 makes the magnetic field strength substantially uniform from the radial position 35 mm of the slave disk 40 to the radial position 70 mm. The magnetic field application conditions at this time were the same as those in Example 1-2.
(Electromagnetic property evaluation method)
The transfer signal of the slave disk 40 was evaluated using an electromagnetic conversion characteristic measuring device (manufactured by Kyodo Electronics, model number: SS · 60). As the head, an inductive head having a head gap of 0.32 μm and a track width fluctuation of 3.0 μm was used. The radius 35 mm to 70 mm of the slave disk 40 was measured at 1 mm pitch, and the average value of each circumference was calculated. These maximum values were set to V2MAX , the minimum value was set to V2MIN, and V2MAX / V2MIN was calculated | required.

この値V2MAX/V2MINは、実施例2では、1.13であり、比較例2では、1.50であった。
[実施例3(3−1、3−2)及び比較例3]
(実施例3−1の磁気転写方法)
初期直流磁化したスレーブディスク40とマスターディスク46とを密着させ、図10に示されるような電磁石80を用いて、電磁石80をスレーブディスク40の内側から外側へ移動させながら、スレーブディスク40の磁化とは逆の方向に磁界を印加した。そのときの磁界印加条件は、スレーブディスク40(マスターディスク46)の回転速度を60rpmの一定回転とし、印加磁界強度を、電磁石80が半径35mmの位置にあるときは279kA/m(3500Oe)とし、電磁石80が半径70mmに向かうにつれて漸増させ、電磁石80が半径70mmの位置にあるときには397kA/m(5000Oe)とした。
(実施例3−2の磁気転写方法)
初期直流磁化したスレーブディスク40とマスターディスク46とを密着させ、図10に示されるような電磁石80を用いて、電磁石80をスレーブディスク40の内側から外側へ移動させながら、スレーブディスク40の磁化とは逆の方向に磁界を印加した。そのとき印加磁界強度は297kA/m(3500Oe)の一定強度とし、電磁石を半径35mmから半径70mmに向かって移動させた。このとき、スレーブディスク40の回転速度を、電磁石80が半径35mmの位置にあるときは70rpmとし、そこから電磁石80がスレーブディスク40の外側へ向かうにつれスレーブディスク40の回転速度を漸減させ、電磁石80が半径70mmの位置に来たときにスレーブディスク40の回転速度を35rpmとなるようにした。
(比較例3の磁気転写方法)
初期直流磁化したスレーブディスク40とマスターディスク46とを密着させ、図10に示されるような電磁石80を用いて、電磁石80をスレーブディスク40の内側から外側へ移動させながら、スレーブディスク40の磁化とは逆の方向に磁界を印加した。
This value V 2MAX / V 2MIN was 1.13 in Example 2, and 1.50 in Comparative Example 2.
[Example 3 (3-1, 3-2) and Comparative Example 3]
(Magnetic transfer method of Example 3-1)
The slave disk 40 and the master disk 46 that are initially DC magnetized are brought into close contact with each other, and the electromagnet 80 as shown in FIG. 10 is used to move the electromagnet 80 from the inside to the outside of the slave disk 40, Applied a magnetic field in the opposite direction. The magnetic field application conditions at that time are such that the rotation speed of the slave disk 40 (master disk 46) is a constant rotation of 60 rpm, and the applied magnetic field strength is 279 kA / m (3500 Oe) when the electromagnet 80 is at a radius of 35 mm. The electromagnet 80 was gradually increased toward the radius of 70 mm, and was 397 kA / m (5000 Oe) when the electromagnet 80 was at a radius of 70 mm.
(Magnetic transfer method of Example 3-2)
The slave disk 40 and the master disk 46 that are initially DC magnetized are brought into close contact with each other, and the electromagnet 80 as shown in FIG. 10 is used to move the electromagnet 80 from the inside to the outside of the slave disk 40, Applied a magnetic field in the opposite direction. At that time, the applied magnetic field strength was a constant strength of 297 kA / m (3500 Oe), and the electromagnet was moved from a radius of 35 mm toward a radius of 70 mm. At this time, the rotational speed of the slave disk 40 is set to 70 rpm when the electromagnet 80 is located at a radius of 35 mm. When the disk reaches a position with a radius of 70 mm, the rotational speed of the slave disk 40 is set to 35 rpm.
(Magnetic transfer method of Comparative Example 3)
The slave disk 40 and the master disk 46 that are initially DC magnetized are brought into close contact with each other, and the electromagnet 80 as shown in FIG. 10 is used to move the electromagnet 80 from the inside to the outside of the slave disk 40, Applied a magnetic field in the opposite direction.

そのときの磁界印加条件としては、スレーブディスク40(マスターディスク46)の回転速度を60rpmの一定回転とし、印加磁界強度を238kA/m(3000Oe)の一定強度とした。
(電磁特性評価方法)
電磁変換特性測定装置(協同電子製、型番:SS・60)によりスレーブディスク40の転写信号の評価を行った。ヘッドには、ヘッドギャップ0.32μm、トラック幅乱3.0μmであるインダクティブヘッドを使用した。スレーブディスク40半径35mmから70mmまでを1mmピッチで測定し、各周の平均値を算出した。これらの最大値をV2MAXとし、最小値をV2MINとし、V2MAX/V2MINを求めた。
As magnetic field application conditions at that time, the rotation speed of the slave disk 40 (master disk 46) was a constant rotation of 60 rpm, and the applied magnetic field intensity was a constant intensity of 238 kA / m (3000 Oe).
(Electromagnetic property evaluation method)
The transfer signal of the slave disk 40 was evaluated using an electromagnetic conversion characteristic measuring device (manufactured by Kyodo Electronics, model number: SS · 60). As the head, an inductive head having a head gap of 0.32 μm and a track width fluctuation of 3.0 μm was used. The slave disk 40 was measured with a radius of 35 mm to 70 mm at a pitch of 1 mm, and the average value of each circumference was calculated. These maximum values were set to V2MAX , the minimum value was set to V2MIN, and V2MAX / V2MIN was calculated | required.

この値V2MAX/V2MINは、実施例3−1では、1.05であり、実施例3−2では、1.06であり、比較例3では、1.70であった。 This value V 2MAX / V 2MIN was 1.05 in Example 3-1, 1.06 in Example 3-2, and 1.70 in Comparative Example 3.

本発明に係る磁気転写方法を実施するための磁気転写装置の要部斜視図1 is a perspective view of a main part of a magnetic transfer apparatus for carrying out a magnetic transfer method according to the present invention. 転写用磁界の印加方法を示す平面図Plan view showing how to apply magnetic field for transfer 磁気転写方法の基本工程を示す図Diagram showing basic steps of magnetic transfer method 磁界生成手段の他の構成を示す図The figure which shows the other structure of a magnetic field production | generation means 直流消磁方法の例を示す斜視図Perspective view showing an example of DC demagnetization method 磁気転写方法の例を示す斜視図Perspective view showing an example of a magnetic transfer method 実施例1及び比較例1の結果を示す表Table showing results of Example 1 and Comparative Example 1 印加する磁界強度分布を示すグラフGraph showing magnetic field strength distribution to be applied 印加する磁界強度分布を示すグラフGraph showing magnetic field strength distribution to be applied 磁気転写方法の更に他の例を示す斜視図A perspective view showing still another example of the magnetic transfer method

符号の説明Explanation of symbols

10…磁気転写装置、22、24、26…磁界生成手段、30…磁界生成手段、31…ギャップ、32…コア、33…コイル、34…電磁石装置、40…スレーブディスク(被転写用ディスク)、46…マスターディスク   DESCRIPTION OF SYMBOLS 10 ... Magnetic transfer apparatus 22, 24, 26 ... Magnetic field production | generation means, 30 ... Magnetic field production | generation means, 31 ... Gap, 32 ... Core, 33 ... Coil, 34 ... Electromagnet apparatus, 40 ... Slave disk (disc for transfer), 46 ... Master disk

Claims (11)

初期直流磁化された被転写用磁気記録媒体と磁気パターンを有するマスター媒体とを密着させる密着工程と、
磁界生成手段を設けるとともに、該磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させながら、前記被転写用磁気記録媒体と前記マスター媒体の円周方向に磁界を印加し、媒体各部に対して印加する磁界強度の最大値が前記被転写用磁気記録媒体の略全面において最大磁界強度×0.7〜最大磁界強度の範囲になるようにして前記マスター媒体の磁気パターンを前記被転写用磁気記録媒体に転写させる磁気転写工程と、
を備えることを特徴とする磁気転写方法。
An adhesion step for closely adhering a magnetic recording medium to be transferred, which is initially DC magnetized, and a master medium having a magnetic pattern;
While providing a magnetic field generating means and moving the transferred magnetic recording medium and the master medium in close contact with the magnetic field generating means, the circumferential direction of the transferred magnetic recording medium and the master medium The master is set such that the maximum value of the magnetic field strength applied to each part of the medium is within the range of maximum magnetic field strength × 0.7 to maximum magnetic field strength over substantially the entire surface of the magnetic recording medium for transfer. A magnetic transfer step of transferring a magnetic pattern of the medium to the magnetic recording medium for transfer;
A magnetic transfer method comprising:
保磁力が印加する磁界の印加時間に依存する被転写用磁気記録媒体であって、初期直流磁化された被転写用磁気記録媒体と磁気パターンを有するマスター媒体とを密着させる密着工程と、
磁界生成手段を設けるとともに、該磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させながら、前記被転写用磁気記録媒体と前記マスター媒体の円周方向に磁界を印加し、前記保磁力が、前記被転写用磁気記録媒体の略全面において最大保磁力×0.7〜最大保磁力の範囲になるようにして前記マスター媒体の磁気パターンを前記被転写用磁気記録媒体に転写させる磁気転写工程と、
を備えることを特徴とする磁気転写方法。
A magnetic recording medium to be transferred that depends on the application time of the magnetic field to which the coercive force is applied, and an adhesion step in which the magnetic recording medium to be transferred that is initially DC magnetized and the master medium having a magnetic pattern are closely attached;
While providing a magnetic field generating means and moving the transferred magnetic recording medium and the master medium in close contact with the magnetic field generating means, the circumferential direction of the transferred magnetic recording medium and the master medium The magnetic pattern of the master medium is transferred so that the coercive force is in the range of maximum coercive force × 0.7 to maximum coercive force over substantially the entire surface of the magnetic recording medium to be transferred. A magnetic transfer process for transferring to a magnetic recording medium,
A magnetic transfer method comprising:
前記磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させる相対移動速度の速度変動を±15%以内に制御することを特徴とする請求項1又は2に記載の磁気転写方法。   3. The speed fluctuation of the relative movement speed for relatively moving the magnetic recording medium to be transferred and the master medium in close contact with the magnetic field generating means is controlled within ± 15%. The magnetic transfer method described in 1. 前記磁界生成手段を前記被転写用磁気記録媒体の半径と略同一長さとし、前記磁界生成手段の印加磁界強度を前記被転写用磁気記録媒体の内周側から外周側に向って増加させることを特徴とする請求項1又は2に記載の磁気転写方法。   The magnetic field generating means has substantially the same length as the radius of the magnetic recording medium for transfer, and the applied magnetic field strength of the magnetic field generating means is increased from the inner circumference side to the outer circumference side of the magnetic recording medium for transfer. The magnetic transfer method according to claim 1, wherein the magnetic transfer method is a magnetic transfer method. 前記磁界生成手段を前記磁気記録媒体の半径より短い長さとし、前記磁界生成手段を前記被転写用磁気記録媒体の半径方向に移動させながら、前記磁界生成手段の印加磁界強度を前記被転写用磁気記録媒体の内周側から外周側に向って増加させることを特徴とする請求項1又は2に記載の磁気転写方法。   The magnetic field generating means has a length shorter than the radius of the magnetic recording medium, and the applied magnetic field strength of the magnetic field generating means is set to the magnetic field for transfer while moving the magnetic field generating means in the radial direction of the magnetic recording medium for transfer. The magnetic transfer method according to claim 1, wherein the magnetic transfer method increases from the inner circumference side to the outer circumference side of the recording medium. 前記磁界生成手段を前記磁気記録媒体の半径より短い長さとし、前記磁界生成手段を前記被転写用磁気記録媒体の半径方向に移動させるとともに、前記磁界生成手段と前記被転写用磁気記録媒体及び前記マスター媒体との相対回転速度を前記被転写用磁気記録媒体の内周側から外周側に向って減少させることを特徴とする請求項1又は2に記載の磁気転写方法。   The magnetic field generating means has a length shorter than the radius of the magnetic recording medium, the magnetic field generating means is moved in the radial direction of the magnetic recording medium for transfer, and the magnetic field generating means, the magnetic recording medium for transfer, and the 3. The magnetic transfer method according to claim 1, wherein a relative rotational speed with respect to the master medium is decreased from the inner circumference side to the outer circumference side of the magnetic recording medium for transfer. 前記被転写用磁気記録媒体及び前記マスター媒体の円周方向に磁界を印加する回数を、該被転写用磁気記録媒体の面内の各部分において同一回数とすることを特徴とする請求項1〜6のいずれか1項に記載の磁気転写方法。   The number of times of applying a magnetic field in the circumferential direction of the magnetic recording medium for transfer and the master medium is set to be the same for each portion in the surface of the magnetic recording medium for transfer. 7. The magnetic transfer method according to any one of 6 above. 前記被転写用磁気記録媒体及び前記マスター媒体の円周方向に磁界を印加する回数を、該被転写用磁気記録媒体の面内の各部分において一回とすることを特徴とする請求項1〜7のいずれか1項に記載の磁気転写方法。   The number of times of applying a magnetic field in the circumferential direction of the magnetic recording medium for transfer and the master medium is set to be once for each portion in the plane of the magnetic recording medium for transfer. 8. The magnetic transfer method according to any one of 7 above. 前記被転写用磁気記録媒体及び前記マスター媒体の円周方向に磁界を印加する回数の、該被転写用磁気記録媒体の面内において同一回数とならない部分を円周方向の角度で1度未満とすることを特徴とする請求項1〜6のいずれか1項に記載の磁気転写方法。   The portion of the number of times of applying the magnetic field in the circumferential direction of the magnetic recording medium for transfer and the master medium that does not become the same number in the plane of the magnetic recording medium for transfer is less than 1 degree in the circumferential angle. The magnetic transfer method according to claim 1, wherein the magnetic transfer method is performed. 前記磁界強度を前記磁気転写に必要な強度まで上昇させる磁気転写準備段階の際の、又は、前記磁界強度を前記磁気転写に必要な強度より下降させる磁気転写終了段階の際の前記磁界生成手段と密着状態にある前記被転写用磁気記録媒体及び前記マスター媒体との相対移動速度を、前記磁気転写の際の前記磁界生成手段と密着状態にある前記被転写用磁気記録媒体及び前記マスター媒体との相対移動速度より大きくすることを特徴とする請求項1〜9のいずれか1項に記載の磁気転写方法。   The magnetic field generating means in a magnetic transfer preparation stage for increasing the magnetic field strength to a strength required for the magnetic transfer, or in a magnetic transfer end stage for lowering the magnetic field strength from a strength required for the magnetic transfer; The relative movement speed of the magnetic recording medium to be transferred and the master medium in close contact with each other is determined with respect to the magnetic recording medium to be transferred and the master medium in close contact with the magnetic field generating means in the magnetic transfer. The magnetic transfer method according to claim 1, wherein the magnetic transfer method is higher than a relative moving speed. 初期直流磁化された被転写用磁気記録媒体と磁気パターンを有するマスター媒体とを密着させる密着手段と、
磁界生成手段を設けるとともに、該磁界生成手段に対し密着状態にある前記被転写用磁気記録媒体と前記マスター媒体とを相対移動させながら、前記被転写用磁気記録媒体と前記マスター媒体の円周方向に磁界を印加し、媒体各部に対して印加する磁界強度の最大値が前記被転写用磁気記録媒体の略全面において最大磁界強度×0.7〜最大磁界強度の範囲になるようにして前記マスター媒体の磁気パターンを前記被転写用磁気記録媒体に転写させる磁気転写手段と、
を備えることを特徴とする磁気転写装置。
A close contact means for bringing a magnetic recording medium to be transferred and a master medium having a magnetic pattern into close contact with each other;
While providing a magnetic field generating means and moving the transferred magnetic recording medium and the master medium in close contact with the magnetic field generating means, the circumferential direction of the transferred magnetic recording medium and the master medium The master is set such that the maximum value of the magnetic field strength applied to each part of the medium is within the range of maximum magnetic field strength × 0.7 to maximum magnetic field strength over substantially the entire surface of the magnetic recording medium for transfer. Magnetic transfer means for transferring the magnetic pattern of the medium to the magnetic recording medium for transfer;
A magnetic transfer apparatus comprising:
JP2005190381A 2005-06-29 2005-06-29 Magnetic transfer method and device thereof Pending JP2007012142A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005190381A JP2007012142A (en) 2005-06-29 2005-06-29 Magnetic transfer method and device thereof
US11/476,857 US20070002480A1 (en) 2005-06-29 2006-06-29 DC demagnetization method and apparatus for magnetic recording medium and magnetic transfer method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190381A JP2007012142A (en) 2005-06-29 2005-06-29 Magnetic transfer method and device thereof

Publications (1)

Publication Number Publication Date
JP2007012142A true JP2007012142A (en) 2007-01-18

Family

ID=37750425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190381A Pending JP2007012142A (en) 2005-06-29 2005-06-29 Magnetic transfer method and device thereof

Country Status (1)

Country Link
JP (1) JP2007012142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208211B2 (en) 2009-07-15 2012-06-26 Fuji Electric Co., Ltd. Magnetic transfer device and magnetic transfer method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208211B2 (en) 2009-07-15 2012-06-26 Fuji Electric Co., Ltd. Magnetic transfer device and magnetic transfer method

Similar Documents

Publication Publication Date Title
JP2008065910A (en) Master recording medium, magnetic transfer method, magnetic transfer device, magnetic recording medium produced by same, and magnetic recording and reproducing device
US7593175B2 (en) Magnetic transfer method, magnetic transfer apparatus, magnetic recording medium and magnetic record reproduction system
JP2008257753A (en) Method for magnetic transfer and magnetic recording medium
JP2007012143A (en) Method and device for dc demagnetization of magnetic recording medium, and magnetic transfer method
JP4046480B2 (en) Magnetic transfer method and magnetic transfer apparatus
JP2007012142A (en) Magnetic transfer method and device thereof
US20070002480A1 (en) DC demagnetization method and apparatus for magnetic recording medium and magnetic transfer method and apparatus
KR20030007107A (en) Master carrier for magnetic transfer
JP2004079060A (en) Master carrier for magnetic transfer
JP2007242165A (en) Master medium for perpendicular magnetic transfer, perpendicular magnetic transfer method, perpendicular magnetic recording medium and perpendicular magnetic recorder
US7532420B2 (en) Master disk for magnetic transfer, magnetic recording medium and magnetic recording apparatus
JP3986951B2 (en) Master carrier for magnetic transfer and magnetic transfer method
US7663827B2 (en) Method of initializing perpendicular magnetic recording medium, perpendicular magnetic recording medium and magnetic recording apparatus
JP2008010028A (en) Magnetic transfer method for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording device
US7641822B2 (en) Master information carrier for magnetic transfer and a method for producing the carrier
JP4362730B2 (en) Master recording medium for magnetic transfer and method for manufacturing magnetic recording medium
JP2006114104A (en) Magnetic transfer method, magnetic recording medium and magnetic recording device
JP4089904B2 (en) Method for manufacturing magnetic recording medium
JP2006120266A (en) Magnetic transfer method, magnetic recording medium, and magnetic recording apparatus
JP3964452B2 (en) Master carrier for magnetic transfer
JP2008165884A (en) Magnetic transfer method, master recording medium, perpendicular magnetic recording medium, and magnetic recording and reproducing device
JP2007317333A (en) Master recording medium, magnetic transfer method, magnetic recording medium manufactured thereby and magnetic recording and reproducing device
JP2004241023A (en) Master carriers for magnetic transfer
JP2008165885A (en) Magnetic transfer method, magnetic transfer device, and perpendicular magnetic recording medium
JP2002251724A (en) Method and device for magnetic transfer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602