JP2007011356A - Electrophotographic photoreceptor and electrophotographic imaging apparatus equipped with same - Google Patents

Electrophotographic photoreceptor and electrophotographic imaging apparatus equipped with same Download PDF

Info

Publication number
JP2007011356A
JP2007011356A JP2006177386A JP2006177386A JP2007011356A JP 2007011356 A JP2007011356 A JP 2007011356A JP 2006177386 A JP2006177386 A JP 2006177386A JP 2006177386 A JP2006177386 A JP 2006177386A JP 2007011356 A JP2007011356 A JP 2007011356A
Authority
JP
Japan
Prior art keywords
layer
photosensitive layer
electrophotographic
charge
transport material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006177386A
Other languages
Japanese (ja)
Inventor
Saburo Yokota
横田 三郎
Beon-Jun Kim
金 範俊
Kaname Makino
要 牧野
Hwan-Koo Lee
李 桓求
Seung-Ju Kim
承柱 金
Ji-Young Lee
知英 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2007011356A publication Critical patent/JP2007011356A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0651Heterocyclic compounds containing two or more hetero rings in the same ring system containing four relevant rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0672Dyes containing a methine or polymethine group containing two or more methine or polymethine groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor for a blue-violet light source capable of realizing high resolution using a blue-violet light source as an exposure light source, and an electrophotographic imaging apparatus equipped with the electrophotographic photoreceptor. <P>SOLUTION: In the electrophotographic photoreceptor, a latent image is formed on a photosensitive layer using a blue-violet exposure light source having a wavelength of 380 to 450 nm. The outermost surface of the photosensitive layer includes a charge generating material, a charge transporting material and a binder resin. The light transmittance of the photosensitive layer is 1.0×10<SP>-1</SP>to 1.0×10<SP>-3</SP>% in the light exposure wavelength. The electrophotographic imaging apparatus equipped with the electrophotographic photoreceptor is also provided. High quality images with high resolution can be obtained using the blue-violet exposure light source having a wavelength of 380 to 450 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子写真感光体及びこれを採用した電子写真画像形成装置に係り、より詳細には、青紫色系光源を露光源として利用して高解像度を実現する電子写真感光体とこれを備えた電子写真画像形成装置に関する。   The present invention relates to an electrophotographic photosensitive member and an electrophotographic image forming apparatus employing the same, and more specifically, an electrophotographic photosensitive member that realizes high resolution by using a blue-violet light source as an exposure source and the same. The present invention relates to an electrophotographic image forming apparatus.

電子写真画像形成装置の露光用光源として多く利用されている半導体レーザーは、当初よりAlGaAs/GaAs系の800nm近辺の近赤外領域に発振波長を持つものであった。従来の大部分の電子写真感光体が感度を持つ可視光波長域ではない、このような長波長域の半導体レーザーが選択された理由は、短波長域で安定的に発振する半導体レーザーを得られなかったためである。このために、レーザープリンタ用の電子写真感光体は、複写機用のそれとは異なる独自の発展をなすようになった。すなわち、従来の無機界電子写真感光体の変わりに、長波長域に感度を持つ有機化合物を電荷発生層に利用した複層型電子写真感光体が中心的な役割を担当するようになった。このように、電子写真画像形成装置において、露光用光源と電子写真感光体とは常に密接な関係を持って発展してきた。   A semiconductor laser that is widely used as an exposure light source for an electrophotographic image forming apparatus has an oscillation wavelength in the near infrared region near 800 nm of AlGaAs / GaAs system from the beginning. The reason why such a long wavelength semiconductor laser was selected, which is not in the visible light wavelength region where most conventional electrophotographic photosensitive members are sensitive, is to obtain a semiconductor laser that stably oscillates in the short wavelength region. It was because there was not. For this reason, electrophotographic photosensitive members for laser printers have developed a unique development different from that for copying machines. That is, instead of the conventional inorganic field electrophotographic photosensitive member, a multilayer electrophotographic photosensitive member using an organic compound having sensitivity in a long wavelength region as a charge generation layer has come to play a central role. As described above, in the electrophotographic image forming apparatus, the light source for exposure and the electrophotographic photosensitive member have always been developed with a close relationship.

近年、電子写真画像形成装置の出力画像の画質を向上させるために高解像度化が加速的に進行しつつある。このような目的のための装置上の対応の一環として、光学的な面での接近は比較的容易である。すなわち、露光ビームのスポット直径を小さくして書き込み密度を高めれば解像度は向上する。しかし、露光源として多く利用される近赤外域に発振波長を持つ半導体レーザーでは、光学系の操作でビーム直径を小さくしても鮮明なスポット輪郭を得難いということが明らかになった。これは、レーザー光の回折限界に起因する回避できない現象である。これを改善するためには、光源の波長を短くすることが有効である。なぜなら、スポット直径Dの下限はレーザー光の波長λに正比例する関数であって、次の数式で表示されるためである。   In recent years, in order to improve the image quality of an output image of an electrophotographic image forming apparatus, higher resolution is being accelerated. As part of the response on the device for such purposes, access in the optical plane is relatively easy. That is, if the spot diameter of the exposure beam is reduced to increase the writing density, the resolution is improved. However, it has been clarified that a semiconductor laser having an oscillation wavelength in the near infrared region, which is often used as an exposure source, cannot obtain a clear spot contour even if the beam diameter is reduced by operating the optical system. This is a phenomenon that cannot be avoided due to the diffraction limit of laser light. In order to improve this, it is effective to shorten the wavelength of the light source. This is because the lower limit of the spot diameter D is a function that is directly proportional to the wavelength λ of the laser light and is expressed by the following equation.

D=1.22λ/NA
ここで、NAはレンズ開口数を表す。
D = 1.22λ / NA
Here, NA represents the lens numerical aperture.

一方、発振波長の短い発光ダイオード(LED)及び半導体レーザーの開発は順調に進展して既に1990年代の初めから650nm近辺に発振波長を持つ赤色半導体レーザーが実用化されている。また、1991年には、450nmで発光するZnSe系レーザーが発表されたが、短寿命の問題点があって実用化には到達できなかった。しかし、1993年のGaN系の実用的な青色LEDが開発され、1995年には約410nmで発光する長寿命のGaN系青紫色半導体レーザーが開発された。これらは、現在、青色表示装置や高密度光ディスク用の重要な光源として実用化されている。   On the other hand, the development of light emitting diodes (LEDs) and semiconductor lasers with a short oscillation wavelength has progressed smoothly, and a red semiconductor laser having an oscillation wavelength around 650 nm has already been put into practical use since the beginning of the 1990s. In 1991, a ZnSe laser emitting at 450 nm was announced, but due to the short life, it could not be put to practical use. However, a practical GaN-based blue LED was developed in 1993, and a long-lived GaN-based blue-violet semiconductor laser that emits light at about 410 nm was developed in 1995. These are currently in practical use as important light sources for blue display devices and high density optical disks.

特許文献1は、このような波長400〜500nmの青色系半導体レーザーを利用する電子写真画像形成装置において、感光層の表面に電荷発生物質を含有する電子写真感光体を利用する技術を開示している。この技術は、電荷輸送層を表面層とする一般的な感光体において、電荷輸送層で青色系レーザー光が吸収されて十分な感度を得られないという問題を解決し、また電荷の電荷輸送層内での移動時に発生する電荷拡散による解像度低下を防止するためのものである。   Patent Document 1 discloses a technique of using an electrophotographic photosensitive member containing a charge generating material on the surface of a photosensitive layer in an electrophotographic image forming apparatus using such a blue semiconductor laser having a wavelength of 400 to 500 nm. Yes. This technology solves the problem that in a general photoreceptor having a charge transport layer as a surface layer, blue laser light is absorbed by the charge transport layer and sufficient sensitivity cannot be obtained. This is to prevent a reduction in resolution due to charge diffusion that occurs during movement within the device.

ところが、表面層に電荷発生物質を持つ感光体としては、電気絶縁性の結着樹脂に分散された電荷発生物質である有機顔料を含む単層型感光体、及び結着樹脂に分散された電荷発生物質を含む薄い電荷発生層を電荷輸送層上に形成した複層型感光体がある。このような構成の感光体では、良好な電子写真特性を得るために電荷発生物質の濃度を高く維持しなければならない。しかし、このように電荷発生物質の濃度を高く維持すれば、コロナ放電などの影響により急速な劣化が生じるか、機械的耐久性が低いなどの問題がある。このような問題を解決するものとして、結着樹脂内に分散された電荷発生物質と電荷輸送物質とを含む単層型感光体、及び結着樹脂内に分散された電荷発生物質と電荷輸送物質とを含む厚い電荷発生層を電荷輸送層上に形成した複層型感光体がある。このような感光体では、表面層に電荷発生物質と共に電荷輸送物質を含有するので、電荷発生物質を比較的低濃度とすることができる。したがって、このような形態の感光体は、コロナ放電の影響を受け難く、また結着樹脂の含有量を高めることができるので機械的耐久性も高くてさらに実用的である。   However, as a photoreceptor having a charge generation material on the surface layer, a single layer type photoreceptor containing an organic pigment which is a charge generation material dispersed in an electrically insulating binder resin, and a charge dispersed in the binder resin are used. There is a multilayer photoreceptor in which a thin charge generation layer containing a generating substance is formed on a charge transport layer. In such a photoconductor, the concentration of the charge generating material must be kept high in order to obtain good electrophotographic characteristics. However, if the concentration of the charge generating material is kept high as described above, there is a problem that rapid deterioration occurs due to the influence of corona discharge or the mechanical durability is low. In order to solve such problems, a single-layer type photoreceptor containing a charge generation material and a charge transport material dispersed in a binder resin, and a charge generation material and a charge transport material dispersed in the binder resin There is a multi-layer type photoreceptor in which a thick charge generation layer containing is formed on a charge transport layer. In such a photoreceptor, since the surface layer contains the charge transport material together with the charge generation material, the charge generation material can be at a relatively low concentration. Therefore, the photoconductor of such a form is not easily affected by corona discharge, and can increase the content of the binder resin, so that it has high mechanical durability and is more practical.

特開平9−240051号公報Japanese Patent Laid-Open No. 9-240051 特開平8−106165号公報JP-A-8-106165

しかし、特許文献1に開示されたように、表面層に電荷発生物質と共に電荷輸送物質を含有する感光層を持つ感光体を、青紫色系光源を利用した電子写真画像形成装置に適用する場合、期待するほどの高解像度を得難いということが明らかになった。これは、このような構成の感光体の場合、表面層内の電荷発生物質濃度が低いために、照射された光がある程度感光層内部まで侵入して散乱及び拡散されることが一つの原因であると考えられる。さらに、このような青紫色系光の領域では、電荷発生物質による光吸収と電荷輸送物質による光吸収との両者が混在しているために、単純に電荷発生物質の濃度だけで光吸収量を制御できないという問題がある。実際、特許文献1の実施例によれば、表面層に電荷輸送物質を含む製造例3の感光体が電荷輸送物質を含んでいない他の2個の感光体より青色光領域で低い感度を表しているということはこのためであると考えられる。また、この技術は、出力画像の解像度と感光層の透光率との関係についていかなる教示も示唆もない。したがって、この技術を利用して青紫色系半導体レーザーを利用する電子写真装置で高解像度を得るために、さらに重要な技術的課題を解決する必要がある。   However, as disclosed in Patent Document 1, when a photoconductor having a photosensitive layer containing a charge transport material together with a charge generating material is applied to an electrophotographic image forming apparatus using a blue-violet light source, It became clear that it was difficult to obtain high resolution as expected. This is because, in the case of a photoconductor having such a configuration, the concentration of charge generation material in the surface layer is low, so that the irradiated light penetrates into the photosensitive layer to some extent and is scattered and diffused. It is believed that there is. Furthermore, in such a blue-violet light region, since both light absorption by the charge generation material and light absorption by the charge transport material are mixed, the amount of light absorption can be simply increased only by the concentration of the charge generation material. There is a problem that it cannot be controlled. In fact, according to the example of Patent Document 1, the photoconductor of Production Example 3 including the charge transport material in the surface layer exhibits lower sensitivity in the blue light region than the other two photoconductors not including the charge transport material. This is considered to be the reason for this. Also, this technique does not teach or suggest any relationship between the resolution of the output image and the light transmittance of the photosensitive layer. Therefore, in order to obtain high resolution in an electrophotographic apparatus using a blue-violet semiconductor laser using this technique, it is necessary to solve a more important technical problem.

一方、特許文献2は、仮干渉光を露光光とする電子写真装置を利用して、干渉縞のない画像を得ることができる単層型電子写真感光体に関する。このために、特許文献2は、導電性基体上に少なくとも電荷発生物質、有機アクセプタ性化合物及び正孔輸送物質を含む単層型電子写真感光体において、前記感光体の使用波長での透光率を10%以下としたことを特徴とする単層型電子写真感光体を開示する。しかし、これは、露光波長が780nmの近赤外線波長を利用するものであって、画像における干渉縞の発生を防止することを目的として電荷発生物質による光吸収を大きくする技術を開示するものであって、青紫色光領域で大きい光吸収を持つアクセプタ性化合物を使用しているために、アクセプタ性化合物による光吸収により有効な光エネルギーが減少して青紫色光領域では十分な感度が得られない。   On the other hand, Patent Document 2 relates to a single-layer electrophotographic photosensitive member that can obtain an image without interference fringes using an electrophotographic apparatus that uses temporary interference light as exposure light. For this reason, Patent Document 2 discloses a transmissivity at a wavelength of use of the photoconductor in a single layer type electrophotographic photoconductor including at least a charge generation material, an organic acceptor compound, and a hole transport material on a conductive substrate. Disclosed is a single layer type electrophotographic photosensitive member characterized in that the content is 10% or less. However, this uses a near-infrared wavelength with an exposure wavelength of 780 nm, and discloses a technique for increasing light absorption by a charge generating material for the purpose of preventing the occurrence of interference fringes in an image. In addition, since an acceptor compound having a large light absorption in the blue-violet light region is used, effective light energy is reduced due to light absorption by the acceptor compound, and sufficient sensitivity cannot be obtained in the blue-violet light region. .

そこで、本発明は、このような問題に鑑みてなされたもので、その目的は、青紫色系光源を露光源として利用して高解像度を実現できる実用的な電子写真感光体を提供することにある。   Accordingly, the present invention has been made in view of such problems, and an object thereof is to provide a practical electrophotographic photoreceptor capable of realizing high resolution by using a blue-violet light source as an exposure source. is there.

また、本発明が解決しようとする他の目的は、前記電子写真感光体を備えた電子写真画像形成装置を提供することにある。   Another object of the present invention is to provide an electrophotographic image forming apparatus provided with the electrophotographic photosensitive member.

上記課題を解決するために、本発明のある観点によれば、導電性支持体及び前記導電性支持体上に形成された感光層を含む電子写真感光体であって、波長380〜450nmの青紫色系露光源を利用して前記感光層上に潜像を形成し、前記感光層の最表面層が電荷発生物質、電荷輸送物質及び結着樹脂を共に含有し、前記露光波長での前記感光層の透光率が1.0×10−1〜1.0×10−3%の範囲内であることを特徴とする電子写真感光体が提供される。 In order to solve the above-described problems, according to one aspect of the present invention, there is provided an electrophotographic photosensitive member including a conductive support and a photosensitive layer formed on the conductive support, wherein the blue photosensitive layer has a wavelength of 380 to 450 nm. A latent image is formed on the photosensitive layer using a violet exposure source, and the outermost surface layer of the photosensitive layer contains a charge generating substance, a charge transporting substance, and a binder resin, and the photosensitive layer at the exposure wavelength is used. An electrophotographic photosensitive member is provided in which the light transmittance of the layer is in the range of 1.0 × 10 −1 to 1.0 × 10 −3 %.

また、上記課題を解決するために、本発明の別の観点によれば、導電性支持体及び前記導電性支持体上に形成された感光層を含む電子写真感光体と、前記電子写真感光体の感光層を帯電させる帯電装置と、レーザー光を利用する露光により前記電子写真感光体の感光層の表面に静電潜像を形成する露光装置と、前記静電潜像を現像する現像装置と、を備えた電子写真画像形成装置であって、前記電子写真感光体は、波長380〜450nmの青紫色系露光源を利用して前記感光層上に潜像を形成し、前記感光層の最表面層は電荷発生物質、電荷輸送物質及び結着樹脂を共に含有し、前記露光波長での前記感光層の透光率は1.0×10−1〜1.0×10−3%の範囲内であることを特徴とする電子写真画像形成装置が提供される。 In order to solve the above-mentioned problems, according to another aspect of the present invention, an electrophotographic photoreceptor including a conductive support and a photosensitive layer formed on the conductive support, and the electrophotographic photoreceptor. A charging device for charging the photosensitive layer, an exposure device for forming an electrostatic latent image on the surface of the photosensitive layer of the electrophotographic photosensitive member by exposure using laser light, and a developing device for developing the electrostatic latent image The electrophotographic photosensitive member forms a latent image on the photosensitive layer using a blue-violet exposure source having a wavelength of 380 to 450 nm, and the electrophotographic photosensitive member forms a latent image on the photosensitive layer. The surface layer contains both a charge generation material, a charge transport material and a binder resin, and the light transmittance of the photosensitive layer at the exposure wavelength is in the range of 1.0 × 10 −1 to 1.0 × 10 −3 %. An electrophotographic image forming apparatus is provided.

本発明の電子写真感光体及び電子写真画像形成装置において、前記感光層は、結着樹脂内に分散または溶解された電荷発生物質と電荷輸送物質とを含む単層型感光層であってもよい。   In the electrophotographic photoreceptor and the electrophotographic image forming apparatus of the present invention, the photosensitive layer may be a single-layer type photosensitive layer including a charge generation material and a charge transport material dispersed or dissolved in a binder resin. .

本発明の電子写真感光体及び電子写真画像形成装置において、前記感光層は、結着樹脂内に分散または溶解された電荷輸送物質を含む電荷輸送層と、前記電荷輸送層上に形成された電荷発生層であって、結着樹脂内に分散または溶解された電荷発生物質と電荷輸送物質とを含む電荷発生層と、を備える複層型感光層であってもよい。   In the electrophotographic photoreceptor and the electrophotographic image forming apparatus of the present invention, the photosensitive layer includes a charge transport layer containing a charge transport material dispersed or dissolved in a binder resin, and a charge formed on the charge transport layer. It may be a multi-layer type photosensitive layer that is a generation layer and includes a charge generation layer containing a charge generation material dispersed or dissolved in a binder resin and a charge transport material.

本発明の電子写真感光体及び電子写真画像形成装置において、前記電荷発生物質はチタニルフタロシアニン系化合物を含み、前記電荷輸送物質はアリールアミン系化合物を含む正孔輸送物質及びナフタレンテトラカルボン酸ジイミド系化合物を含む電子輸送物質を共に含んでいてもよい。   In the electrophotographic photoreceptor and the electrophotographic image forming apparatus of the present invention, the charge generation material includes a titanyl phthalocyanine compound, and the charge transport material includes a hole transport material including an arylamine compound and a naphthalene tetracarboxylic acid diimide compound. And an electron transport material containing

本発明の電子写真画像形成装置は、発振波長が380〜450nmの青紫色系光を光源として利用するために、照射光のスポットの拡散が大幅低下するので高解像度の画像を得るのに有利である。また、このような青紫色系光のレーザー露光源と組み合わせて使われる本発明の電子写真感光体は感光層の光入射面に電荷発生物質を含有するために、感光層の構造面でも高解像度の実現に有利である。また、本発明の電子写真感光体は、前記発振波長の露光源の透光率を特定範囲内に設定することによって、感光体による解像度低下を最小限に抑制しつつ、良好な感光度特性及び機械的特性を達成できるので、特に青紫色系光源用電子写真感光体としてさらに実用的である。   Since the electrophotographic image forming apparatus of the present invention uses blue-violet light having an oscillation wavelength of 380 to 450 nm as a light source, it is advantageous for obtaining a high resolution image because the diffusion of the spot of irradiated light is greatly reduced. is there. In addition, since the electrophotographic photosensitive member of the present invention used in combination with such a blue-violet laser exposure source contains a charge generating substance on the light incident surface of the photosensitive layer, the structure of the photosensitive layer has a high resolution. It is advantageous for realization. In addition, the electrophotographic photosensitive member of the present invention has good photosensitivity characteristics while suppressing a decrease in resolution due to the photosensitive member by setting the transmissivity of the exposure source having the oscillation wavelength within a specific range. Since mechanical characteristics can be achieved, it is particularly practical as an electrophotographic photoreceptor for a blue-violet light source.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の一実施形態による単層型電子写真感光体の概略的な断面図を示す。図1を参照すれば、導電性支持体1上に、結着樹脂内に分散された電荷発生物質と電荷輸送物質とを含む単層型感光層2が形成されている。前記単層型感光層2の厚さは通常約5〜50μm、望ましくは10〜40μmでありうる。単層型感光層2の厚さが5μm未満ならば、帯電能及び感度が足りないという問題点があり、50μmを超過すれば残留電位が増加するか、応答速度が低下するという問題点がある。   FIG. 1 is a schematic cross-sectional view of a single layer type electrophotographic photoreceptor according to an embodiment of the present invention. Referring to FIG. 1, a single-layer photosensitive layer 2 including a charge generation material and a charge transport material dispersed in a binder resin is formed on a conductive support 1. The thickness of the single-layer type photosensitive layer 2 is usually about 5 to 50 μm, preferably 10 to 40 μm. If the thickness of the single-layer type photosensitive layer 2 is less than 5 μm, there is a problem that charging ability and sensitivity are insufficient, and if it exceeds 50 μm, there is a problem that the residual potential increases or the response speed decreases. .

図2は、本発明の他の実施形態による複層型電子写真感光体の概略的な断面図を示す。図2を参照すれば、導電性支持体1上に結着樹脂内に分散された電荷輸送物質を含む電荷輸送層3、及び結着樹脂内に分散された電荷発生物質と電荷輸送物質とを含む電荷発生層4が順次積層された複層型感光層5が形成されている。   FIG. 2 is a schematic cross-sectional view of a multilayer electrophotographic photosensitive member according to another embodiment of the present invention. Referring to FIG. 2, a charge transport layer 3 including a charge transport material dispersed in a binder resin on a conductive support 1, and a charge generation material and a charge transport material dispersed in the binder resin are provided. A multi-layer type photosensitive layer 5 in which the charge generation layer 4 including the layers is sequentially laminated is formed.

前記電荷発生層4の厚さは、望ましくは1〜20μm、さらに望ましくは2〜10μmである。電荷発生層4の厚さが1μm未満ならば感光度及び機械的耐久性が不十分であり、20μmを超過すれば電荷輸送層3とこの電荷発生層4とを合わせた感光層5の総厚さが過度に厚くなって電子写真特性が低下する傾向がある。   The thickness of the charge generation layer 4 is preferably 1 to 20 μm, more preferably 2 to 10 μm. If the thickness of the charge generation layer 4 is less than 1 μm, the photosensitivity and mechanical durability are insufficient, and if it exceeds 20 μm, the total thickness of the photosensitive layer 5 including the charge transport layer 3 and the charge generation layer 4 is combined. The thickness tends to be excessively thick and the electrophotographic characteristics tend to deteriorate.

前記電荷輸送層3の厚さは、望ましくは2〜100μm、さらに望ましくは5〜50μm、もっとも望ましくは10〜40μmである。電荷輸送層3の厚さが2μm未満ならば、その厚さが薄すぎて電荷輸送層3を設けた効果が不十分であり、100μmを超過すれば、印刷画像の品質が低下する傾向がある。   The thickness of the charge transport layer 3 is desirably 2 to 100 μm, more desirably 5 to 50 μm, and most desirably 10 to 40 μm. If the thickness of the charge transport layer 3 is less than 2 μm, the thickness is too thin and the effect of providing the charge transport layer 3 is insufficient, and if it exceeds 100 μm, the quality of the printed image tends to deteriorate. .

このような感光層2、5以外に必要に応じて伝導層、中間層、表面保護層などの機能層がさらに形成されうる。   In addition to the photosensitive layers 2 and 5, functional layers such as a conductive layer, an intermediate layer, and a surface protective layer may be further formed as necessary.

本発明の電子写真感光体に利用する導電性支持体は、導電性のある材料ならばその種類に特に制限されず、金属、導電性ポリマーなどからなるプレート、ディスク、シート、ベルト、ドラムなどを挙げることができる。前記金属としては、アルミニウム、バナジウム、ニッケル、銅、亜鉛、パラジウム、インジウム、スズ、白金、ステンレススチールまたはクロムなどを挙げることができる。前記ポリマーとしては、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、及びこれらの混合物、前記樹脂の製造に使われたモノマーなどの共重合体などに導電性カーボン、酸化スズ、酸化インジウムなどの導電性物質を分散させたものを挙げることができる。金属シートまたは金属を蒸着するか、またはラミネートした有機ポリマーシートなども使われうる。   The conductive support used in the electrophotographic photosensitive member of the present invention is not particularly limited as long as it is a conductive material, and includes a plate, a disk, a sheet, a belt, a drum, or the like made of metal, a conductive polymer, or the like. Can be mentioned. Examples of the metal include aluminum, vanadium, nickel, copper, zinc, palladium, indium, tin, platinum, stainless steel, and chromium. Examples of the polymer include polyester resin, polycarbonate resin, polyamide resin, polyimide resin, and mixtures thereof, and copolymers such as monomers used in the manufacture of the resin, conductive carbon, tin oxide, indium oxide, and the like. The thing which disperse | distributed the active substance can be mentioned. A metal sheet or an organic polymer sheet on which a metal is deposited or laminated may also be used.

前記感光層に利用される電荷発生物質は、光源として利用する青紫色系光に感度を持つ材料ならばいずれも使われうる。例えば、アゾ系顔料、キノン系顔料、ペリレン系顔料、インジゴ系顔料、チオインジゴ系顔料、ビスベンゾイミダゾール系顔料、フタロシアニン系顔料、キナクリドン系顔料、キノリン系顔料、レーキ系顔料、アゾレーキ系顔料、アントラキノン系顔料、オキサジン系顔料、ジオキサジン系顔料、トリフェニルメタン系顔料、アズレニウム染料、スクアリリウム系染料、ピリリウム系染料、トリアリルメタン系染料、キサンテン系染料、チアジン系染料、シアニン系染料、ぺリノン系化合物、ポリシクロキノン化合物、ピロロピロール化合物またはナフタロシアニン化合物等の各種有機顔料または有機染料や、またアモルファスシリコン、アモルファスセレン、テルル、セレン−テルル合金、硫化カドミウム、硫化アンチモン、酸化亜鉛、硫化亜鉛などの無機材料を挙げられる。   As the charge generation material used for the photosensitive layer, any material having sensitivity to blue-violet light used as a light source can be used. For example, azo pigments, quinone pigments, perylene pigments, indigo pigments, thioindigo pigments, bisbenzimidazole pigments, phthalocyanine pigments, quinacridone pigments, quinoline pigments, lake pigments, azo lake pigments, anthraquinone pigments Pigment, oxazine pigment, dioxazine pigment, triphenylmethane pigment, azurenium dye, squarylium dye, pyrylium dye, triallylmethane dye, xanthene dye, thiazine dye, cyanine dye, perinone compound, Various organic pigments or organic dyes such as polycycloquinone compounds, pyrrolopyrrole compounds or naphthalocyanine compounds, amorphous silicon, amorphous selenium, tellurium, selenium-tellurium alloys, cadmium sulfide, antimony sulfide, zinc oxide, sulfur Include an inorganic material such as zinc.

本発明の電子写真感光体において、電荷発生物質は前記したものを単独で利用できるが、2種以上の電荷発生物質を混合して利用してもよい。   In the electrophotographic photosensitive member of the present invention, the above-mentioned charge generating materials can be used alone, but two or more kinds of charge generating materials may be mixed and used.

本発明の電子写真感光体において、電荷輸送物質は正孔輸送物質及び/または電子輸送物質を利用することができる。   In the electrophotographic photoreceptor of the present invention, a hole transport material and / or an electron transport material can be used as the charge transport material.

感光層に使用可能な正孔輸送物質は、低分子化合物としては、例えば、ピレン系、カルバゾール系、ヒドラゾン系、オキサゾール系、オキサジアゾール系、ピラゾリン系、アリールアミン系、アリールメタン系、ベンジジン系、チアゾール系、スチルベン系、ブタジエン系などの化合物を含む。また、感光層に使用可能な正孔輸送物質は、高分子化合物としては、例えば、ポリ−N−ビニルカルバゾール、ハロゲン化ポリ−N−ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリビニルアクリジン、ピレン−ホルムアルデヒド樹脂、エチルカルバゾール−ホルムアルデヒド樹脂、トリフェニルメタンポリマー、ポリシランなどを含む。   The hole transport material that can be used in the photosensitive layer includes, for example, pyrene-based, carbazole-based, hydrazone-based, oxazole-based, oxadiazole-based, pyrazoline-based, arylamine-based, arylmethane-based, and benzidine-based compounds. , Thiazole-based, stilbene-based, and butadiene-based compounds. Examples of the hole transport material that can be used in the photosensitive layer include polymer compounds such as poly-N-vinylcarbazole, halogenated poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, and pyrene-formaldehyde. Resin, ethylcarbazole-formaldehyde resin, triphenylmethane polymer, polysilane and the like.

電子輸送物質は、例えば、ベンゾキノン系、テトラシアノエチレン系、テトラシアノキノジメタン系、フルオレノン系、キサントン系、フェナントラキノン系、無水フタル酸系、ジフェノキノン系、スチルベンキノン系、ナフタレン系、チオピラン系などの電子吸引性低分子化合物を含む。しかし、これらに限定されるものではなく、n型半導体特性を持つ電子輸送性の高分子化合物や顔料なども使われうる。前記n型半導体特性を持つ電子輸送性の高分子化合物としては、主鎖や側鎖として上記電子吸引性の低分子化合物の構造を有する高分子がある。また、有機顔料としては、ペリレン顔料、アンタンスロン顔料、ペリノン顔料、ビスアゾ顔料等があり、無機顔料としては、酸化チタン、酸化亜鉛、硫化カドミウム等がある。   Examples of electron transport materials include benzoquinone, tetracyanoethylene, tetracyanoquinodimethane, fluorenone, xanthone, phenanthraquinone, phthalic anhydride, diphenoquinone, stilbenequinone, naphthalene, thiopyran. Includes electron-withdrawing low molecular weight compounds such as systems. However, the present invention is not limited to these, and an electron transporting polymer compound or pigment having n-type semiconductor characteristics may also be used. Examples of the electron transporting polymer compound having n-type semiconductor characteristics include a polymer having the structure of the above-described electron-withdrawing low-molecular compound as a main chain or a side chain. Examples of organic pigments include perylene pigments, anthanthrone pigments, perinone pigments, bisazo pigments, and inorganic pigments include titanium oxide, zinc oxide, and cadmium sulfide.

本発明の電子写真感光体において、電荷輸送物質は前記のものを単独で利用できるが、2種以上の電荷輸送物質を混合して利用してもよい。   In the electrophotographic photoreceptor of the present invention, the above-mentioned charge transport materials can be used alone, but two or more kinds of charge transport materials may be mixed and used.

本発明の電子写真感光体において、結着樹脂としては電気絶縁性のフィルムを形成できるポリマーが望ましい。このようなポリマーは、例えば、ポリカーボネート、ポリエステル、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリビニルアセテート、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリルポリマー、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコン樹脂、シリコン−アルキド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキド樹脂、ポリ−N−ビニルカルバゾール、ポリビニルブチラル、ポリビニルホルマル、ポリスルホン、カゼイン、ゼラチン、ポリビニルアルコール、エチルセルロース、フェノール樹脂、ポリアミド、カルボキシメチルセルロース、塩化ビニリデン系ポリマーラテックス、ポリウレタンなどを含むが、これらに限定されるものではない。このような結着樹脂は、単独または2種以上混合して使われうる。   In the electrophotographic photosensitive member of the present invention, the binder resin is preferably a polymer capable of forming an electrically insulating film. Such polymers include, for example, polycarbonate, polyester, methacrylic resin, acrylic resin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile polymer, vinyl chloride-vinyl acetate. Polymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N-vinylcarbazole, polyvinyl butyral, polyvinyl formal, polysulfone, Casein, gelatin, polyvinyl alcohol, ethyl cellulose, phenol resin, polyamide, carboxymethyl cellulose, vinylidene chloride polymer latex, polyurethane, etc. Anatta, but it is not limited thereto. Such binder resins may be used alone or in combination of two or more.

前記結着樹脂のうち、本発明者らは、結着樹脂としては、ポリカーボネート樹脂、その中でもビスフェノールAから誘導されたポリカーボネート−AまたはメチルビスフェノルAから誘導されたポリカーボネート−Cよりシクロヘキシリデンビスフェノールから誘導されたポリカーボネート−Zを利用することが、この樹脂の高いガラス転移温度及び高い耐摩耗性を利用できて望ましいということを見つけた。   Among the binder resins, the present inventors have used, as the binder resin, cyclohexylidene as a polycarbonate resin, among them, polycarbonate-A derived from bisphenol A or polycarbonate-C derived from methylbisphenol A. It has been found that utilizing polycarbonate-Z derived from bisphenol is desirable due to the high glass transition temperature and high wear resistance of this resin.

また、このような結着樹脂と共に、加工性、耐環境性や有害な光に対する安定性などを向上させる目的で、分散安定剤、可塑剤、表面改質剤、酸化防止剤、光劣化防止剤などの添加剤が使われうる。   In addition to such binder resins, dispersion stabilizers, plasticizers, surface modifiers, antioxidants, photodegradation inhibitors for the purpose of improving processability, environmental resistance, and stability against harmful light. Additives such as can be used.

可塑剤としては、例えば、ビフェニル、塩化ビフェニル、テルフェニル、ジブチルフタレート、ジエチレングリコールフタレート、ジオクチルフタレート、トリフェニルリン酸、メチルナフタレン、ベンゾフェノン、塩素化パラフィン、ポリプロピレン、ポリスチレン、各種フッ素炭化水素などを挙げられる。   Examples of the plasticizer include biphenyl, biphenyl chloride, terphenyl, dibutyl phthalate, diethylene glycol phthalate, dioctyl phthalate, triphenyl phosphate, methyl naphthalene, benzophenone, chlorinated paraffin, polypropylene, polystyrene, various fluorine hydrocarbons, and the like. .

表面改質剤としては、例えば、シリコンオイル、フッ素樹脂などを挙げられる。   Examples of the surface modifier include silicon oil and fluororesin.

前記酸化防止剤はこれらに限定されるものではないが、ヒンダードフェノール系、硫黄系、ホスホン酸エステル系化合物、亜リン酸エステル系化合物、アミン系化合物などの公知の酸化防止剤を含む。前記光安定剤は、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、ヒンダードアミン系化合物などの公知の光安定剤を含む。   Although the said antioxidant is not limited to these, It contains well-known antioxidants, such as a hindered phenol type, a sulfur type, a phosphonic acid ester type compound, a phosphite type compound, an amine type compound. The light stabilizer includes known light stabilizers such as benzotriazole compounds, benzophenone compounds, hindered amine compounds, and the like.

感光層は、浸漬コーティング法、リングコーティング法、ロールコーティング法、スプレイコーティング法などを利用して形成できる。単層型感光体の場合には結着樹脂、電荷発生物質、正孔輸送物質及び/または電子輸送物質を有機溶剤内に分散または溶解させた単層型感光層形成用組成物を導電性支持体上にコーティングし、約40〜200℃で約0.1〜約5時間乾燥して単層型感光層を形成する。複層型感光体の場合には、まず導電性支持体上に結着樹脂、正孔輸送物質及び/または電子輸送物質を有機溶剤内に分散または溶解させた電荷輸送層形成用組成物を導電性支持体上にコーティングし、約40〜200℃で約0.1〜5時間乾燥すれば電荷輸送層を形成することができる。次いで、電荷発生物質、正孔輸送物質及び/または電子輸送物質、及び結着樹脂を有機溶剤内に分散または溶解させた電荷発生層形成用組成物を電荷輸送層上に塗布し、約40〜200℃で約0.1〜5時間乾燥して電荷発生層を形成することができる。   The photosensitive layer can be formed using a dip coating method, a ring coating method, a roll coating method, a spray coating method, or the like. In the case of a single-layer type photoreceptor, a conductive support is provided for the composition for forming a single-layer type photosensitive layer in which a binder resin, a charge generating material, a hole transport material and / or an electron transport material are dispersed or dissolved in an organic solvent. It is coated on the body and dried at about 40 to 200 ° C. for about 0.1 to about 5 hours to form a single layer type photosensitive layer. In the case of a multi-layer type photoreceptor, first, a charge transport layer forming composition in which a binder resin, a hole transport material and / or an electron transport material is dispersed or dissolved in an organic solvent on a conductive support is electrically conductive. A charge transport layer can be formed by coating on a conductive support and drying at about 40 to 200 ° C. for about 0.1 to 5 hours. Next, a charge generation layer forming composition in which a charge generation material, a hole transport material and / or an electron transport material, and a binder resin are dispersed or dissolved in an organic solvent is applied onto the charge transport layer, and about 40 to The charge generation layer can be formed by drying at 200 ° C. for about 0.1 to 5 hours.

前記した電荷発生物質、正孔輸送物質、電子輸送物質及び結着樹脂の含有量は特別に制限されず、前記露光波長での感光層の透光率が1.0×10−1〜1.0×10−3%になる範囲内で選択されうる。 The contents of the charge generating material, hole transporting material, electron transporting material and binder resin are not particularly limited, and the light transmittance of the photosensitive layer at the exposure wavelength is 1.0 × 10 −1 to 1. It can be selected within a range of 0 × 10 −3 %.

前記有機溶剤は、結着樹脂の種類によって異なるので最適のものを選択して利用することが望ましい。このような有機溶剤としては、例えば、メタノール、エタノール、n−プロパノールなどのアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;テトラヒドロフラン、ジオキサン、メチルセロソルブなどのエーテル類;メチルアセテート、エチルアセテートなどのエステル類;ジメチルスルホキシド、スルホランなどのスルホキシドまたはスルホン類;塩化メチレン、クロロホルム、四塩化炭素、トリクロロエタンなどの脂肪族ハロゲン化炭化水素;ベンゼン、トルエン、キシレン、モノクロロベンゼン、ジクロロベンゼンなどの芳香族類などを含む。   Since the organic solvent varies depending on the type of the binder resin, it is desirable to select and use the optimum one. Examples of such organic solvents include alcohols such as methanol, ethanol, and n-propanol; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Ethers such as tetrahydrofuran, dioxane and methyl cellosolve; esters such as methyl acetate and ethyl acetate; sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane; aliphatic halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride and trichloroethane And aromatics such as benzene, toluene, xylene, monochlorobenzene and dichlorobenzene.

前記露光波長での前記感光層の透光率は、1.0×10−1〜1.0×10−3%の範囲内になるように調整される必要がある。透光率が1.0×10−1%より大きければ照射光が感光層の深部に到達する比率が増加するために、エネルギー散乱による潜像の解像度低下が発生しうるので望ましくない。また、透光率が1.0×10−3%より小さな場合には、電荷輸送物質による吸収が大きい場合と電荷発生物質の吸収が大きい場合とがあるが、電荷輸送物質による吸収が大きければ電荷発生物質による吸収比率が低下するために、感光度が小さくなるという問題がある。また、電荷発生物質による吸収が大きい場合には、暗伝導性の増加による帯電性の低下及び安定性の劣化が起きて望ましくない。このような透光率を実現するためには、電荷発生物質の濃度を適正化すると同時に電荷輸送物質として380〜450nmの範囲の波長での吸光度が小さな材料を選択する必要がある。 The light transmittance of the photosensitive layer at the exposure wavelength needs to be adjusted to be in the range of 1.0 × 10 −1 to 1.0 × 10 −3 %. If the light transmittance is larger than 1.0 × 10 −1 %, the ratio of the irradiated light reaching the deep part of the photosensitive layer increases, so that the resolution of the latent image may be reduced due to energy scattering, which is not desirable. Further, when the transmissivity is smaller than 1.0 × 10 −3 %, there are cases where the absorption by the charge transport material is large and the absorption by the charge generation material is large, but if the absorption by the charge transport material is large There is a problem that the photosensitivity decreases because the absorption ratio by the charge generation material decreases. On the other hand, when the absorption by the charge generating material is large, the charging property is lowered and the stability is deteriorated due to the increase in dark conductivity, which is not desirable. In order to realize such light transmittance, it is necessary to optimize the concentration of the charge generation material and simultaneously select a material having a small absorbance at a wavelength in the range of 380 to 450 nm as the charge transport material.

本発明の電子写真画像形成装置は、通常の帯電、露光、現像、転写、及び定着のプロセスを持つものであり、380〜450nmの範囲内の発振波長を持つ露光光源を利用する。このような光源としては、GaN系の半導体レーザーや発光ダイオードを挙げられる。   The electrophotographic image forming apparatus of the present invention has normal charging, exposure, development, transfer, and fixing processes, and uses an exposure light source having an oscillation wavelength in the range of 380 to 450 nm. Examples of such light sources include GaN-based semiconductor lasers and light-emitting diodes.

本発明の電子写真画像形成装置では、発振波長が380〜450nmの青紫色系光を光源として利用するために、照射光のスポットの拡散は、従来の光源に比べて、理論上2分の1程度まで低減するので非常に高解像度の画像を得ることができる。これに組み合わせて使用する電子写真感光体は、感光層の光入射面に電荷発生物質を含有するために、層配列構造面でも超高解像度の実現に有利である。レーザーを露光用光源とする電子写真画像形成装置に利用されてきた従来の複層型電子写真感光体では、電荷発生層が支持体側にあるために、光照射により発生した電荷は上層の電荷輸送層の内部をドリフト移動して表面に到達して、帯電電荷を中和させて潜像を形成するために、電荷移動に伴う拡散が必然的に生じて解像度の低下は回避できない。また、照射光が電荷輸送層を透過して電荷発生層に到達するまで屈折、散乱などの影響に広がる傾向がある。一方、本発明の電子写真感光体は、感光層の光入射面に電荷発生物質と電荷輸送物質とを含有するために、電荷は感光層の表面近辺で発生し、また発生した電荷は、電子写真感光体の表面に帯電した反対極性の電荷を瞬間的に中和するために電荷移動の距離による損失がなく、記録情報がそのままの形態に確実に潜像に反映されうる。   Since the electrophotographic image forming apparatus of the present invention uses blue-violet light having an oscillation wavelength of 380 to 450 nm as the light source, the diffusion of the spot of the irradiated light is theoretically half that of the conventional light source. Since it is reduced to the extent, a very high resolution image can be obtained. The electrophotographic photosensitive member used in combination with this is advantageous for realizing ultrahigh resolution even in terms of the layer arrangement structure because it contains a charge generating substance on the light incident surface of the photosensitive layer. In a conventional multilayer electrophotographic photosensitive member that has been used in an electrophotographic image forming apparatus using a laser as a light source for exposure, since the charge generation layer is on the support side, the charge generated by light irradiation is transported to the upper layer. Since the inside of the layer drifts and reaches the surface to neutralize the charged charges and form a latent image, diffusion due to charge movement inevitably occurs and a reduction in resolution cannot be avoided. In addition, the irradiation light tends to spread to the influence of refraction and scattering until it reaches the charge generation layer through the charge transport layer. On the other hand, since the electrophotographic photoreceptor of the present invention contains a charge generating material and a charge transport material on the light incident surface of the photosensitive layer, charges are generated near the surface of the photosensitive layer, and the generated charges are electrons. Since the charge of the opposite polarity charged on the surface of the photographic photoconductor is instantaneously neutralized, there is no loss due to the distance of charge transfer, and the recorded information can be reflected in the latent image as it is.

本発明の感光体は、使われる光源の透光率を特定範囲内に設定することによって感光体による解像度低下を最小限に抑制しつつ、良好な感光度特性及び機械的特性を達成することによって青紫色系光源用電子写真感光体としてさらに実用的である。   The photoconductor of the present invention achieves good photosensitivity characteristics and mechanical characteristics while minimizing resolution degradation by the photoconductor by setting the light transmittance of the light source used within a specific range. It is further practical as an electrophotographic photoreceptor for a blue-violet light source.

以下、実施例によって本発明をさらに具体的に説明するが、これは例示のためのものであって本発明の範囲はこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, this is for illustrative purposes and the scope of the present invention is not limited thereto.

(実施例1)
α型チタニルフタロシアニン2質量部とポリカーボネートZ樹脂(帝人化成(株)製、PANLITE TS−2020)2質量部をクロロベンゼン46質量部と混合した後、この混合物をサンドミルで1時間粉砕して微細に分散させて分散液を調製した。
Example 1
2 parts by mass of α-type titanyl phthalocyanine and 2 parts by mass of polycarbonate Z resin (manufactured by Teijin Kasei Co., Ltd., PANLITE TS-2020) were mixed with 46 parts by mass of chlorobenzene, and then the mixture was finely dispersed by grinding with a sand mill for 1 hour. To prepare a dispersion.

次いで、正孔輸送物質として下記式(1)を満たす化合物(1)のアリールアミン系化合物35質量部及び電子輸送物質として下記式(2)を満たす化合物(2)のナフタレンテトラカルボン酸ジイミド系化合物15質量部、及びポリカーボネートZ樹脂50質量部をクロロホルム300質量部に溶解させて溶液を調製した。   Next, 35 parts by mass of an arylamine compound of the compound (1) satisfying the following formula (1) as a hole transport material and a naphthalenetetracarboxylic acid diimide compound of the compound (2) satisfying the following formula (2) as an electron transport material 15 parts by mass and 50 parts by mass of polycarbonate Z resin were dissolved in 300 parts by mass of chloroform to prepare a solution.

Figure 2007011356
Figure 2007011356

Figure 2007011356
Figure 2007011356

前記分散液と溶液とを1:8の割合で混合してホモジナイザーで均一になるまで分散させて感光層塗布液を得た。この塗布液を直径30mmのアルミニウム製ドラム上に、リング塗布法で塗布した後、乾燥して厚さ約15μmの単層型電子写真感光体ドラムを得た。この感光体の感光層を剥離して紫外可視吸収スペクトロメーターを利用して405nmでの透光率を測定した。この透光率は7.5×10−2%であった。 The dispersion and the solution were mixed at a ratio of 1: 8 and dispersed with a homogenizer until uniform, to obtain a photosensitive layer coating solution. This coating solution was applied on an aluminum drum having a diameter of 30 mm by a ring coating method and then dried to obtain a single-layer electrophotographic photosensitive drum having a thickness of about 15 μm. The photosensitive layer of this photoreceptor was peeled off, and the light transmittance at 405 nm was measured using an ultraviolet-visible absorption spectrometer. This light transmittance was 7.5 × 10 −2 %.

(実施例2)
実施例1において、前記分散液と溶液との比率を1:4とした以外には、実施例1で説明した方法と同じ方法によって感光体ドラムを製造した。この感光体の405nmでの透光率は5.5×10−3%であった。
(Example 2)
In Example 1, a photosensitive drum was manufactured by the same method as described in Example 1 except that the ratio of the dispersion to the solution was 1: 4. The light transmittance of this photoreceptor at 405 nm was 5.5 × 10 −3 %.

(実施例3)
正孔輸送物質として、前記化合物(1)のアリールアミン系化合物40質量部及びポリカーボネートZ樹脂60質量部をクロロホルム300質量部に溶解させて電荷輸送層形成用溶液を製造した。この溶液を直径30mmのアルミニウム製ドラム上に、リング塗布法で塗布した後に乾燥して厚さ約8μmの電荷輸送層を形成した。
(Example 3)
As the hole transport material, 40 parts by mass of the arylamine compound of the compound (1) and 60 parts by mass of the polycarbonate Z resin were dissolved in 300 parts by mass of chloroform to prepare a charge transport layer forming solution. This solution was applied on an aluminum drum having a diameter of 30 mm by a ring coating method and then dried to form a charge transport layer having a thickness of about 8 μm.

次いで、前記実施例1で使用した分散液と溶液とを1:2の割合で混合して電荷発生層形成用分散液を調剤した。次いで、前記電荷輸送層上にこの分散液をリング塗布法で塗布した後、乾燥して厚さ約7μmの電荷発生層を形成した。   Next, the dispersion and solution used in Example 1 were mixed at a ratio of 1: 2 to prepare a dispersion for forming a charge generation layer. Next, the dispersion was applied on the charge transport layer by a ring coating method and then dried to form a charge generation layer having a thickness of about 7 μm.

このようにして得られた複層型電子写真感光体ドラムの405nmでの透光率は8.9×10−2%であった。 The transmissivity at 405 nm of the multi-layer electrophotographic photosensitive drum thus obtained was 8.9 × 10 −2 %.

(比較例1)
電子輸送物質として、前記化合物(2)の化合物の代わりに下記式(3)を満たす化合物(3)のジフェノキノン系化合物を利用した以外には、実施例1で説明した方法と同じ方法によって感光体ドラムを製造した。
(Comparative Example 1)
A photoconductor by the same method as described in Example 1 except that a diphenoquinone compound of the compound (3) satisfying the following formula (3) is used as the electron transport material instead of the compound of the compound (2). A drum was produced.

Figure 2007011356
Figure 2007011356

この感光体の405nmでの透光率は3.2×10−4%であった。 The light transmittance of this photoreceptor at 405 nm was 3.2 × 10 −4 %.

(比較例2)
実施例1において、前記分散液と溶液との比率を1:20とした以外には、実施例1で説明した方法と同じ方法によって感光体ドラムを製造した。この感光体の405nmでの透光率は2.4×10−1%であった。
(Comparative Example 2)
In Example 1, a photosensitive drum was manufactured by the same method as described in Example 1 except that the ratio of the dispersion to the solution was 1:20. The transmittance of this photoreceptor at 405 nm was 2.4 × 10 −1 %.

<画像評価>
実施例及び比較例で製造された感光体ドラムを、市販のレーザープリンタを改造した試験器に装着して画像評価を行った。改造した試験器の仕様は次の通りである。
・(+)コロナ帯電方式、反転現像方式、
・光源として405nmのGaN系半導体レーザーを装着した試作LSU(Laser Scanning Unit)、
・レーザービームスポット直径:約20μm、
・プリント速度:16枚/分、
・解像度:1200dpi(dot per inch)
<Image evaluation>
The photosensitive drums produced in the examples and comparative examples were mounted on a tester obtained by modifying a commercially available laser printer, and image evaluation was performed. The specifications of the modified tester are as follows.
(+) Corona charging method, reversal development method,
Prototype LSU (Laser Scanning Unit) equipped with a 405 nm GaN semiconductor laser as the light source,
・ Laser beam spot diameter: about 20 μm
・ Print speed: 16 sheets / minute,
・ Resolution: 1200 dpi (dot per inch)

前記条件で1ドットによる白黒の細線及び網点画像を印字した後、顕微鏡により画像を拡大してドットの再現性を評価した。また、一辺10mmの正方形のソリッド画像の濃度(ID)をGretag Macbeth社製の濃度計RD−900を使用し測定した。   After printing a black and white fine line and halftone dot image with one dot under the above conditions, the image was enlarged with a microscope to evaluate dot reproducibility. The density (ID) of a square solid image having a side of 10 mm was measured using a densitometer RD-900 manufactured by Gretag Macbeth.

表1は、上記実験の結果をまとめたものである。   Table 1 summarizes the results of the above experiments.

Figure 2007011356
Figure 2007011356

表1から分かるように、本発明による実施例1〜3の感光体が、優れた画像特性を表したことに対して、比較例1及び2の感光体は十分な特性を表すことができなかった。透光率の測定値から分かるように、実施例1、2の場合と比較する時、電子輸送材料の構造の異なる特開平9−240051号公報の実施例に該当する比較例1の感光体は、露光波長での透光率が顕著に小さかった。また、この光吸収の大部分が電子輸送物質によることであるために、青紫色系露光波長で高解像度の高品質画像を得るのに不十分であった。比較例1でドットの欠落は中間調電位の増加によることと考えられ、電子輸送物質による光吸収比率の増大により電荷発生効率が低下したことを示唆している。また、透光率が本発明で提示された透光率より大きい比較例2の感光体の場合、画像濃度が低いだけでなく解像度の低下も観察されて本発明が目的とする感光体としては特性が不十分であるということが分かる。   As can be seen from Table 1, the photoreceptors of Examples 1 to 3 according to the present invention exhibited excellent image characteristics, whereas the photoreceptors of Comparative Examples 1 and 2 could not exhibit sufficient characteristics. It was. As can be seen from the measured values of light transmittance, the photoconductor of Comparative Example 1 corresponding to the example of Japanese Patent Laid-Open No. 9-240051 having a different structure of the electron transport material when compared with Examples 1 and 2 is as follows. The transmittance at the exposure wavelength was remarkably small. In addition, since most of the light absorption is due to the electron transport material, it is insufficient to obtain a high-resolution image with high resolution at the blue-violet exposure wavelength. In Comparative Example 1, it is considered that the lack of dots is due to an increase in halftone potential, suggesting that the charge generation efficiency was reduced due to the increase in the light absorption ratio by the electron transport material. Further, in the case of the photoconductor of Comparative Example 2 in which the light transmittance is higher than the light transmittance presented in the present invention, not only the image density is low but also a decrease in resolution is observed. It can be seen that the characteristics are insufficient.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、電子写真感光体の関連技術分野に好適に用いられる。   The present invention is suitably used in the related technical field of electrophotographic photoreceptors.

本発明の一実施形態による単層型感光層を持つ電子写真感光体の模式的な断面図である。1 is a schematic cross-sectional view of an electrophotographic photosensitive member having a single-layer type photosensitive layer according to an embodiment of the present invention. 本発明の他の実施形態による複層型感光層を持つ電子写真感光体の模式的な断面図である。FIG. 5 is a schematic cross-sectional view of an electrophotographic photosensitive member having a multilayer photosensitive layer according to another embodiment of the present invention.

符号の説明Explanation of symbols

1 導電性支持体
2 感光層
3 電荷輸送層
4 電荷発生層
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Photosensitive layer 3 Charge transport layer 4 Charge generation layer

Claims (8)

導電性支持体及び前記導電性支持体上に形成された感光層を含む電子写真感光体であって、
波長380〜450nmの青紫色系露光源を利用して前記感光層上に潜像を形成し、前記感光層の最表面層が電荷発生物質、電荷輸送物質及び結着樹脂を共に含有し、前記露光波長での前記感光層の透光率が1.0×10−1〜1.0×10−3%の範囲内であることを特徴とする、電子写真感光体。
An electrophotographic photoreceptor comprising a conductive support and a photosensitive layer formed on the conductive support,
A latent image is formed on the photosensitive layer using a blue-violet exposure source having a wavelength of 380 to 450 nm, and the outermost surface layer of the photosensitive layer contains both a charge generating substance, a charge transporting substance, and a binder resin, An electrophotographic photoreceptor, wherein the light transmittance of the photosensitive layer at an exposure wavelength is in the range of 1.0 × 10 −1 to 1.0 × 10 −3 %.
前記感光層は、結着樹脂内に分散または溶解された電荷発生物質と電荷輸送物質とを含む単層型感光層であることを特徴とする、請求項1に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the photosensitive layer is a single-layer type photosensitive layer containing a charge generation material and a charge transport material dispersed or dissolved in a binder resin. 前記感光層は、
結着樹脂内に分散または溶解された電荷輸送物質を含む電荷輸送層と、
前記電荷輸送層上に形成された電荷発生層であって、結着樹脂内に分散または溶解された電荷発生物質と電荷輸送物質とを含む電荷発生層と、
を備える複層型感光層であることを特徴とする、請求項1に記載の電子写真感光体。
The photosensitive layer is
A charge transport layer comprising a charge transport material dispersed or dissolved in a binder resin;
A charge generation layer formed on the charge transport layer, comprising a charge generation material dispersed or dissolved in a binder resin and a charge transport material; and
The electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is a multilayer type photosensitive layer comprising:
前記電荷発生物質は、チタニルフタロシアニン系化合物を含み、
前記電荷輸送物質は、アリールアミン系化合物を含む正孔輸送物質及びナフタレンテトラカルボン酸ジイミド系化合物を含む電子輸送物質を共に含むことを特徴とする、請求項1に記載の電子写真感光体。
The charge generation material includes a titanyl phthalocyanine compound,
The electrophotographic photosensitive member according to claim 1, wherein the charge transport material includes both a hole transport material including an arylamine compound and an electron transport material including a naphthalenetetracarboxylic acid diimide compound.
導電性支持体及び前記導電性支持体上に形成された感光層を含む電子写真感光体と、
前記電子写真感光体の感光層を帯電させる帯電装置と、
レーザー光を利用する露光により前記電子写真感光体の感光層の表面に静電潜像を形成する露光装置と、
前記静電潜像を現像する現像装置と、
を備えた電子写真画像形成装置であって、
前記電子写真感光体は、
波長380〜450nmの青紫色系露光源を利用して前記感光層上に潜像を形成し、前記感光層の最表面層は電荷発生物質、電荷輸送物質及び結着樹脂を共に含有し、前記露光波長での前記感光層の透光率は1.0×10−1〜1.0×10−3%の範囲内であることを特徴とする、電子写真画像形成装置。
An electrophotographic photoreceptor comprising a conductive support and a photosensitive layer formed on the conductive support; and
A charging device for charging the photosensitive layer of the electrophotographic photoreceptor;
An exposure device that forms an electrostatic latent image on the surface of the photosensitive layer of the electrophotographic photosensitive member by exposure using laser light; and
A developing device for developing the electrostatic latent image;
An electrophotographic image forming apparatus comprising:
The electrophotographic photoreceptor is
A latent image is formed on the photosensitive layer using a blue-violet exposure source having a wavelength of 380 to 450 nm, and the outermost surface layer of the photosensitive layer contains both a charge generation material, a charge transport material and a binder resin, An electrophotographic image forming apparatus, wherein the light transmittance of the photosensitive layer at an exposure wavelength is in the range of 1.0 × 10 −1 to 1.0 × 10 −3 %.
前記感光層は、結着樹脂内に分散または溶解された電荷発生物質と電荷輸送物質とを含む単層型感光層であることを特徴とする、請求項5に記載の電子写真画像形成装置。   6. The electrophotographic image forming apparatus according to claim 5, wherein the photosensitive layer is a single layer type photosensitive layer containing a charge generation material and a charge transport material dispersed or dissolved in a binder resin. 前記感光層は、
結着樹脂内に分散または溶解された電荷輸送物質を含む電荷輸送層と、
前記電荷輸送層上に形成された電荷発生層であって、結着樹脂内に分散または溶解された電荷発生物質と電荷輸送物質とを含む電荷発生層と、
を備える複層型感光層であることを特徴とする、請求項5に記載の電子写真画像形成装置。
The photosensitive layer is
A charge transport layer comprising a charge transport material dispersed or dissolved in a binder resin;
A charge generation layer formed on the charge transport layer, comprising a charge generation material dispersed or dissolved in a binder resin and a charge transport material; and
The electrophotographic image forming apparatus according to claim 5, wherein the electrophotographic image forming apparatus comprises a multilayer type photosensitive layer comprising:
前記電荷発生物質は、チタニルフタロシアニン系化合物を含み、
前記電荷輸送物質はアリールアミン系化合物を含む正孔輸送物質及びナフタレンテトラカルボン酸ジイミド系化合物を含む電子輸送物質を共に含むことを特徴とする、請求項5に記載の電子写真画像形成装置。

The charge generation material includes a titanyl phthalocyanine compound,
The electrophotographic image forming apparatus according to claim 5, wherein the charge transport material includes both a hole transport material including an arylamine compound and an electron transport material including a naphthalenetetracarboxylic acid diimide compound.

JP2006177386A 2005-06-27 2006-06-27 Electrophotographic photoreceptor and electrophotographic imaging apparatus equipped with same Withdrawn JP2007011356A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050055939A KR100708150B1 (en) 2005-06-27 2005-06-27 Electrophotographic photoreceptor for blue-violet exposure light source and electrophotographic imaging apparatus employing the same

Publications (1)

Publication Number Publication Date
JP2007011356A true JP2007011356A (en) 2007-01-18

Family

ID=37567855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177386A Withdrawn JP2007011356A (en) 2005-06-27 2006-06-27 Electrophotographic photoreceptor and electrophotographic imaging apparatus equipped with same

Country Status (4)

Country Link
US (1) US20060292468A1 (en)
JP (1) JP2007011356A (en)
KR (1) KR100708150B1 (en)
CN (1) CN1916773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946707A2 (en) 2007-01-22 2008-07-23 Olympus Medical Systems Corp. Lifting cap
JP2010139554A (en) * 2008-12-09 2010-06-24 Sharp Corp Single-layer type electrophotographic photoreceptor and image forming apparatus provided therewith
WO2018016156A1 (en) * 2016-07-22 2018-01-25 富士電機株式会社 Photosensitive body for electrophotography, method for producing same and electrophotographic apparatus
US11036151B2 (en) 2018-01-19 2021-06-15 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device
US11143976B2 (en) 2018-01-19 2021-10-12 Fuji Electric Co., Ltd. Photoconductor having interlayer for hole injection promotion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101317134A (en) * 2005-12-02 2008-12-03 三菱化学株式会社 Electrophotographic photoreceptor and apparatus for image formation
JP4565019B2 (en) * 2008-06-18 2010-10-20 シャープ株式会社 Single layer type electrophotographic photoreceptor and image forming apparatus having the same
JP2013186260A (en) * 2012-03-07 2013-09-19 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
WO2024096869A1 (en) * 2022-10-31 2024-05-10 Hewlett-Packard Development Company, L.P. Photosensitive members and electrophotographic imaging apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561216A (en) * 1990-11-28 1993-03-12 Ricoh Co Ltd Electrophotographic sensitive body
JPH05232724A (en) * 1992-02-21 1993-09-10 Matsushita Electric Ind Co Ltd Electrophotographic sensitive member
US5660960A (en) * 1994-09-29 1997-08-26 Konica Corporation Image forming apparatus
US5552253A (en) * 1995-03-31 1996-09-03 Xerox Corporation Multiple layer photoreceptor for color xerography
JP3292461B2 (en) * 1998-05-28 2002-06-17 京セラミタ株式会社 Naphthalenetetracarboxylic diimide derivative and electrophotographic photoreceptor
JP4409103B2 (en) 2000-03-24 2010-02-03 株式会社リコー Electrophotographic photoreceptor, electrophotographic method, electrophotographic apparatus, process cartridge for electrophotographic apparatus, long-chain alkyl group-containing bisphenol compound and polymer using the same
JP3960592B2 (en) 2002-04-04 2007-08-15 株式会社リコー Charge transporting polymer particles, electrophotographic photosensitive member using the same, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946707A2 (en) 2007-01-22 2008-07-23 Olympus Medical Systems Corp. Lifting cap
JP2010139554A (en) * 2008-12-09 2010-06-24 Sharp Corp Single-layer type electrophotographic photoreceptor and image forming apparatus provided therewith
WO2018016156A1 (en) * 2016-07-22 2018-01-25 富士電機株式会社 Photosensitive body for electrophotography, method for producing same and electrophotographic apparatus
JPWO2018016156A1 (en) * 2016-07-22 2018-10-25 富士電機株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
US10962893B2 (en) 2016-07-22 2021-03-30 Fuji Electric Co., Ltd. Photosensitive body for electrophotography, method for producing same and electrophotographic apparatus
US11036151B2 (en) 2018-01-19 2021-06-15 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device
US11143976B2 (en) 2018-01-19 2021-10-12 Fuji Electric Co., Ltd. Photoconductor having interlayer for hole injection promotion

Also Published As

Publication number Publication date
US20060292468A1 (en) 2006-12-28
KR100708150B1 (en) 2007-04-17
CN1916773A (en) 2007-02-21
KR20070000303A (en) 2007-01-02

Similar Documents

Publication Publication Date Title
JP2007011356A (en) Electrophotographic photoreceptor and electrophotographic imaging apparatus equipped with same
US6492079B2 (en) Electrophotographic photoconductor, image forming apparatus, and process cartridge using the photoconductor
US6596449B2 (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic image forming apparatus using the electrophotographic photoreceptor
KR20060136273A (en) Electrophotographic photoreceptor for blue-violet exposure light source and electrophotographic imaging apparatus employing the same
JP4565013B2 (en) Image forming apparatus provided with electrophotographic photosensitive member
JP4648909B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
US20100290808A1 (en) Electrophotographic Photoreceptor and Image Formation Apparatus
JPH09240051A (en) Electrophotographic printer
JP2006195476A (en) Electrophotographic photoreceptor, electrophotographic cartridge and electrophotographic imaging apparatus
JP4610637B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP2008151999A (en) Image forming method
JP2007121819A (en) Electrophotographic photoreceptor and image forming apparatus
JP2006276886A (en) Electrophotographic photoreceptor
JP2012027257A (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP2003167364A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP2001201876A (en) Electrophotographic photoreceptor and image-forming method using the same
JP2002091022A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2002268255A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device having photoreceptor
JP4871197B2 (en) Image forming apparatus
JP2003228182A (en) Electrophotographic photoreceptor and image forming apparatus
KR20090084543A (en) Electrophotographic photoreceptor having excellent stability of electrical properties and interlayer adhesion strength and electrophotographic imaging apparatus employing the same
JP2003228183A (en) Electrophotographic photoreceptor and image forming apparatus
JP3577001B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus using the same
JP2016053634A (en) Electrophotographic photoreceptor, manufacturing inspection method of the same and image formation device including electrophotographic photoreceptor
JP2002318457A (en) Electrophotographic photoreceptor and image forming apparatus using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901