JP2007010275A - Geothermal heat pump type air-conditioner - Google Patents

Geothermal heat pump type air-conditioner Download PDF

Info

Publication number
JP2007010275A
JP2007010275A JP2005194106A JP2005194106A JP2007010275A JP 2007010275 A JP2007010275 A JP 2007010275A JP 2005194106 A JP2005194106 A JP 2005194106A JP 2005194106 A JP2005194106 A JP 2005194106A JP 2007010275 A JP2007010275 A JP 2007010275A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
underground
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005194106A
Other languages
Japanese (ja)
Other versions
JP4182961B2 (en
Inventor
Keiichi Kimura
恵一 木村
Matsuo Morita
満津雄 森田
Katsuhiro Urano
勝博 浦野
Nobuo Urata
暢夫 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2005194106A priority Critical patent/JP4182961B2/en
Priority to TW094130410A priority patent/TW200702610A/en
Priority to KR1020050088272A priority patent/KR20070003504A/en
Priority to CNB2005101186070A priority patent/CN100491869C/en
Publication of JP2007010275A publication Critical patent/JP2007010275A/en
Application granted granted Critical
Publication of JP4182961B2 publication Critical patent/JP4182961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat pump type air conditioner for saving energy by reducing load of a hydrothermal heat pump, generating no heat exchange loss owing to high heat exchange efficiency of an underground heat exchanger and for making it easy to process the underground heat exchanger, bore a hole for burying the underground heat exchanger and conduct a burial work. <P>SOLUTION: The geothermal heat pump type air conditioner consists of the underground heat exchanger 7 equipped with a resin supply pipe part 1 through which a heat medium spirally flows downward underground near an earth surface and a return pipe part 2 for returning the heat medium out from the supply pipe part 1 to above the ground, a water coil 8 for conducting heat exchange of air for air supply by flowing the heat medium which is heated and/or cooled by the underground heat exchanger 7 and a water heat source heat pump 9 for conducting heat exchange of a circulation refrigerant by flowing the heat medium and for conducting heat exchange of the air for air supply via the water coil 8 by the circulation refrigerant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は地熱利用ヒートポンプ式空調装置に関するものである。   The present invention relates to a geothermal heat pump air conditioner.

地中はある深さ以下になると年間を通してほぼ一定の温度であるので、その地中熱を利用し空調を行う装置がある。この空調装置は、熱媒を地上から地中の深層部まで下ろしてから反転させて地上へ返すように全体がU字を成す地中熱交換器と、この地中熱交換器にて温調した熱媒を通水させて循環冷媒を熱交換すると共に前記循環冷媒で給気用空気を熱交換する水熱源ヒートポンプの室内機と、を備えている。   When the depth of the underground is below a certain level, the temperature is almost constant throughout the year, so there are devices that use the underground heat to perform air conditioning. This air conditioner has a U-shaped underground heat exchanger, which lowers the heat medium from the ground to the deep part of the ground and then reverses it to return to the ground. And an indoor unit of a water heat source heat pump for exchanging heat with the circulating refrigerant to exchange heat with the circulating refrigerant and for exchanging heat with the circulating air.

特開2001−289533号公報JP 2001-289533 A 特開2003−207174号公報JP 2003-207174 A

上記の空調装置ではボイラーやチラーなどの熱源機を使用しない分、運転コストを安くできるが、ますます厳しくなるエネルギー事情から、さらなる省エネ化が求められている。また、地中熱交換器は耐蝕性、耐久性などの点から樹脂製パイプが用いられている。この地中熱交換器で必要な熱量を得るためには、深層部に向け縦穴を特殊な掘削機械で長時間かけて掘らねばならず、しかも穴の崩れ防止や泥土や湧水などの処理も必要で、非常に手間と時間がかかりコスト高となる問題がある。そのために、一つの穴にU字状地中熱交換器の容量の大きくしたものを埋めたり、一つの穴に複数本を埋めたりすると、地中の狭い範囲で集中して採熱することとなり、例えば冬期では地中から奪う単位体積当りの熱量が多くなって地中温度の回復に長時間かかるため、採熱量が低下し続けて空調運転できなくなったり、凍結防止のために不凍液を使用しなければならないため環境汚染が発生する問題がある。また、U字状地中熱交換器では往路も復路も同じ経路を熱媒が流れるため、例えば冬期では、熱媒が地表へ戻る際、せっかく採熱温調した熱媒が地上近くで放熱して、熱ロスが生じる問題がある。   In the above air conditioner, the operation cost can be reduced by not using a heat source device such as a boiler or a chiller. However, further energy saving is required because of the increasingly severe energy situation. In addition, resin pipes are used for underground heat exchangers in terms of corrosion resistance and durability. In order to obtain the amount of heat necessary for this underground heat exchanger, it is necessary to dig a vertical hole for a long time with a special excavating machine toward the deep layer, and also prevent the collapse of the hole and treatment such as mud and spring water There is a problem that it is necessary and takes a lot of time and labor and is expensive. Therefore, if one hole is filled with a U-shaped underground heat exchanger with a large capacity or multiple holes are buried in one hole, heat will be collected in a narrow area in the ground. For example, in winter, the amount of heat per unit volume taken away from the ground increases and it takes a long time to recover the underground temperature, so the amount of heat collected continues to decline, making it impossible to perform air conditioning operation, or using antifreeze to prevent freezing. Therefore, there is a problem that environmental pollution occurs. In addition, in the U-shaped underground heat exchanger, the heating medium flows through the same path in both the forward and return paths. For example, in the winter season, when the heating medium returns to the ground surface, the heat medium whose temperature has been collected is dissipated near the ground. Thus, there is a problem that heat loss occurs.

本発明は上記課題を解決するため、地中の地表近くで熱媒が渦巻き状に下りながら流れる樹脂製の往路管部とこの往路管部から出た前記熱媒を地上へ戻す復路管部とから成る地中熱交換器と、この地中熱交換器にて温調した前記熱媒を通水させて給気用空気を熱交換する水コイルと、前記熱媒を通水させて循環冷媒を熱交換すると共に前記水コイルを経た給気用空気を前記循環冷媒で熱交換する水熱源ヒートポンプと、を備えたこと、また、地中の地表近くで所定間隔を隔てて対向すると共に熱媒が蛇行状に下りながら流れる一対の樹脂製の往路管部とこの往路管部から出た前記熱媒を地上へ戻す復路管部とから成る地中熱交換器と、この地中熱交換器にて温調した前記熱媒を通水させて給気用空気を熱交換する水コイルと、前記熱媒を通水させて循環冷媒を熱交換すると共に前記水コイルを経た給気用空気を前記循環冷媒で熱交換する水熱源ヒートポンプと、を備えたことを最も主要な特徴とする。   In order to solve the above-mentioned problems, the present invention provides a resin-made forward pipe portion that flows while the heating medium descends in a spiral shape near the ground surface in the ground, and a return pipe portion that returns the heat medium that has come out of the forward pipe portion to the ground. A ground heat exchanger comprising: a water coil for passing water through the heat medium adjusted in temperature in the ground heat exchanger and exchanging heat for supplying air; and circulating refrigerant through the heat medium. And a water heat source heat pump for exchanging heat of the air supplied through the water coil with the circulating refrigerant, and opposed to the ground surface in the ground with a predetermined interval and a heat medium. Is a ground heat exchanger comprising a pair of resin-made forward pipe sections that flow while descending in a meandering manner, and a return pipe section that returns the heat medium that has come out of the forward pipe sections to the ground, and the underground heat exchanger A water coil for exchanging heat of the supply air by passing the heat medium adjusted in temperature, and passing the heat medium Was the most important feature that the air supply air having passed through the water coil and a water source heat pump to heat exchange with the circulating refrigerant with the circulating refrigerant exchange heat.

請求項1の発明によれば、水熱源ヒートポンプ9で給気用空気を設定温度まで冷却又は加熱する前に、給気用空気を前記設定温度に近づけるように水コイル8の熱媒で冷却又は加熱することにより、水熱源ヒートポンプ9の負荷を削減でき、大幅省エネとなる。さらに、冷房負荷が少ない時期では、水コイル8のみで給気用空気を冷却することにより、水熱源ヒートポンプ9の運転が不要となり、省エネとなる。地域により異なるが深度1m位までの地中温度は外気の影響を受けて冬は低く夏は高くなるが、熱媒が採熱(冬期)・放熱(夏期)可能な温度差が地中に対してあるため、地中熱交換器7の往路管部1を細くて長い渦巻き状として地表近くに埋め、熱媒を地熱流に対してカウンターフローで流して、熱交換効率を良くしつつ地中で広範囲に分散して少しずつ熱交換させることにより、熱媒を温度調節するために必要とされる地熱量を得ることができ、かつ地中から奪う単位体積当りの地熱量を少なくできる。そのため、地中温度が回復しやすく、長時間の連続空調運転も可能となり、環境汚染の心配の無い水を熱媒として使用でき、不凍液を使わずに済む。さらに往路管部1は継ぎ目のない1本の管を巻設するだけよいので加工が簡単になり、バネ状に巻設して伸縮性をもたせてあるので免震性に優れ、地震に対する耐久性が十分で、破損による熱媒漏れなどを防止できる。地中熱交換器7の復路管部2は地上に熱媒を戻すだけでよいので短くてよく、地中との再熱交換による熱ロスが皆無で、熱交換効率の向上を図れて熱媒温度が安定する。往路管部1の埋設用穴は地表近くをパワーショベルなどの普通の掘削機械で浅く掘るだけでよく、掘削の時間と費用の削減を図れて施工が容易となる。
請求項2の発明によれば、一巻き毎に地中熱交換器7の往路管部1の径の大きさを変えることで管部同士の熱交換領域の重複部をなくし、地中の広い範囲で満遍なく熱交換させて地中温度の早期回復を図り、かつ熱交換効率を向上させることができる。下方に向かって順次拡径するように巻設した往路管部1では、深くなるにつれて被地中熱量が増えて安定するのに合わせて、往路管部1の径を大きく長くして熱交換量を増やすことにより、熱交換効率を高めることができる。さらに、往路管部1を埋める際、径中央部から土を盛ることにより、往路管部1の形に沿った山形となり、往路管部1の形を崩さずに容易に埋めることができる。下方に向かって順次縮径するように巻設した往路管部1では、その形状に合わせて埋設用穴は擂り鉢状でよいので掘りやすく、一層施工が容易となる。
請求項3の発明によれば、水熱源ヒートポンプ9で給気用空気を設定温度まで冷却又は加熱する前に、給気用空気を前記設定温度に近づけるように水コイル8の熱媒で冷却又は加熱することにより、水熱源ヒートポンプ9の負荷を削減でき、大幅省エネとなる。さらに、冷房負荷が少ない時期では、水コイル8のみで給気用空気を冷却することにより、水熱源ヒートポンプ9の運転が不要となり、省エネとなる。地域により異なるが深度1m位までの地中温度は外気の影響を受けて冬は低く夏は高くなるが、熱媒が採熱(冬期)・放熱(夏期)可能な温度差が地中に対してあるため、地中熱交換器7の往路管部1を細くて長い蛇行状として地表近くに埋め、熱媒を地熱流に対してカウンターフローで流して、熱交換効率を良くしつつ地中で広範囲に分散して少しずつ熱交換させることにより、熱媒を温度調節するために必要とされる地熱量を得ることができ、かつ地中から奪う単位体積当りの地熱量を少なくできる。そのため、地中温度が回復しやすく、長時間の連続空調運転も可能となり、環境汚染の心配の無い水を熱媒として使用でき、不凍液を使わずに済む。さらに往路管部1は蛇行状にして伸縮性をもたせてあるので免震性に優れ、地震に対する耐久性が十分で、破損による熱媒漏れなどを防止できる。地中熱交換器7の復路管部2は地上に熱媒を戻すだけでよいので短くてよく、地中との再熱交換による熱ロスが皆無で、熱交換効率の向上を図れて熱媒温度が安定する。往路管部1の埋設用穴は地表近くをパワーショベルなどの普通の掘削機械で浅く掘るだけでよく、掘削の時間と費用の削減を図れて施工が容易となる。往路管部1、1を対向させて幅を狭くできるので、狭く細長い土地にも容易に埋設することができる。
請求項4の発明によれば、一蛇行毎に地中熱交換器7の往路管部1、1の間隔の広さを変えることで管部同士の熱交換領域の重複部をなくし、地中の広い範囲で満遍なく熱交換させて地中温度の早期回復を図り、かつ熱交換効率を向上させることができる。間隔が下方に向かって順次広がるように配設した往路管部1、1では、往路管部1、1を埋める際、間隔の中央部から土を盛ることにより、往路管部1の形に沿った山形となり、往路管部1の形を崩さずに容易に埋めることができる。間隔が下方に向かって順次狭くなるように配設した往路管部1、1では、その形状に合わせて埋設用穴はV溝状でよいので掘りやすく、一層施工が容易となる。
請求項5の発明によれば、冷房運転時、水熱源ヒートポンプ9の給気側空気熱交換器4に生じる凝縮水で水コイル8を湿潤させて、水コイル8での冷却効果を増大させ、水熱源ヒートポンプ9の負荷を削減でき、省エネとなる。しかも、凝縮水を利用するので給水装置が不要で無駄がない。
請求項6の発明によれば、地中熱交換器7の往路管部1が扁平管なので短径側外面から管中央部の熱媒への伝熱が早く、熱交換効率がさらに良くなる。扁平管なので曲げやすく、往路管部1を渦巻き状や蛇行状に簡単に形成することができる。
請求項7の発明によれば、地中熱交換器7の往路管部1が扁平管で長径側が尖状なので熱媒が乱流となって強制対流により伝熱が促進され、熱交換効率がさらに向上する。
請求項8の発明によれば、地中熱交換器7の往路管部1の外周壁が蛇行状なので伝熱面積が増えかつ内部では熱媒の乱流効果をさらに高めることができ、一層熱交換効率が向上する。
請求項9の発明によれば、水コイル8と空気熱交換器4の圧力損失が減少して熱交換効率が向上するので小型のファンを用いることができ騒音低減を図れる。水コイル8と空気熱交換器4も小型化でき空調装置全体のコンパクト化を図れる。
請求項10の発明によれば、設置スペースや給気個所に応じて自由に給気ファンユニット14の位置を選択設置でき、施工が容易となる。ファン自体で風量調節して、給気ファンユニット14毎に個別に変風量運転でき、制御が容易である。VAVを用いないので圧力損失がなくファンの小型化を図れ低騒音となる。
According to the first aspect of the present invention, before the supply air is cooled or heated to the set temperature by the water heat source heat pump 9, the supply air is cooled by the heat medium of the water coil 8 so as to approach the set temperature. By heating, the load of the water heat source heat pump 9 can be reduced, which greatly saves energy. Further, when the cooling load is low, the air supply air is cooled only by the water coil 8, so that the operation of the water heat source heat pump 9 becomes unnecessary and energy saving is achieved. Although the underground temperature up to about 1m in depth varies depending on the region, the temperature is low in winter and high in summer due to the influence of outside air, but the temperature difference that the heat medium can heat (winter) and dissipate (summer) is different from the underground Therefore, the forward pipe section 1 of the underground heat exchanger 7 is embedded in the vicinity of the ground surface as a thin and long spiral, and the heat medium is caused to flow in a counter flow with respect to the geothermal flow to improve the heat exchange efficiency. In this case, the amount of geothermal heat required for adjusting the temperature of the heat medium can be obtained and the amount of geothermal heat taken from the ground can be reduced. Therefore, it is easy to recover the underground temperature, and long-term continuous air-conditioning operation is possible. Water that does not have to worry about environmental pollution can be used as a heat medium, and it is not necessary to use antifreeze. In addition, the outgoing pipe section 1 can be easily processed by winding only one seamless pipe, and it is wound in a spring shape so that it has elasticity, so it has excellent seismic isolation and durability against earthquakes. Is sufficient to prevent leakage of heat medium due to breakage. The return pipe section 2 of the underground heat exchanger 7 may be short because it only needs to return the heat medium to the ground, there is no heat loss due to reheat exchange with the ground, and the heat exchange efficiency can be improved. The temperature stabilizes. It is only necessary to dig the burial hole in the outgoing pipe section 1 near the ground surface with a normal excavating machine such as a power shovel, and the construction can be facilitated by reducing the excavation time and cost.
According to the invention of claim 2, the overlapping part of the heat exchange area between the pipe parts is eliminated by changing the diameter of the forward pipe part 1 of the underground heat exchanger 7 for every turn, and the underground is wide. It is possible to exchange heat evenly in the range, to achieve an early recovery of the underground temperature, and to improve the heat exchange efficiency. In the forward pipe section 1 wound so as to gradually expand in diameter downward, the heat quantity in the ground increases and stabilizes as the depth increases, so that the diameter of the forward pipe section 1 is increased and the heat exchange amount is increased. By increasing, the heat exchange efficiency can be increased. Further, when the forward pipe portion 1 is filled, soil is piled up from the central portion of the diameter to form a mountain shape along the shape of the forward pipe portion 1 and can be easily filled without breaking the shape of the forward pipe portion 1. In the forward path pipe portion 1 wound so as to be gradually reduced in diameter toward the lower side, the embedding hole may be shaped like a bowl, so that it is easy to dig and construction becomes easier.
According to the third aspect of the present invention, before the supply air is cooled or heated to the set temperature by the water heat source heat pump 9, the supply air is cooled by the heat medium of the water coil 8 so as to approach the set temperature. By heating, the load of the water heat source heat pump 9 can be reduced, which greatly saves energy. Further, when the cooling load is low, the air supply air is cooled only by the water coil 8, so that the operation of the water heat source heat pump 9 becomes unnecessary and energy saving is achieved. Although the underground temperature up to about 1m in depth varies depending on the region, the temperature is low in winter and high in summer due to the influence of outside air, but the temperature difference that the heat medium can heat (winter) and dissipate (summer) is different from the underground Therefore, the forward pipe section 1 of the underground heat exchanger 7 is embedded in the vicinity of the ground surface as a narrow and long meandering shape, and the heat medium is flown in a counter flow with respect to the geothermal flow, improving the heat exchange efficiency and In this case, the amount of geothermal heat required for adjusting the temperature of the heat medium can be obtained and the amount of geothermal heat taken from the ground can be reduced. Therefore, it is easy to recover the underground temperature, and long-term continuous air-conditioning operation is possible. Water that does not have to worry about environmental pollution can be used as a heat medium, and it is not necessary to use antifreeze. Further, since the forward pipe section 1 has a meandering shape and is stretchable, it is excellent in seismic isolation, has sufficient durability against earthquakes, and prevents heat medium leakage due to breakage. The return pipe section 2 of the underground heat exchanger 7 may be short because it only needs to return the heat medium to the ground, there is no heat loss due to reheat exchange with the ground, and the heat exchange efficiency can be improved. The temperature stabilizes. It is only necessary to dig the burial hole in the outgoing pipe section 1 near the ground surface with a normal excavating machine such as a power shovel, and the construction can be facilitated by reducing the excavation time and cost. Since the outward pipe sections 1 and 1 can be made to face each other and the width can be narrowed, it can be easily embedded in narrow and long land.
According to invention of Claim 4, the overlapping part of the heat exchange area | region of pipe parts is eliminated by changing the width | variety of the space | interval of the outward pipe parts 1 and 1 of the underground heat exchanger 7 for every meandering, It is possible to perform heat exchange evenly over a wide range and to recover the underground temperature quickly, and to improve heat exchange efficiency. In the forward pipe sections 1 and 1 that are arranged so that the interval gradually spreads downward, when the forward pipe sections 1 and 1 are filled, soil is piled up from the central portion of the interval, thereby following the shape of the forward pipe section 1. It can be easily filled without breaking the shape of the forward pipe section 1. In the forward pipe sections 1 and 1 that are arranged so that the interval is gradually narrowed downward, the embedding holes may be V-grooves according to the shape, so that the construction is easier to dig.
According to the invention of claim 5, during the cooling operation, the water coil 8 is wetted with the condensed water generated in the air supply side air heat exchanger 4 of the water heat source heat pump 9, and the cooling effect in the water coil 8 is increased. The load of the water heat source heat pump 9 can be reduced, and energy is saved. Moreover, since condensed water is used, a water supply device is unnecessary and there is no waste.
According to the invention of claim 6, since the forward pipe portion 1 of the underground heat exchanger 7 is a flat tube, the heat transfer from the outer surface on the short diameter side to the heat medium in the central portion of the pipe is fast, and the heat exchange efficiency is further improved. Since it is a flat tube, it is easy to bend, and the outgoing pipe part 1 can be easily formed in a spiral shape or a meandering shape.
According to the invention of claim 7, since the forward pipe portion 1 of the underground heat exchanger 7 is a flat tube and the long side is pointed, the heat medium becomes turbulent and heat transfer is promoted by forced convection, and the heat exchange efficiency is improved. Further improve.
According to the invention of claim 8, since the outer peripheral wall of the forward pipe portion 1 of the underground heat exchanger 7 is meandering, the heat transfer area is increased, and the turbulent flow effect of the heat medium can be further enhanced inside, thereby further increasing the heat. Exchange efficiency is improved.
According to the ninth aspect of the present invention, the pressure loss between the water coil 8 and the air heat exchanger 4 is reduced and the heat exchange efficiency is improved, so that a small fan can be used and noise can be reduced. The water coil 8 and the air heat exchanger 4 can also be miniaturized and the entire air conditioner can be made compact.
According to the invention of claim 10, the position of the air supply fan unit 14 can be freely selected and installed according to the installation space and the air supply location, and the construction becomes easy. The air flow rate is adjusted by the fan itself, and the air flow rate operation can be individually performed for each air supply fan unit 14, so that control is easy. Since VAV is not used, there is no pressure loss and the fan can be reduced in size and noise can be reduced.

図1〜図4は、本発明の地熱利用ヒートポンプ式空調装置の一実施例を示しており、この空調装置は、地中の地表近くで熱媒が渦巻き状に下りながら流れる樹脂製の往路管部1とこの往路管部1から出た前記熱媒を地上へ戻す復路管部2とから成る地中熱交換器7と、この地中熱交換器7にて温調した前記熱媒を通水させて給気用空気を熱交換する水コイル8と、前記熱媒を通水させて循環冷媒を熱交換すると共に水コイル8を経た給気用空気を前記循環冷媒で熱交換する圧縮式の水熱源ヒートポンプ9と、水熱源ヒートポンプ9と水コイル8を設けた本体ケーシング13に直接又はダクトを介して連通連結する個別風量制御自在な給気ファンユニット14と、を備えている。この水熱源ヒートポンプ9の給気側空気熱交換器4に生じる凝縮水で水コイル8を湿潤させると共に、水コイル8と水熱源ヒートポンプ9のいずれか一方のみの単独運転または併用運転に切換え自在に構成する。   1 to 4 show an embodiment of a heat pump type air conditioner using geothermal heat according to the present invention. This air conditioner is a resin forward pipe in which a heat medium flows in a spiral shape near the ground surface in the ground. A ground heat exchanger 7 comprising a section 1 and a return pipe section 2 for returning the heat medium that has come out of the forward pipe section 1 to the ground, and the heat medium adjusted in temperature by the ground heat exchanger 7 A water coil 8 for allowing water to exchange heat for supplying air, and a compression type for exchanging heat for circulating refrigerant by passing water through the heating medium and for exchanging heat for air supplied through the water coil 8 with the circulating refrigerant. The water heat source heat pump 9 and an air supply fan unit 14 with individual air volume controllable connected to the main body casing 13 provided with the water heat source heat pump 9 and the water coil 8 directly or via a duct are provided. The water coil 8 is wetted by the condensed water generated in the air supply side air heat exchanger 4 of the water heat source heat pump 9 and can be switched to the single operation or the combined operation of only one of the water coil 8 and the water heat source heat pump 9. Constitute.

水熱源ヒートポンプ9は、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気や熱媒などに対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を行う給気側空気熱交換器4及び熱源側水熱交換器5と、循環冷媒を圧縮する圧縮機6と、循環冷媒を膨張させる膨張弁等の減圧機構と、給気側空気熱交換器4及び熱源側水熱交換器5の蒸発工程と凝縮工程を切換えるバルブ等の切換機構と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。給気側空気熱交換器4では循環冷媒で給気用空気を冷却又は加熱し、熱源側水熱交換器5では熱媒で循環冷媒を凝縮又は蒸発させる。熱源側水熱交換器5はプレート式熱交換器とする。プレート式熱交換器は、たとえば幾枚もの伝熱板(プレート)を重ねその伝熱板と伝熱板の間を熱媒と冷媒が交互に流れて互いに熱交換するように構成する。給気側空気熱交換器4と水コイル8の各伝熱管は圧損の少ない楕円管にするのが好ましいが円形管でもよい。   The water heat source heat pump 9 repeats the evaporating / compressing / condensing / expanding process sequence with respect to the circulating refrigerant, and dissipates heat in the refrigerant condensing process in the refrigerant evaporating process with respect to air and heat medium to exchange heat with the circulating refrigerant. The air supply side air heat exchanger 4 and the heat source side water heat exchanger 5 that perform the steps of evaporating and condensing the circulating refrigerant, which are different from each other, the compressor 6 that compresses the circulating refrigerant, A pressure reducing mechanism such as an expansion valve for expanding the circulating refrigerant, and a switching mechanism such as a valve for switching between an evaporation process and a condensation process of the air supply side air heat exchanger 4 and the heat source side water heat exchanger 5. It is connected by piping so that the refrigerant circulates. The supply-side air heat exchanger 4 cools or heats the supply air using a circulating refrigerant, and the heat-source-side water heat exchanger 5 condenses or evaporates the circulating refrigerant using a heat medium. The heat source side water heat exchanger 5 is a plate heat exchanger. The plate heat exchanger is configured, for example, such that a number of heat transfer plates (plates) are stacked and a heat medium and a refrigerant flow alternately between the heat transfer plates and the heat transfer plates to exchange heat with each other. The heat transfer tubes of the air supply side air heat exchanger 4 and the water coil 8 are preferably elliptical tubes with little pressure loss, but may be circular tubes.

水コイル8はフィンコイルなどを用い、給気側空気熱交換器4は水コイル8の風下でかつ上方に配置し、給気側空気熱交換器4に生じる凝縮水をドレンパン10や浸透ろ過材11などを介して、水コイル8のフィンや伝熱管などの熱交換部に供給し、湿潤させる。浸透ろ過材11は、凝縮水を浸透拡散させて水コイル8を均等に湿潤させると共にスケール等のコイル付着・腐蝕成分を浸透ろ過する機能を有する不織布など各種材質のものからなり、着脱・交換自在に設けるが、これを省略するも自由である。なお、水コイル8と給気側空気熱交換器4の配置の変更は自由で、例えば通風方向に対して入換えたり、通風方向に重ならないように並べたりするも自由である。   The water coil 8 uses a fin coil, the air supply side air heat exchanger 4 is arranged leeward and above the water coil 8, and the condensed water generated in the air supply side air heat exchanger 4 is drained by the pan 10 or the osmotic filter medium. The heat is supplied to a heat exchange section such as a fin of the water coil 8 or a heat transfer tube through the water 11 and the like, and is wetted. The osmotic filter material 11 is made of various materials such as non-woven fabric having a function of osmotically diffusing condensed water to uniformly wet the water coil 8 and osmotically filter the attached and corrosive components of the scale and the like. However, it is free to omit this. It should be noted that the arrangement of the water coil 8 and the air supply side air heat exchanger 4 can be changed freely. For example, the water coil 8 and the air supply side air heat exchanger 4 can be exchanged with respect to the ventilation direction or arranged so as not to overlap the ventilation direction.

水コイル8と熱源側水熱交換器5と地中熱交換器7は開閉弁などを介して配管接続し、図示省略の送水ポンプにて熱媒を循環させる。図例では、開閉弁操作により熱媒が水コイル8と熱源側水熱交換器5の両方に流れる場合と水コイル8をバイパスして熱源側水熱交換器5のみに流れる場合に切換え自在に構成しているが、図例以外の回路に構成するも自由である。本体ケーシング13には還気取入口を設けると共に吹出口を備えた複数のファンユニット14をダクト等を介して設け、還気取入口から取入れた室内の還気を水コイル8と給気側空気熱交換器4の一方又は両方で温度調節して吹出口から室内へ給気する。なお、図示省略するが、給気ファンユニット14を本体ケーシング13に直結したり、給気ファンユニット14内のファン15を本体ケーシング13内に設けたり、各部品の配置や構造の変更は自由である。   The water coil 8, the heat source side water heat exchanger 5 and the underground heat exchanger 7 are connected to each other through an on-off valve and the like, and a heat medium is circulated by a water supply pump (not shown). In the illustrated example, switching is possible when the heat medium flows through both the water coil 8 and the heat source side water heat exchanger 5 by operating the on-off valve, and when the water coil 8 bypasses the water coil 8 and flows only through the heat source side water heat exchanger 5. Although it is configured, it can be freely configured as a circuit other than the illustrated example. The main casing 13 is provided with a return air intake and a plurality of fan units 14 provided with air outlets via ducts or the like, and the indoor return air taken in from the return air intake is supplied to the water coil 8 and the supply side air. The temperature is adjusted by one or both of the heat exchangers 4 and the air is supplied from the outlet into the room. Although not shown in the figure, the air supply fan unit 14 can be directly connected to the main body casing 13, the fan 15 in the air supply fan unit 14 can be provided in the main body casing 13, and the arrangement and structure of each component can be freely changed. is there.

図1と図5に示すように、地中熱交換器7は、地中に埋設されると共に内部を流れる熱媒を地中熱で温度調節するものであって、地表近くで前記熱媒が渦巻き状に下りながら流れる樹脂製の往路管部1と、この往路管部1から出た前記熱媒を地上へ戻す復路管部2と、を備えている。往路管部1の巻形状の平均径は、すくなくとも略2m以上の大きな曲率に設定する。復路管部2は可能な限り短く細くして熱媒を地上へ迅速に戻すようにする。図例では往路管部1の内径側に沿って立設して外径側にはみ出さないようにしているが、外径側で立設してもよい。往路管部1と復路管部2は、1本の管で一体に形成又は別個の管を接続して成り、例えば深さ3m位の地表近くに掘削された埋設用穴3に埋められ、往路管部1と復路管部2が、水コイル8と熱源側水熱交換器5の熱媒出入口に配管接続される。なお、熱媒として水を用いる以外に、ブラインやその他各種の液体を用いるも自由である。   As shown in FIG. 1 and FIG. 5, the underground heat exchanger 7 adjusts the temperature of the heat medium that is buried in the ground and that flows through the interior by underground heat, and the heat medium is close to the ground surface. A resin forward pipe portion 1 that flows while descending in a spiral shape, and a return pipe portion 2 that returns the heat medium from the forward pipe portion 1 to the ground. The average diameter of the winding shape of the forward pipe section 1 is set to a large curvature of at least about 2 m. The return pipe section 2 is made as thin as possible so that the heat medium can be quickly returned to the ground. In the example shown in the figure, the tube is erected along the inner diameter side of the forward tube portion 1 so as not to protrude from the outer diameter side, but may be erected on the outer diameter side. The forward pipe section 1 and the backward pipe section 2 are formed integrally with a single pipe or connected to separate pipes, and are buried in, for example, an embedding hole 3 drilled near the ground surface at a depth of about 3 m. The pipe part 1 and the return pipe part 2 are connected by piping to the water coil 8 and the heat medium inlet / outlet of the heat source side water heat exchanger 5. In addition to using water as a heat medium, it is also free to use brine or other various liquids.

往路管部1は、下方に向かって順次拡径するように巻設し、その巻形状を円形状や楕円形状の丸状として、一巻き毎に往路管部1を左右方向にずらして管部同士の熱交換領域(図5の仮想線参照)の重複部をなくすと共に、図1の仮想線で示すように、埋設作業時に往路管部1の径中央部で埋設土が山形となって往路管部1に内側から自然に沿うようにする。往路管部1は、径方向切断面が円形状や楕円形状(図示省略)の丸形管としているが、図6(a)のように、往路管部1の外周壁を周方向に向かって蛇行状となるように形成してもよく、あるいは、図6(b)のように、長径側を両外側に向かって細くなる尖状にした扁平管に形成してもよい。なお、図7(a)のように、往路管部1を、下方に向かって順次縮径するように巻設してもよく、この場合、埋設用穴3を掘りやすい擂り鉢状にすることができる。復路管部2は往路管部1の内径側に立設して外径側にはみ出さないようにし、埋設用穴3に収まり易くして掘削及び埋設作業の迅速化を図る。また、図7(b)のように、往路管部1を全て同径になるよう巻設してもよい。   The forward pipe portion 1 is wound so as to gradually increase in diameter downward, and the winding shape is circular or elliptical, and the forward pipe portion 1 is shifted in the left-right direction for each turn. As shown by the phantom line in FIG. 1, the buried soil becomes a mountain shape at the center of the diameter of the forward pipe portion 1 during the burying operation. It is made to follow the pipe part 1 naturally from the inside. The forward pipe section 1 is a round pipe having a circular or elliptical shape (not shown) in the radial direction, but the outer peripheral wall of the forward pipe section 1 is directed in the circumferential direction as shown in FIG. You may form so that it may meander, or you may form in the flat tube which made the long diameter side tapered to the both outer sides like FIG.6 (b). In addition, as shown to Fig.7 (a), you may wind so that the outward pipe part 1 may be diameter-reduced sequentially toward the downward direction, and make the hole 3 for embedding into the shape of a mortar which is easy to dig. Can do. The return pipe section 2 is erected on the inner diameter side of the outgoing pipe section 1 so as not to protrude to the outer diameter side, and is easily accommodated in the embedding hole 3 so as to speed up excavation and embedding work. Further, as shown in FIG. 7B, all of the outward pipe sections 1 may be wound so as to have the same diameter.

図8は往路管部1の巻形状を多角状にした例で、図8(a)は往路管部1を下方に向かって順次拡径するように、図8(b)は、往路管部1を下方に向かって順次縮径するように、図8(c)は、往路管部1を全て同径になるように、各々巻設した場合を示している。図例では往路管部1の直線状管部の長さを全て略同一にして正方形状にしているが、部分的に相異させて例えば図9のように長方形状にしてもよく、図9(a)は往路管部1を下方に向かって順次拡径するように、図9(b)は、往路管部1を下方に向かって順次縮径するように、図9(c)は、往路管部1を全て同径になるように、各々巻設した場合を示している。このように往路管部1の直線状管部の各長さの設定は自由で、さらに角数を増減させて三角形状や六角形状などにするも自由である。図10は往路管部1の巻形状を長円状にした例で、図10(a)は往路管部1を下方に向かって順次拡径するように、図10(b)は、往路管部1を下方に向かって順次縮径するように、図10(c)は、往路管部1を全て同径になるように、各々巻設した場合を示している。図9と図10の場合、埋設用穴3を掘りやすい幅の狭い溝状にすることができる。なお、前記各実施例は図例に限定されず、往路管部1の巻数(段数)や径の寸法変更は自由で、さらに往路管部1を下方に向かって全体的又は部分的に拡縮させるも自由である。   FIG. 8 shows an example in which the winding shape of the forward pipe portion 1 is a polygonal shape. FIG. 8A shows the forward pipe portion 1 having a diameter gradually increasing downward, and FIG. 8B shows the forward pipe portion. FIG. 8 (c) shows a case where each of the outward pipe sections 1 is wound so as to have the same diameter so that the diameters of the pipes 1 are sequentially reduced downward. In the illustrated example, the lengths of the straight tube portions of the forward tube portion 1 are all substantially the same and are square, but may be partially different to have a rectangular shape as shown in FIG. FIG. 9 (c) shows that the diameter of the forward pipe portion 1 is gradually increased downward, while FIG. The case where each of the outward pipe sections 1 is wound so as to have the same diameter is shown. In this way, the length of each straight tube portion of the forward tube portion 1 can be set freely, and the number of corners can be increased or decreased to form a triangular shape or a hexagonal shape. FIG. 10 shows an example in which the winding shape of the forward tube portion 1 is an ellipse. FIG. 10A shows the forward tube portion 1 having a diameter gradually increasing downward, and FIG. FIG. 10 (c) shows a case where each of the forward pipe sections 1 is wound so as to have the same diameter so that the diameters of the sections 1 are sequentially reduced downward. In the case of FIG. 9 and FIG. 10, the embedding hole 3 can be formed into a narrow groove shape that is easy to dig. In addition, each said Example is not limited to a figure example, The number of turns (stage number) of the outward pipe part 1 and a dimension change of a diameter are free, and also the outward pipe part 1 is expanded or contracted entirely or partially toward the downward direction. Is also free.

図11は地中熱交換器7の他の実施例で、所定間隔を隔てて対向すると共に熱媒が蛇行状に下りながら流れる一対の樹脂製の往路管部1、1と、この往路管部1から出た前記熱媒を地上へ戻す復路管部2と、を備えたもので、その他は前記実施例と同様構成である。図11(a)は一対の往路管部1、1の間隔が下方に向かって順次広がるように、図11(b)は一対の往路管部1、1の間隔が下方に向かって順次狭くなるように、図11(c)は一対の往路管部1、1の間隔が全て同じになるように、各々配設した場合を示している。図11(a)の場合、仮想線で示すように埋設作業時に往路管部1の径中央部で埋設土が山形となって往路管部1、1に内側から自然に沿うようにでき、図11(b)の場合、埋設用穴3を掘りやすいV溝状にすることができ、図11(c)の場合、埋設用穴3を掘りやすい幅の狭い溝状にすることができる。なお、往路管部1の蛇行数や間隔の増減は自由である。また、図例では、往路管部1を、多数の平行な直線状管部の端部で逆方向に交互に折り返すように形成して内部流通熱媒が下るように形成しているが、直線状管部の長さの増減や段数の変更は自由である。   FIG. 11 shows another embodiment of the underground heat exchanger 7, which is a pair of resin-made outward pipe sections 1 and 1 that face each other at a predetermined interval and flow while the heat medium descends in a meandering manner. And a return pipe section 2 for returning the heating medium from 1 to the ground, and the other construction is the same as that of the embodiment. 11 (a), the interval between the pair of forward tube sections 1, 1 gradually increases downward, and FIG. 11 (b), the interval between the pair of outward tube portions 1, 1 gradually decreases downward. As shown in FIG. 11C, the pair of forward pipe sections 1 and 1 are arranged such that the distance between them is the same. In the case of FIG. 11 (a), as shown by the phantom line, the buried soil becomes a mountain shape at the center of the diameter of the forward pipe portion 1 during the burying operation, and can naturally follow the forward pipe portions 1 and 1 from the inside. In the case of 11 (b), the embedding hole 3 can be formed into a V-groove shape that is easy to dig, and in the case of FIG. 11C, the embedding hole 3 can be formed into a narrow groove shape that is easy to dig. In addition, increase / decrease in the number of meanders and intervals of the outward pipe part 1 is free. Further, in the illustrated example, the forward pipe section 1 is formed so as to be alternately folded in the reverse direction at the ends of a large number of parallel straight pipe sections so that the internal circulation heat medium is lowered. The length of the tube can be increased or decreased and the number of steps can be changed.

本発明の設置例を示す全体簡略斜視図。The whole simplified perspective view which shows the example of installation of this invention. 同要部側面図。The principal part side view. 水熱源ヒートポンプの簡略説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の要部断面図。The principal part sectional drawing of this invention. 地中熱交換器の往路管部の断面図。Sectional drawing of the outward pipe part of a underground heat exchanger. 地中熱交換器の往路管部の他の形状例の断面図。Sectional drawing of the other shape example of the outward pipe part of a underground heat exchanger. 地中熱交換器の往路管部の他の形状例の簡略斜視図。The simplified perspective view of the other example of a shape of the going-out pipe part of an underground heat exchanger. 地中熱交換器の往路管部の別の形状例の簡略斜視図。The simple perspective view of another example of a shape of the outward pipe part of a underground heat exchanger. 地中熱交換器の往路管部のさらに別の形状例の簡略斜視図。The simplified perspective view of another example of shape of the outward pipe part of an underground heat exchanger. 地中熱交換器の往路管部のさらに別の形状例の簡略斜視図。The simplified perspective view of another example of shape of the outward pipe part of an underground heat exchanger. 地中熱交換器の他の実施例を示す簡略斜視図。The simplified perspective view which shows the other Example of a ground heat exchanger.

符号の説明Explanation of symbols

1 往路管部
2 復路管部
4 空気熱交換器
7 地中熱交換器
8 水コイル
9 水熱源ヒートポンプ
13 本体ケーシング
14 ファンユニット
DESCRIPTION OF SYMBOLS 1 Outgoing pipe part 2 Return pipe part 4 Air heat exchanger 7 Ground heat exchanger 8 Water coil 9 Water source heat pump 13 Main body casing 14 Fan unit

Claims (10)

地中の地表近くで熱媒が渦巻き状に下りながら流れる樹脂製の往路管部1とこの往路管部1から出た前記熱媒を地上へ戻す復路管部2とから成る地中熱交換器7と、この地中熱交換器7にて温調した前記熱媒を通水させて給気用空気を熱交換する水コイル8と、前記熱媒を通水させて循環冷媒を熱交換すると共に前記水コイル8を経た給気用空気を前記循環冷媒で熱交換する水熱源ヒートポンプ9と、を備えたことを特徴とする地熱利用ヒートポンプ式空調装置。   An underground heat exchanger comprising a resin-made forward pipe section 1 that flows while the heat medium descends in a spiral shape near the ground surface in the ground, and a return pipe section 2 that returns the heating medium from the forward pipe section 1 to the ground. 7, the water coil 8 for passing the heat medium adjusted in temperature by the underground heat exchanger 7 to exchange heat for the air for supply, and the circulating medium for heat exchange by passing the heating medium for water. And a water heat source heat pump 9 for exchanging heat of the supply air that has passed through the water coil 8 with the circulating refrigerant. 地中熱交換器7の往路管部1を、下方に向かって順次拡径するように、又は、下方に向かって順次縮径するように、巻設した請求項1記載の地熱利用ヒートポンプ式空調装置。   The heat pump type air conditioner using geothermal heat according to claim 1, wherein the forward pipe section 1 of the underground heat exchanger 7 is wound so as to be gradually expanded in diameter downward or sequentially reduced in diameter downward. apparatus. 地中の地表近くで所定間隔を隔てて対向すると共に熱媒が蛇行状に下りながら流れる一対の樹脂製の往路管部1、1とこの往路管部1から出た前記熱媒を地上へ戻す復路管部2とから成る地中熱交換器7と、この地中熱交換器7にて温調した前記熱媒を通水させて給気用空気を熱交換する水コイル8と、前記熱媒を通水させて循環冷媒を熱交換すると共に前記水コイル8を経た給気用空気を前記循環冷媒で熱交換する水熱源ヒートポンプ9と、を備えたことを特徴とする地熱利用ヒートポンプ式空調装置。   A pair of resin-made outward pipe sections 1 and 1 that flow in a meandering manner and face each other near the ground surface in the vicinity of the ground, and return the heating medium from the outgoing pipe section 1 to the ground. A ground heat exchanger 7 comprising a return pipe section 2, a water coil 8 for passing heat through the heat medium adjusted in temperature in the ground heat exchanger 7 to exchange heat for the supply air, and the heat A geothermal heat pump type air conditioner comprising: a water heat source heat pump 9 for exchanging heat of the circulating refrigerant by passing the medium and exchanging heat of the air supplied through the water coil 8 with the circulating refrigerant. apparatus. 地中熱交換器7の一対の往路管部1、1の間隔が、下方に向かって順次広がるように、又は、下方に向かって順次狭くなるように、配設した請求項3記載の地中熱交換器。   The underground of Claim 3 arrange | positioned so that the space | interval of a pair of outward pipe parts 1 and 1 of the underground heat exchanger 7 may be spread so that it may spread sequentially downward or may become narrow gradually toward the downward direction. Heat exchanger. 水熱源ヒートポンプ9の給気側空気熱交換器4に生じる凝縮水で水コイル8を湿潤させるようにした請求項1、2,3又は4記載の地熱利用ヒートポンプ式空調装置。   The geothermal heat pump type air conditioner according to claim 1, 2, 3, or 4, wherein the water coil 8 is wetted by the condensed water generated in the air supply side air heat exchanger 4 of the water heat source heat pump 9. 地中熱交換器7の往路管部1を扁平管に形成した請求項1、2、3、4又は5記載の地熱利用ヒートポンプ式空調装置。   The heat pump type air conditioner using geothermal heat according to claim 1, 2, 3, 4, or 5, wherein the forward pipe section 1 of the underground heat exchanger 7 is formed as a flat pipe. 地中熱交換器7の往路管部1の長径側を尖状とした請求項6記載の地熱利用ヒートポンプ式空調装置。   The heat pump type air conditioner using geothermal heat according to claim 6, wherein the long diameter side of the forward path pipe portion 1 of the underground heat exchanger 7 is pointed. 地中熱交換器7の往路管部1を丸管とし、その外周壁を周方向に向かって蛇行状となるように形成した請求項1、2、3、4又は5記載の地熱利用ヒートポンプ式空調装置。   The geothermal heat pump type according to claim 1, 2, 3, 4 or 5, wherein the forward pipe section 1 of the underground heat exchanger 7 is a round pipe and its outer peripheral wall is formed in a meandering shape in the circumferential direction. Air conditioner. 給気側空気熱交換器4と水コイル8の各伝熱管を楕円管にした請求項1、2、3、4、5、6、7又は8記載の地熱利用ヒートポンプ式空調装置。   The geothermal heat pump type air conditioner according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the heat transfer tubes of the air supply side air heat exchanger 4 and the water coil 8 are elliptical tubes. 水熱源ヒートポンプ9と水コイル8を設けた本体ケーシング13にダクトを介して連通連結する個別風量制御自在な給気ファンユニット14を、備えた請求項1、2、3、4、5、6、7、8又は9記載の地熱利用ヒートポンプ式空調装置。   An air supply fan unit with an individual air volume controllable connected to a main casing having a water heat source heat pump and a water coil via a duct. The heat pump type air conditioner using geothermal heat according to 7, 8 or 9.
JP2005194106A 2005-07-01 2005-07-01 Geothermal heat pump air conditioner Active JP4182961B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005194106A JP4182961B2 (en) 2005-07-01 2005-07-01 Geothermal heat pump air conditioner
TW094130410A TW200702610A (en) 2005-07-01 2005-09-05 A geothermal heat exchanger and geothermal air conditioner with heat pump
KR1020050088272A KR20070003504A (en) 2005-07-01 2005-09-22 Geothermal heat exchanger and heat pump type air conditioner utilizing geothermal heat
CNB2005101186070A CN100491869C (en) 2005-07-01 2005-10-31 Geothermal heat exchanger and heat pump type air conditioner utilizing geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194106A JP4182961B2 (en) 2005-07-01 2005-07-01 Geothermal heat pump air conditioner

Publications (2)

Publication Number Publication Date
JP2007010275A true JP2007010275A (en) 2007-01-18
JP4182961B2 JP4182961B2 (en) 2008-11-19

Family

ID=37597258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194106A Active JP4182961B2 (en) 2005-07-01 2005-07-01 Geothermal heat pump air conditioner

Country Status (2)

Country Link
JP (1) JP4182961B2 (en)
CN (1) CN100491869C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110621B1 (en) * 2008-04-15 2012-05-16 Peter Frei Earth collector
JP2013155949A (en) * 2012-01-31 2013-08-15 Nakano Refrigerators Co Ltd Refrigeration device
JP5584839B1 (en) * 2014-02-19 2014-09-03 博明 上山 Hybrid spiral pile with integrated underground heat collection function
RU2538520C1 (en) * 2013-07-15 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования"Северо-Восточный федеральный университет имени М.К. Аммосова" Natural conditioner
JP2017203573A (en) * 2016-05-10 2017-11-16 シャープ株式会社 Air conditioner and method for installing auxiliary heat exchanger
CN109855220A (en) * 2019-02-25 2019-06-07 冉东林 A kind of system adjusting temperature
KR20190096691A (en) * 2018-02-09 2019-08-20 엘에스산전 주식회사 Container for power conversion system
KR102106733B1 (en) * 2019-07-25 2020-05-04 (주) 그린텍아이엔씨 Water and sewage supervisory control and data acquisition control panel controling temperature with geothermy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468496B (en) * 2009-03-10 2011-09-14 Mark Brice Percussion mole
CN104912068B (en) * 2015-05-27 2016-08-03 黄光勤 Improve the hollow round table screw type energy pilework of heat transfer efficiency
CN106403098B (en) * 2016-08-30 2019-02-12 湖南中大经纬地热开发科技有限公司 Terrestrial heat utilization system based on earth surface water source and hot spring tail water
CN110243033B (en) * 2019-05-13 2021-02-05 湖南达道新能源开发有限公司 Geothermal air conditioner beneficial to heat exchange
CN111076269A (en) * 2019-12-26 2020-04-28 河北博纳德能源科技有限公司 Split type ground source heat pump system
CN111023626A (en) * 2019-12-26 2020-04-17 河北博纳德能源科技有限公司 Split type ground source heat pump frequency conversion unit device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110621B1 (en) * 2008-04-15 2012-05-16 Peter Frei Earth collector
JP2013155949A (en) * 2012-01-31 2013-08-15 Nakano Refrigerators Co Ltd Refrigeration device
RU2538520C1 (en) * 2013-07-15 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования"Северо-Восточный федеральный университет имени М.К. Аммосова" Natural conditioner
JP5584839B1 (en) * 2014-02-19 2014-09-03 博明 上山 Hybrid spiral pile with integrated underground heat collection function
JP2017203573A (en) * 2016-05-10 2017-11-16 シャープ株式会社 Air conditioner and method for installing auxiliary heat exchanger
KR20190096691A (en) * 2018-02-09 2019-08-20 엘에스산전 주식회사 Container for power conversion system
KR102131670B1 (en) * 2018-02-09 2020-07-08 엘에스일렉트릭(주) Container for power conversion system
CN109855220A (en) * 2019-02-25 2019-06-07 冉东林 A kind of system adjusting temperature
KR102106733B1 (en) * 2019-07-25 2020-05-04 (주) 그린텍아이엔씨 Water and sewage supervisory control and data acquisition control panel controling temperature with geothermy

Also Published As

Publication number Publication date
CN1892151A (en) 2007-01-10
CN100491869C (en) 2009-05-27
JP4182961B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4182961B2 (en) Geothermal heat pump air conditioner
JP4642579B2 (en) Geothermal heat collection system
JP2001317894A (en) High efficiency multi-channel type loop heat transfer apparatus
JP2014527151A (en) Built-in air conditioner
JP2006234376A (en) Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor
WO2009133709A1 (en) Heat exchanger and air conditioning system
KR101322470B1 (en) Geothermal heat exchanger and heat exchange system using the same
JP2009287914A (en) Heat exchanger and air-conditioning system
JP2007120781A (en) Water-cooled heat pump air-conditioning system utilizing ground heat
JP2012057836A (en) Underground heat exchanger and heat pump using the same
CN101586855B (en) Ground source cold accumulation device and ground source cold accumulation system
KR20070003504A (en) Geothermal heat exchanger and heat pump type air conditioner utilizing geothermal heat
KR101658407B1 (en) Thermal energy storage tank and Heating and cooling and hot water supplying apparatus using geothermy
JP2013007550A (en) Heat pump
JP2012078080A (en) Underground heat exchanger and heat pump utilizing the same
KR101771644B1 (en) Heat Exchanger
KR101771645B1 (en) Heatpump System Having The Heat Exchanger
JP5237962B2 (en) Heat pump assembly
KR100620907B1 (en) Subterranean heat a house fever seive also heat pump type cooling and heating by subterranean heat a house fever seive
JP2007040635A (en) Air conditioner using ground heat
JP3219819U (en) Geothermal utilization system
JP7359361B2 (en) heat pump equipment
KR101534612B1 (en) Out-door condenser
JP5510316B2 (en) Heat exchanger and air conditioning system
KR100846164B1 (en) Subterranean heat collecting device and cooling and heating device thereby

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250