JP2007010018A - Rotating shaft structure for high temperature fluid fan - Google Patents

Rotating shaft structure for high temperature fluid fan Download PDF

Info

Publication number
JP2007010018A
JP2007010018A JP2005190830A JP2005190830A JP2007010018A JP 2007010018 A JP2007010018 A JP 2007010018A JP 2005190830 A JP2005190830 A JP 2005190830A JP 2005190830 A JP2005190830 A JP 2005190830A JP 2007010018 A JP2007010018 A JP 2007010018A
Authority
JP
Japan
Prior art keywords
fluid
rotating shaft
shaft portion
fan
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005190830A
Other languages
Japanese (ja)
Other versions
JP4725842B2 (en
Inventor
Yasushi Nakajima
靖志 中島
Keiko Kushibiki
圭子 櫛引
Shigeo Ibuka
重夫 井深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005190830A priority Critical patent/JP4725842B2/en
Publication of JP2007010018A publication Critical patent/JP2007010018A/en
Application granted granted Critical
Publication of JP4725842B2 publication Critical patent/JP4725842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating shaft structure for a high temperature fluid fan, having smaller-size construction for greatly suppressing the heat conduction of a rotating shaft. <P>SOLUTION: The rotating shaft A has a high temperature side shaft part 1 as part of the fan F1, an intermediate part 2 forming at least part of a portion corresponding to a sliding bearing B and having a porous body, and a low temperature side shaft part 3 connected to a drive mechanism M. The low temperature side shaft part has a through-hole 4 through which fluid is supplied to the porous body. A discharge gap 5 is provided between the rotating shaft A and the sliding bearing B. The fluid is supplied through the through-hole 4, the porous body and the discharge gap 5 into a gas flow path 102. Thus, heat exchange is carried out by the porous body of the intermediate shaft part 2 to thermally separate the high temperature shaft part 1 from the low temperature side shaft part 3. The fluid sprayed from the porous body gives lubricating performance to the sliding bearing B. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温環境となる流体の流路内で回転駆動されるファンの回転軸構造に関し、例えば、電気自動車等に搭載する固体酸化物型燃料電池に対して、燃料ガスや酸化ガスの供給用ファンとして用いられる高温流体用ファンの回転軸構造に関するものである。   The present invention relates to a rotating shaft structure of a fan that is driven to rotate in a fluid flow path that becomes a high-temperature environment, for example, supply of fuel gas or oxidizing gas to a solid oxide fuel cell mounted on an electric vehicle or the like. The present invention relates to a rotating shaft structure of a high-temperature fluid fan used as an industrial fan.

ガスタービンやターボチャージャーなどのように高温環境となる流体の流路内で回転駆動されるファンでは、当然のことながら、羽根(ブレード)だけでなく回転軸の軸受部分も高温に晒されるため、円滑な回転動作を維持するうえで重要である軸受部分には、様々な熱対策が講じられている。   In a fan that is driven to rotate in a fluid flow path that becomes a high-temperature environment such as a gas turbine or a turbocharger, naturally, not only the blade (blade) but also the bearing part of the rotating shaft is exposed to a high temperature. Various heat countermeasures are taken for the bearing portion, which is important for maintaining smooth rotation.

従来において、上記したような高温流体用ファンの回転軸構造としては、軸受部分に大量の潤滑油を高圧で供給することで、軸受の潤滑とともに冷却を行うものがあったが、この場合、潤滑油供給用の大型の補機が必要であって、装置全体が複雑で且つ大型化する結果となっていた。   Conventionally, as a rotating shaft structure of a fan for high-temperature fluid as described above, there has been one in which a large amount of lubricating oil is supplied to the bearing portion at a high pressure to cool the bearing together with lubrication. A large auxiliary machine for oil supply is required, and the entire apparatus is complicated and large.

そこで、上記欠点を解消するものとして、回転軸や軸受を耐熱性の高いセラミックス材で構成したり、特許文献1に記載されているように、回転軸と滑り軸受との間に水を供給し、その水を膜沸騰させて潤滑及び冷却を行う方法があった。
特公平2−20853号公報
Therefore, in order to eliminate the above drawbacks, the rotating shaft and the bearing are made of a highly heat-resistant ceramic material, or as described in Patent Document 1, water is supplied between the rotating shaft and the sliding bearing. There is a method of lubricating and cooling the water by boiling the film.
Japanese Examined Patent Publication No. 2-20853

ところで、近年では、環境保護等に非常に有益な電気自動車が注目されており、このような電気自動車等の移動体に搭載することを目的とした固体酸化物型燃料電池においては、高温流体用ファンを用いたガス循環システムを導入し、このガス循環システムによってシステム温度の均一化とガスの有効利用率の向上を実現して、装置構造の小型化を図ることが要望されている。   By the way, in recent years, an electric vehicle that is very useful for environmental protection or the like has attracted attention. In a solid oxide fuel cell intended to be mounted on a moving body such as an electric vehicle, a high-temperature fluid is used. It is desired to introduce a gas circulation system using a fan, to achieve uniform system temperature and to improve the effective utilization rate of gas by this gas circulation system, and to reduce the size of the apparatus structure.

また、上記のようなガス循環システムに用いる高温流体用ファンは、高温環境となる流体の流路内に配置され、軸受により保持されるとともに流路外のモータによって回転駆動されることになるが、この場合、熱伝導体となるファンの回転軸をモータ系の磁性が消滅しないキュリー温度未満程度まで冷却することが必要となる。   Further, the high-temperature fluid fan used in the gas circulation system as described above is disposed in the flow path of the fluid that becomes a high-temperature environment, and is held by a bearing and rotated by a motor outside the flow path. In this case, it is necessary to cool the rotating shaft of the fan serving as the heat conductor to a temperature below the Curie temperature at which the magnetism of the motor system does not disappear.

そこで、このような高温流体用ファンの回転軸構造には、先述した従来技術の適用が考えられるのであるが、回転軸(モータ回転軸)や軸受にセラミックス材を用いた場合には、回転軸や軸受に耐熱性や断熱性を確保し、高温側の遮熱は可能になるものの、回転軸の冷却作用について見れば、多くの場合は回転子での発熱が回転軸に伝導し、その回転軸からの放熱作用が主体であり、よって、断熱性の高いセラミックス材を用いた回転軸では放熱作用が期待できないために、回転軸やモータの冷却手段が別途必要になり、また、回転軸の表面に水を供給して沸騰潤滑する場合には、回転軸の熱伝導が大きくて短い軸長で充分に冷却することが難しいことから、いずれの場合も装置構造の小型化には適していないものであった。   Therefore, the application of the above-described prior art can be considered for the rotating shaft structure of such a high-temperature fluid fan, but when a ceramic material is used for the rotating shaft (motor rotating shaft) or the bearing, the rotating shaft Although heat resistance and heat insulation are ensured for the bearings and heat insulation, heat insulation on the high temperature side is possible, but when looking at the cooling action of the rotating shaft, in many cases, the heat generated by the rotor is conducted to the rotating shaft, and the rotation Because the heat dissipation action from the shaft is the main component, and therefore, a heat dissipation action cannot be expected with a rotating shaft using a ceramic material with high heat insulation properties, a cooling means for the rotating shaft and motor is required separately. When boiling lubrication is performed by supplying water to the surface, the thermal conductivity of the rotating shaft is large and it is difficult to sufficiently cool with a short shaft length. It was a thing.

本発明は、上記従来の状況に鑑みて成されたものであって、高温環境となる流体の流路内でファンを構成し且つ滑り軸受により保持されるとともに流路外の駆動装置により回転駆動される回転軸の構造において、回転軸の熱伝導を大きく抑制し得ると共に、装置構造の小型化を実現することができる高温流体用ファンの回転軸構造を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and constitutes a fan in a flow path of a fluid that becomes a high temperature environment and is held by a sliding bearing and is rotationally driven by a drive device outside the flow path. An object of the present invention is to provide a rotating shaft structure for a high-temperature fluid fan that can largely suppress heat conduction of the rotating shaft and can reduce the size of the apparatus structure.

本発明の高温流体用ファンの回転軸構造は、高温環境となる流体の流路内でファンを構成し且つ滑り軸受により保持されるとともに流路外の駆動装置により回転駆動される回転軸の構造であって、回転軸が、ファンを構成する高温側軸部と、滑り軸受に対応する部分の少なくとも一部を形成し且つ耐熱性材料から成る多孔質体を有する中間軸部と、駆動装置側に連結する低温側軸部を同軸状に備えたものとなっている。   The rotating shaft structure of the fan for high-temperature fluid of the present invention is a structure of the rotating shaft that constitutes the fan in the fluid flow path that becomes a high-temperature environment, is held by the slide bearing, and is rotationally driven by the driving device outside the flow path. The rotating shaft includes a high temperature side shaft portion constituting a fan, an intermediate shaft portion forming at least a part of a portion corresponding to the sliding bearing and having a porous body made of a heat resistant material, and a driving device side. The low-temperature side shaft part connected to is coaxially provided.

このとき、中間軸部における多孔質体は、例えばステンレス鋼などの耐熱性材料から成ると共に、液体や気体である流体の流通性を有するものであって、より具体的には、少なくとも低温側軸部との接合面から中間軸部の外周面に至る間に連続した状態で設けてあり、当然のことながら中間軸部の全体を形成するものであっても良い。   At this time, the porous body in the intermediate shaft portion is made of a heat-resistant material such as stainless steel and has fluidity such as liquid or gas, and more specifically, at least the low-temperature side shaft. It is provided in a continuous state from the joint surface with the portion to the outer peripheral surface of the intermediate shaft portion, and naturally the entire intermediate shaft portion may be formed.

そして、当該回転軸構造は、低温側軸部に、流体を供給する流体供給手段と中間軸部の多孔質体とを連通させる貫通孔を形成すると共に、回転軸と滑り軸受との間に、流路側に開放された排出用間隙を設け、流体供給手段から供給した流体を低温側軸部の貫通孔、中間軸部の多孔質体及び排出用間隙を通して流路内に供給することを特徴としている。   And the said rotating shaft structure forms the through-hole which connects the fluid supply means which supplies a fluid to the low temperature side shaft part, and the porous body of an intermediate shaft part, Between a rotating shaft and a sliding bearing, A discharge gap opened on the flow path side is provided, and the fluid supplied from the fluid supply means is supplied into the flow path through the through hole in the low temperature side shaft portion, the porous body in the intermediate shaft portion, and the discharge gap. Yes.

ここで、中間軸部の多孔質体は、その表面積(流体との接触面積)が大きく且つ熱抵抗も大きい。したがって、当該回転軸構造は、多孔質体を通して高温環境である流路に流体を供給することで、多孔質体において熱交換を行うと共に、多孔質体が断熱部となって高温側軸部と低温側軸部を熱的に分離することとなり、さらには、多孔質体から排出用間隙に流体を噴出させることで、回転軸と滑り軸受との間の潤滑性を維持する。   Here, the porous body of the intermediate shaft portion has a large surface area (contact area with the fluid) and a large thermal resistance. Therefore, the rotating shaft structure supplies heat to the flow path that is a high-temperature environment through the porous body, thereby performing heat exchange in the porous body, and the porous body serves as a heat insulating portion and the high-temperature side shaft portion. The low temperature side shaft portion is thermally separated, and further, the fluid between the porous body and the discharge gap is ejected to maintain the lubricity between the rotating shaft and the slide bearing.

本発明の高温流体用ファンの回転軸構造は、上記構成を採用したことにより、回転軸と滑り軸受との間の良好な潤滑性を維持したうえで、回転軸において、ファンを構成する高温側軸部から駆動装置側に連結する低温側軸部への熱伝導を大幅に抑制することができ、これにより回転軸の軸長の短縮化や駆動装置に対する熱対策の簡略化等を可能にして、装置構造の小型化を実現することができる。   The rotary shaft structure of the fan for high-temperature fluid of the present invention employs the above-described configuration, so that good lubricity between the rotary shaft and the sliding bearing is maintained, and the high-temperature side that constitutes the fan in the rotary shaft. Heat conduction from the shaft part to the low temperature side shaft part connected to the drive device side can be greatly suppressed, thereby enabling shortening of the shaft length of the rotating shaft and simplification of heat measures for the drive device, etc. Therefore, it is possible to reduce the size of the device structure.

図8は、本発明に係わる高温流体用ファンの回転軸構造の適用例として、例えば電気自動車に搭載される発電装置を説明する図である。   FIG. 8 is a diagram illustrating a power generation device mounted on, for example, an electric vehicle as an application example of the rotating shaft structure of the high-temperature fluid fan according to the present invention.

図示の発電装置は、固体酸化物型燃料電池の発電要素を積層してケースに収容して成る電池本体101と、電池本体101内の各発電要素の燃料極に燃料ガスを供給する一方のガス流路102Aと、電池本体101内の各発電要素の酸素極に酸化ガスを供給する他方のガス流路103Aを備えている。   The illustrated power generation apparatus includes a battery main body 101 in which power generation elements of a solid oxide fuel cell are stacked and accommodated in a case, and one gas that supplies fuel gas to the fuel electrode of each power generation element in the battery main body 101. 102 A of flow paths and the other gas flow path 103A which supplies oxidizing gas to the oxygen electrode of each electric power generation element in the battery main body 101 are provided.

また、一方及び他方のガス流路102A,103Aは、システム温度の均一化とガスの有効利用率の向上を図るために、夫々の排出路102B,103B、夫々の循環路102C,103C及び図外のガス供給源と共にガス循環システムを構成しており、夫々のガスを電池本体101に送るための供給用ファンとして高温流体用ファンF1,F2を備えている。   Also, the one and the other gas flow paths 102A and 103A are provided with the respective discharge paths 102B and 103B, the respective circulation paths 102C and 103C and the outside of the figure in order to make the system temperature uniform and improve the effective utilization rate of the gas. A gas circulation system is configured together with the gas supply source, and high-temperature fluid fans F1 and F2 are provided as supply fans for sending each gas to the battery body 101.

高温流体用ファンF1,F2は、ガス流路102A,103Aの内外にわたって配置される回転軸Aを備えている。この回転軸Aは、高温環境となる流体のガス流路102A,103A内でファンF1,F2を構成すると共に、流路の壁部の付近に設けた滑り軸受によって中間部が回転自在に保持してあり、流路外に配置した駆動装置(電気モータ)Mにより回転駆動される。   The high-temperature fluid fans F1 and F2 include a rotation axis A that is disposed over the inside and outside of the gas flow paths 102A and 103A. The rotary shaft A constitutes the fans F1 and F2 in the gas flow paths 102A and 103A of the fluid that becomes a high temperature environment, and the intermediate part is rotatably held by a slide bearing provided in the vicinity of the wall part of the flow path. And is rotationally driven by a driving device (electric motor) M arranged outside the flow path.

本発明の高温流体用ファンの回転軸構造は、上記のような回転軸Aを含む構造に適用することができ、以下に幾つかの実施例を説明する。   The rotating shaft structure of the high-temperature fluid fan of the present invention can be applied to the structure including the rotating shaft A as described above, and several embodiments will be described below.

図1に示す高温流体用ファンの回転軸構造は、例えば図8に示す発電装置において、燃料ガスのガス流路102Aに設けた高温流体用ファンF1に適用されるものである。この場合、流体は、炭化水素系の液化燃料であり、より具体的にはガソリンが用いられる。   The rotating shaft structure of the high-temperature fluid fan shown in FIG. 1 is applied to the high-temperature fluid fan F1 provided in the gas flow path 102A of the fuel gas, for example, in the power generator shown in FIG. In this case, the fluid is a hydrocarbon-based liquefied fuel, and more specifically, gasoline is used.

回転軸構造は、高温環境となるガス流路102A内でファンF1を構成し且つ滑り軸受Bにより保持されるとともに流路外の駆動装置Mにより回転駆動される回転軸Aを備えている。駆動装置Mは、電気モータであって、その出力軸が上記回転軸Aである。   The rotating shaft structure includes a rotating shaft A that forms a fan F1 in a gas flow path 102A that is in a high temperature environment, is held by a sliding bearing B, and is rotationally driven by a driving device M outside the flow path. The driving device M is an electric motor, and its output shaft is the rotating shaft A.

回転軸Aは、ガス流路102A内で図示しない羽根とともにファンF1を構成する高温側軸部1と、滑り軸受Bに対応する部分の少なくとも一部を形成する中間軸部2と、ガス流路102A外で駆動装置M側に連結する低温側軸部3を同軸状に備えている。   The rotating shaft A includes a high-temperature side shaft portion 1 that forms a fan F1 together with blades (not shown) in the gas flow path 102A, an intermediate shaft portion 2 that forms at least a part of a portion corresponding to the slide bearing B, and a gas flow path. A low temperature side shaft portion 3 connected to the drive device M side outside 102A is coaxially provided.

高温側軸部1及び低温側軸部3は、この種の回転軸構造に使用される既知の金属製棒材である。一方、中間軸部2は、耐熱性材料から成る多孔質体で全体が形成してあり、この多孔質体は、流体であるガソリンの流通性を有している。   The high temperature side shaft portion 1 and the low temperature side shaft portion 3 are known metal rods used in this type of rotating shaft structure. On the other hand, the intermediate shaft portion 2 is entirely formed of a porous body made of a heat-resistant material, and this porous body has a flowability of gasoline as a fluid.

また、低温側軸部3は、中間軸部2との接合面から所定の長さにわたって貫通孔4が形成してある。この貫通孔4は、低温側軸部3の軸線上に形成してあると共に、反中間軸部側において、低温側軸部3の半径方向に屈曲して同軸部2の外周面に開口しており、後記する流体供給手段と中間軸部2の多孔質体とを連通させる。   In addition, the low temperature side shaft portion 3 has a through hole 4 formed over a predetermined length from the joint surface with the intermediate shaft portion 2. The through-hole 4 is formed on the axis of the low temperature side shaft portion 3 and bends in the radial direction of the low temperature side shaft portion 3 on the anti-intermediate shaft portion side to open to the outer peripheral surface of the coaxial portion 2. The fluid supply means described later and the porous body of the intermediate shaft portion 2 are communicated with each other.

ここで、上記の回転軸Aは、耐熱性及び耐腐食性等を考慮すると、その材料にはステンレス鋼が適しており、例えば、以下の要領で製造することができる。   Here, considering the heat resistance, corrosion resistance, and the like, the rotating shaft A is suitably made of stainless steel, and can be manufactured, for example, in the following manner.

一例として、粒径10μm程度のステンレス鋼の粉末を用意し、この粉末を板状に成形して1000℃程度で焼結することにより、空隙率が40〜50%程度の多孔質板を形成する。また、図7(a)に示すように、ステンレス鋼から成る板状の一方のバルク材203に対し、その端面に所定深さの孔204を所定間隔で形成する。そして、図7(b)に示すように、ステンレス鋼から成る板状の他方のバルク材201と、先に形成した多孔質板202と、孔204を形成したバルク材203を同一平面状に連ね、これらを互いに拡散接合して三層板を得る。   As an example, a stainless steel powder having a particle size of about 10 μm is prepared, and this powder is formed into a plate shape and sintered at about 1000 ° C. to form a porous plate having a porosity of about 40 to 50%. . Further, as shown in FIG. 7A, holes 204 having a predetermined depth are formed at predetermined intervals on one end of the plate-like bulk material 203 made of stainless steel. Then, as shown in FIG. 7B, the other plate-shaped bulk material 201 made of stainless steel, the previously formed porous plate 202, and the bulk material 203 having the holes 204 are connected in the same plane. These are diffusion bonded to each other to obtain a three-layer plate.

その後、孔204が中心となるように三層板をワイヤカット等で切断し、次いで、外周が円柱状を成すように切削加工を行い、さらに、図7(c)に示すように孔204の端部に通じる横穴204aを形成することにより、高温側軸部(201)1、多孔質体から成る中間軸部(202)2、及び貫通孔(204,204a)4を有する低温側軸部3を備えた回転軸Aが得られる。   Thereafter, the three-layer plate is cut by wire cutting or the like so that the hole 204 is centered, and then cut so that the outer periphery forms a columnar shape. Further, as shown in FIG. The low temperature side shaft portion 3 having the high temperature side shaft portion (201) 1, the intermediate shaft portion (202) 2 made of a porous body, and the through holes (204, 204 a) 4 is formed by forming a lateral hole 204 a communicating with the end portion. Is obtained.

なお、高温側軸部及び低温側軸部となる円柱状の各部材と、中間軸部となる円柱状の多孔質体を予め用意し、これらの接合面を電子ビームやレーザを用いて直接溶接して回転軸を形成することもできるが、この場合には、とくに貫通孔から多孔質体に至る間を潰さないように加工する。   In addition, each cylindrical member that becomes the high-temperature side shaft portion and the low-temperature side shaft portion and a cylindrical porous body that becomes the intermediate shaft portion are prepared in advance, and these joint surfaces are directly welded using an electron beam or a laser. In this case, processing is performed so that the space between the through hole and the porous body is not crushed.

上記の回転軸Aは、ガス流路102Aを形成する壁部100に設けた滑り軸受Bにより回転自在に保持される。この実施例の滑り軸受Bは、ガス流路102A内に突出した状態で設けてあって、その内周面を滑り面とし、回転軸Aとの間に、ガス流路102A側に開放された排出用間隙5を形成している。   The rotating shaft A is rotatably held by a sliding bearing B provided on the wall portion 100 forming the gas flow path 102A. The sliding bearing B of this embodiment is provided in a state of protruding into the gas flow path 102A, and has an inner peripheral surface as a sliding surface, and is opened to the gas flow path 102A side between the rotary shaft A and the sliding bearing B. A discharge gap 5 is formed.

また、滑り軸受Bは、回転軸Aに対して、中間軸部2に対応するだけでなく、図中にオーバーラップ部分Cを示すように、高温側軸部1及び低温側軸部3の一部にも対応する長さを有している。   Further, the sliding bearing B corresponds not only to the intermediate shaft portion 2 with respect to the rotary shaft A but also to one of the high temperature side shaft portion 1 and the low temperature side shaft portion 3 so as to indicate an overlap portion C in the drawing. The part also has a corresponding length.

流体供給手段は、滑り軸受Bの流路外側において回転軸Aの低温側軸部3が貫通する流体供給室6と、流体供給室6から図外の流体供給源に至る供給路17などを備えている。なお、当該回転軸構造は、先述の如く、電気モータである駆動装置Mの出力軸が上記の回転軸Aであるから、流体供給路6の外側に駆動装置Mが設けてある。   The fluid supply means includes a fluid supply chamber 6 through which the low temperature side shaft portion 3 of the rotary shaft A penetrates outside the flow path of the sliding bearing B, a supply path 17 from the fluid supply chamber 6 to a fluid supply source (not shown), and the like. ing. In the rotating shaft structure, as described above, since the output shaft of the driving device M that is an electric motor is the rotating shaft A, the driving device M is provided outside the fluid supply path 6.

流体供給手段に対して、低温側軸部3の貫通孔4は、流体供給室6内で開口しており、流体供給室6から中間軸部2の多孔質体に至る間を連通状態にしている。なお、回転軸Aと滑り軸受Bとの間の排出用隙間5は、ガス流路102A側だけでなく、流体供給室6側に開放させることも可能である。   The through hole 4 of the low temperature side shaft portion 3 is opened in the fluid supply chamber 6 with respect to the fluid supply means, and the space from the fluid supply chamber 6 to the porous body of the intermediate shaft portion 2 is in a communicating state. Yes. The discharge gap 5 between the rotary shaft A and the sliding bearing B can be opened not only on the gas flow path 102A side but also on the fluid supply chamber 6 side.

さらに、低温側軸部3は、流体供給室6内の対向壁に夫々摺接するずれ止め7A,7Bを備えている。このとき、駆動装置M側となるずれ止め7Bは、駆動装置M側にガソリンが漏出するのを阻止する機能を兼ねるもので、流体供給室6の壁面との間にシール材8が介装してある。   Further, the low temperature side shaft portion 3 is provided with displacement stoppers 7A and 7B which are in sliding contact with the opposing walls in the fluid supply chamber 6, respectively. At this time, the displacement stopper 7B on the drive device M side also functions to prevent gasoline from leaking to the drive device M side, and a sealing material 8 is interposed between the wall surface of the fluid supply chamber 6. It is.

上記構成を備えた高温流体用ファンF1の回転軸構造は、図8に示すような発電装置において、ファンF1を回転駆動して電池本体101に燃料ガスを供給するに際し、回転軸Aの冷却と潤滑の機能だけでなく、ガス流路102Aに対する燃料ガスの供給装置としても機能することとなる。   The rotating shaft structure of the high-temperature fluid fan F1 having the above-described configuration is such that, in the power generator as shown in FIG. 8, when the fan F1 is driven to rotate and the fuel gas is supplied to the battery body 101, the rotating shaft A is cooled. In addition to the function of lubrication, it also functions as a fuel gas supply device for the gas flow path 102A.

すなわち、回転軸構造は、駆動装置Mにより回転軸A及びファンF1を回転駆動すると共に、流体供給源から供給路17を通して流体供給室6にガソリンが加圧供給され、このガソリンを低温側軸部3の貫通孔4、中間軸部2の多孔質体及び排出用間隙5を通してガス流路102A内に供給する。また、ガス流路102A内は、電池本地101の発熱に伴って高温環境となる。   That is, in the rotary shaft structure, the rotary shaft A and the fan F1 are driven to rotate by the driving device M, and gasoline is pressurized and supplied to the fluid supply chamber 6 from the fluid supply source through the supply path 17, and this gasoline is supplied to the low temperature side shaft portion. 3 through the through-hole 4, the porous body of the intermediate shaft portion 2, and the discharge gap 5. Further, the gas flow path 102 </ b> A becomes a high temperature environment as the battery main body 101 generates heat.

このとき、回転軸Aに取付けたファンFの羽根は、電池本体101にガソリンを送るだけでなく、ガス流路102A内の熱を取り込んで回転軸Aに伝える。そして、回転軸Aに伝えられた熱は中間軸部2の多孔質体においてガソリンと出会うこととなる。   At this time, the blades of the fan F attached to the rotating shaft A not only send gasoline to the battery body 101 but also take in the heat in the gas flow path 102A and transmit it to the rotating shaft A. The heat transmitted to the rotation shaft A meets gasoline in the porous body of the intermediate shaft portion 2.

中間軸部2の多孔質体は、その表面積(流体との接触面積)が非常に大きく且つ熱抵抗も大きい。したがって、当該回転軸構造は、中間軸部2の多孔質体を通して高温環境であるガス流路102Aにガソリンを供給することで、多孔質体において熱交換を行うとともにガソリンを気化させる。   The porous body of the intermediate shaft portion 2 has a very large surface area (contact area with the fluid) and a large thermal resistance. Therefore, the rotating shaft structure supplies gasoline to the gas flow path 102A that is a high-temperature environment through the porous body of the intermediate shaft portion 2, thereby exchanging heat in the porous body and vaporizing the gasoline.

気化したガソリンは、原液体積に比較して大きく膨張して、多孔質体の周囲すなわち回転軸Aと滑り軸受Bとの間の排出用間隙5へ流れ、この排出用間隙5で気体膜を形成することによってエアベアリングのエアとして機能し、排出用間隙5からガス流路102Aへ放出される。   The vaporized gasoline expands greatly compared to the volume of the stock solution and flows to the discharge gap 5 around the porous body, that is, between the rotary shaft A and the slide bearing B, and forms a gas film in the discharge gap 5 By doing so, it functions as air of the air bearing and is discharged from the discharge gap 5 to the gas flow path 102A.

つまり、当該回転軸構造は、回転軸Aの冷却及び潤滑を行うと共に、ガソリンの気化器を兼ねており、入熱を熱交換器を介して蒸発熱として用いるのではなく、直接蒸発熱として用いるので熱交換時の損失が少ないものとなっている。   In other words, the rotating shaft structure cools and lubricates the rotating shaft A, and also serves as a gasoline vaporizer. The heat input is not directly used as the heat of evaporation via the heat exchanger, but is directly used as the heat of evaporation. Therefore, the loss during heat exchange is small.

また、ガソリンは、回転軸Aへの入熱量に対して蒸発分以上の量を供給する。この際、全てのガソリンを蒸発させることができなくても、液であるガソリンは気化したガソリンに運ばれてガス流路102Aに供給され、しかも、回転軸Aの回転で周囲に撒き散らされることによって蒸発し易くなる作用もあるので、全く問題は生じない。   Further, gasoline supplies an amount equal to or greater than the amount of evaporation relative to the amount of heat input to the rotary shaft A. At this time, even if not all the gasoline can be evaporated, the liquid gasoline is transported to the vaporized gasoline and supplied to the gas flow path 102A, and is scattered around by the rotation of the rotating shaft A. Since there is an effect of evaporating easily, there is no problem at all.

むしろ、出力を増加させるためにガソリンを増加させる場合には、ファンFの回転も供給量を増加させるために高速となり、これにより回転軸Aへの入熱量も増加するので、自動的にガソリンの蒸発量を増加させることができる。なお、低温時においては、滑り軸受Bにおいて、液であるガソリンを潤滑剤として機能させることができる。   Rather, when the gasoline is increased to increase the output, the rotation of the fan F is also increased to increase the supply amount, thereby increasing the amount of heat input to the rotating shaft A. The amount of evaporation can be increased. At low temperatures, the liquid bearing gasoline can function as a lubricant in the sliding bearing B.

一方、回転軸Aの低温側軸部3では、中間軸部2の多孔質体におけるガソリンの気化により、回転軸Aの温度をガソリンの沸点温度に抑制することができる。   On the other hand, in the low temperature side shaft portion 3 of the rotating shaft A, the temperature of the rotating shaft A can be suppressed to the boiling point temperature of gasoline by the vaporization of gasoline in the porous body of the intermediate shaft portion 2.

ガソリンは、混合燃料であるので厳密には規定できないが、主成分はオクタン相当であって、その沸点125℃を中心に沸点範囲は30〜210℃と言われている。中間軸部2の多孔質体に供給されたガソリンは低沸点の成分から順に気化し、高温側軸部1の方向へ流れていくに従って高沸点の成分が気化することとなる。したがって、低温側軸部3の温度は、基本的にオクタンよりも低沸点側の温度に制限することができる。   Although gasoline cannot be strictly defined because it is a mixed fuel, the main component is equivalent to octane, and its boiling range is said to be 30-210 ° C., centering on its boiling point of 125 ° C. The gasoline supplied to the porous body of the intermediate shaft part 2 is vaporized in order from the low boiling point component, and the high boiling point component is vaporized as it flows in the direction of the high temperature side shaft part 1. Therefore, the temperature of the low temperature side shaft portion 3 can be basically limited to a temperature on the lower boiling point side than octane.

このように、高温流体用ファンの回転軸構造は、回転軸Aにおいて、中間軸部2の多孔質体が断熱部となって高温側軸部1と低温側軸部3を熱的に分離すると共に、多孔質体から排出用間隙5に気化したガソリンを噴出させることで、回転軸Aと滑り軸受Bとの間の潤滑性を維持するものとなっており、高温側軸部1から低温側軸部3への熱伝導を大幅に抑制することができるので、回転軸Aの軸長の短縮化や駆動装置Mに対する熱対策の簡略化等が可能となる。   Thus, in the rotating shaft structure of the high-temperature fluid fan, the high-temperature side shaft portion 1 and the low-temperature side shaft portion 3 are thermally separated from each other on the rotating shaft A by the porous body of the intermediate shaft portion 2 serving as a heat insulating portion. At the same time, the gasified gasoline is ejected from the porous body into the discharge gap 5 to maintain the lubricity between the rotary shaft A and the sliding bearing B, and from the high temperature side shaft portion 1 to the low temperature side. Since heat conduction to the shaft portion 3 can be greatly suppressed, the shaft length of the rotating shaft A can be shortened, heat measures for the driving device M can be simplified, and the like.

したがって、上記の高温流体用ファンの回転軸構造を発電装置のガス循環システムに適用すれば、システム温度の均一化やガス化交換熱の有効利用率の向上を図りつつ、発電装置の構造の簡略化や小型化を実現することができる。   Therefore, if the rotary shaft structure of the high-temperature fluid fan is applied to the gas circulation system of the power generation apparatus, the structure of the power generation apparatus can be simplified while achieving a uniform system temperature and an effective utilization rate of gasification exchange heat. And miniaturization can be realized.

また、当該回転軸構造は、先述したようにガソリンの気化器を兼ねるものであり、一般的な気化器は高い圧力を必要とするスプレー等が主流であるが、これに対して当該回転軸構造では熱蒸発を行うので、ガソリン送給の低圧化も可能であり、省エネルギに貢献し得る。なお、ガソリン送給の圧力を調整することで、回転軸Aと滑り軸受Bとの間の排出用間隙5を用いてガソリンをスプレー化することもでき、低温起動時に利用することが可能である。   In addition, as described above, the rotary shaft structure also serves as a gasoline vaporizer, and general vaporizers are mainly sprays that require high pressure. Then, since thermal evaporation is performed, it is possible to reduce the pressure of gasoline supply, which can contribute to energy saving. In addition, by adjusting the pressure of the gasoline supply, the gasoline can be sprayed using the discharge gap 5 between the rotating shaft A and the sliding bearing B, and can be used at low temperature startup. .

さらに、当該回転軸構造は、回転軸Aの高温側軸部1及び低温側軸部3の一部が、図中のオーバーラップ部Cで示すように滑り軸受Bに対応しているので、この部分でエアベアリングとしての軸保持力を高めることができる。   Further, in the rotary shaft structure, a part of the high temperature side shaft portion 1 and the low temperature side shaft portion 3 of the rotary shaft A corresponds to the sliding bearing B as shown by the overlap portion C in the figure. The shaft holding force as an air bearing can be increased at the portion.

さらに、当該回転軸構造は、流体供給手段が、回転軸Aの低温側軸部3が貫通する流体供給室6を備えていると共に、低温側軸部3の貫通孔4が、流体供給室6から中間軸部2の多孔質体に連通しているので、比較的簡単な構造で流体(ガソリン)を定量供給することができる。   Further, in the rotary shaft structure, the fluid supply means includes a fluid supply chamber 6 through which the low temperature side shaft portion 3 of the rotation shaft A passes, and the through hole 4 of the low temperature side shaft portion 3 includes the fluid supply chamber 6. Since it communicates with the porous body of the intermediate shaft portion 2, fluid (gasoline) can be quantitatively supplied with a relatively simple structure.

さらに、当該回転軸構造は、駆動装置Mが、回転軸Aを出力軸とする電気モータであることから、回転軸Aにおける多孔質体の熱的分離によって電気モータの冷却手段の簡略化を実現することができ、逆に、電気モータ側からの熱を放熱し得るので、その熱を流体(ガソリン)の気化に利用することができ、エネルギーの無駄がないものとなる。   Furthermore, since the rotating shaft structure is an electric motor whose driving device M uses the rotating shaft A as an output shaft, the cooling means of the electric motor is simplified by thermal separation of the porous body on the rotating shaft A. On the contrary, since the heat from the electric motor side can be dissipated, the heat can be used for vaporizing the fluid (gasoline), and energy is not wasted.

図2は、本発明の高温流体用ファンの回転軸構造の他の実施例を説明する図である。なお、先の実施例と同一の構成部位は、同一符号を付して詳細な説明を省略する。   FIG. 2 is a view for explaining another embodiment of the rotating shaft structure of the high-temperature fluid fan of the present invention. The same components as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示の回転軸構造は、流体供給手段を構成する流体供給室6のガス流路102A側及び駆動装置M側において、回転軸Aの低温側軸部3を転がり軸受11,12で保持した構成となっている。転がり軸受11,12としては、必要に応じてラジアルベアリングやスラストベアリングが用いられる。   The illustrated rotary shaft structure has a configuration in which the low temperature side shaft portion 3 of the rotary shaft A is held by the rolling bearings 11 and 12 on the gas flow path 102A side and the drive device M side of the fluid supply chamber 6 constituting the fluid supply means. It has become. As the rolling bearings 11 and 12, radial bearings or thrust bearings are used as necessary.

つまり、当該回転軸構造は、回転軸Aにおいて、多孔質体を有する中間軸部2によって高温側軸部1と低温側軸部とを熱的に分離することができるので、低温側軸部3には転がり軸受11,12の如き機械的潤滑手段を採用することが可能となり、これにより回転軸Aの安定性をより高めると共に、低温起動時の摩擦を低減することができる。また、耐熱化を図るために高価なセラミックス等の材料を使用せずに、通常の金属ベアリングを用いて、低コストでより高精度に回転軸Aを保持することができる。   That is, in the rotary shaft structure, the high temperature side shaft portion 1 and the low temperature side shaft portion can be thermally separated on the rotary shaft A by the intermediate shaft portion 2 having a porous body. It is possible to employ mechanical lubrication means such as the rolling bearings 11 and 12, thereby improving the stability of the rotary shaft A and reducing the friction during low temperature startup. In addition, the rotary shaft A can be held with high accuracy at a low cost by using a normal metal bearing without using an expensive material such as ceramics in order to achieve heat resistance.

図3は、本発明の高温流体用ファンの回転軸構造のさらに他の実施例を説明する図である。なお、先の実施例と同一の構成部位は、同一符号を付して詳細な説明を省略する。   FIG. 3 is a view for explaining still another embodiment of the rotating shaft structure of the high-temperature fluid fan of the present invention. The same components as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示の回転軸構造は、流体供給手段の流体供給室6内において、回転軸Aの低温側軸部3に、同回転軸Aの回転に伴って流体を貫通孔4内に導入する流体供給ポンプ21を備えたものとなっている。   The illustrated rotary shaft structure is a fluid supply pump that introduces fluid into the through-hole 4 as the rotary shaft A rotates in the low temperature side shaft portion 3 of the rotary shaft A in the fluid supply chamber 6 of the fluid supply means. 21 is provided.

流体供給ポンプ21は、低温側軸部3に対して一体的に設けたフランジ部22を備えると共に、このフランジ部22に、低温側軸部3の軸線上の貫通孔4に連通する4本の横穴4Aが周方向に等間隔で形成してある。各横穴4Aは、図中矢印で示す回転軸Aの回転方向に向けて湾曲しており、フランジ部22の外周面における開口部に、ベーン23が夫々設けてある。   The fluid supply pump 21 includes a flange portion 22 provided integrally with the low temperature side shaft portion 3, and four flanges 22 communicate with the through holes 4 on the axis of the low temperature side shaft portion 3. Horizontal holes 4A are formed at equal intervals in the circumferential direction. Each horizontal hole 4 </ b> A is curved toward the rotation direction of the rotation axis A indicated by the arrow in the drawing, and a vane 23 is provided in an opening portion on the outer peripheral surface of the flange portion 22.

当該回転軸構造は、回転軸4とともに流体供給ポンプ21が回転すると、ベーン23と湾曲した横穴4Aとによって流体供給室6内の流体を求心方向に導入し、その流体を貫通孔4に流入させることとなり、流体供給室6内を加圧しなくても流体を回転軸Aからガス流路102A側へ供給することができる。したがって、流体の加圧源を低圧化又は廃止することができ、装置構造のさらなる簡略化に貢献することができる。   In the rotating shaft structure, when the fluid supply pump 21 rotates together with the rotating shaft 4, the fluid in the fluid supply chamber 6 is introduced in the centripetal direction by the vane 23 and the curved lateral hole 4 </ b> A, and the fluid flows into the through hole 4. In other words, the fluid can be supplied from the rotation axis A to the gas flow path 102 </ b> A side without pressurizing the fluid supply chamber 6. Therefore, the pressure source of the fluid can be reduced or eliminated, which can contribute to further simplification of the device structure.

また、流体供給室6内を加圧して流体を回転軸Aへ供給する場合では、回転軸Aの回転速度の増加に伴って流体供給が困難になることがある。これに対して、当該回転軸構造では、流体供給ポンプ21の採用により、回転速度に比例して流体供給量を増加させること
ができ、高温となる高回転速度においても、高温側軸部1からの入熱量増加に応じて流体の供給量増加を自動的に行うことができる。
In the case where the fluid supply chamber 6 is pressurized and fluid is supplied to the rotary shaft A, the fluid supply may become difficult as the rotational speed of the rotary shaft A increases. On the other hand, in the rotary shaft structure, the fluid supply pump 21 can be used to increase the fluid supply amount in proportion to the rotation speed, and from the high temperature side shaft portion 1 even at a high rotation speed at a high temperature. The fluid supply amount can be automatically increased in accordance with the increase in the heat input amount.

図4は、本発明の高温流体用ファンの回転軸構造のさらに他の実施例を説明する図である。なお、先の実施例と同一の構成部位は、同一符号を付して詳細な説明を省略する。   FIG. 4 is a view for explaining still another embodiment of the rotating shaft structure of the high-temperature fluid fan of the present invention. The same components as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示の回転軸構造は、回転軸Aの中間軸部2が多孔質体で形成されていると共に、先の各実施例に比べて中間軸部2が長く、滑り軸受Bからガス流路102Aに露出したものとなっている。   In the illustrated rotating shaft structure, the intermediate shaft portion 2 of the rotating shaft A is formed of a porous body, and the intermediate shaft portion 2 is longer than in the previous embodiments, so that the sliding bearing B extends to the gas flow path 102A. It is exposed.

当該回転軸構造は、先の各実施例と同様の作用及び効果を得ることができほか、多孔質体から成る中間軸部2の軸長を長くしたので、熱交換量をより多く確保して低温側軸部3から駆動装置M側の冷却効果を高めることができ、また、気化し切れなかったガソリン等の流体をガス流路102A内に直接撒き散らして、ガス流路102A内の温度で気化させることができる。   The rotary shaft structure can obtain the same operations and effects as the previous embodiments, and the axial length of the intermediate shaft portion 2 made of a porous body is increased, so that a larger amount of heat exchange is ensured. The cooling effect on the driving device M side from the low temperature side shaft portion 3 can be enhanced, and a fluid such as gasoline that has not been completely vaporized is directly scattered in the gas flow path 102A, and the temperature in the gas flow path 102A is increased. It can be vaporized.

ここで、上記各実施例では、図8に示す発電装置において、燃料ガスのガス流路102AのファンF1に当該回転軸構造を適用した場合、すなわち流体が液体(ガソリン)である場合を説明したが、当該回転軸構造は、流体である気体の供給にも用いることが可能であるから、図8に示す発電装置において、酸化ガスのガス流路103AのファンF2に適用することもできる。この場合、流体は例えば空気であり、ガス流路103Aの冷却も行うこととなる。   Here, in each of the above embodiments, the case where the rotating shaft structure is applied to the fan F1 of the fuel gas flow path 102A in the power generation apparatus shown in FIG. 8, that is, the case where the fluid is liquid (gasoline) has been described. However, since the rotating shaft structure can also be used to supply a gas that is a fluid, it can also be applied to the fan F2 of the gas flow path 103A for the oxidizing gas in the power generation device shown in FIG. In this case, the fluid is air, for example, and the gas flow path 103A is also cooled.

当該回転軸構造は、酸化ガスのガス流路103AのファンF2に適用した場合には、中間軸部2の多孔質体に空気を供給して、その多孔質体の大きな表面積(空気との接触面積)により空気と充分に熱交換を行うことができ、また、空気の予熱を行うこともできる。そして、中間軸部2の多孔質体から排出用間隙5に空気を噴出させることで、エアベアリングと同等の潤滑機能を得ることもできる。   When the rotating shaft structure is applied to the fan F2 of the gas flow path 103A for the oxidizing gas, air is supplied to the porous body of the intermediate shaft portion 2, and the large surface area of the porous body (contact with air) Depending on the area, heat can be sufficiently exchanged with air, and air can be preheated. Further, by ejecting air from the porous body of the intermediate shaft portion 2 to the discharge gap 5, it is possible to obtain a lubricating function equivalent to that of an air bearing.

図5は、本発明の高温流体用ファンの回転軸構造のさらに他の実施例を説明する図である。なお、先の実施例と同一の構成部位は、同一符号を付して詳細な説明を省略する。   FIG. 5 is a view for explaining still another embodiment of the rotating shaft structure of the high-temperature fluid fan of the present invention. The same components as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示のガス流路102Aの壁部100は、外壁100Aと内壁100Bとで断熱層を挟んだ三層構造になっている。また、図示の高温流体用ファンF1は、ヘリカル型のものであるが、その形態がとくに限定されることはない。   The illustrated wall portion 100 of the gas flow channel 102A has a three-layer structure in which a heat insulating layer is sandwiched between an outer wall 100A and an inner wall 100B. The illustrated high-temperature fluid fan F1 is a helical type, but the form thereof is not particularly limited.

上記のガス流路102Aにおける高温流体用ファンF1の回転軸構造は、流体供給手段が、図外の流体供給源から流体を供給する主供給路31と、主供給路31の途中に設けた液ポンプ32と、主供給路31から流体供給室6に至る第1の供給路17と、主供給路31からガス流路102Aに直接至る第2供給路27と、第1及び第2の供給路17,27の分岐点に設けた分配バルブ33を備えている。   The rotary shaft structure of the high-temperature fluid fan F1 in the gas flow path 102A described above has a main supply path 31 through which the fluid supply means supplies fluid from a fluid supply source (not shown), and a liquid provided in the middle of the main supply path 31. The pump 32, the first supply path 17 from the main supply path 31 to the fluid supply chamber 6, the second supply path 27 directly from the main supply path 31 to the gas flow path 102A, and the first and second supply paths A distribution valve 33 provided at the branching points 17 and 27 is provided.

また、上記の回転軸構造は、図示は省略したが、ガス流路102A及び回転軸Aの温度を測定する各センサや、各センサからの検出結果に基づいて液ポンプ32や分配バルブ33の動作制御を行う制御装置などを備えており、ガス流路102A内の温度や回転軸Aの温度に応じて第1及び第2の供給路17,27への流体供給量を調整する。   Although the illustration of the rotary shaft structure is omitted, each sensor for measuring the temperature of the gas flow path 102A and the rotary shaft A and the operation of the liquid pump 32 and the distribution valve 33 based on the detection result from each sensor. A control device or the like that performs control is provided, and the amount of fluid supplied to the first and second supply paths 17 and 27 is adjusted according to the temperature in the gas flow path 102A and the temperature of the rotary shaft A.

つまり、当該回転軸構造は、ガス流路102Aに供給すべき流体(ガソリン)の全量を必ずしも回転軸Aから供給しなくても良く、ガス流路102Aや回転軸Aの温度が比較的低温であれば、回転軸Aを充分に冷却する必要はないので、上記構成により、第2供給路27からガス流路102Aに直接流体を供給することができる。   That is, the rotary shaft structure does not necessarily supply the entire amount of fluid (gasoline) to be supplied to the gas flow channel 102A from the rotary shaft A, and the temperatures of the gas flow channel 102A and the rotary shaft A are relatively low. If there is, it is not necessary to sufficiently cool the rotating shaft A. With the above configuration, the fluid can be directly supplied from the second supply path 27 to the gas flow path 102A.

このように、当該回転軸構造は、ガス流路102Aや回転軸Aの温度に応じて、第1供給路17を用いた回転軸Aからの流体供給と、第2供給路27を用いた直接的な流体供給を選択的に行うことができ、また、流体の供給量も適宜調整することができるので、ガス流路102Aに対する流体供給の自由度が飛躍的に向上し、発電装置におけるガス循環システムの機能向上にも貢献し得るものとなる。   Thus, the rotary shaft structure is configured to supply fluid from the rotary shaft A using the first supply passage 17 and directly using the second supply passage 27 according to the temperature of the gas flow passage 102A and the rotary shaft A. Fluid supply can be selectively performed, and the amount of fluid supply can be adjusted as appropriate, so that the degree of freedom of fluid supply to the gas flow channel 102A is dramatically improved, and gas circulation in the power generator is performed. It can also contribute to the improvement of system functions.

図6は、回転軸Aにおける中間軸部2の幾つかの実施形態を説明する図である。   FIG. 6 is a diagram for explaining several embodiments of the intermediate shaft portion 2 in the rotation axis A. FIG.

中間軸部2は、図6(a)(b)に示すように、その全体を多孔質体2Aで形成することができるほか、図6(c)〜(h)に示すように、外周面の一部を形成する緻密質体2Bを回転対称位置に備えたものとすることができる。   As shown in FIGS. 6 (a) and 6 (b), the intermediate shaft portion 2 can be entirely formed of a porous body 2A, and as shown in FIGS. The dense body 2B forming a part of can be provided at a rotationally symmetric position.

緻密質体2Bは、多孔質に対して緻密質である一般的な金属部材を意味し、例えば高温側軸部1や低温側軸部3と同じ材料で形成してある。この緻密質体2Bは、上述の如く中間軸部2の外周面の一部を形成すると共に、低温側軸部3から多孔質体2Aの外周部に至る流体の流通を妨げることがない位置に設けられ、より望ましくは、高温側軸部1と低温側軸部3とを熱的に連結しないものが良い。   The dense body 2B means a general metal member that is dense with respect to the porous material, and is formed of the same material as the high temperature side shaft portion 1 and the low temperature side shaft portion 3, for example. The dense body 2B forms a part of the outer peripheral surface of the intermediate shaft portion 2 as described above, and does not hinder the flow of fluid from the low temperature side shaft portion 3 to the outer peripheral portion of the porous body 2A. More preferably, the high temperature side shaft portion 1 and the low temperature side shaft portion 3 are not thermally connected.

図6(c)(d)に示す中間軸部2は、多孔質体2Aの外周部に、その軸線方向にわたる4個の緻密質体2Bを周方向に等間隔で組み込んだ構成になっている。   The intermediate shaft portion 2 shown in FIGS. 6C and 6D has a configuration in which four dense bodies 2B extending in the axial direction are incorporated at equal intervals in the outer circumferential portion of the porous body 2A. .

図6(e)(f)に示す中間軸部2は、多孔質体2Aの中間部外周に、複数の緻密質体2Bを組み込んだ構成になっている。   The intermediate shaft portion 2 shown in FIGS. 6E and 6F has a configuration in which a plurality of dense bodies 2B are incorporated in the outer periphery of the intermediate portion of the porous body 2A.

図6(g)(h)に示す中間軸部2は、多孔質体2Aの外周において、高温側軸部寄りの位置と低温側軸部寄りの位置に、複数の緻密質体2Bを組み込んだ構成になっており、いずれか一方の位置のみに緻密質体2Bを設けた構成とすることも可能である。   The intermediate shaft portion 2 shown in FIGS. 6G and 6H incorporates a plurality of dense bodies 2B at positions near the high temperature side shaft portion and the low temperature side shaft portion on the outer periphery of the porous body 2A. It is also possible to adopt a configuration in which the dense body 2B is provided only at one of the positions.

上記の各中間軸部2は、いずれも外周面の一部を形成する緻密質体2Bを回転対称位置に備えたことにより、先の実施例で高温側軸部1及び低温側軸部3の一部を滑り軸受Bにオーバーラップさせた場合と同様に、滑り軸受Bにおける軸保持力をより高めることができる。   Each of the intermediate shaft portions 2 is provided with the dense body 2B that forms a part of the outer peripheral surface at the rotationally symmetric position, so that the high temperature side shaft portion 1 and the low temperature side shaft portion 3 in the previous embodiment are provided. Similarly to the case where a part of the bearing is overlapped with the slide bearing B, the shaft holding force in the slide bearing B can be further increased.

つまり、回転軸Aと滑り軸受Bとの間では、流体が存在すると多孔質の部分よりも緻密質の部分の方が大きな反力を示すので、上記の如く中間軸部2に緻密質体2Bを設けることで、滑り軸受Bにおける軸保持力も高まることとなり、とくに、回転軸Aに重負荷がかかる場合などには、回転軸Aの振れ止めの効果をより高めることができる。   That is, between the rotating shaft A and the sliding bearing B, when a fluid is present, the dense portion exhibits a larger reaction force than the porous portion, so that the dense body 2B is applied to the intermediate shaft portion 2 as described above. As a result, the shaft holding force of the sliding bearing B is also increased. In particular, when the heavy load is applied to the rotating shaft A, the effect of preventing the rotating shaft A from swinging can be further enhanced.

なお、本発明に係わる高温流体用ファンの回転軸構造は、固体酸化物型燃料電池を用いた発電装置におけるガス循環システムに好適であって、流体としては、炭化水素系の液化燃料(ガソリン)や酸化ガス(空気)だけでなく、過湿運転のために供給される水でも良いが、その適用が発電装置のみに限定されるものではなく、高温環境となる流体の流路内でファンを回転駆動する各種回転軸構造に適用可能である。   The rotating shaft structure of the high-temperature fluid fan according to the present invention is suitable for a gas circulation system in a power generator using a solid oxide fuel cell, and the fluid is a hydrocarbon-based liquefied fuel (gasoline). In addition to oxidant gas (air) and water supplied for overhumidity operation, the application is not limited to the power generator, but the fan is installed in the flow path of fluid that becomes a high temperature environment. The present invention can be applied to various rotating shaft structures that are rotationally driven.

また、本発明に係わる高温流体用ファンの回転軸構造は、その構成の細部が上記各実施例に限定されるものではなく、例えば、中間軸部2における多孔質体及び緻密質体の形状を適宜変更することができ、さらに、低温側軸部3に形成する貫通孔4にあっても、1本の場合には軸線上に形成するのが望ましいが、回転軸Aの回転時のバランスを考慮したうえで複数の貫通孔を形成したり、中間軸部2の多孔質体に至る部分で複数に分岐させたりすることが可能である。   In addition, the structure of the rotating shaft of the high-temperature fluid fan according to the present invention is not limited to the details of the above-described embodiments. For example, the shapes of the porous body and the dense body in the intermediate shaft portion 2 are the same. In addition, it is desirable that the through hole 4 formed in the low temperature side shaft portion 3 is formed on the axis line in the case of one, but the balance during rotation of the rotating shaft A can be balanced. In consideration, it is possible to form a plurality of through holes, or to branch into a plurality of portions at the portion of the intermediate shaft portion 2 that reaches the porous body.

本発明に係わる高温流体用ファンの回転軸構造の一実施例を説明する断面図である。It is sectional drawing explaining one Example of the rotating shaft structure of the fan for high temperature fluids concerning this invention. 本発明に係わる高温流体用ファンの回転軸構造の他の実施例を説明する断面図である。It is sectional drawing explaining the other Example of the rotating shaft structure of the fan for high temperature fluids concerning this invention. 本発明に係わる高温流体用ファンの回転軸構造のさらに他の実施例を説明する断面図(a)及び流体供給ポンプの平面断面図(b)である。It is sectional drawing (a) explaining the further another Example of the rotating shaft structure of the fan for high temperature fluid concerning this invention, and plane sectional drawing (b) of the fluid supply pump. 本発明に係わる高温流体用ファンの回転軸構造のさらに他の実施例を説明する断面図である。It is sectional drawing explaining the further another Example of the rotating shaft structure of the fan for high temperature fluids concerning this invention. 本発明に係わる高温流体用ファンの回転軸構造のさらに他の実施例を説明する断面図である。It is sectional drawing explaining the further another Example of the rotating shaft structure of the fan for high temperature fluids concerning this invention. 中間軸部の4つの実施形態を説明する図であって、軸線に直交する横断面図(a)(c)(e)(g)及びこれらに対応する縦断面図(b)(d)(f)(h)である。It is a figure explaining four embodiment of an intermediate shaft part, Comprising: Cross-sectional view (a) (c) (e) (g) orthogonal to an axis line, and longitudinal cross-sectional view (b) (d) ( f) It is (h). 回転軸の製造過程を説明する各々断面図(a)(b)(c)である。It is each sectional drawing (a) (b) (c) explaining the manufacturing process of a rotating shaft. 本発明に係わる高温流体用ファンの回転軸構造が適用される発電装置を示す説明図である。It is explanatory drawing which shows the electric power generating apparatus with which the rotating shaft structure of the fan for high temperature fluid concerning this invention is applied.

符号の説明Explanation of symbols

A 回転軸
B 滑り軸受
F1 F2 ファン
M 駆動装置(電気モータ)
1 高温側軸部
2 低温側軸部
2A 多孔質体
2B 緻密質体
3 低温側軸部
4 貫通孔
5 排出用間隙
6 流体供給室(流体供給手段)
11 12 転がり軸受
17 第1供給路
21 流体供給ポンプ
27 第2供給路
101 電池本体
102A 一方のガス流路(流路)
103A 他方のガス流路(流路)
A Rotating shaft B Sliding bearing F1 F2 Fan M Drive unit (electric motor)
DESCRIPTION OF SYMBOLS 1 High temperature side axial part 2 Low temperature side axial part 2A Porous body 2B Dense body 3 Low temperature side axial part 4 Through-hole 5 Discharge gap 6 Fluid supply chamber (fluid supply means)
11 12 Rolling bearing 17 First supply path 21 Fluid supply pump 27 Second supply path 101 Battery body 102A One gas flow path (flow path)
103A The other gas flow path (flow path)

Claims (11)

高温環境となる流体の流路内でファンを構成し且つ滑り軸受により保持されるとともに流路外の駆動装置により回転駆動される回転軸の構造であって、
回転軸が、ファンを構成する高温側軸部と、滑り軸受に対応する部分の少なくとも一部を形成し且つ耐熱性材料から成る多孔質体を有する中間軸部と、駆動装置側に連結する低温側軸部を同軸状に備えており、
低温側軸部に、流体を供給する流体供給手段と中間軸部の多孔質体とを連通させる貫通孔を形成すると共に、回転軸と滑り軸受との間に、流路側に開放された排出用間隙を設け、
流体供給手段から供給した流体を低温側軸部の貫通孔、中間軸部の多孔質体及び排出用間隙を通して流路内に供給することを特徴とする高温流体用ファンの回転軸構造。
A structure of a rotating shaft that constitutes a fan in a fluid flow path that becomes a high temperature environment and is held by a sliding bearing and is rotationally driven by a driving device outside the flow path,
The rotating shaft has a high temperature side shaft portion that constitutes a fan, an intermediate shaft portion that forms at least part of a portion corresponding to a sliding bearing and has a porous body made of a heat resistant material, and a low temperature that is connected to the drive device side. The side shaft is provided coaxially,
A through hole is formed in the low temperature side shaft portion for communicating the fluid supply means for supplying the fluid and the porous body of the intermediate shaft portion, and the discharge is opened to the flow path side between the rotating shaft and the slide bearing. Providing a gap,
A rotating shaft structure of a fan for high-temperature fluid, characterized in that the fluid supplied from the fluid supply means is supplied into the flow path through the through hole in the low-temperature side shaft portion, the porous body in the intermediate shaft portion, and the discharge gap.
流体が、炭化水素系の液化燃料であることを特徴とする請求項1に記載の高温流体用ファンの回転軸構造。   2. The rotating shaft structure of a high-temperature fluid fan according to claim 1, wherein the fluid is a hydrocarbon-based liquefied fuel. 流体が、酸化ガスであることを特徴とする請求項1に記載の高温流体用ファンの回転軸構造。   The rotating shaft structure of a high-temperature fluid fan according to claim 1, wherein the fluid is an oxidizing gas. 回転軸の高温側軸部及び低温側軸部の少なくとも一方の一部が、滑り軸受に対応していることを特徴とする請求項1〜3のいずれかに記載の高温流体用ファンの回転軸構造。   The rotating shaft of the fan for high-temperature fluid according to any one of claims 1 to 3, wherein at least a part of at least one of the high-temperature side shaft portion and the low-temperature side shaft portion of the rotating shaft corresponds to a sliding bearing. Construction. 流体供給手段が、回転軸の低温側軸部が貫通する流体供給室を備えており、低温側軸部の貫通孔が、流体供給室から中間軸部の多孔質体に連通していることを特徴とする請求項1〜4のいずれかに記載の高温流体用ファンの回転軸構造。   The fluid supply means includes a fluid supply chamber through which the low temperature side shaft portion of the rotating shaft passes, and the through hole of the low temperature side shaft portion communicates from the fluid supply chamber to the porous body of the intermediate shaft portion. The rotating shaft structure of the fan for high-temperature fluid according to any one of claims 1 to 4. 流体供給手段が、流体供給源から流体供給室に至る第1供給路と、流体供給源から流体の流路に直接至る第2供給路を備え、流路内の温度に応じて第1及び第2の供給路への流体供給量を調整することを特徴とする請求項1〜5のいずれかに記載の高温流体用ファンの回転軸構造。   The fluid supply means includes a first supply path extending from the fluid supply source to the fluid supply chamber, and a second supply path extending directly from the fluid supply source to the fluid flow path, and the first and second flow paths depend on the temperature in the flow path. The rotating shaft structure of the fan for high-temperature fluid according to claim 1, wherein a fluid supply amount to the two supply paths is adjusted. 回転軸の低温側軸部を保持する転がり軸受を備えたことを特徴とする請求項1〜6のいずれかに記載の高温流体用ファンの回転軸構造。   The rotary shaft structure for a high-temperature fluid fan according to any one of claims 1 to 6, further comprising a rolling bearing that holds a low-temperature side shaft portion of the rotary shaft. 流体供給手段の流体供給室内において、回転軸の低温側軸部に、同回転軸の回転に伴って流体を貫通孔内に導入する流体供給ポンプを備えたことを特徴とする請求項5〜7のいずれかに記載の   8. A fluid supply pump for introducing a fluid into a through-hole as the rotary shaft rotates in a low temperature side shaft portion of the rotary shaft in the fluid supply chamber of the fluid supply means. In any of 回転軸の中間軸部が、外周面の一部を形成する緻密質体を回転対称位置に備えていることを特徴とする請求項1〜8のいずれかに記載の高温流体用ファンの回転軸構造。   The rotary shaft of the fan for high-temperature fluid according to any one of claims 1 to 8, wherein the intermediate shaft portion of the rotary shaft includes a dense body forming a part of the outer peripheral surface at a rotationally symmetric position. Construction. 駆動装置が、回転軸を出力軸とする電気モータであることを特徴とする請求項1〜9のいずれかに記載の高温流体用ファンの回転軸構造。   10. The rotating shaft structure of a high-temperature fluid fan according to claim 1, wherein the driving device is an electric motor having a rotating shaft as an output shaft. 固体酸化物型燃料電池の発電要素を積層して収容した電池本体と、電池本体内の各発電要素の燃料極に燃料ガスを供給する一方のガス流路と、電池本体内の各発電要素の酸素極に酸化ガスを供給する他方のガス流路を備え、一方及び他方のガス流路の少なくとも一方に、請求項1〜10のいずれかに記載の高温流体用ファンの回転軸構造を備えたことを特徴とする発電装置。   A battery body in which the power generation elements of the solid oxide fuel cell are stacked and accommodated, one gas passage for supplying fuel gas to the fuel electrode of each power generation element in the battery body, and each power generation element in the battery body The other gas flow path for supplying the oxidizing gas to the oxygen electrode is provided, and at least one of the one and the other gas flow paths is provided with the rotating shaft structure of the high-temperature fluid fan according to any one of claims 1 to 10. A power generator characterized by that.
JP2005190830A 2005-06-30 2005-06-30 Rotating shaft structure of high temperature fluid fan Expired - Fee Related JP4725842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190830A JP4725842B2 (en) 2005-06-30 2005-06-30 Rotating shaft structure of high temperature fluid fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190830A JP4725842B2 (en) 2005-06-30 2005-06-30 Rotating shaft structure of high temperature fluid fan

Publications (2)

Publication Number Publication Date
JP2007010018A true JP2007010018A (en) 2007-01-18
JP4725842B2 JP4725842B2 (en) 2011-07-13

Family

ID=37748804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190830A Expired - Fee Related JP4725842B2 (en) 2005-06-30 2005-06-30 Rotating shaft structure of high temperature fluid fan

Country Status (1)

Country Link
JP (1) JP4725842B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164454A (en) * 2009-01-16 2010-07-29 Shimadzu Corp Gas chromatograph
CN113811691A (en) * 2020-03-02 2021-12-17 株式会社凯普 Blower fan
CN114502848A (en) * 2019-09-30 2022-05-13 西门子股份公司 Drive shaft for an electric machine and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455417A (en) * 1987-08-03 1989-03-02 Interatom Gas static pressure and dynamic pressure bearing
JPH09250465A (en) * 1996-03-19 1997-09-22 Hitachi Ltd Scroll compressor
WO2004070209A1 (en) * 2003-02-03 2004-08-19 Cap Co., Ltd. Hot gas blowing fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455417A (en) * 1987-08-03 1989-03-02 Interatom Gas static pressure and dynamic pressure bearing
JPH09250465A (en) * 1996-03-19 1997-09-22 Hitachi Ltd Scroll compressor
WO2004070209A1 (en) * 2003-02-03 2004-08-19 Cap Co., Ltd. Hot gas blowing fan

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164454A (en) * 2009-01-16 2010-07-29 Shimadzu Corp Gas chromatograph
CN114502848A (en) * 2019-09-30 2022-05-13 西门子股份公司 Drive shaft for an electric machine and method for producing the same
CN113811691A (en) * 2020-03-02 2021-12-17 株式会社凯普 Blower fan

Also Published As

Publication number Publication date
JP4725842B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US11802735B2 (en) Multi-branch furcating flow heat exchanger
US9234548B2 (en) Bearing arrangements and integrated cooling and/or heating devices and method for integrated heating or cooling
US7329048B2 (en) Self contained squeeze film damping system
US10587170B2 (en) Generators with open loop active cooling
US20200332715A1 (en) Multiple stream heat exchanger
EP0894942A2 (en) Gas Turbine
JP4725842B2 (en) Rotating shaft structure of high temperature fluid fan
JPWO2008020483A1 (en) Gas turbine power generation equipment bearing device and gas turbine power generation equipment
KR101717874B1 (en) Fuel cell system blower configuration
US9376929B2 (en) Turbine generator
JP6307436B2 (en) Laser chamber and discharge excitation gas laser apparatus
CN101364758A (en) Horizontal pervaporatively cooling motor
Wu et al. A heat pipe assisted air-cooled rotary wankel engine for improved durability, power and efficiency
US10669873B2 (en) Insulated seal seat
EP2439438B1 (en) Rotary joint for low-temperature application
EP3470648B1 (en) Turbocharger
JP6585073B2 (en) Heat pipe temperature management system for wheels and buckets in turbomachinery
JP2005186748A (en) Pod type propeller and vessel provided with it
US9964213B2 (en) Pump sealing device
US10890212B2 (en) Thermal management structure for a bearing assembly
KR101634875B1 (en) Micro gas turbine with bearing cooling part
JP2019039471A (en) Shaft seal device
JP2007071103A (en) Heat power generation system
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
Splavskiy Application of Gas Saturation in Radial Plain Bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees