JP2007008858A - Method for producing silver sulfonylimidate - Google Patents

Method for producing silver sulfonylimidate Download PDF

Info

Publication number
JP2007008858A
JP2007008858A JP2005191193A JP2005191193A JP2007008858A JP 2007008858 A JP2007008858 A JP 2007008858A JP 2005191193 A JP2005191193 A JP 2005191193A JP 2005191193 A JP2005191193 A JP 2005191193A JP 2007008858 A JP2007008858 A JP 2007008858A
Authority
JP
Japan
Prior art keywords
silver
hydrofluoric acid
solution
sulfonylimidate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005191193A
Other languages
Japanese (ja)
Other versions
JP4791092B2 (en
Inventor
Hirohisa Kikuyama
裕久 菊山
Masayuki Miyashita
雅之 宮下
Masahide Waki
雅秀 脇
Tomohiko Satonaga
知彦 里永
Yuko Murakami
祐子 村上
Kazuhiko Masakami
和彦 正神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP2005191193A priority Critical patent/JP4791092B2/en
Priority to CN200610090644XA priority patent/CN1891705B/en
Priority to TW095123760A priority patent/TW200700424A/en
Publication of JP2007008858A publication Critical patent/JP2007008858A/en
Application granted granted Critical
Publication of JP4791092B2 publication Critical patent/JP4791092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing silver sulfonylimidate that enables the silver sulfonylimidate useful as a catalyst for organic synthesis to be industrially produced easily and efficiently. <P>SOLUTION: The production method is characterized by producing silver sulfonylimidate represented by AgN(Rf<SB>1</SB>SO<SB>2</SB>)(Rf<SB>2</SB>SO<SB>2</SB>) by reacting a sulfonylimide compound represented by M[N(Rf<SB>1</SB>SO<SB>2</SB>)(Rf<SB>2</SB>SO<SB>2</SB>)]<SB>x</SB>, [wherein, Rf<SB>1</SB>and Rf<SB>2</SB>are the same or different and indicate any one of a straight chained or branched 1-12C perfluoroalkyl group, a fluoroalkyl group, a fluoroalkenyl group and a fluoroallyl group; M indicates H or Li, Na, K or Cs among alkaline metals of the group Ia of the periodic table and Mg, Ca, Sr or Ba among alkaline earth metals of the group IIa of the periodic table; and x indicates 1 or 2 among positive integers] and an inorganic silver compound in a hydrofluoric acid solution or mixing an aqueous solution in which the above reaction has been performed with a hydrofluoric acid solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スルホニルイミド酸銀の製造方法に関する。 The present invention relates to a method for producing silver sulfonylimide acid.

特表2002−531648号公報JP-T-2002-53648 WO99/40124号公報WO99 / 40124 特表2003−192661号公報Special table 2003-192661

スルホニルイミド酸銀をはじめとしたスルホニルイミド化合物は、慣用的にルイス酸により触媒される反応に特に有効な触媒であり、ルイス酸を触媒とするか又はルイス酸が仲介とする多数の化学変換に利用できる。例えば、芳香族化合物のアシル化やアルキル化といったフリーデル・クラフト反応で使用するのに適しており、芳香族化合物のスルホニル化にも使用できる。また、多様な酸化状態をとることができるので、酸化及び還元の化学変換で利用できる。化学変換としては、異性化反応、カップリング反応、デカップリング、縮合、重合、オリゴマー化、二量化、付加、脱離、付加/脱離、水和、脱水、水素化、脱水素、ハロゲン化、スルホン化及びニトロ化が挙げられる。   Sulfonylimido compounds such as silver sulfonylimidate are particularly effective catalysts for reactions that are conventionally catalyzed by Lewis acids, and can be used for many chemical transformations that are Lewis acid catalyzed or mediated by Lewis acids. Available. For example, it is suitable for use in Friedel-Craft reaction such as acylation and alkylation of aromatic compounds, and can also be used for sulfonylation of aromatic compounds. Moreover, since various oxidation states can be taken, it can be used for chemical conversion of oxidation and reduction. Chemical conversion includes isomerization reaction, coupling reaction, decoupling, condensation, polymerization, oligomerization, dimerization, addition, desorption, addition / desorption, hydration, dehydration, hydrogenation, dehydrogenation, halogenation, Sulfonation and nitration are mentioned.

触媒だけでなく、イオン導電性材料を構成する物質としても、例えば、非水電解質二次電池は、従来の鉛電池やニッケルーカドミウム電池に変わる高容量型の電池として近年開発が進んできており、その電解質として有望であり、近年の電子機器の小型、軽量化に伴う移動用電源の需要においては更なるサイクル寿命の向上が望まれており、サイクル性を向上させる手段として電解液中に塩類を含有させる添加剤としても有望である。また、ポリマー材料用帯電防止剤やエレクトロクロミック素子としても有用な物質である。   As a material constituting not only a catalyst but also an ion conductive material, for example, non-aqueous electrolyte secondary batteries have been developed in recent years as high-capacity batteries that replace conventional lead batteries and nickel-cadmium batteries. The electrolyte is promising, and in recent years the demand for mobile power supplies due to the reduction in size and weight of electronic devices, further improvement in cycle life is desired. It is also promising as an additive to contain. Moreover, it is a substance useful also as an antistatic agent for polymer materials or an electrochromic element.

また、近年、開発、商品化が目覚しいプラズマディスプレイは、原理的にも明らかなように、プラズマ放電の際に近赤外線が発生し、この近赤外線の波長が、家電用電子機器のリモートコントロールシステムが使用する近赤外線の波長と近似するため、プラズマディスプレイの近傍にこれらの電子機器がある場合に、その誤動作を誘発することが問題となっている。   In recent years, plasma displays, which have been remarkably developed and commercialized, generate near-infrared light during plasma discharge, and the wavelength of this near-infrared is determined by the remote control system for consumer electronics. In order to approximate the wavelength of near-infrared light to be used, when these electronic devices are in the vicinity of the plasma display, it is problematic to induce malfunction.

そこで、近赤外線波長領域の光を吸収して遮蔽するフィルターを利用することが提案されていて、このような近赤外線吸収フィルター中に配合される近赤外線領域の波長を吸収する色素としてイモニウム系色素が好適であり、通常はアニオンが6フッ化アンチモン酸アニオンのものが使用されているが、これに代わるアニオンとしてスルホニルイミド酸アニオンはアンチモンを含まないため環境に対する負荷の小さい近赤外線吸収色素を提供するのに好適である。有機合成反応における触媒作用として、各種酸の銀化合物は酸化剤あるいは塩交換材料として有用であることは一般に知られており、イモニウム系色素を合成するプロセスにおいても、酸化反応と塩交換反応を伴う場合、スルホニルイミド酸の銀化合物があれば工程を減らすことが可能であり、かつ容易に合成することができる。   Therefore, it has been proposed to use a filter that absorbs and shields light in the near infrared wavelength region, and an imonium dye as a pigment that absorbs the wavelength in the near infrared region mixed in such a near infrared absorption filter. In general, the anion used is a hexafluoroantimonate anion, but as an alternative anion, the sulfonylimide acid anion does not contain antimony and provides a near-infrared absorbing dye with a low environmental impact. It is suitable for doing. As a catalytic action in organic synthesis reactions, it is generally known that silver compounds of various acids are useful as oxidizing agents or salt exchange materials. In the process of synthesizing imonium dyes, oxidation and salt exchange reactions are involved. In this case, if there is a silver compound of sulfonylimide acid, the number of steps can be reduced and the synthesis can be easily performed.

スルホニルイミド酸銀の製造方法は、一般的に、スルホニルイミド酸を水と混合したところに、炭酸銀を添加することによって銀塩に転化することにより得られた水溶液を、乾燥工程を経て目的のスルホニルイミド酸銀を単体として得ることができる。例えば、特許文献1、2には、炭酸銀とスルホニルイミド酸とを水溶液中で反応させ、ろ過後に乾燥させる技術が記載されている。   In general, a method for producing silver sulfonylimide acid is a method in which an aqueous solution obtained by converting silver carbonate to silver salt by adding silver carbonate to a mixture of sulfonylimide acid with water is subjected to a drying step. Silver sulfonylimido acid can be obtained as a simple substance. For example, Patent Documents 1 and 2 describe a technique in which silver carbonate and sulfonylimide acid are reacted in an aqueous solution and dried after filtration.

しかし、このように水を溶媒として用いて溶媒から濃縮乾固させて結晶を得る方法では、乾燥では除去できない金属不純物やイオン性不純物が残存してしまう。結果として、例えば、これを非水溶媒中に溶解して電池の電解液とする場合には、残存した不純物が電池性能に悪影響を及ぼすことが懸念される。非水溶媒などに再溶解させて濾過などにより不純物を除去することも可能だが、乾燥は、一般に、送風乾燥、噴霧乾燥又は減圧乾燥などの方法が用いられているが、再度、濃縮乾固させて結晶を得るとなると乾燥除去工程が製造のコストの上昇の一因にもなる。   However, in such a method of obtaining crystals by concentrating and drying from a solvent using water as a solvent, metal impurities and ionic impurities that cannot be removed by drying remain. As a result, for example, when this is dissolved in a non-aqueous solvent to form a battery electrolyte, there is a concern that the remaining impurities adversely affect battery performance. Impurities can be removed by re-dissolving in a non-aqueous solvent or the like by filtration, but drying is generally carried out by methods such as blast drying, spray drying or reduced pressure drying. Thus, when the crystals are obtained, the dry removal step also contributes to an increase in manufacturing cost.

他方、非水溶媒中で反応させる技術として特許文献3には、(R−SOX−Hで示される酸をアルカリ金属化合物と非水溶媒中で混合し、それを中和することを含む、(R−SOX−Mで示されるアルカリ金属塩の製造方法が記載されている。ここで、「Rfは、各々独立に、炭素数が1〜12個の直鎖もしくは枝分かれのフッ素化されたアルキル基であり、Xは酸素、窒素又は炭素であり、Xが酸素であるときにはnは1であり、Xが窒素であるときにはnは2であり、Xが炭素であるときにはnは3である。また、非水溶媒としては、非水溶媒としては、メタノール、エタノールなどのアルコール類や、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルなどの炭酸エステル類が挙げられる。中和後に、目的とするアルカリ金属塩化合物の溶液から溶媒を除去して、アルカリ金属塩化合物を単離する場合には、フッ素イオンや硫酸イオンなどの塩類を殆ど溶解せずかつ目的のアルカリ金属塩化合物の溶解度が高い非水溶媒を選択することが望ましい。」と記載されている(段落番号0013−0014)。
すなわち、Agについては全く示唆がない。また、非水溶媒としてフッ化水素系は好ましくないものとしている。さらにこれら有機溶媒を使用する点でも火災などの危険を伴う。
On the other hand, as a technique for reacting in a non-aqueous solvent, Patent Document 3 discloses that an acid represented by (R f —SO 2 ) n XH is mixed with an alkali metal compound in a non-aqueous solvent to neutralize it. comprising describes a method for producing alkali metal salts represented by (R f -SO 2) n X -M. Here, “R f is each independently a linear or branched fluorinated alkyl group having 1 to 12 carbon atoms, X is oxygen, nitrogen or carbon, and when X is oxygen, n is 1, n is 2 when X is nitrogen, and n is 3 when X is carbon, and the non-aqueous solvent is an alcohol such as methanol or ethanol. And carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc. After neutralization, the solvent is removed from the solution of the desired alkali metal salt compound, When isolating an alkali metal salt compound, select a non-aqueous solvent that hardly dissolves salts such as fluorine ions and sulfate ions and has high solubility of the desired alkali metal salt compound. It has been described as bets are desirable. "(Paragraph numbers 0013-0014).
That is, there is no suggestion about Ag. Also, hydrogen fluoride is not preferred as the non-aqueous solvent. Furthermore, the use of these organic solvents is also associated with a fire hazard.

本発明は前記の問題点を解決するためになされたものである。
本発明の目的は、金属不純物やイオン性不純物の残存が極めて少なく、低コストで工業的にも製造可能なスルホニルイミド酸銀の製造方法を提供することにある。
The present invention has been made to solve the above problems.
An object of the present invention is to provide a method for producing silver sulfonylimido acid which has very little residual metal impurities and ionic impurities and can be produced industrially at low cost.

本発明者らは、前記したような課題を解決すべく鋭意検討した結果、フッ化水素酸液の存在下で反応もしくは晶析することで容易に目的とする結晶を析出させ、スルホニルイミド酸銀を回収できることを見出した。
本発明は、一般式(I) M[N(Rf1SO2)(Rf2SO2)]x (I)
[式中、Rf1及びRf2は、同じかまたは異なり、炭素原子数1から12までの直鎖状または分岐状のペルフルオロアルキル基、フルオロアルキル基、フルオロアルケニル基、またはフルオロアリル基のいずれかを表し、Mは、Hまたは元素周期表第Ia族のアルカリ金属のうち、Li、Na、K、Cs、および第IIa族のアルカリ土類金属のうち、Mg、Ca、Sr、Baを表す。また、xは自然数うち1、2を表す。]で示されるスルホニルイミド化合物と、無機銀化合物とを、フッ化水素酸液中で反応、あるいは水溶液中で反応させた溶液とフッ化水素酸液とを混合することにより、
一般式(II) AgN(Rf1SO2)(Rf2SO2)(II)
[式中、Rf1及びRf2は、一般式(I)と同様の基を表す]で示されるスルホニルイミド酸銀を製造することを特徴とするスルホニルイミド酸銀の製造方法である。
As a result of diligent studies to solve the above-described problems, the present inventors easily precipitated a target crystal by reacting or crystallizing in the presence of a hydrofluoric acid solution. It was found that can be recovered.
The present invention relates to the general formula (I) M [N (Rf 1 SO 2 ) (Rf 2 SO 2 )] x (I)
[Wherein, Rf 1 and Rf 2 are the same or different and are any of linear or branched perfluoroalkyl groups, fluoroalkyl groups, fluoroalkenyl groups, or fluoroallyl groups having 1 to 12 carbon atoms. M represents H, or Li, Na, K, Cs among the alkali metals of Group Ia of the periodic table of elements, and Mg, Ca, Sr, Ba among the alkaline earth metals of Group IIa. X represents 1 or 2 among natural numbers. ] By reacting a sulfonylimide compound represented by the above and an inorganic silver compound in a hydrofluoric acid solution, or mixing a hydrofluoric acid solution with a solution obtained by reacting in an aqueous solution,
General formula (II) AgN (Rf 1 SO 2 ) (Rf 2 SO 2 ) (II)
[Wherein, Rf 1 and Rf 2 represent the same group as in general formula (I)], wherein the silver sulfonylimide acid is produced.

前記無機銀化合物は、酸化銀、炭酸銀、フッ化銀、硝酸銀であることが好ましい。
前記フッ化水素酸液の濃度は、20%(重量%)以上であることが好ましい。
前記フッ化水素酸液が、無水フッ化水素酸であることが好ましい。
生成したスルホニルイミド酸銀をフッ化水素酸溶液中から晶析することにより結晶を回収することが好ましい。
スルホニルイミド酸銀を晶析させた後のフッ化水素酸溶液を反応液の一部又は全部として用いることが好ましい。
The inorganic silver compound is preferably silver oxide, silver carbonate, silver fluoride, or silver nitrate.
The concentration of the hydrofluoric acid solution is preferably 20% (% by weight) or more.
The hydrofluoric acid solution is preferably anhydrous hydrofluoric acid.
It is preferable to recover the crystals by crystallizing the produced silver sulfonylimidate from a hydrofluoric acid solution.
The hydrofluoric acid solution after crystallization of silver sulfonylimido acid is preferably used as a part or all of the reaction solution.

本発明のスルホニルイミド酸銀の製造方法によれば、有機合成触媒として有用なスルホニルイミド酸銀を工業的に容易に効率良く製造できる。   According to the method for producing silver sulfonylimidate of the present invention, silver sulfonylimidate useful as an organic synthesis catalyst can be produced industrially easily and efficiently.

本発明のスルホニルイミド酸銀の製造方法によれば、スルホニルイミド化合物と、無機銀化合物を、フッ化水素酸液中で反応させることで容易に結晶を得ることができる。   According to the method for producing silver sulfonylimide acid of the present invention, crystals can be easily obtained by reacting a sulfonylimide compound and an inorganic silver compound in a hydrofluoric acid solution.

スルホニルイミド化合物として好ましいのは、ビストリフルオロメタンスルホニルイミド酸およびビストリフルオロメタンスルホニルイミドリチウムである。無機銀化合物は、酸化銀、炭酸銀、フッ化銀、硝酸銀などであるが、好ましくは炭酸銀、酸化銀、フッ化銀である。他の無機銀化合物に比べると、炭酸銀、酸化銀の場合は、溶媒であるフッ化水素酸と反応して、炭酸銀は水と二酸化炭素、酸化銀は水を生成するのみであるので反応系内において余分な元素を含まなく済むため好適であり、フッ化銀の場合は、溶媒であるフッ化水素酸と反応せず容易に溶解することができるため好適である。   Preferred as the sulfonylimide compound are bistrifluoromethanesulfonylimide acid and bistrifluoromethanesulfonylimide lithium. The inorganic silver compound is silver oxide, silver carbonate, silver fluoride, silver nitrate or the like, preferably silver carbonate, silver oxide or silver fluoride. Compared to other inorganic silver compounds, silver carbonate and silver oxide react with hydrofluoric acid, which is a solvent. Silver carbonate produces water and carbon dioxide, and silver oxide only produces water. It is preferable because it does not contain extra elements in the system, and silver fluoride is preferable because it can be easily dissolved without reacting with hydrofluoric acid as a solvent.

フッ化水素酸の濃度範囲は20%(重量%)以上であり、好ましくは50%以上および無水フッ化水素酸(すなわち、100%)である。   The concentration range of hydrofluoric acid is 20% (% by weight) or more, preferably 50% or more and anhydrous hydrofluoric acid (ie, 100%).

反応において、フッ化水素酸が存在しない系の場合、スルホニルイミド酸銀の水溶液は容易に合成できるが、非常に溶解度が高いため晶析により結晶を得るのは困難である。   In the reaction, in the case of a system in which no hydrofluoric acid is present, an aqueous solution of silver sulfonylimidate can be easily synthesized, but it is difficult to obtain crystals by crystallization because of its very high solubility.

真空下で脱水または蒸発乾固することで結晶を得ることができるが、溶液中の全ての不純物が含まれるため品質の低下が懸念される。これに対してフッ化水素酸溶液中ではフッ化水素酸の濃度が高くなるにつれてスルホニルイミド酸銀の溶解度が低下するので、高濃度域では反応によって容易に結晶が析出し、低濃度域では晶析によって容易に結晶を析出させることが可能となり、高品位のスルホニルイミド酸銀を得ることができる。特に20%を境として不純物量が著しく少なくなる。   Crystals can be obtained by dehydrating or evaporating to dryness under vacuum. However, since all impurities in the solution are contained, there is a concern about deterioration in quality. In contrast, in a hydrofluoric acid solution, the solubility of silver sulfonylimido acid decreases as the concentration of hydrofluoric acid increases, so that crystals easily precipitate by reaction in the high concentration range, and crystals in the low concentration range. Crystals can be easily deposited by precipitation, and high-quality silver sulfonylimidate can be obtained. In particular, the amount of impurities is remarkably reduced at 20%.

以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

フッ素樹脂製反応容器中でビストリフルオロメタンスルホニルイミド酸25.5gを無水フッ化水素酸105.2gに溶解した。この溶液に、フッ化銀10.8gを無水フッ化水素酸118.2gに溶解した液を、滴下ロートを用いて攪拌しながら添加したところ、速やかに白色結晶が析出した。
固液分離、乾燥後、ビストリフルオロメタンスルホニルイミド酸銀の白色粉末32.2gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。
In a fluororesin reaction vessel, 25.5 g of bistrifluoromethanesulfonylimide acid was dissolved in 105.2 g of anhydrous hydrofluoric acid. When a solution obtained by dissolving 10.8 g of silver fluoride in 118.2 g of anhydrous hydrofluoric acid was added to this solution while stirring using a dropping funnel, white crystals were quickly precipitated.
After solid-liquid separation and drying, 32.2 g of a white powder of silver bistrifluoromethanesulfonylimidate was obtained. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

次に、固液分離した反応液にビストリフルオロメタンスルホニルイミド酸25.5gを溶解した。この反応液に、フッ化銀10.7gを無水フッ化水素酸80.2gに溶解した液を、滴下ロートを用いて攪拌しながら添加したところ、再び速やかに白色結晶が析出した。固液分離、乾燥後、ビストリフルオロメタンスルホニルイミド酸銀の白色粉末31.7gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上、DME(1,2-ジメトキシエタン)に溶解したときの不溶解残量は150ppmの高純度品ビストリフルオロメタンスルホニルイミド酸銀であった。   Next, 25.5 g of bistrifluoromethanesulfonylimidic acid was dissolved in the reaction liquid obtained by solid-liquid separation. When a solution obtained by dissolving 10.7 g of silver fluoride in 80.2 g of anhydrous hydrofluoric acid was added to this reaction solution while stirring using a dropping funnel, white crystals were quickly precipitated again. After solid-liquid separation and drying, 31.7 g of a white powder of silver bistrifluoromethanesulfonylimidate was obtained. The silver content in this crystal was determined by gravimetric analysis, and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography. The purity was 99% or more and the insoluble residue when dissolved in DME (1,2-dimethoxyethane). Was 150 ppm high purity silver bistrifluoromethanesulfonylimido acid.

フッ素樹脂製反応容器中でビストリフルオロメタンスルホニルイミドリチウム102.3gを無水フッ化水素酸191.9gに溶解した。この溶液に、フッ化銀45.3gを無水フッ化水素酸118.2gに溶解した液を、滴下ロートを用いて攪拌しながら添加したところ、速やかに白色結晶が析出した。反応後、無水フッ化水素酸で析出した結晶を洗浄し、固液分離した。結晶を乾燥後、ビストリフルオロメタンスルホニルイミド酸銀の白色粉末90.3gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。   In a fluororesin reaction vessel, 102.3 g of bistrifluoromethanesulfonylimide lithium was dissolved in 191.9 g of anhydrous hydrofluoric acid. When a solution prepared by dissolving 45.3 g of silver fluoride in 118.2 g of anhydrous hydrofluoric acid was added to this solution while stirring using a dropping funnel, white crystals were quickly precipitated. After the reaction, crystals precipitated with anhydrous hydrofluoric acid were washed and separated into solid and liquid. After drying the crystals, 90.3 g of a white powder of silver bistrifluoromethanesulfonylimidate was obtained. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

フッ素樹脂製反応容器中でフッ化銀10.8gを無水フッ化水素酸301.8gに溶解した。この溶液に、76%濃度のビストリフルオロメタンスルホニルイミド酸水溶液33.5gを、滴下ロートを用いて攪拌しながら添加したところ、速やかに白色結晶が析出した。固液分離、乾燥後、ビストリフルオロメタンスルホニルイミド酸銀の白色粉末31.3gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。   In a fluororesin reaction vessel, 10.8 g of silver fluoride was dissolved in 301.8 g of anhydrous hydrofluoric acid. When 33.5 g of 76% strength aqueous bistrifluoromethanesulfonylimidic acid solution was added to this solution with stirring using a dropping funnel, white crystals were quickly precipitated. After solid-liquid separation and drying, 31.3 g of a white powder of silver bistrifluoromethanesulfonylimidate was obtained. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

フッ素樹脂製反応容器中で75%濃度のフッ化水素酸20.2gに、フッ化銀9.8gを溶解した。この溶液を、ビストリフルオロメタンスルホニルイミドリチウム22.3gを75%濃度のフッ化水素酸49.8gに溶解した液に滴下ロートを用いて攪拌しながら添加したところ、結晶が析出した。反応後、75%濃度のフッ化水素酸で結晶を洗浄し、固液分離した。これを乾燥してビストリフルオロメタンスルホニルイミド酸銀の白色粉末14.5gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。   In a fluororesin reaction vessel, 9.8 g of silver fluoride was dissolved in 20.2 g of 75% strength hydrofluoric acid. When this solution was added to a solution obtained by dissolving 22.3 g of bistrifluoromethanesulfonylimide lithium in 49.8 g of 75% strength hydrofluoric acid while stirring using a dropping funnel, crystals were deposited. After the reaction, the crystals were washed with 75% hydrofluoric acid and separated into solid and liquid. This was dried to obtain 14.5 g of a white powder of silver bistrifluoromethanesulfonylimidate. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

フッ素樹脂製反応容器中で76%濃度のビストリフルオロメタンスルホニルイミド酸水溶液19.8gに酸化銀を6.3g添加したところ溶液となった。遊離銀を濾別して得られた溶液を75%濃度のフッ化水素酸20.0gに滴下ロートを用いて攪拌しながら添加したところ、白色結晶が析出した。固液分離、乾燥後、ビストリフルオロメタンスルホニルイミド酸銀の白色粉末18.2gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。次に、固液分離した反応液に無水フッ化水素酸を少量ずつ滴下してフッ化水素酸濃度を75%に調整した。この反応液に、別に調製しておいた76%濃度のビストリフルオロメタンスルホニルイミド酸水溶液29.2gに酸化銀を9.3g添加した溶液を滴下すると再び速やかに結晶が析出した。固液分離、乾燥後、ビストリフルオロメタンスルホニルイミド酸銀の白色粉末25.8gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。   When 6.3 g of silver oxide was added to 19.8 g of a 76% strength aqueous bistrifluoromethanesulfonylimide acid solution in a fluororesin reaction vessel, a solution was obtained. When a solution obtained by filtering free silver was added to 20.0 g of 75% strength hydrofluoric acid with stirring using a dropping funnel, white crystals were precipitated. After solid-liquid separation and drying, 18.2 g of a white powder of silver bistrifluoromethanesulfonylimidoate was obtained. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more. Next, anhydrous hydrofluoric acid was dropped little by little into the solid-liquid separated reaction solution to adjust the hydrofluoric acid concentration to 75%. When a solution prepared by adding 9.3 g of silver oxide to 29.2 g of a 76% strength aqueous bistrifluoromethanesulfonylimidic acid solution prepared separately was added dropwise to the reaction solution, crystals were rapidly precipitated again. After solid-liquid separation and drying, 25.8 g of a white powder of silver bistrifluoromethanesulfonylimidate was obtained. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

樹脂製反応容器中で50%濃度のフッ化水素酸29.5gに76%濃度のビストリフルオロメタンスルホニルイミド酸水溶液19.8gと炭酸銀を 7.5g添加したところ溶液となった。遊離銀を濾別して得られた溶液を−23℃で晶析したところ結晶が析出した。この結晶を固液分離、乾燥するとビストリフルオロメタンスルホニルイミド酸銀の白色粉末16.1gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。   When 29.8 g of 76% strength aqueous bistrifluoromethanesulfonylimide acid and 7.5 g of silver carbonate were added to 29.5 g of 50% strength hydrofluoric acid in a resin reaction vessel, a solution was obtained. When the solution obtained by filtering free silver was crystallized at -23 ° C, crystals were precipitated. When this crystal was solid-liquid separated and dried, 16.1 g of a white powder of silver bistrifluoromethanesulfonylimidate was obtained. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

樹脂製反応容器中で76%濃度のビストリフルオロメタンスルホニルイミド酸水溶液19.8gに炭酸銀を 7.5g添加したところ溶液となった。遊離銀を濾別して得られた溶液を−23℃に冷却したが結晶は析出しなかった。この溶液を蒸発乾固させるとビストリフルオロメタンスルホニルイミド酸銀の褐色の粉末20.7gが得られた。この粉末を25%濃度のフッ化水素酸8.0gに添加したところ、溶解した。この溶液を濾過した後、−23℃に冷却したところ結晶が析出した。この結晶を固液分離、乾燥するとビストリフルオロメタンスルホニルイミド酸銀の白色粉末11.4gが得られた。この結晶中の銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、純度99%以上のビストリフルオロメタンスルホニルイミド酸銀であった。   When 7.5 g of silver carbonate was added to 19.8 g of a 76% strength aqueous bistrifluoromethanesulfonylimide acid solution in a resin reaction vessel, a solution was obtained. The solution obtained by filtering free silver was cooled to -23 ° C, but no crystals were precipitated. This solution was evaporated to dryness to obtain 20.7 g of a brown powder of silver bistrifluoromethanesulfonylimidoate. When this powder was added to 8.0 g of 25% strength hydrofluoric acid, it dissolved. The solution was filtered and then cooled to -23 ° C. to precipitate crystals. This crystal was solid-liquid separated and dried to obtain 11.4 g of a white powder of silver bistrifluoromethanesulfonylimidate. When the silver content in the crystal was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography, it was silver bistrifluoromethanesulfonyl imidoate having a purity of 99% or more.

比較例として、実施例7の合成反応と同様にフッ化水素酸を使用せずに水溶液中で合成し、得られた溶液を濾過後に蒸発乾固して得られた褐色の粉末を直接分析したところ、この褐色粉末中には原料由来の金属不純物およびイオン性不純物が存在しており、銀含量を重量分析、ビストリフルオロメタンスルホニルイミド酸イオン含量をイオンクロマトグラフにより求めたところ、ビストリフルオロメタンスルホニルイミド酸銀の純度は97.8%であった。
As a comparative example, the synthesis was carried out in an aqueous solution without using hydrofluoric acid in the same manner as in the synthesis reaction of Example 7. The resulting solution was filtered and evaporated to dryness, and the resulting brown powder was directly analyzed. However, the brown powder contains metal impurities and ionic impurities derived from the raw material. The silver content was determined by gravimetric analysis and the bistrifluoromethanesulfonyl imido ion content was determined by ion chromatography. The purity of silver imidoate was 97.8%.

Claims (6)

一般式(I) M[N(Rf1SO2)(Rf2SO2)]x (I)
[式中、Rf1及びRf2は、同じかまたは異なり、炭素原子数1から12までの直鎖状または分岐状のペルフルオロアルキル基、フルオロアルキル基、フルオロアルケニル基、またはフルオロアリル基のいずれかを表し、Mは、Hまたは元素周期表第Ia族のアルカリ金属のうち、Li、Na、K、Cs、および第IIa族のアルカリ土類金属のうち、Mg、Ca、Sr、Baを表す。また、xは自然数うち1、2を表す。]で示されるスルホニルイミド化合物と、無機銀化合物とを、フッ化水素酸液中で反応、あるいは水溶液中で反応させた溶液とフッ化水素酸液とを混合することにより、
一般式(II) AgN(Rf1SO2)(Rf2SO2)(II)
[式中、Rf1及びRf2は、一般式(I)と同様の基を表す]で示されるスルホニルイミド酸銀を製造することを特徴とするスルホニルイミド酸銀の製造方法。
General formula (I) M [N (Rf 1 SO 2) (Rf 2 SO 2)] x (I)
[Wherein, Rf 1 and Rf 2 are the same or different and are any of linear or branched perfluoroalkyl groups, fluoroalkyl groups, fluoroalkenyl groups, or fluoroallyl groups having 1 to 12 carbon atoms. M represents H, or Li, Na, K, Cs among the alkali metals of Group Ia of the periodic table of elements, and Mg, Ca, Sr, Ba among the alkaline earth metals of Group IIa. X represents 1 or 2 among natural numbers. ] By reacting a sulfonylimide compound represented by the above and an inorganic silver compound in a hydrofluoric acid solution, or mixing a hydrofluoric acid solution with a solution obtained by reacting in an aqueous solution,
General formula (II) AgN (Rf 1 SO 2 ) (Rf 2 SO 2 ) (II)
[Wherein, Rf 1 and Rf 2 represent the same group as in the general formula (I)], and a method for producing silver sulfonylimidate.
前記無機銀化合物は、酸化銀、炭酸銀、フッ化銀、硝酸銀であることを特徴とする請求項1記載のスルホニルイミド酸銀の製造方法。 2. The method for producing silver sulfonylimide acid according to claim 1, wherein the inorganic silver compound is silver oxide, silver carbonate, silver fluoride, or silver nitrate. 前記フッ化水素酸液の濃度は、20%(重量%)以上であることを特徴とする請求項1又は2記載のスルホニルイミド酸銀の製造方法。 The method for producing silver sulfonylimido acid according to claim 1 or 2, wherein the concentration of the hydrofluoric acid solution is 20% (wt%) or more. 前記フッ化水素酸液が、無水フッ化水素酸であることを特徴とする請求項1又は2記載のスルホニルイミド酸銀の製造方法。 The method for producing silver sulfonylimidate according to claim 1 or 2, wherein the hydrofluoric acid solution is anhydrous hydrofluoric acid. 請求項1乃至4記載の方法により生成したスルホニルイミド酸銀をフッ化水素酸溶液中から晶析することにより結晶を回収することを特徴とする請求項1乃至4のいずれか1項記載のスルホニルイミド酸銀の製造方法。 The sulfonyl imide according to any one of claims 1 to 4, wherein the crystal is recovered by crystallization of silver sulfonylimidate produced by the method according to any one of claims 1 to 4 from a hydrofluoric acid solution. A method for producing silver imidoate. スルホニルイミド酸銀を晶析させた後のフッ化水素酸溶液を反応液の一部又は全部として用いることを特徴とする請求項1乃至5のいずれか1項記載のスルホニルイミド酸銀の製造方法。
The method for producing silver sulfonylimide acid according to any one of claims 1 to 5, wherein the hydrofluoric acid solution after crystallization of silver sulfonylimide acid is used as part or all of the reaction solution. .
JP2005191193A 2005-06-30 2005-06-30 Method for producing silver sulfonylimido acid Expired - Fee Related JP4791092B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005191193A JP4791092B2 (en) 2005-06-30 2005-06-30 Method for producing silver sulfonylimido acid
CN200610090644XA CN1891705B (en) 2005-06-30 2006-06-30 Method for preparing sulfimidic acid silver
TW095123760A TW200700424A (en) 2005-06-30 2006-06-30 Method for producing silver sulfonylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191193A JP4791092B2 (en) 2005-06-30 2005-06-30 Method for producing silver sulfonylimido acid

Publications (2)

Publication Number Publication Date
JP2007008858A true JP2007008858A (en) 2007-01-18
JP4791092B2 JP4791092B2 (en) 2011-10-12

Family

ID=37596928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191193A Expired - Fee Related JP4791092B2 (en) 2005-06-30 2005-06-30 Method for producing silver sulfonylimido acid

Country Status (3)

Country Link
JP (1) JP4791092B2 (en)
CN (1) CN1891705B (en)
TW (1) TW200700424A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656413A (en) * 1992-08-10 1994-03-01 Central Glass Co Ltd Production of hexafluorophosphate salt
JPH1095609A (en) * 1996-09-17 1998-04-14 Morita Kagaku Kogyo Kk Lithium borofluoride monohydrofluoride and its production and production of anhydrous lithium borofluoride using the same
WO1999040124A1 (en) * 1998-02-10 1999-08-12 The Research Foundation Of State University Of New York Metal triflimide complexes
JP2000302748A (en) * 1999-02-16 2000-10-31 Central Glass Co Ltd Method for purifying sulfonimide
JP2001139540A (en) * 1999-11-18 2001-05-22 Kanto Denka Kogyo Co Ltd Method for production of bisperfluoroalkylsulfonimide compound
JP2002531648A (en) * 1998-12-09 2002-09-24 ザ ビー.エフ.グッドリッチ カンパニー Addition polymerization of norbornene-type monomer in mold using complex of Group 10 metal
JP2003192661A (en) * 2001-12-17 2003-07-09 Three M Innovative Properties Co Method for producing fluoroalkylsulfonyl group- containing alkali metal salt in non-aqueous solvent and method for using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2292722T3 (en) * 2001-03-12 2008-03-16 The Queen's University Of Belfast USE OF METAL COMPOUNDS OF BIS-TRIFLIMIDA.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656413A (en) * 1992-08-10 1994-03-01 Central Glass Co Ltd Production of hexafluorophosphate salt
JPH1095609A (en) * 1996-09-17 1998-04-14 Morita Kagaku Kogyo Kk Lithium borofluoride monohydrofluoride and its production and production of anhydrous lithium borofluoride using the same
WO1999040124A1 (en) * 1998-02-10 1999-08-12 The Research Foundation Of State University Of New York Metal triflimide complexes
JP2002531648A (en) * 1998-12-09 2002-09-24 ザ ビー.エフ.グッドリッチ カンパニー Addition polymerization of norbornene-type monomer in mold using complex of Group 10 metal
JP2000302748A (en) * 1999-02-16 2000-10-31 Central Glass Co Ltd Method for purifying sulfonimide
JP2001139540A (en) * 1999-11-18 2001-05-22 Kanto Denka Kogyo Co Ltd Method for production of bisperfluoroalkylsulfonimide compound
JP2003192661A (en) * 2001-12-17 2003-07-09 Three M Innovative Properties Co Method for producing fluoroalkylsulfonyl group- containing alkali metal salt in non-aqueous solvent and method for using the same

Also Published As

Publication number Publication date
JP4791092B2 (en) 2011-10-12
TWI367885B (en) 2012-07-11
TW200700424A (en) 2007-01-01
CN1891705A (en) 2007-01-10
CN1891705B (en) 2010-10-27

Similar Documents

Publication Publication Date Title
EP2257495B1 (en) Sulfonylimide salt and method for producing the same
US20110269990A1 (en) Process for producing perfluoroalkylsulfonic acid salt
JP6910324B2 (en) Disulfonylamide salt granules or powder
CN102639493A (en) Process for the production of a sulfone monomer
CN102105444B (en) Process for producing perfluoroalkanesulfinic acid salt
CN111116429A (en) Method for synthesizing alkali metal trifluoromethanesulfonate
CN111138464A (en) Preparation method of lithium oxalato borate
JP2019214608A (en) Bis-(4-haloethylbenzenesulfonyl)imide or its salt, method for producing the same and method for producing bis-(4-styrenesulfonyl)imide or its salt using bis-(4-haloethylbenzenesulfonyl)imide as precursor
JP2014024786A (en) Method of manufacturing perfluoroalkyl sulfonic acid metal salt and perfluoroalkyl sulfonic acid metal salt, and electrolyte for lithium ion battery and conductivity imparting agent for resin using the same
JP4791092B2 (en) Method for producing silver sulfonylimido acid
JP2012218985A (en) Method for producing lithium fluorosulfonate, and lithium fluorosulfonate
CN115285951B (en) Preparation method and application of bis (fluorosulfonyl) imide salt electrolyte
KR20140102248A (en) Lipf6 solutions
JP2017218328A (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt
WO2011148971A1 (en) Process for preparation of fluorine-containing sulfonyl imide compounds
WO2022138178A1 (en) Crystal of 1,1,1-tris(4-hydroxy-3,5-dimethylphenyl)ethane and production method therefor
JP2001247306A (en) Method for synthesizing ionic metal complex and method for purifying the same
JP7042018B2 (en) Manufacturing method of electrolytic solution material
RU2481267C2 (en) Method of producing fullerenols
CN106831717A (en) A kind of preparation method of pyridine ring sulfimide alkali metal salt
JP2014065638A (en) Method of producing lithium iodide aqueous solution and use thereof
KR20010078204A (en) A method for preparing a sulfonylimide compound
WO2023247804A2 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
WO2023247805A2 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
WO2023247806A2 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120328

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees