JP2007008841A - Method for recovering 1,3-dialkyl-2-imidazolidinone - Google Patents

Method for recovering 1,3-dialkyl-2-imidazolidinone Download PDF

Info

Publication number
JP2007008841A
JP2007008841A JP2005189665A JP2005189665A JP2007008841A JP 2007008841 A JP2007008841 A JP 2007008841A JP 2005189665 A JP2005189665 A JP 2005189665A JP 2005189665 A JP2005189665 A JP 2005189665A JP 2007008841 A JP2007008841 A JP 2007008841A
Authority
JP
Japan
Prior art keywords
water
general formula
distillation
compound represented
organic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005189665A
Other languages
Japanese (ja)
Inventor
Hidetake Yoshitomi
英武 吉冨
Hideki Mizuta
秀樹 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005189665A priority Critical patent/JP2007008841A/en
Publication of JP2007008841A publication Critical patent/JP2007008841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently recovering a 1,3-dialkyl-2-imidazolidinone from a solution containing the 1,3-dialkyl-2-imidazolidinone and water in high recovery. <P>SOLUTION: This method for recovering the 1,3-dialkyl-2-imidazolidinone represented by general formula (1) (R is a 1 to 4C alkyl) from a solution containing the compound represented by general formula (1) and water is characterized by dissolving an easily water-soluble inorganic compound in the solution, separating and recovering the organic phase from the water phase, removing the water together with a solvent forming an azeotropic composition with the water in the organic phase, and then distilling and recovering the compound represented by general formula (1). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は1, 3−ジアルキル−2-イミダゾリジノンを蒸留熱エネルギーが小さく、高い回収率で回収する方法に関する。   The present invention relates to a method for recovering 1,3-dialkyl-2-imidazolidinone with a low distillation heat energy and a high recovery rate.

1, 3−ジアルキル−2-イミダゾリジノンは極性の高い非プロトン性溶媒であり、一般的な非プロトン性極性溶媒と比べて、酸、アルカリに対して極めて安定的であり、且つ各種の無機、有機化合物に対して強い溶解力をもつことから、医薬、農薬、染料、顔料等の合成溶媒、ポリ塩化ビフェニル類の分解溶媒、電子部品、モールド等の洗浄剤、高分子化合物の重合溶媒等として極めて有用な物質である。   1,3-dialkyl-2-imidazolidinone is a highly polar aprotic solvent, and is extremely stable against acids and alkalis as compared with general aprotic polar solvents, and various inorganic substances. Because of its strong solubility in organic compounds, synthetic solvents such as pharmaceuticals, agricultural chemicals, dyes and pigments, decomposition solvents for polychlorinated biphenyls, cleaning agents for electronic parts and molds, polymerization solvents for polymer compounds, etc. As a very useful substance.

例えば、1, 3−ジメチル−2-イミダゾリジノン(以下、DMIと略記する。)は、水と親和性が高い性質を利用した合成反応や有機化合物などの精製溶媒および抽出溶剤などに使用される。使用されたDMIは、通常、DMI、水、無機塩類、無機塩基類、無機酸類および有機溶剤などの有機化合物を含む混合物(以下、混合物と略記する。)となり、この混合物からDMIを回収して再使用することが必要な場合がある。   For example, 1,3-dimethyl-2-imidazolidinone (hereinafter abbreviated as DMI) is used in a synthesis reaction using a property having high affinity with water, a purification solvent such as an organic compound, and an extraction solvent. The The DMI used is usually a mixture containing organic compounds such as DMI, water, inorganic salts, inorganic bases, inorganic acids and organic solvents (hereinafter abbreviated as a mixture), and DMI is recovered from this mixture. It may be necessary to reuse it.

このような混合物に含まれるDMIの回収は、一般的には蒸留が用いられる。しかしながら、水とDMIは分離し難いため、含水量が極めて少ないDMIを回収するには高段数の蒸留塔が必要となるため、設備費が嵩む。また、蒸留釜には混合物に含まれる無機塩類、無機塩基類、無機酸類などの蒸留残渣が固着するため蒸留の際の熱効率が低下することなどの問題があった。さらにまた、蒸留により回収したDMI中に含有している水分を、モレキュラシーブまたはシリカゲルなどの脱水剤で脱水する方法も用いられるが、使用した脱水剤は再生処理する必要があるため、再生処理用の設備が必要である。また使用済みの脱水剤の廃棄は産業廃棄物の増大につながるなどの問題がある。   In general, distillation is used to recover DMI contained in such a mixture. However, since it is difficult to separate water and DMI, a high-distillation tower is required to recover DMI with a very low water content, which increases equipment costs. In addition, the distillation kettle has problems such as a decrease in thermal efficiency during distillation because distillation residues such as inorganic salts, inorganic bases, and inorganic acids contained in the mixture are fixed. Furthermore, a method of dehydrating water contained in DMI recovered by distillation with a dehydrating agent such as molecular sieve or silica gel is also used. However, since the used dehydrating agent needs to be regenerated, Equipment is required. Moreover, there is a problem that disposal of used dehydrating agents leads to an increase in industrial waste.

本発明者らはこれらの問題を解決するため、DMIと水との混合水溶液に水と共沸組成を作る溶媒を添加して脱水処理した後に蒸留精製する方法(特許文献1)、DMIと水および無機塩の混合物に水と共沸組成を作る溶媒を添加して脱水処理した後に濾過で無機塩を除き蒸留精製を行なう方法(特許文献2)、DMIを含む塩化カルシウム水溶液からハロゲン化炭化水素を混合して抽出する方法(特許文献3)、DMIと水を含む混合物に苛性アルカリを添加して水と有機相に分離する方法(特許文献4)などを見出し先に出願した。
特開平7−70079号公報 特開平7−70080号公報 特開平3−38571号公報 特開平11−152272号公報
In order to solve these problems, the present inventors have added a solvent that forms an azeotropic composition with water to a mixed aqueous solution of DMI and water, followed by dehydration and then distillation purification (Patent Document 1), DMI and water. And a method of performing distillation purification by adding a solvent that forms an azeotropic composition with water to a mixture of inorganic salts and then dehydrating and removing the inorganic salts by filtration (Patent Document 2), halogenated hydrocarbons from an aqueous calcium chloride solution containing DMI A method of mixing and extracting (Patent Document 3), a method of adding a caustic alkali to a mixture containing DMI and water and separating the mixture into water and an organic phase (Patent Document 4), etc. were filed at the head of the application.
Japanese Patent Laid-Open No. 7-70079 Japanese Patent Laid-Open No. 7-70080 JP-A-3-38571 Japanese Patent Laid-Open No. 11-152272

しかしながら、前記の特許文献1の方法は含水量が少ないDMIが高回収率で得られるが、添加する共沸溶媒の使用量はDMI100重量部に対して30〜300重量部と多く使用する必要があり、回収するDMIに対して大型の蒸留釜が必要なため容積効率が悪いため蒸留のための熱エネルギー使用量が大きいなどの問題がある。前記の特許文献2の方法は蒸留釜への無機物固着がなく熱効率の低下を回避できるが、濾過工程が入ることにより操作が煩雑となること、濾過前の脱水処理釜に無機物が固着し脱水処理時の熱効率が低下するなどの問題がある。前記の特許文献3の方法は蒸留釜への無機物固着による熱効率の低下を回避できるが、抽出溶剤の使用量はDMIを含む水溶液100重量部に対し10〜200重量部と多く使用しても抽出時の回収率が低いことなどの問題があった。前記の特許文献4の方法は、蒸留釜の容積効率が向上し、蒸留のための熱エネルギーの使用量が削減され、且つ蒸留釜への無機物の固着が回避できるが、DMIの回収率が低いという問題があった。   However, although the method of Patent Document 1 can obtain DMI with a low water content at a high recovery rate, the amount of azeotropic solvent to be added must be 30 to 300 parts by weight with respect to 100 parts by weight of DMI. In addition, there is a problem in that a large amount of distillation kettle is required for the DMI to be recovered, so that the volumetric efficiency is poor and the amount of heat energy used for distillation is large. Although the method of the above-mentioned Patent Document 2 can avoid the decrease in thermal efficiency because there is no adhesion of inorganic substances to the distillation kettle, the operation becomes complicated by entering the filtration process, and the inorganic substances adhere to the dehydration kettle before filtration and the dehydration process. There are problems such as a decrease in thermal efficiency. Although the method of the above-mentioned patent document 3 can avoid a decrease in thermal efficiency due to inorganic matter fixing to the still, the extraction solvent can be used even if it is used in an amount of 10 to 200 parts by weight relative to 100 parts by weight of an aqueous solution containing DMI. There were problems such as low recovery rate. The method of Patent Document 4 improves the volumetric efficiency of the distillation kettle, reduces the amount of heat energy used for distillation, and avoids sticking of inorganic substances to the kettle, but has a low DMI recovery rate. There was a problem.

したがって、本発明は、1, 3−ジアルキル−2-イミダゾリジノンと水を含む溶液から1, 3−ジアルキル−2-イミダゾリジノンを効率よく、かつ高い回収率で回収する方法を提供することを目的とする。   Therefore, the present invention provides a method for efficiently recovering 1,3-dialkyl-2-imidazolidinone from a solution containing 1,3-dialkyl-2-imidazolidinone and water with high recovery rate. With the goal.

本発明者らは、前記の課題を解決する為に鋭意検討した結果、一般式(1)で表される化合物と水を含む溶液に、水と易溶性の無機化合物を溶解させて水と一般式(1)で表される化合物を含む有機相とに分離し、得られた有機相に含まれる水分を水と共沸組成を形成する溶剤を用いて除去した後、一般式(1)で表される化合物を蒸留により回収する方法を採用することにより、蒸留に要する熱エネルギーが削減できること、無機物の蒸留釜への固着による熱効率の低下を回避できること、高い回収率で回収できること、水と共沸組成を形成する溶剤の使用量を低減できることなど、前述した問題を解決できることが判明した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have dissolved water and a readily soluble inorganic compound in a solution containing the compound represented by the general formula (1) and water, and the After separating into an organic phase containing the compound represented by the formula (1) and removing water contained in the obtained organic phase using a solvent that forms an azeotropic composition with water, the general formula (1) By adopting a method for recovering the compounds represented by distillation, it is possible to reduce the thermal energy required for distillation, to avoid a decrease in thermal efficiency due to sticking of inorganic substances to the distillation kettle, to be recovered at a high recovery rate, and to share with water. It has been found that the above-mentioned problems can be solved, such as reducing the amount of solvent used to form the boiling composition.

更に、混合物から水相と一般式(1)で表される化合物を含む有機相を分離する際に抽出溶剤を用いることで、抽出溶剤の使用量を低減しても一般式(1)で表される化合物の有機相への回収率が向上することを見出し、本発明を完成するに至った。   Furthermore, even if the amount of the extraction solvent is reduced by using an extraction solvent when separating the aqueous phase and the organic phase containing the compound represented by the general formula (1) from the mixture, it is represented by the general formula (1). As a result, it was found that the recovery rate of the obtained compound to the organic phase was improved, and the present invention was completed.

即ち本発明は、一般式(1)   That is, the present invention relates to the general formula (1)

Figure 2007008841
Figure 2007008841

(式中、Rは炭素数1〜4のアルキル基を示す)
で表される化合物および水を含有する溶液から一般式(1)で表される化合物を回収するにあたり、該溶液に水に易溶性の無機化合物を溶解させ、水相と分離した有機相を回収し、該有機相中の水分を水と共沸組成を形成する溶剤とともに除去した後、一般式(1)で表される化合物を蒸留により回収する、一般式(1)で表される化合物の回収方法に関するものである。
(Wherein R represents an alkyl group having 1 to 4 carbon atoms)
In recovering the compound represented by general formula (1) from the solution represented by formula (1) and water, an inorganic compound that is readily soluble in water is dissolved in the solution, and the organic phase separated from the aqueous phase is recovered. Then, after removing water in the organic phase together with a solvent that forms an azeotropic composition with water, the compound represented by the general formula (1) is recovered by distillation. It relates to the collection method.

本発明によれば、一般式(1)で表される化合物と水を含む溶液から、一般式(1)で表される化合物を効率よく、かつ高い回収率で回収する方法を提供することができる。   According to the present invention, it is possible to provide a method for recovering a compound represented by the general formula (1) efficiently and at a high recovery rate from a solution containing the compound represented by the general formula (1) and water. it can.

一般式(1)中のRは炭素数1〜4のアルキル基を示す。   R in General formula (1) shows a C1-C4 alkyl group.

一般式(1)で表される化合物としては、例えば、1,3−ジメチル−2−イミダゾリジノン、1,3−ジエチル−2−イミダゾリジノン、1,3−ジプロピル−2−イミダゾリジノン、1,3−ジブチル−2−イミダゾリジノン等が挙げられる。   Examples of the compound represented by the general formula (1) include 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-dipropyl-2-imidazolidinone. 1,3-dibutyl-2-imidazolidinone and the like.

一般式(1)で表される化合物および水を含む溶液は特に制限されないが、例えば、一般式(1)で表される化合物、水および無機塩類からなる溶液、およびこの溶液に無機塩基類、無機酸類、水に易溶性のアルコール類等の有機溶剤のような一般式(1)で表される化合物以外の有機化合物が溶解している溶液などが挙げられる。このような溶液としては、例えば、DMIと水およびメタノールからなる溶液(特開昭62−25167号公報を参照。)、DMI、水、水酸化カリウムおよび未反応のα―アミノアントラキノンを含む溶液(特開昭60−1169号公報を参照。)等が挙げられる。   The solution containing the compound represented by the general formula (1) and water is not particularly limited. For example, a solution composed of the compound represented by the general formula (1), water and inorganic salts, and an inorganic base in the solution, Examples include inorganic acids and solutions in which organic compounds other than the compound represented by the general formula (1) such as organic solvents such as water-soluble alcohols are dissolved. As such a solution, for example, a solution comprising DMI, water and methanol (see Japanese Patent Application Laid-Open No. 62-25167), a solution containing DMI, water, potassium hydroxide and unreacted α-aminoanthraquinone ( (See JP-A-60-1169).

前記の一般式(1)で表される化合物と水を含む溶液に水と易溶性の無機化合物を溶解させ、水相と分離する一般式(1)で表される化合物を含む有機相を回収する。   Water and a readily soluble inorganic compound are dissolved in a solution containing the compound represented by the general formula (1) and water, and an organic phase containing the compound represented by the general formula (1) is separated from the aqueous phase. To do.

水に易溶性の無機化合物に特に制限はないが、水と易溶性の無機化合物としては、例えば、無機塩、無機塩基または無機酸が挙げられる。   Although there is no restriction | limiting in particular in the inorganic compound easily soluble in water, As an inorganic compound easily soluble in water, an inorganic salt, an inorganic base, or an inorganic acid is mentioned, for example.

無機塩としては、塩化ナトリウム、臭化ナトリウム、硫酸ナトリウム、塩化カリウム、臭化カリウム、硫酸カリウム、塩化マグネシウムおよび硫酸マグネシウムなどが挙げられる。無機塩基類としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化リチウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸水素カリウムなどが挙げられる。   Examples of the inorganic salt include sodium chloride, sodium bromide, sodium sulfate, potassium chloride, potassium bromide, potassium sulfate, magnesium chloride and magnesium sulfate. Examples of inorganic bases include sodium hydroxide, potassium hydroxide, magnesium hydroxide, lithium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate.

無機酸類としては、硫酸、塩酸および燐酸などが挙げられる。これらの水に易溶性の無機化合物は単独で用いることもできるが二種以上を併用することもできる。これらの水に易溶性の無機化合物は、必要に応じて回収して再利用することもできる。   Examples of inorganic acids include sulfuric acid, hydrochloric acid, and phosphoric acid. These inorganic compounds that are readily soluble in water can be used alone or in combination of two or more. These water-soluble inorganic compounds can be recovered and reused as necessary.

水に易溶性の無機化合物は、固体、懸濁液または水溶液のいずれかの形態で用いられる。   The inorganic compound readily soluble in water is used in the form of a solid, a suspension or an aqueous solution.

水に易溶性の無機化合物の使用量は、使用する一般式(1)で表される化合物および水を含む溶液に含まれる他の化合物の種類またはその混合割合等により異なるため一概に決めることはできないが、予め一般式(1)で表される化合物および水を含む溶液の一部を用いて、水相に残存する一般式(1)で表される化合物が所望の量となるような量を求めるなどの方法で決定することができる。通常、水に易溶性の無機化合物の使用量は一般式(1)で表される化合物および水を含む溶液中の水100重量部に対し、5〜300重量部である。使用する無機化合物がこの範囲内であると一般式(1)で表される化合物の回収率および有機相中の水分を除去する効率の点で好ましい。   The amount of the inorganic compound that is readily soluble in water varies depending on the type of the compound represented by the general formula (1) to be used and the type of other compounds contained in the solution containing water, or the mixing ratio thereof. Although not possible, using a part of the solution containing the compound represented by the general formula (1) and water in advance, an amount such that the compound represented by the general formula (1) remaining in the aqueous phase becomes a desired amount Can be determined by a method such as Usually, the usage-amount of the inorganic compound easily soluble in water is 5-300 weight part with respect to 100 weight part of water in the solution containing the compound represented by General formula (1) and water. It is preferable that the inorganic compound to be used is within this range in terms of the recovery rate of the compound represented by the general formula (1) and the efficiency of removing water in the organic phase.

一般式(1)で表される化合物と水を含む溶液に水に易溶性の無機化合物を溶解させる際の温度は、該溶液に水に易溶性の無機化合物が溶解する温度範囲であれば特に限定されない。通常、その温度は室温が選ばれる。   The temperature at which an inorganic compound readily soluble in water is dissolved in a solution containing the compound represented by the general formula (1) and water is particularly within the temperature range in which the inorganic compound readily soluble in water is dissolved in the solution. It is not limited. Usually, the temperature is selected as room temperature.

一般式(1)で表される化合物と水を含む溶液に水に易溶性の無機化合物を溶解させる際の圧力は特に限定されない。通常、その圧力は大気圧下である。   The pressure at which an inorganic compound that is readily soluble in water is dissolved in a solution containing the compound represented by the general formula (1) and water is not particularly limited. Usually, the pressure is under atmospheric pressure.

水相と一般式(1)で表される化合物を含む有機相とを分離する際の温度は、水相と一般式(1)で表される化合物を含む有機相が分離し、かつ一般式(1)で表される化合物の沸点以下であれば何ら制限されない。通常、その温度は室温である。   The temperature at which the aqueous phase and the organic phase containing the compound represented by the general formula (1) are separated is such that the aqueous phase and the organic phase containing the compound represented by the general formula (1) are separated, and the general formula If it is below the boiling point of the compound represented by (1), it will not restrict | limit at all. Usually, the temperature is room temperature.

水相と一般式(1)で表される化合物を含む有機相と分離する際の圧力は、何ら制限されない。通常、その圧力は大気圧下である。   The pressure at the time of separating from the aqueous phase and the organic phase containing the compound represented by the general formula (1) is not limited at all. Usually, the pressure is under atmospheric pressure.

水相と一般式(1)で表される化合物を含む有機相との分離は、回分式、連続式のいずれでもよく、装置の型式も特に制限はない。例えば、攪拌槽型による回分式の処理方法や管型による連続式などが挙げられる。   Separation of the aqueous phase and the organic phase containing the compound represented by the general formula (1) may be either a batch type or a continuous type, and the type of apparatus is not particularly limited. For example, a batch type treatment method using a stirring tank type or a continuous type using a tube type may be used.

水相と分離される一般式(1)で表される化合物を含む有機相に含まれる水分を、水と共沸組成を形成する溶剤を用いて除去する。   Water contained in the organic phase containing the compound represented by the general formula (1) separated from the aqueous phase is removed using a solvent that forms an azeotropic composition with water.

水と共沸組成を形成する溶剤としては、一般式(1)で表される化合物と蒸留により分離可能なものであれば何ら制限されない。その中で水の共沸質量分率が0.05以上で、且つ工業的に汎用の溶剤を選択して使用することは、経済的見地上好ましい。この様な溶剤を例示するとすれば、炭化水素類、ハロゲン化炭化水素類、酸エステル類、アルコール類、エーテル類、ケトン類およびアミン類などが挙げられる。   The solvent that forms an azeotropic composition with water is not particularly limited as long as it can be separated from the compound represented by the general formula (1) by distillation. Among them, it is preferable from an economical viewpoint that an azeotropic mass fraction of water is 0.05 or more and an industrially general-purpose solvent is selected and used. Examples of such solvents include hydrocarbons, halogenated hydrocarbons, acid esters, alcohols, ethers, ketones and amines.

炭化水素類としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、およびヘキサン、シクロヘキサンなどの脂肪族炭化水素が挙げられる。   Examples of the hydrocarbons include aromatic hydrocarbons such as benzene, toluene and xylene, and aliphatic hydrocarbons such as hexane and cyclohexane.

ハロゲン化炭化水素類としては、例えば、塩化メチル、メチレンジクロライドなどの脂肪族ハロゲン化炭化水素、およびクロロベンゼンなどの芳香族ハロゲン化炭化水素が挙げられる。   Examples of the halogenated hydrocarbons include aliphatic halogenated hydrocarbons such as methyl chloride and methylene dichloride, and aromatic halogenated hydrocarbons such as chlorobenzene.

酸エステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、メタクリル酸メチルなどが挙げられる。   Examples of the acid esters include methyl acetate, ethyl acetate, butyl acetate, and methyl methacrylate.

アルコール類としては、例えば、ヘキサノール、シクロヘキサノール、イソプロピルアルコールなどが挙げられる。   Examples of alcohols include hexanol, cyclohexanol, and isopropyl alcohol.

エーテル類としては、例えば、アニソール、ジブチルエーテル、ジプロピルエーテルなどが挙げられる。   Examples of ethers include anisole, dibutyl ether, dipropyl ether and the like.

ケトン類としては、例えば、シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトンなどが挙げられる。   Examples of ketones include cyclohexanone, methyl isobutyl ketone, and methyl ethyl ketone.

アミン類としては、例えば、ヘキシルアミン、2−エチルヘキシルアミン、トリメチルアミンなどが挙げられる。   Examples of amines include hexylamine, 2-ethylhexylamine, and trimethylamine.

これらの水と共沸組成を形成する溶剤は単独で用いることもできるが二種以上を併用することもできる。これらの水と共沸組成を形成する溶剤は回収して再利用することもできる。   These solvents that form an azeotropic composition with water can be used alone or in combination of two or more. These solvents that form an azeotropic composition with water can be recovered and reused.

有機相中に含まれる水分を除去するのに用いられる水と共沸組成を形成する溶剤の量は、通常、一般式(1)で表される化合物100重量部に対して5〜30重量部であれば十分である。   The amount of the solvent that forms an azeotropic composition with water used for removing water contained in the organic phase is usually 5 to 30 parts by weight with respect to 100 parts by weight of the compound represented by the general formula (1). If it is enough.

水と共沸組成を形成する溶剤を用いて有機相中の水分を除去する際に用いられる蒸留塔の段数は、通常、2〜5段、好ましくは2〜3段である。蒸留塔の段数が5段以上であっても蒸留効果は変わらない。   The number of stages of the distillation column used when removing water in the organic phase using a solvent that forms an azeotropic composition with water is usually 2 to 5 stages, preferably 2 to 3 stages. The distillation effect does not change even if the number of distillation towers is 5 or more.

水と共沸組成を形成する溶剤を用いて有機相中の水分を除去する方法としては、公知の方法、例えば、分離回収した有機相に前記の水と共沸組成を形成する溶剤を添加して蒸留し、まず水を溶剤とともに系外に留出させ、留出した液を冷却凝縮して水と溶剤に分離して水を除去し、分離した溶剤は蒸留塔の塔頂部より系内へ戻して循環利用する方法が挙げられる。   As a method of removing water in the organic phase using a solvent that forms an azeotropic composition with water, a known method, for example, adding the solvent that forms an azeotropic composition with water to the separated and recovered organic phase. First, water is distilled out of the system together with the solvent, and the distilled liquid is cooled and condensed to separate water and the solvent to remove the water. The separated solvent enters the system from the top of the distillation column. A method of returning and recycling is used.

水と共沸組成を形成する溶剤を用いて有機相中の水分を除去した後、水と共沸組成を形成する溶剤等を蒸留により除去し、続いて蒸留により一般式(1)で表される化合物を回収することができる。   After removing water in the organic phase using a solvent that forms an azeotrope with water, the solvent that forms an azeotrope with water is removed by distillation, followed by distillation represented by the general formula (1). Compounds can be recovered.

一般式(1)で表される化合物および水を含有する溶液に水に易溶性の無機化合物を溶解させて水相と一般式(1)で表される化合物を含む有機相を分離する際に、一般式(1)で表される化合物を抽出溶剤中に回収することもできる。   In separating an aqueous phase and an organic phase containing a compound represented by the general formula (1) by dissolving an inorganic compound easily soluble in water in a solution containing the compound represented by the general formula (1) and water The compound represented by the general formula (1) can also be recovered in the extraction solvent.

抽出溶剤は、水相より一般式(1)で表される化合物を抽出可能な溶剤、水と混和しない溶剤、蒸留により一般式(1)で表される化合物と分離可能な溶剤であれば何ら制限されない。その中で工業的に汎用の溶剤を選択して使用することは、経済的見地上好ましい。この様な抽出溶剤を例示するとすれば、炭化水素類、ハロゲン化炭化水素類、酸エステル類、アルコール類、ケトン類およびアミン類が挙げられる。   The extraction solvent is any solvent that can extract the compound represented by the general formula (1) from the aqueous phase, a solvent immiscible with water, or a solvent that can be separated from the compound represented by the general formula (1) by distillation. Not limited. Among them, it is preferable from the economical viewpoint to select and use industrially general-purpose solvents. Examples of such extraction solvents include hydrocarbons, halogenated hydrocarbons, acid esters, alcohols, ketones and amines.

炭化水素類としては芳香族炭化水素化合物であるベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、イソプロピルベンゼン、アミルベンゼンなど、ハロゲン化炭化水素類としては塩化メチル、メチレンジクロライド、クロロフォルム、クロルベンゼンなど、酸エステル類としては酢酸エチル、酢酸ブチル、蟻酸プロピル、蟻酸ブチル、炭酸ジエチル、プロピオン酸メチル、酪酸メチルなど、アルコール類としては炭素数5以上で回収する一般式(1)で表される化合物と蒸留分離可能な沸点差を有するヘキサノール、ヘプタノール、オクタノール、アミルアルコール、ベンジルアルコールなど、エーテル類としては炭素数2以上で回収する一般式(1)で表される化合物と蒸留分離可能な沸点差を有するアニソール、ジイソプロピルエーテル、ジブチルエーテル、エチルイソアミルエーテルなど、ケトン類としてはアルキル基の炭素数が2以上で回収する一般式(1)で表される化合物と蒸留分離可能な沸点差を有するメチルイソブチルケトン、ジエチルケトン、エチルブチルケトン、ジプロピルケトンなど、アミン類としては炭素数4以上で回収する一般式(1)で表される化合物と蒸留分離可能な沸点差を有するジイソブチルアミン、トリエチルアミン、ヘキシルアミン、2−エチルヘキシルアミンなどが挙げられる。   Hydrocarbons include aromatic hydrocarbon compounds such as benzene, toluene, xylene, mesitylene, ethylbenzene, isopropylbenzene, and amylbenzene. Halogenated hydrocarbons include acid esters such as methyl chloride, methylene dichloride, chloroform, and chlorobenzene. As the alcohols, ethyl acetate, butyl acetate, propyl formate, butyl formate, diethyl carbonate, methyl propionate, methyl butyrate, etc., and alcohols are distilled and separated from the compound represented by the general formula (1) recovered with 5 or more carbon atoms. Hexanols, heptanols, octanols, amyl alcohols, benzyl alcohols and the like having a possible boiling point difference, ethers such as anisole having a boiling point difference capable of being separated by distillation from the compound represented by the general formula (1) recovered with 2 or more carbon atoms , Diisopro Examples of ketones such as ruether, dibutyl ether, and ethyl isoamyl ether include methyl isobutyl ketone and diethyl ketone having a boiling point difference that can be separated by distillation from the compound represented by the general formula (1) in which the alkyl group has 2 or more carbon atoms in the alkyl group. , Ethylbutylketone, dipropylketone, and the like as amines such as diisobutylamine, triethylamine, hexylamine having a boiling point difference that can be separated from the compound represented by the general formula (1) recovered with 4 or more carbon atoms, 2- Examples include ethylhexylamine.

抽出溶剤として前述した水と共沸組成を形成し得る溶剤を用いることは、前記の一般式(1)で表される化合物を含む有機相中の水分の除去に用いることができる点で好ましい。   The use of the above-mentioned solvent capable of forming an azeotropic composition with water is preferable because it can be used for removing water in the organic phase containing the compound represented by the general formula (1).

抽出溶剤を用いることにより水相と分離する際の一般式(1)で表される化合物の回収率を向上させることができる。   By using the extraction solvent, the recovery rate of the compound represented by the general formula (1) when separated from the aqueous phase can be improved.

抽出溶剤の使用量は、通常、一般式(1)で表される化合物と水を含む水溶液100重量部に対して5〜10重量部である。   The amount of the extraction solvent used is usually 5 to 10 parts by weight with respect to 100 parts by weight of the aqueous solution containing the compound represented by the general formula (1) and water.

一般式(1)で表される化合物を抽出溶剤中に回収する際の温度は、抽出溶剤が一般式(1)で表される化合物を抽出する能力を発揮できれば特に制限はない。その温度は、通常、室温である。   The temperature at which the compound represented by the general formula (1) is recovered in the extraction solvent is not particularly limited as long as the extraction solvent can exhibit the ability to extract the compound represented by the general formula (1). The temperature is usually room temperature.

一般式(1)で表される化合物を抽出溶剤中に回収する際の圧力に特に制限はない。その圧力は、通常、大気圧下である。   There is no restriction | limiting in particular in the pressure at the time of collect | recovering the compound represented by General formula (1) in an extraction solvent. The pressure is usually under atmospheric pressure.

前記の水と分離する一般式(1)で表される化合物を含む有機相の回収に使用する抽出溶剤として水と共沸組成を形成する溶剤を使用した場合、抽出に使用した水と共沸組成を形成する溶剤の使用量がこれを含む有機相中の水分を除去するに十分な量であれば、水と共沸組成を形成する溶剤を新たに添加しなくても良い。   When a solvent that forms an azeotropic composition with water is used as an extraction solvent used for recovering the organic phase containing the compound represented by the general formula (1) that is separated from water, the water azeotropes with the water used for extraction. If the amount of the solvent that forms the composition is sufficient to remove the water in the organic phase containing the composition, it is not necessary to add a new solvent that forms an azeotropic composition with water.

以下に本発明の実施例を示すが、本発明はこれにより何ら限定されるものではない。
なおDMIの分析はガスクロマトグラフィー(以下、「GC」と略記する。)に依った。
Examples of the present invention will be shown below, but the present invention is not limited thereto.
The analysis of DMI was based on gas chromatography (hereinafter abbreviated as “GC”).

GC分析の条件は次のとおりである。
カラム:Thermon1000+KOH(10+3%)、3mm×2m
キャリアーガス:窒素ガス
カラム温度:200℃
The conditions of GC analysis are as follows.
Column: Thermon 1000 + KOH (10 + 3%), 3 mm × 2 m
Carrier gas: Nitrogen gas Column temperature: 200 ° C

DMI159.7g(67.5重量%)と水71.6g(30.3重量%)、水酸化ナトリウム5.3g(2.2重量%)を含む水溶液236.6gに室温で95%水酸化ナトリウム水溶液175.3gを加え、攪拌した後に30分静置した。静置したマスを分液ロートで有機相と水相に分離し、DMI157.4g(90.7重量%)、水16.2g(9.3重量%)含む有機相を173.6g得た。この有機相にトルエン15.7g(DMI100重量部に対し10重量部)を蒸留釜に仕込み、2段の蒸留塔で水とトルエンを共沸させ、留出した液を還流管で分離してトルエン相は蒸留釜に戻し、水を系外に抜き出して脱水処理を行なった。蒸留塔の塔頂温度がトルエンの沸点となったところで脱水処理を完了し、続けて減圧度13.33kPaでトルエンを留去した後に減圧度を4.0kPaに変えて蒸留精製を行い、含水量100ppmのDMIを151.4g(回収率=94.8%)を得た。蒸留の初留カット分および釜残ロス分を次バッチにて回収すると回収率は99%まで改善される。   95% sodium hydroxide at room temperature to 236.6 g of an aqueous solution containing 159.7 g (67.5% by weight) of DMI, 71.6 g (30.3% by weight) of water and 5.3 g (2.2% by weight) of sodium hydroxide After adding 175.3 g of an aqueous solution and stirring, the mixture was allowed to stand for 30 minutes. The stationary mass was separated into an organic phase and an aqueous phase with a separatory funnel to obtain 173.6 g of an organic phase containing 157.4 g (90.7 wt%) of DMI and 16.2 g (9.3 wt%) of water. To this organic phase, 15.7 g of toluene (10 parts by weight with respect to 100 parts by weight of DMI) was charged into a distillation kettle, water and toluene were azeotroped in a two-stage distillation column, and the distilled liquid was separated by a reflux tube to give toluene. The phase was returned to the distillation kettle, and water was extracted out of the system for dehydration. When the top temperature of the distillation tower reaches the boiling point of toluene, the dehydration process is completed, and after toluene is distilled off at a reduced pressure of 13.33 kPa, the reduced pressure is changed to 4.0 kPa and purified by distillation. 151.4 g of 100 ppm DMI (recovery = 94.8%) was obtained. When the first cut of distillation and the residue in the kettle are recovered in the next batch, the recovery rate is improved to 99%.

実施例1と同一組成の水溶液236.6gに塩化ナトリウム18.9gとメチレンクロライド15.9g(DMI100重量部に対して10重量部)を添加し、攪拌した後に30分静置した。分液ロートで有機相と水相に分離し、DMI159.0g(89.6重量%)、水2.5g(1.4重量%)を含む有機相177.4gを得た。この有機相を蒸留釜に仕込み、2段の蒸留塔で水とメチレンクロライドを共沸させ、留出した液を還流管で分離してメチレンクロライド相は蒸留釜に戻し、水を系外に抜き出して脱水処理を行なった。蒸留塔の塔頂温度がメチレンクロライドの沸点となったところで脱水処理を完了し、続けて減圧度26.7kPaでメチレンクロライドを留去した後に減圧度を4.0kPaに変えて蒸留精製を行い、含水量90ppmのDMIを151.1g(回収率=94.6%)を得た。蒸留の初留カット分および釜残ロス分を次バッチにて回収すると回収率は99%まで改善される。   To 236.6 g of an aqueous solution having the same composition as in Example 1, 18.9 g of sodium chloride and 15.9 g of methylene chloride (10 parts by weight with respect to 100 parts by weight of DMI) were added and stirred, and then allowed to stand for 30 minutes. The organic phase and the aqueous phase were separated with a separatory funnel to obtain 177.4 g of an organic phase containing 159.0 g (89.6 wt%) of DMI and 2.5 g (1.4 wt%) of water. This organic phase is charged into a distillation kettle, water and methylene chloride are azeotroped in a two-stage distillation column, the distilled liquid is separated by a reflux tube, the methylene chloride phase is returned to the distillation kettle, and water is withdrawn from the system. The dehydration process was performed. When the top temperature of the distillation tower reaches the boiling point of methylene chloride, the dehydration process is completed, and after the methylene chloride is distilled off at a reduced pressure of 26.7 kPa, the distillation is purified by changing the reduced pressure to 4.0 kPa. 151.1 g (recovery rate = 94.6%) of DMI having a water content of 90 ppm was obtained. When the first cut of distillation and the residue in the kettle are recovered in the next batch, the recovery rate is improved to 99%.

実施例1と同一組成の水溶液236.6gに98%硫酸を182.6gとキシレン24.0g(DMI100重量部に対して15重量部)を添加し、攪拌した後に30分静置した。   182.6 g of 98% sulfuric acid and 24.0 g of xylene (15 parts by weight with respect to 100 parts by weight of DMI) were added to 236.6 g of an aqueous solution having the same composition as in Example 1, and the mixture was stirred and allowed to stand for 30 minutes.

分液ロートで有機相と水相に分離し、DMI158.3g(84.9重量%)、水4.3g(2.3重量%)を含む有機相186.5gを得た。この有機相を蒸留釜に仕込み、5段の蒸留塔で水とキシレンを共沸させ、留出した液を還流管で分離してキシレン相は蒸留釜に戻し、水を系外に抜き出して脱水処理を行なった。蒸留塔の塔頂温度がキシレンの沸点となったところで脱水処理を完了し、続けて減圧度26.7kPaでキシレンを留去した後に減圧度を4.0kPaに変えて蒸留精製を行い、含水量90ppmのDMIを150.2g(回収率=93.9%)を得た。蒸留の初留カット分および釜残ロス分を次バッチにて回収すると回収率は99%まで改善される。   The organic phase and the aqueous phase were separated with a separatory funnel to obtain 186.5 g of an organic phase containing 158.3 g (84.9% by weight) of DMI and 4.3 g (2.3% by weight) of water. This organic phase is charged into a distillation kettle, water and xylene are azeotroped in a five-stage distillation column, the distilled liquid is separated by a reflux tube, the xylene phase is returned to the distillation kettle, and water is taken out of the system and dehydrated. Processing was performed. When the top temperature of the distillation tower reaches the boiling point of xylene, the dehydration process is completed, and after the xylene is distilled off at a reduced pressure of 26.7 kPa, distillation is purified by changing the reduced pressure to 4.0 kPa. 150.2 g of 90 ppm DMI (recovery rate = 93.9%) was obtained. When the first cut of distillation and the residue in the kettle are recovered in the next batch, the recovery rate is improved to 99%.

[比較例1]
実施例1と同一組成の水溶液236.6gを蒸留釜に仕込み、10段の蒸留塔を用いて減圧度4.0kPaで蒸留精製を行なった。初留として水をカットし、更に中留として水を2.4重量%含んだDMIを7.9gカットした後に、含水量400ppmのDMIを128.9g(回収率=80.7%)を得た。蒸留の初留カット分および釜残ロス分を次バッチにて回収しても回収率は85.5%までしか改善されない。また初留として水をカットした後は蒸留釜の器壁に無機塩が固着していた。
[Comparative Example 1]
236.6 g of an aqueous solution having the same composition as in Example 1 was charged into a distillation kettle, and purified by distillation at a reduced pressure of 4.0 kPa using a 10-stage distillation column. After cutting water as the first fraction and further cutting 7.9 g of DMI containing 2.4 wt% water as the middle fraction, 128.9 g of DMI with a water content of 400 ppm was obtained (recovery rate = 80.7%). It was. Even if the initial distillation cut and residual loss in the distillation are recovered in the next batch, the recovery rate is improved only to 85.5%. In addition, after the water was cut as the first distillation, inorganic salts were stuck to the wall of the still.

[比較例2]
実施例1と同一組成の水溶液236.6gとトルエン63.9g(DMI100重量部に対して40重量部)をフラスコに仕込み、2段の蒸留塔で水とトルエンを共沸させ、留出した液を還流管で分離してトルエン相は蒸留釜に戻し、水を系外に抜き出して脱水処理を行なった。蒸留塔の塔頂温度がトルエンの沸点となったところで脱水処理を完了し、冷却した後に濾過を行い、析出した無機物を取り除いたが、大半はフラスコに固着していた。濾過で分離した無機塩に付着したDMIをトルエン31.0g(DMIに対して19重量部)で洗浄して有機相を得た。得られた有機相を蒸留釜に仕込み、減圧度13.33kPaでトルエンを留去した後に減圧度を4.0kPaに変えて蒸留精製を行い、含水量100ppmのDMIを150.1g(回収率=94.0%)を得た。蒸留の初留カット分および釜残ロス分を次バッチにて回収すると回収率は99%まで改善される。
[Comparative Example 2]
236.6 g of an aqueous solution having the same composition as in Example 1 and 63.9 g of toluene (40 parts by weight with respect to 100 parts by weight of DMI) were placed in a flask, and water and toluene were azeotroped in a two-stage distillation column to distill off. Was separated by a reflux tube, the toluene phase was returned to the distillation kettle, water was taken out of the system, and dehydration was performed. When the top temperature of the distillation column reached the boiling point of toluene, the dehydration process was completed, and after cooling, filtration was performed to remove the precipitated inorganic substances, but most of them adhered to the flask. DMI adhering to the inorganic salt separated by filtration was washed with 31.0 g of toluene (19 parts by weight with respect to DMI) to obtain an organic phase. The obtained organic phase was charged into a distillation kettle, and toluene was distilled off at a reduced pressure of 13.33 kPa. Then, distillation was purified by changing the reduced pressure to 4.0 kPa, and 150.1 g of DMI having a water content of 100 ppm (recovery rate = 94.0%). When the first cut of distillation and the residue in the kettle are recovered in the next batch, the recovery rate is improved to 99%.

[比較例3]
実施例1と同一組成の水溶液236.6gとメチレンクロライド 71.0g(水溶液100重量部に対し30重量部)をフラスコに仕込み、室温で10分間激しく攪拌した後に、30分間静置して分液を行い、有機相と水相に分液した。得られた有機相を蒸留釜に仕込み、2段の蒸留塔で減圧度26.7KPaでメチレンクロライドを留去した後に減圧度を4.0kPaに変えて蒸留精製を行い、含水量400ppmのDMIを121.4g(回収率=76.0%)を得た。蒸留の初留カット分および釜残ロス分を次バッチにて回収しても回収率は80%までしか改善されない。
[Comparative Example 3]
236.6 g of an aqueous solution having the same composition as in Example 1 and 71.0 g of methylene chloride (30 parts by weight with respect to 100 parts by weight of the aqueous solution) were placed in a flask, stirred vigorously for 10 minutes at room temperature, and then allowed to stand for 30 minutes for liquid separation. And separated into an organic phase and an aqueous phase. The obtained organic phase was charged into a distillation kettle, and methylene chloride was distilled off at a reduced pressure of 26.7 KPa in a two-stage distillation column. 121.4 g (recovery rate = 76.0%) was obtained. Even if the first-distilled cut of distillation and the residue in the kettle are recovered in the next batch, the recovery rate is improved only to 80%.

[比較例4]
実施例1と同一組成の水溶液236.6gに85%の水酸化カリウム111.3g添加し、攪拌した後に30分静置した。静置したマスを分液ロートで有機相と水相に分離し、DMI 157.1g(83.0重量%)、水32.1g(17.0重量%)含む有機相を189.2g得た。得られた有機相を蒸留釜に仕込み、5段の蒸留塔を用いて減圧度4.0kPaで蒸留精製を行なった。初留として水をカットした後に、含水量500ppmのDMIを142.1g(回収率=89.0%)を得た。
[Comparative Example 4]
111.3 g of 85% potassium hydroxide was added to 236.6 g of an aqueous solution having the same composition as in Example 1, and the mixture was stirred and allowed to stand for 30 minutes. The stationary mass was separated into an organic phase and an aqueous phase with a separatory funnel to obtain 189.2 g of an organic phase containing 157.1 g (83.0 wt%) of DMI and 32.1 g (17.0 wt%) of water. . The obtained organic phase was charged into a distillation kettle and purified by distillation at a reduced pressure of 4.0 kPa using a 5-stage distillation column. After cutting water as the first distillation, 142.1 g (recovery rate = 89.0%) of DMI having a water content of 500 ppm was obtained.

本発明の回収方法は、一般式(1)で表される化合物と水を含む混合物から、一般式(1)で表される化合物を効率的、かつ高い回収率で回収するのに有用である。また、本発明の回収方法は、蒸留設備のコストおよび蒸留に要するエネルギーが削減でき、使用する水と共沸組成を形成する溶剤等の使用量を低減することができる。   The recovery method of the present invention is useful for recovering the compound represented by the general formula (1) efficiently and at a high recovery rate from the mixture containing the compound represented by the general formula (1) and water. . Moreover, the recovery method of the present invention can reduce the cost of distillation equipment and the energy required for distillation, and can reduce the amount of solvent used to form an azeotropic composition with water to be used.

Claims (3)

一般式(1)
Figure 2007008841
(式中、Rは炭素数1〜4のアルキル基を示す)
で表される化合物および水を含有する溶液から一般式(1)で表される化合物を回収するにあたり、該溶液に水に易溶性の無機化合物を溶解させ、水相と分離した有機相を回収し、該有機相中の水分を水と共沸組成を形成する溶剤とともに除去した後、一般式(1)で表される化合物を蒸留により回収する、1,3−ジアルキル−2−イミダゾリジノンの回収方法。
General formula (1)
Figure 2007008841
(Wherein R represents an alkyl group having 1 to 4 carbon atoms)
In recovering the compound represented by general formula (1) from the solution represented by formula (1) and water, an inorganic compound that is readily soluble in water is dissolved in the solution, and the organic phase separated from the aqueous phase is recovered. 1,3-dialkyl-2-imidazolidinone, wherein the water in the organic phase is removed together with a solvent that forms an azeotropic composition with water, and then the compound represented by the general formula (1) is recovered by distillation. Recovery method.
水に易溶性の無機化合物が無機塩、無機塩基または無機酸類である、請求項1記載の回収方法。 The recovery method according to claim 1, wherein the water-soluble inorganic compound is an inorganic salt, an inorganic base, or an inorganic acid. 一般式(1)で表される化合物および水を含有する溶液に水に易溶性の無機化合物を溶解させて水相と分離した有機相の回収に抽出溶剤を使用する、請求項1記載の回収方法。 The recovery according to claim 1, wherein an extraction solvent is used for recovering an organic phase separated from an aqueous phase by dissolving an inorganic compound readily soluble in water in a solution containing the compound represented by the general formula (1) and water. Method.
JP2005189665A 2005-06-29 2005-06-29 Method for recovering 1,3-dialkyl-2-imidazolidinone Pending JP2007008841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189665A JP2007008841A (en) 2005-06-29 2005-06-29 Method for recovering 1,3-dialkyl-2-imidazolidinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189665A JP2007008841A (en) 2005-06-29 2005-06-29 Method for recovering 1,3-dialkyl-2-imidazolidinone

Publications (1)

Publication Number Publication Date
JP2007008841A true JP2007008841A (en) 2007-01-18

Family

ID=37747797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189665A Pending JP2007008841A (en) 2005-06-29 2005-06-29 Method for recovering 1,3-dialkyl-2-imidazolidinone

Country Status (1)

Country Link
JP (1) JP2007008841A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338571A (en) * 1989-07-06 1991-02-19 Mitsui Toatsu Chem Inc Recovery of 1,3-dimethyl-2-imidazolidinone
JPH0770080A (en) * 1993-08-30 1995-03-14 Mitsui Toatsu Chem Inc Method for recovering 1,3-dimethyl-2-imidazolidinone
JPH0770079A (en) * 1993-08-30 1995-03-14 Mitsui Toatsu Chem Inc Method for recovering 1,3-dimethyl-2-imidazolidinone
JPH11152272A (en) * 1997-11-21 1999-06-08 Mitsui Chem Inc Separation of aprotic polar solvent by liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338571A (en) * 1989-07-06 1991-02-19 Mitsui Toatsu Chem Inc Recovery of 1,3-dimethyl-2-imidazolidinone
JPH0770080A (en) * 1993-08-30 1995-03-14 Mitsui Toatsu Chem Inc Method for recovering 1,3-dimethyl-2-imidazolidinone
JPH0770079A (en) * 1993-08-30 1995-03-14 Mitsui Toatsu Chem Inc Method for recovering 1,3-dimethyl-2-imidazolidinone
JPH11152272A (en) * 1997-11-21 1999-06-08 Mitsui Chem Inc Separation of aprotic polar solvent by liquid

Similar Documents

Publication Publication Date Title
JP2004123592A (en) Method for producing hydroxybenzoic acid compound
JP2011098952A (en) Method for producing diepoxy compound
IL189243A (en) Purification of fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether (sevoflurane)
KR101455449B1 (en) Method for producing fluorine-containing ether with high purity
US7102028B2 (en) Method for producing 3,5-di-tert-butyl-4-hydroxybenzoic acid
JP2004026753A (en) Method for recovering organic substance from waste water containing methylene-bridged polyarylpolyamine
JPH07196583A (en) Preparation of dialkyl dicarbonate
JP2007008841A (en) Method for recovering 1,3-dialkyl-2-imidazolidinone
JP4414148B2 (en) Liquid-liquid extraction method for polar organic substances
KR102086396B1 (en) Crystal containing unsaturated carboxylic acid amide compound and method for producing same
JPH10511941A (en) Method for producing 2,6-difluorobenzonitrile without solvent
JP2003267904A (en) Method for producing ditrimethylolpropane
JP2001097893A (en) Method for producing high-purity organic compound
JP2002047224A (en) Method for producing highly pure ditrimethylolpropane
EP2522652A1 (en) Method for producing difluoroacetic acid ester
EP0366842B1 (en) Purification of phenyl ethyl alcohol
JP2023035371A (en) Method for collecting cation component of ionic liquid and method for recycling ionic liquid
JP2007031437A (en) Method for preparation of trifluoromethylphenacyl bromide optionally having substituent
JP2004149440A (en) Method for producing benzyl carbamate compound
JP3916794B2 (en) Solvent recovery method
JP2004195360A (en) Method for recovering and recycling boron trifluoride and its complex
JP2004141819A (en) Recovery and recycling method of boron trifluoride or complex thereof
JP2002047234A (en) Method for recovering ditrimethylolpropane
JPH11152272A (en) Separation of aprotic polar solvent by liquid
JP2004203816A (en) Method for manufacturing 2,2,2-trifluoroethanol of high purity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD03 Notification of appointment of power of attorney

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628