JP2007008212A - Part for automobile and its manufacturing method - Google Patents

Part for automobile and its manufacturing method Download PDF

Info

Publication number
JP2007008212A
JP2007008212A JP2005188401A JP2005188401A JP2007008212A JP 2007008212 A JP2007008212 A JP 2007008212A JP 2005188401 A JP2005188401 A JP 2005188401A JP 2005188401 A JP2005188401 A JP 2005188401A JP 2007008212 A JP2007008212 A JP 2007008212A
Authority
JP
Japan
Prior art keywords
tie
bead
strength
hole
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005188401A
Other languages
Japanese (ja)
Other versions
JP4804048B2 (en
Inventor
Kenji Yamamoto
憲司 山本
Nobuhiro Okada
信宏 岡田
Kazuo Okamura
一男 岡村
Yoshitaka Hattori
義孝 服部
Kenji Moroi
賢児 諸井
Masamichi Kusama
雅通 草間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRATA TECHNICAL CO Ltd
Nippon Steel Corp
Original Assignee
HIRATA TECHNICAL CO Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRATA TECHNICAL CO Ltd, Sumitomo Metal Industries Ltd filed Critical HIRATA TECHNICAL CO Ltd
Priority to JP2005188401A priority Critical patent/JP4804048B2/en
Publication of JP2007008212A publication Critical patent/JP2007008212A/en
Application granted granted Critical
Publication of JP4804048B2 publication Critical patent/JP4804048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tie-down having desired strength and attempted to reduce its weight and its manufacturing cost, and its manufacturing method. <P>SOLUTION: This tie-down 1 is an integral fabricated article made of a steel plate 2 and is furnished with both of a bead 5 provided in a recessed shape or in a protruded shape and a structure 6 with martensite as a main body on a peripheral part of a burring hole 3 provided on a bottom surface 1a of this integral fabricated article and having a cylindrical flange 4 in the circumference. It is manufactured by forming the bead 5 in the recessed shape or in the protruded shape on the peripheral part of the burring hole 3 on the integral fabricated article and making the high frequency quenched structure 6 with martensite as the main body by carrying out high frequency quenching. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車用部品とその製造方法に関する。具体的には、本発明は、所望の強度を有したまま軽量化及び製造コスト低減を図ることができる自動車用部品とその製造方法に関する。   The present invention relates to an automotive part and a method for manufacturing the same. Specifically, the present invention relates to an automobile part that can be reduced in weight and reduced in manufacturing cost while having a desired strength, and a method for manufacturing the same.

環境問題や経済性を背景として、自動車車体の軽量化要請は近年益々高まっている。これに伴って、個々の自動車用部品(以下、単に「部品」ともいう。)に対しても軽量化が求められている。薄鋼板からなる従来の自動車用部品は、必要な強度性能を満たすため、本体をなす本体部品の一部に補強部品をスポット溶接等により接合したものが多く、必然的にその重量は増加する。   In light of environmental problems and economic efficiency, demands for reducing the weight of automobile bodies have increased in recent years. In connection with this, the weight reduction is calculated | required also for each components for motor vehicles (henceforth only a "component"). In order to satisfy the required strength performance, conventional automotive parts made of thin steel plates often have reinforcing parts joined to a part of the main body parts constituting the main body by spot welding or the like, and the weight inevitably increases.

このため、本体部品をハイテン等の高強度材により構成して薄肉化を図ることによって軽量化を図る、いわゆる高ハイテン化も行われている。しかし、高ハイテン化は、素材を本体部品の形状へ加工する際のスプリングバック変形や割れ等といった成形不良の原因となる。   For this reason, so-called high high tension is also achieved, in which the main body part is made of a high strength material such as high tension to reduce the thickness, thereby reducing the weight. However, the high tensile strength causes molding defects such as springback deformation and cracking when the material is processed into the shape of the main body part.

そこで、成形性に優れた引張強度440MPa級程度の低強度素材を所望の自動車用部品の形状に成形した後に、レーザ焼入装置を用いて加熱及び焼入れすることによって、高強度化する技術が開示されている。   Therefore, a technology for increasing strength by forming a low-strength material having excellent tensile strength of about 440 MPa class into a desired automotive part shape and then heating and quenching using a laser quenching apparatus is disclosed. Has been.

例えば、特許文献1〜3には、安価で成形性に優れた軟鋼板を所望の自動車用部品の形状に成形した後、成形品の長さ方向に沿って高密度エネルギ源(実質的にはレーザ)を照射してビード状の焼入硬化部を形成することにより高強度プレス成形品を製造する発明が開示されている。
特開昭61−99620号公報 特開平4−72010号公報 特開平6−73438号公報
For example, in Patent Documents 1 to 3, after a mild steel plate that is inexpensive and excellent in formability is formed into the shape of a desired automobile part, a high-density energy source (substantially) along the length direction of the formed product. An invention for manufacturing a high-strength press-molded product by irradiating a laser) to form a bead-like quench-hardened portion is disclosed.
JP-A 61-99620 JP-A-4-72010 JP-A-6-73438

これらの特許文献1〜3により開示された焼入強化法によって十分な強度を得るためには、必然的に多くのレーザ照射本数を必要とする。このため、レーザ設備そのものが高価であることに加えてレーザ照射工程が不可欠になることにより生産性が低下し、自動車用部品の製造コストの上昇は免れない。このように、特許文献1〜3により開示された方法では、高密度エネルギの照射が不可欠であることに伴って、処理コストが嵩むといった問題や生産性が低下するといった問題がある。   In order to obtain sufficient strength by the quenching strengthening method disclosed in these Patent Documents 1 to 3, a large number of laser irradiations are inevitably required. For this reason, in addition to the expensive laser equipment itself, the laser irradiation process becomes indispensable, resulting in a decrease in productivity and an inevitable increase in the manufacturing cost of automotive parts. As described above, in the methods disclosed in Patent Documents 1 to 3, there is a problem that the processing cost increases and the productivity decreases due to the necessity of irradiation with high density energy.

また、生産性の低下を甘受し、特許文献1〜3により開示された発明にしたがって多くの焼き入れ強化部を形成すれば、相応の強度向上を図ることは確かに可能ではあるものの、得られる強度向上の程度にも限界があり、要求される強度のレベルによっては、所望の強度を得られないこともある。   Moreover, if the reduction of productivity is accepted and many quenching strengthening parts are formed according to the invention disclosed in Patent Documents 1 to 3, it is possible to obtain a corresponding improvement in strength, but it is obtained. There is a limit to the degree of strength improvement, and a desired strength may not be obtained depending on the required strength level.

さらに、自動車用部品のうちでも特に、完成車両を例えばトラックや鉄道車両等の輸送車両に搭載して輸送する際に、輸送車両の搭載部に取り付けられたタイダウンフックを掛止して完成車両を輸送車両に固定して搭載するためのタイダウンフック取付穴(バーリング穴)を有し、完成車両の床板下面にスポット溶接等により接合される部品(以下、「タイダウン」という)では、荷重が入力されるバーリング穴の周囲の高強度化を図るために、この部分を補強部材により別部品として構成せざるを得ず、重量およびコストの両面で不利であった。   Furthermore, particularly when the finished vehicle is mounted on a transportation vehicle such as a truck or a railway vehicle among the parts for automobiles, the tie-down hook attached to the mounting portion of the transportation vehicle is hooked to complete the completed vehicle. For parts that have tie-down hook mounting holes (burring holes) for fixing and mounting to the transport vehicle and are joined to the bottom surface of the floor plate of the completed vehicle by spot welding (hereinafter referred to as “tie-down”) In order to increase the strength around the burring hole to which is input, this portion has to be configured as a separate part by a reinforcing member, which is disadvantageous in terms of both weight and cost.

本発明の目的は、所望の強度を有したまま軽量化および製造コスト低減が、いずれも図られた、例えばタイダウン等の自動車用部品とその製造方法を提供することである。   An object of the present invention is to provide an automotive part such as a tie-down, for example, and a manufacturing method thereof, both of which are reduced in weight and reduced in manufacturing cost while having a desired strength.

本発明は、補強部品を用いない一体成形加工品である自動車用部品の形状を工夫することによって面剛性を向上させる形状強化と、高周波焼入れによる部分的な焼入強化とを併用すれば、所望の強度を有したまま軽量化および製造コスト低減が、いずれも図られた一体成形加工品である自動車用部品を容易に提供できるという、独創的な技術思想に基づくものである。   The present invention can be obtained by combining shape strengthening that improves surface rigidity by devising the shape of an automotive part that is an integrally molded processed product that does not use reinforcing parts and partial quenching strengthening by induction hardening. It is based on the original technical idea that both the weight reduction and the manufacturing cost reduction with the strength of the above can easily provide automobile parts that are the integrally formed processed products.

本発明は、鋼板からなるとともに、周囲に円筒状フランジを伴うバーリング穴を形成された一の外面を有する一体成形加工品であって、このバーリング穴の周辺部に、凹状又は凸状に設けられるビードと高周波焼入れ組織とを、ともに有することを特徴とする自動車用部品である。   The present invention is an integrally molded product having a single outer surface formed of a steel plate and having a burring hole with a cylindrical flange around it, and is provided in a concave or convex shape around the burring hole. An automotive part having both a bead and an induction-hardened structure.

この本発明に係る自動車用部品におけるビードは、(i)円筒状フランジの立ち上がり部の外郭に略沿う方向へ設けられること、又は(ii)円筒状フランジの立ち上がり部の外郭に沿って環状に設けられることが望ましい。   The bead in the automotive component according to the present invention is (i) provided in a direction substantially along the outline of the rising portion of the cylindrical flange, or (ii) provided in an annular shape along the outline of the rising portion of the cylindrical flange. It is desirable that

これらの本発明に係る自動車用部品では、成形加工品が輸送時の自動車を拘束するタイダウンフックを取り付けるための部品(タイダウン)であるとともに、バーリング穴がタイダウンフック取付穴であることが望ましい。   In these automobile parts according to the present invention, the molded product is a part (tie-down) for attaching a tie-down hook that restrains the automobile during transportation, and the burring hole is a tie-down hook attachment hole. desirable.

別の観点からは、本発明は、鋼板からなる一体成形加工品の一の外面に形成された、周囲に円筒状フランジを伴うバーリング穴の周辺部に、凹状又は凸状にビードを設けるとともに高周波焼入れを行うことを特徴とする自動車用部品の製造法である。   From another point of view, the present invention provides a bead with a concave or convex shape at the periphery of a burring hole formed on the outer surface of an integrally molded product made of a steel plate and having a cylindrical flange around it. This is a method of manufacturing an automotive part characterized by quenching.

本発明により、所望の強度を有したまま軽量化および製造コスト低減が図られた自動車用部品、例えばタイダウンを、容易に提供できる。   According to the present invention, it is possible to easily provide an automotive part, for example, a tie-down, which is reduced in weight and manufacturing cost while maintaining a desired strength.

以下、本発明にかかる自動車用部品およびその製造法を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。なお、以降の説明では、自動車用部品が上述した、タイダウンフック取付穴を有するタイダウンである場合を例にとる。   BEST MODE FOR CARRYING OUT THE INVENTION Best modes for carrying out automotive parts and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description, the case where the automotive part is a tie-down having a tie-down hook mounting hole as described above is taken as an example.

図1は、本実施の形態のタイダウン1の構成例を示す説明図である。また、図2は、図1におけるA−A断面を、タイダウンフック7とともに示す説明図である。
同図に示すように、このタイダウン1は、素材である鋼板2にプレス成形を行うことにより略溝状に成形された一体成形加工品である。
FIG. 1 is an explanatory diagram illustrating a configuration example of a tie-down 1 according to the present embodiment. FIG. 2 is an explanatory view showing the AA cross section in FIG. 1 together with the tie-down hook 7.
As shown in the figure, the tie-down 1 is an integrally formed processed product formed into a substantially groove shape by press forming a steel plate 2 as a material.

本例では、鋼板2の板厚は1.4mm以上1.8mm以下の範囲にあるものを用いた。また、鋼板2は、高周波焼入れに供することができるものであればよく、特定の鋼種には限定されない。本例では、炭素を含有する一般的な普通鋼からなるものを用いたが、これに限定されるものではなく、例えばマルテンサイト系ステンレス鋼からなるものを用いてもよい。   In this example, the thickness of the steel plate 2 is in the range of 1.4 mm to 1.8 mm. Moreover, the steel plate 2 should just be what can be used for induction hardening, and is not limited to a specific steel type. In this example, a material made of general ordinary steel containing carbon is used. However, the material is not limited to this. For example, a material made of martensitic stainless steel may be used.

タイダウン1の一の外面をなす底面1aには、図2にも示すように、輸送時の自動車を拘束するタイダウンフック7を掛止するためのタイダウンフック取付穴である貫通穴3が形成されている。この貫通穴3は、その周囲に形成された円筒状フランジ4を伴うバーリング穴である。この貫通穴3は、通常、素材である鋼板2の所定の位置に下穴を穿孔しておき、この鋼板2にプレス成形加工を行って所定の形状の一体成形加工品とした後に、形成された下穴にバーリング加工を行うことにより、円筒状にストレッチフランジングされて、穿孔される。   As shown in FIG. 2, the bottom surface 1 a forming one outer surface of the tie-down 1 has a through-hole 3 that is a tie-down hook mounting hole for hooking a tie-down hook 7 that restrains the automobile during transportation. Is formed. This through hole 3 is a burring hole with a cylindrical flange 4 formed around it. The through hole 3 is usually formed after a prepared hole is drilled at a predetermined position of the steel plate 2 as a raw material, and the steel plate 2 is subjected to press forming to form an integrally formed processed product having a predetermined shape. By burring the prepared pilot hole, it is stretch-flanged into a cylindrical shape and perforated.

この貫通穴3の縁から底面1aに沿う方向へ所定の距離(本例では31.5mm)離れた位置までの範囲内に凹状又は凸状に形成されたビード5が存在するとともに、この範囲に高周波焼入れ組織6が存在する。   There is a bead 5 formed in a concave or convex shape within a range from the edge of the through hole 3 to a position separated by a predetermined distance (31.5 mm in this example) in the direction along the bottom surface 1a. There is an induction hardening structure 6.

ビード5は、バーリング穴3の縁に、円筒状フランジ4の形成方向(バーリング加工方向)と略平行な方向へ負荷される荷重によって円筒状フランジ4の立ち上がり部の外郭に略沿う方向へ発生する最大主応力の発生方向と略平行な方向へ向けて、1又は2以上設けられる。図1に示す例では、ビード5は、円筒状フランジ4の立ち上がり部の外郭に沿って環状に設けられる。   The bead 5 is generated in a direction substantially along the outline of the rising portion of the cylindrical flange 4 by a load applied to the edge of the burring hole 3 in a direction substantially parallel to the direction in which the cylindrical flange 4 is formed (burring process direction). One or more are provided in a direction substantially parallel to the direction in which the maximum principal stress is generated. In the example shown in FIG. 1, the bead 5 is provided in an annular shape along the outline of the rising portion of the cylindrical flange 4.

図3は、短冊状の片持ち長方形平板8(50×100mm)の先端に荷重Fを負荷すれば片持ち長方形平板8は荷重方向へ撓むが、同じ寸法の平板8’の長さ方向、すなわち最大主応力の発生する方向と平行な方向へ、凹状あるいは凸状のビード9を設ければ荷重Fを負荷した際の撓み量が減少する、という材料力学的知見を示す説明図である。本実施の形態において形成するビード5は、この材料力学的知見に基づくものである。   FIG. 3 shows that if a load F is applied to the tip of a strip-shaped cantilever rectangular flat plate 8 (50 × 100 mm), the cantilever rectangular flat plate 8 bends in the load direction, but the length direction of the flat plate 8 ′ having the same dimensions, That is, it is an explanatory view showing material mechanics knowledge that when a concave or convex bead 9 is provided in a direction parallel to the direction in which the maximum principal stress occurs, the amount of bending when the load F is applied is reduced. The bead 5 formed in the present embodiment is based on this material mechanical knowledge.

貫通穴3の近傍に配置するビード5は、この貫通穴3の輪郭線から、この輪郭線からの距離が31.5mmとなる位置までの領域に形成することが望ましい。また、貫通穴3に周囲に形成された円筒状フランジ4の立ち上がり部の外郭に沿って環状に設けられることが望ましい。貫通穴3に対して荷重が垂直方向に作用した場合、最大主応力は貫通穴3の輪郭に略平行な方向に発生するため、上述した材料力学的知見に基づけば、最大主応力の発生する方向と平行な方向へビード5を設けることにより、剛性向上効果が最も高まるからである。   The bead 5 arranged in the vicinity of the through hole 3 is desirably formed in a region from the outline of the through hole 3 to a position where the distance from the outline is 31.5 mm. Moreover, it is desirable that the through hole 3 is provided in an annular shape along the outline of the rising portion of the cylindrical flange 4 formed around the through hole 3. When the load is applied to the through hole 3 in the vertical direction, the maximum principal stress is generated in a direction substantially parallel to the outline of the through hole 3. Therefore, the maximum principal stress is generated based on the material mechanical knowledge described above. This is because providing the beads 5 in a direction parallel to the direction increases the rigidity improvement effect most.

本実施の形態における高周波焼入れ組織6は、マルテンサイトを主体とする組織である。
高周波焼入れは、ビード5の形成範囲を含む貫通穴3の周辺部に対して行う。具体的には、貫通穴3の輪郭線上からの距離が少なくとも21.5mmまでの範囲、最大でこの距離が31.5mmまでの範囲に対して高周波焼入れを行うことが望ましい。その理由は、高周波焼入れの範囲が狭小であれば十分な高強度化を図ることができず、一方、必要以上に広範囲に高周波焼入れを行っても応力低減割合は焼入範囲と比例しなくなるとともに焼入れ変形が増大し、タイダウン1の寸法精度を損なうためである。
Induction hardening structure 6 in the present embodiment is a structure mainly composed of martensite.
Induction hardening is performed on the periphery of the through-hole 3 including the bead 5 formation range. Specifically, it is desirable to perform induction hardening in a range where the distance from the outline of the through hole 3 is at least 21.5 mm, and a range where this distance is 31.5 mm at the maximum. The reason is that if the induction hardening range is narrow, sufficient strength cannot be achieved. On the other hand, even if induction hardening is performed over a wider range than necessary, the stress reduction ratio is not proportional to the hardening range. This is because quenching deformation increases and the dimensional accuracy of the tie-down 1 is impaired.

本実施の形態のタイダウン1が、所定の範囲にビード5と高周波焼入れ組織6とをともに有することの技術的意義を説明する。
図4は、従来のタイダウン10の構成例を示す説明図である。このタイダウン10は、本体部品11の所定の位置に補強部品12を重ね合わせ、両者をスポット溶接により接合することによって構成されるものである。
The technical significance of the tie-down 1 of the present embodiment having both the bead 5 and the induction-hardened structure 6 in a predetermined range will be described.
FIG. 4 is an explanatory diagram showing a configuration example of a conventional tie-down 10. This tie-down 10 is constituted by superposing reinforcing parts 12 at predetermined positions of the main body part 11 and joining them together by spot welding.

ここで、従来のタイダウン10において補強部品12を省略して本体部品11だけで構成できれば、当然のことながら、軽量化ならびに一体成形化(部品単品化)を図ることが可能になるとともに補強部品12を本体部品11に接合する工程を省略でき、製造コストの大幅な低下を図ることが可能になるが、タイダウン10として要求される強度を満足できなくなる。   Here, in the conventional tie-down 10, if the reinforcing part 12 can be omitted and the main part 11 can be used, it is possible to reduce the weight and to form an integral part (single part) and to reinforce the reinforcing part. The step of joining 12 to the main body part 11 can be omitted, and the manufacturing cost can be greatly reduced, but the strength required for the tie-down 10 cannot be satisfied.

また、本体部品11の材質、板厚はSPFC590、1.4mmであるのに対し、補強部品12の材質、板厚は、バーリング加工を行い得る成形加工性を確保するために、SPFC440、2.0mmである。補強部品12を省略する場合、補強部品12に設けられていたバーリング穴12aを本体部品11に直接設けることとなるため、本体部品11を成形加工性が良好なSPFC440により構成せざるをえなくなり、従来のタイダウン10の本体部品11を構成するSPFC590よりも強度が低下する。   Further, the material and thickness of the main body part 11 are SPFC590 and 1.4 mm, whereas the material and thickness of the reinforcing part 12 are SPFC440, 2. 0 mm. When the reinforcing component 12 is omitted, since the burring hole 12a provided in the reinforcing component 12 is directly provided in the main body part 11, the main body part 11 must be configured by the SPFC 440 having good molding processability. The strength is lower than that of the SPFC 590 constituting the main body part 11 of the conventional tie-down 10.

このように、従来のタイダウン10から補強部品12を省略して本体部品11だけにより構成しようとすると、単に補強部品12を省略することだけにはとどまらず、本体部品11の強度の低下という問題も生じる。   As described above, if the reinforcing part 12 is omitted from the conventional tie-down 10 and only the main part 11 is configured, the reinforcing part 12 is not simply omitted, but the strength of the main part 11 is reduced. Also occurs.

一般的に、部品の強度低下を補うために慣用される手段の一つとして、荷重入力点近傍の形状を工夫することによって面剛性を高めることが知られている。そこで、様々なビードを有する数値解析モデルを作成し、2つの部品からなる従来のタイダウンとの強度比較を行った。その結果、強度を向上させるために好適なビードの形状が存在することは確認できたものの、いかなる形状のビードを形成しても、これだけでは、従来のタイダウン10の強度レベルを得ることはできないことがわかった。   In general, as one of means commonly used to compensate for the strength reduction of parts, it is known to increase the surface rigidity by devising the shape in the vicinity of the load input point. Therefore, a numerical analysis model having various beads was created, and the strength was compared with a conventional tie-down consisting of two parts. As a result, it has been confirmed that there is a suitable bead shape for improving the strength, but it is not possible to obtain the strength level of the conventional tie-down 10 only by forming a bead of any shape. I understood it.

一方、ビードの形成以外に慣用される手段の一つとして、荷重入力点近傍を高周波焼入れして強化することが知られている。そこで、高周波焼入れによる材料強度の上昇を考慮した数値解析モデルを作成し、2つの部品からなる従来のタイダウンとの強度比較を行った。その結果、高周波焼入れによる強化だけでは、従来のタイダウン10の強度レベルを得ることはできないことがわかった。   On the other hand, as one of means commonly used other than the formation of beads, it is known to strengthen the vicinity of the load input point by induction hardening. Therefore, a numerical analysis model that takes into account the increase in material strength due to induction hardening was created, and the strength was compared with a conventional tie-down consisting of two parts. As a result, it was found that the strength level of the conventional tie-down 10 cannot be obtained only by strengthening by induction hardening.

そこで、本実施の形態では、上述したように、ビード5を有する一体成形加工品の図1に示す領域にさらに高周波焼入れを行って、この領域の鋼板2の組織を高周波焼入れ組織6とする。これにより、従来のタイダウン10と同等かそれ以上の強度レベルを、一体成形加工品であるタイダウン1の所定の範囲について確保することができる。   Therefore, in the present embodiment, as described above, induction hardening is further performed on the region shown in FIG. 1 of the integrally molded product having the bead 5, and the structure of the steel plate 2 in this region is set as the induction hardening structure 6. As a result, a strength level equal to or higher than that of the conventional tie-down 10 can be secured for a predetermined range of the tie-down 1 that is an integrally molded product.

このように、本実施の形態のタイダウン1は、強度が必要とされる荷重入力点近傍である円筒状フランジ4の立ち上がり部の外郭の面剛性を向上するためにビード5を形成するとともに、このビード5を含む範囲に高周波焼き入れを行う。これにより、円筒状フランジ4の立ち上がり部及びその外郭を高強度の補強部材により構成せずにタイダウン1を一体成形加工品として構成しても、貫通穴3の縁部を含む所望の範囲の強度を効果的に高めることができ、所望の強度を有するタイダウン1を一体成形加工品として提供することができる。   As described above, the tie-down 1 of the present embodiment forms the bead 5 in order to improve the surface rigidity of the outer portion of the rising portion of the cylindrical flange 4 that is in the vicinity of the load input point where strength is required, Induction hardening is performed in a range including the bead 5. Thus, even if the tie-down 1 is configured as an integrally molded product without configuring the rising portion of the cylindrical flange 4 and its outer shell with a high-strength reinforcing member, the desired range including the edge of the through-hole 3 The strength can be effectively increased, and the tie-down 1 having a desired strength can be provided as an integrally molded product.

本実施の形態のタイダウン1は以上のように構成される。次に、このタイダウン1の製造工程を説明する。
はじめに、素材である鋼板2にプレス成形を行うことにより、所定の位置に、凹状または凸状に設けられたビード5を備える一体成形加工品を製造する。
The tie-down 1 of the present embodiment is configured as described above. Next, the manufacturing process of this tie-down 1 is demonstrated.
First, an integrally formed processed product including a bead 5 provided in a concave shape or a convex shape at a predetermined position is manufactured by press-forming the steel plate 2 as a raw material.

ビード5は、プレスの上金型及び下金型間に、貫通穴3であるバーリング加工穴を予め穿孔された鋼板2あるいは穿孔されていない鋼板2を挟み、プレス成形を行うことによって、形成される。なお、バーリング加工穴3を穿孔されていない鋼板2にプレス成形を行う場合には、プレス成形によってビード5を成形した後に後続する工程でバーリング加工を行って、バーリング加工穴3を穿孔するようにしてもよい。すなわち、バーリング加工は、プレス成形の先でも後でもよい。   The bead 5 is formed by sandwiching a steel plate 2 in which a burring hole which is a through hole 3 is previously punched or a steel plate 2 which is not punched between the upper die and the lower die of the press and performing press forming. The When press forming is performed on the steel plate 2 in which the burring hole 3 has not been drilled, the burring hole 3 is drilled by performing burring in a subsequent process after forming the bead 5 by press molding. May be. That is, the burring process may be performed before or after the press molding.

次に、このようにして一の外面である底面にバーリング加工穴3及びビード5を設けられた一体成形加工品の上述した範囲に高周波焼入れを行って、この範囲を、マルテンサイトを主体とする高周波焼入れ組織6とする。   Next, induction hardening is performed on the above-described range of the integrally molded product in which the burring hole 3 and the bead 5 are provided on the bottom surface which is one outer surface in this way, and this range is mainly composed of martensite. Induction hardening structure 6 is used.

この高周波焼入れは、高周波焼入れしようとする範囲に対応した外径を有する円形渦巻状の加熱コイル(後述する図6参照)をバーリング加工穴3の直上に配置し、加熱コイルに交流電流を印加して誘導加熱することにより、行うことが例示される。   In this induction hardening, a circular spiral heating coil (see FIG. 6 to be described later) having an outer diameter corresponding to the range to be induction hardening is arranged immediately above the burring hole 3, and an alternating current is applied to the heating coil. This is exemplified by induction heating.

加熱コイルへ通電する電流条件は、加熱範囲や目標加熱温度によって調整する。加熱温度は、冷却後にマルテンサイト組織を得ることができる温度、すなわちAc3点以上とし、その上限は約950℃とすることが好ましい。加熱温度が950℃を超えるとオーステナイト粒が粗大化し、変態後の組織の機械的性質が劣化するおそれがあるとともに、被加熱部品である一体成形加工品の表面に例えば亜鉛メッキ皮膜が形成されている場合には、亜鉛が溶融及び蒸発してしまうおそれがあるからである。   The current condition for energizing the heating coil is adjusted by the heating range and the target heating temperature. The heating temperature is preferably a temperature at which a martensitic structure can be obtained after cooling, that is, the Ac3 point or higher, and the upper limit is preferably about 950 ° C. When the heating temperature exceeds 950 ° C., the austenite grains become coarse, the mechanical properties of the structure after transformation may be deteriorated, and for example, a galvanized film is formed on the surface of the integrally molded processed product that is a heated part. This is because zinc may melt and evaporate.

このようにして目標温度に加熱した後、加熱コイルをバーリング加工穴3の直上から速やかに退避させ、冷却ジャケットから冷却水を噴出し、マルテンサイト組織を得るための臨界冷却速度以上での急速冷却、すなわち焼入れを行う。このような冷却速度は、通常の水焼入れであれば、十分に確保される速度である。   After heating to the target temperature in this way, the heating coil is quickly withdrawn from directly above the burring hole 3, and cooling water is ejected from the cooling jacket to rapidly cool above the critical cooling rate for obtaining a martensite structure. That is, quenching is performed. Such a cooling rate is a sufficiently secured rate in the case of normal water quenching.

このようにして、本実施の形態により、所望の強度を有したまま軽量化及び製造コスト低減がともに図られたタイダウン1を、容易に提供できる。
すなわち、本実施の形態では、ビード5を形成されて補強効果を高められた一体プレス成形加工品のビード5の形成領域に高周波焼入れを行う。このプレス成形は、ビード5の形状を有するプレス金型を準備するだけで行うことができるために特段のコスト上昇を招かないとともに、ビード5を形成してから高周波焼入れを行うために高周波焼入れの際に懸念される焼入れ変形も可及的低減できる。このため、本実施の形態によれば、極めて簡便な構成であるにもかかわらず、補強部材を用いず一体成形され、所望の強度および優れた寸法精度を有し、これにより、軽量化および製造コスト低減がともに図られたタイダウン1を製造することができる。
In this way, according to the present embodiment, it is possible to easily provide a tie-down 1 in which both weight reduction and manufacturing cost reduction are achieved while having a desired strength.
In other words, in the present embodiment, induction hardening is performed on the formation region of the bead 5 of the integrated press-molded product in which the bead 5 is formed and the reinforcing effect is enhanced. This press molding can be performed simply by preparing a press die having the shape of the bead 5, so that there is no particular increase in cost, and in addition to induction hardening after the bead 5 is formed, induction hardening is performed. The quenching deformation which is a concern at the time can be reduced as much as possible. For this reason, according to the present embodiment, although it has a very simple configuration, it is integrally formed without using a reinforcing member, and has a desired strength and excellent dimensional accuracy, thereby reducing weight and manufacturing. A tie-down 1 can be manufactured with reduced costs.

なお、自動車車体の軽量化では、高々数パーセント程度の軽量化であっても極めて有用かつ重要であるとされるが、本実施の形態によれば、条件にもよるが後述する実施例において開示するように、タイダウン1の重量を約20%超も軽量化できる。   Although it is considered that the weight reduction of the automobile body is extremely useful and important even when the weight reduction is about several percent at most, according to the present embodiment, it is disclosed in the examples described later depending on conditions. Thus, the weight of the tie-down 1 can be reduced by more than about 20%.

また、本実施の形態によれば、従来のタイダウンでは不可欠であった補強部品を省略できることから、部品点数の削減や補強部品の接合工程の省略、さらには、補強部品の周囲における防錆処理(補強部品の端部や、補強部品と本体部品とのあわせ部等の早期の発錆が予想される部位へのワックス塗布等)の省略も図ることができる。このため、自動車の生産工程の合理化にも極めて有用である。   In addition, according to the present embodiment, it is possible to omit the reinforcing parts that are indispensable in the conventional tie-down, so the number of parts is reduced, the joining process of the reinforcing parts is omitted, and further, the rust prevention treatment around the reinforcing parts is performed. It is also possible to omit (wax application to a portion where early rusting is expected, such as an end portion of the reinforcing component or a joint portion between the reinforcing component and the main body component). For this reason, it is extremely useful for rationalizing the production process of automobiles.

さらに、本実施の形態によれば、一体成形加工品であるタイダウン1の素材として、良好な成形性を有するとともに安価な低強度鋼板を用い、これを所望の形状に成形した後に高周波焼入れを行うことによって高強度化を図ることができるため、例えば590MPa級のハイテン等を用いた従来のタイダウンよりも、極めて安価にタイダウンを提供することもできる。   Furthermore, according to the present embodiment, as a material of the tie-down 1 that is an integrally molded product, a low-strength steel sheet that has good formability and is inexpensive and is formed into a desired shape, and then induction-hardened. By doing so, the strength can be increased, so that the tie-down can be provided at a much lower cost than a conventional tie-down using, for example, 590 MPa class high tension.

本発明を実施例を参照しながら、さらに具体的に説明する。
本実施例では、図1及び図2により示す形状を有するタイダウン1を用いる。
タイダウン1の貫通穴3の近傍には、輸送時における振動による一方向の繰り返し低曲げ荷重が作用するため、このような繰り返し曲げ荷重が作用した場合に破壊しないことが求められる。また、例えば運送車両の追突事故や障害物への乗り上げ等といった輸送中に発生する不測の事故による過大荷重も作用することがあり、タイダウン1の貫通穴3の近傍は、このような過大荷重が作用した場合においても破壊することなく自動車を安全に固定することが求められる。
The present invention will be described more specifically with reference to examples.
In this embodiment, a tie-down 1 having the shape shown in FIGS. 1 and 2 is used.
In the vicinity of the through-hole 3 of the tie-down 1, a repeated low bending load in one direction due to vibration during transportation acts, so that it is required not to break when such repeated bending load acts. In addition, an excessive load due to an unexpected accident that occurs during transportation such as a rear-end collision of a transport vehicle or climbing on an obstacle may act, and the vicinity of the through-hole 3 of the tie-down 1 is such an excessive load. It is required to fix the car safely without being destroyed even if it works.

すなわち、タイダウン1には、定常的な繰り返し低荷重負荷および非定常的な過大荷重負荷に対しても破壊しないことが、必要強度要件として求められる。
一方、比較例として、図4に示す従来のタイダウン10を用いる。
That is, the tie-down 1 is required as a necessary strength requirement not to break even with a steady repetitive low load load and an unsteady overload load.
On the other hand, a conventional tie-down 10 shown in FIG. 4 is used as a comparative example.

上述したように、本体部品11の材料及び板厚は、JIS G 3135に規定された自動車用加工性冷間圧延高張力鋼板SPFC590、1.4mmであり、補強部品12の材料、板厚は、JIS G 3135に規定された自動車用加工性冷間圧延高張力鋼板SPFC440、2.0mmである。本体部品11及び補強部品12は所定の位置でスポット溶接され、タイダウン10の総重量は961gである。貫通穴12aはバーリング加工によりSPFC440からなる補強部品12に穿孔されている。   As described above, the material and the plate thickness of the main body part 11 are the workable cold-rolled high-tensile steel plate SPFC590 for automobiles specified in JIS G 3135, 1.4 mm, and the material and the plate thickness of the reinforcing part 12 are It is a workable cold rolled high-tensile steel plate SPFC440, 2.0 mm, defined in JIS G 3135. The main body part 11 and the reinforcing part 12 are spot welded at predetermined positions, and the total weight of the tie-down 10 is 961 g. The through hole 12a is drilled in the reinforcing component 12 made of SPFC440 by burring.

本実施例では、この従来のタイダウン10と同重量のタイダウン1(板厚1.8t、重量961g)について、有限要素法による弾塑性応力解析を行った。
応力解析での境界条件として、タイダウン1、10は、いずれも自動車車体のフロアパネルやサイドフレームにスポット溶接により接合されることから、スポット溶接部を完全拘束し、貫通穴3の稜線上に荷重を与えた。従来のタイダウン10の貫通穴3の穿孔位置はタイダウン10の幅方向中央部よりも片側の縦壁側にオフセットされるため、本発明例のタイダウン1においても同様な位置に貫通穴3を設け、貫通穴3の稜線と縦壁との距離の長い側、すなわち、より高応力を発生させる位置を荷重入力点とした。
In this example, an elasto-plastic stress analysis by a finite element method was performed on the tie-down 1 (plate thickness 1.8 t, weight 961 g) having the same weight as the conventional tie-down 10.
As a boundary condition in the stress analysis, since the tie-downs 1 and 10 are all joined to the floor panel and side frame of the automobile body by spot welding, the spot welded part is completely restrained and on the ridge line of the through hole 3. A load was applied. Since the drilling position of the through-hole 3 of the conventional tie-down 10 is offset to the vertical wall side on one side of the center in the width direction of the tie-down 10, the through-hole 3 is also located at the same position in the tie-down 1 of the present invention example. The side where the distance between the ridgeline of the through-hole 3 and the vertical wall is long, that is, the position where higher stress is generated is defined as the load input point.

解析は、タイダウン1、10の両者に対して行い、強度比較を行った。
タイダウン1では、ビード5の導入による高強度化の効果を確認するため、様々な形状のビードを貫通穴3の回りに配したモデルを作成し、強度検討を行った。図5(a)〜図5(c)は、それらの中の代表例である3種類のビードの形状を示す説明図である。
The analysis was performed for both tie-downs 1 and 10 and the strength was compared.
In the tie-down 1, in order to confirm the effect of increasing the strength by introducing the bead 5, models in which beads having various shapes are arranged around the through-hole 3 were created, and the strength was examined. Fig.5 (a)-FIG.5 (c) are explanatory drawings which show the shape of three types of beads which are the representative examples in them.

図5(a)に示すTypeAは貫通穴3の中心方向に向けて3つのビード5aを設けたもの、図5(b)に示すTypeBは横一文字にビード5bを設けたもの、さらに、図5(c)に示すTypeCは貫通穴3の回りを1周するビード5cを設けたものである。なお、各ビード5a〜5cの横断面形状の詳細は図2に示した通りである。   Type A shown in FIG. 5 (a) is provided with three beads 5a toward the center of the through hole 3, Type B shown in FIG. 5 (b) is provided with a bead 5b on one horizontal character, and FIG. Type C shown in (c) is provided with a bead 5 c that goes around the through hole 3 once. In addition, the detail of the cross-sectional shape of each bead 5a-5c is as having shown in FIG.

応力解析の結果、ビード5を有さないタイダウンは勿論のこと、ビード5a〜5cだけを設け高周波焼入れを行わないタイダウンには、従来のタイダウン10の強度性能を凌駕するものは存在しなかった。   As a result of the stress analysis, not only the tie-down not having the bead 5 but also the tie-down having only the beads 5a to 5c and not induction-hardened, there are those that exceed the strength performance of the conventional tie-down 10. There wasn't.

そこで、ビード5a〜5cのいずれかを有するタイダウンに対して、貫通穴3回りに高周波焼入れを行って高周波焼入れ組織6を形成したモデルを作成し、ビード5及び高周波焼入れ組織6の形成による強度向上効果を、以下の方法により高周波焼入れ部の材料強度を定めて数値解析に反映して、確認した。   Therefore, a model in which induction hardening is formed around the through-hole 3 for the tie-down having any of the beads 5a to 5c to form the induction hardening structure 6, and the strength due to the formation of the beads 5 and the induction hardening structure 6 is created. The improvement effect was confirmed by determining the material strength of the induction-hardened part by the following method and reflecting it in the numerical analysis.

図6に示す概楕円形状(長径:78mm、短径:65mm)を有する渦巻き状のコイル13を、その中央部がビード5a〜5cのいずれかを有するタイダウンの貫通穴3の中央部に一致するようにして、貫通穴3の直上10mmの位置に配置し、コイル13に電流400A、周波数10kHzの交流電流を印加して磁場解析を行い、発生する渦電流分布からジュール熱を推定演算により求めた。   The spiral coil 13 having a substantially elliptical shape (major axis: 78 mm, minor axis: 65 mm) shown in FIG. 6 coincides with the central part of the through-hole 3 of the tie-down whose central part has any one of the beads 5a to 5c. Thus, it is arranged at a position 10 mm directly above the through hole 3, an AC current having a current of 400 A and a frequency of 10 kHz is applied to the coil 13 to perform a magnetic field analysis, and Joule heat is obtained by estimation calculation from the generated eddy current distribution. It was.

磁場解析により求めたジュール発熱分布を入熱条件として、温度解析を行い、このジュール発熱による加熱温度Tからオーステナイト体積分率ξAを推定演算した。この際、加熱温度TがAc1点(740℃)未満であるならはオーステナイト体積分率ξAは0.0とし、加熱温度TがAc3点(880℃)以上であるならばオーステナイト体積分率ξAは1.0とし、加熱温度Tがその範囲内であるならば、下記(1)式として規定される実験式を適用して、オーステナイト体積分率を求めた。(1)式においてC、Dは、温度とオーステナイト変態率の関係を調査した実験結果と、(1)式による近似結果の差が最小となるように最小2乗法によって定めた、材料に依存する係数である。
ξA=1.0−exp(−C*((T−Ac1)/(Ac3−Ac1))D) ・・・・・・・(1)
そして、冷却により体積分率ξAのオーステナイトが全てマルテンサイトに変態すると仮定し、マルテンサイト体積分率ξM=ξAとして、(2)式の線形混合則を適用して混合相の材料強度Pmixtureを求めた。
Pmixture=PM×ξM+PF×(1.0−ξF) ・・・・・・・(2)
(2)式において、PMはマルテンサイト単相の材料強度、PFは母材の材料強度である。ここで、「材料強度」とは、弾性係数、降伏応力さらには加工硬化係数等の機械的特性をいう。なお、母相とマルテンサイト相の体積分率の総和である(ξF+ξM)は1.0である。
A temperature analysis was performed using the Joule heat generation obtained by the magnetic field analysis as a heat input condition, and an austenite volume fraction ξA was estimated from the heating temperature T due to the Joule heat generation. At this time, if the heating temperature T is less than the Ac1 point (740 ° C.), the austenite volume fraction ξA is 0.0, and if the heating temperature T is not less than the Ac3 point (880 ° C.), the austenite volume fraction ξA is When the heating temperature T was within the range, the austenite volume fraction was obtained by applying an empirical formula defined as the following formula (1). In the equation (1), C and D depend on the material determined by the least square method so that the difference between the experimental result of investigating the relationship between the temperature and the austenite transformation rate and the approximation result by the equation (1) is minimized. It is a coefficient.
ξA = 1.0−exp (−C * ((T−Ac1) / (Ac3−Ac1)) D) (1)
Then, it is assumed that the austenite having a volume fraction ξA is transformed into martensite by cooling, and the material strength Pmixture of the mixed phase is obtained by applying the linear mixing rule of equation (2) as martensite volume fraction ξM = ξA. It was.
Pmixture = PM × ξM + PF × (1.0−ξF) (2)
In the formula (2), PM is the material strength of the martensite single phase, and PF is the material strength of the base material. Here, “material strength” refers to mechanical properties such as elastic modulus, yield stress, and work hardening coefficient. Note that (ξF + ξM), which is the sum of the volume fractions of the parent phase and the martensite phase, is 1.0.

なお、冷却速度によっては板内部においてパーライトやベイナイトといった中間組織が出現するが、薄板材を急冷した場合の相変態はオーステナイトが全てマルテンサイトに変態すると考えて差し支えない。後述する強度評価基準を得るため、実際に焼入材を作成してその機械的材料特性を調査したが、この試験片の硬さ測定ならびに組織観察においても変態相はマルテンサイト単相組織であった。   Depending on the cooling rate, an intermediate structure such as pearlite or bainite appears in the inside of the plate, but the phase transformation when the thin plate material is quenched may be considered that all austenite is transformed into martensite. In order to obtain the strength evaluation criteria described later, a hardened material was actually created and its mechanical material properties were investigated. In the hardness measurement and structural observation of this specimen, the transformation phase was a martensite single-phase structure. It was.

図7は、磁場解析及び温度−組織解析から推定したマルテンサイト硬化領域の分布の一例を示す説明図である。図7中に記載した百分率で表示した数値は、マルテンサイト体積分率であり、例えば「80%」と表示した部分は、80%がマルテンサイトで残り20%が母相であることを示す。この混合相領域の材料強度は(2)式から計算される。貫通穴3の形成位置が部品(幅方向)中央より片側の縦壁側にオフセットしているため、縦壁との距離が近い側の渦電流密度が高くなりマルテンサイト相の分布は若干偏るものの、貫通穴3の周りでは70%以上がマルテンサイトの、マルテンサイトを主体とする組織となった。   FIG. 7 is an explanatory diagram showing an example of the distribution of the martensite hardening region estimated from the magnetic field analysis and the temperature-structure analysis. The numerical values expressed in percentage shown in FIG. 7 are martensite volume fractions. For example, the portion indicated as “80%” indicates that 80% is martensite and the remaining 20% is the parent phase. The material strength of this mixed phase region is calculated from the equation (2). Since the formation position of the through hole 3 is offset to the vertical wall side on one side from the center of the part (width direction), the eddy current density on the side closer to the vertical wall becomes higher and the distribution of the martensite phase is slightly biased. In the periphery of the through hole 3, more than 70% of the martensite is an organization mainly composed of martensite.

表1に、解析結果をまとめて示す。また、図8は、高周波焼入れを行った範囲を示す平面図である。   Table 1 summarizes the analysis results. FIG. 8 is a plan view showing a range where induction hardening is performed.

Figure 2007008212
Figure 2007008212

表1における解析番号1は、従来のタイダウン10に関するものであり、解析番号2は従来のタイダウン10から補強部品12を取り除いたものであり、ビード5は設けていないものである。解析番号3〜5は、前述したTypeA、TypeB、TypeCの補強ビード5a、5b、5cを導入したものである。解析番号2〜5では高周波焼入れを行わず、ビード5a〜5cの違いによる優位差を見出そうとしたものである。解析番号6は解析番号2のビード5がないモデルに焼入れを施した場合である。さらに、解析番号7、8、9はケース3〜5の中で面剛性向上効果が最も高かったTypeCのビードモデルについて高周波焼入れを行う範囲を変化させ、強度に及ぼす焼入れ範囲の影響を調べたものである。   Analysis number 1 in Table 1 relates to the conventional tie-down 10, analysis number 2 is obtained by removing the reinforcing component 12 from the conventional tie-down 10, and the bead 5 is not provided. Analysis numbers 3 to 5 are those in which the reinforcing beads 5a, 5b, and 5c of Type A, Type B, and Type C described above are introduced. In analysis numbers 2 to 5, induction hardening is not performed, and an attempt is made to find a dominant difference due to the difference in the beads 5a to 5c. Analysis number 6 is the case where the model without the bead 5 of analysis number 2 is quenched. In addition, analysis numbers 7, 8, and 9 were obtained by changing the induction hardening range for the Type C bead model having the highest surface rigidity improvement effect among cases 3 to 5, and examining the influence of the hardening range on the strength. It is.

また、表1では、タイダウン1、10に要求される2つの強度性能である破断強度評価と疲労強度評価とに分けて示す。それぞれの評価基準は別途採取して表2に示したSPFC440の母材と高周波焼入れ材の引張試験結果ならびに、平面曲げ疲労試験結果に基づいて、以下に示す方法により評価した。なお、高周波焼入れ材の焼入れ温度は950℃であり、疲労試験は完全片振り(応力比R=0.0)で行った。また、表1および図8における高周波焼入れ強化範囲Lは、マルテンサイト体積分率ξMが90%以上になる点と荷重点との距離で示す。   Table 1 shows two strength performances required for the tie-downs 1 and 10, ie, breaking strength evaluation and fatigue strength evaluation. Each evaluation criterion was separately collected and evaluated by the following method based on the tensile test results of the base material of the SPFC 440 and the induction-hardened material shown in Table 2 and the results of the plane bending fatigue test. In addition, the quenching temperature of the induction hardened material was 950 ° C., and the fatigue test was performed with a complete swing (stress ratio R = 0.0). Moreover, the induction hardening strengthening range L in Table 1 and FIG. 8 is shown by the distance between the point where the martensite volume fraction ξM is 90% or more and the load point.

Figure 2007008212
Figure 2007008212

[破断強度評価]
荷重負荷により発生する最大応力σmaxが引張強度TSに到達する荷重で評価した。ここで、最大応力とは最大主応力の最大値であり、何れの解析番号も解析番号2の荷重2000Nにおける応力分布状況では、図9に例示するように、荷重入力点近傍の円筒状フランジ4のR底付近において発生する。高周波焼入れを行わない解析番号1〜5では母材の引張強度TSを指標とし、また高周波焼入れを行う解析番号6〜9では高周波焼入れ材の引張強度TSを指標として、破断荷重を求めた。各解析番号の荷重と発生応力の関係を図10にグラフで示す。
[疲労強度評価]
定常走行時の荷重条件として2000Nの荷重が繰り返し作用する場合を想定し、図11のグラフに示すように、2000N負荷時に発生する最大応力をS−N線図上に重ね合わせることによって耐用繰り返し回数(寿命)を評価した。
[Evaluation of breaking strength]
The maximum stress [sigma] max generated by the load is evaluated by the load that reaches the tensile strength TS. Here, the maximum stress is the maximum value of the maximum principal stress, and in any stress distribution situation at the load 2000N of the analysis number 2, the cylindrical flange 4 near the load input point is illustrated in FIG. Occurs near the bottom of R. In analysis numbers 1 to 5 where induction hardening was not performed, the tensile strength TS of the base material was used as an index, and in analysis numbers 6 to 9 where induction hardening was performed, the breaking load was determined using the tensile strength TS of the induction hardening material as an index. FIG. 10 is a graph showing the relationship between the load of each analysis number and the generated stress.
[Fatigue strength evaluation]
Assuming a case where a load of 2000 N is repeatedly applied as a load condition during steady running, the number of repetitions of service life is obtained by superimposing the maximum stress generated at the load of 2000 N on the SN diagram as shown in the graph of FIG. (Lifetime) was evaluated.

なお、定常時の荷重を2000Nと定めたのは、この荷重において従来のタイダウン10での最大発生応力σmaxが母材の疲労限σwと略等しくなるからである。すなわち、これを超える荷重では従来のタイダウン10であっても疲労破壊する荷重であることによる。高周波焼入れを行っていない解析番号1〜5の寿命は母材の疲労試験結果から評価し、高周波焼入れを行った解析番号6〜9の寿命は、高周波焼入れ材の疲労試験結果から評価した。   The reason why the normal load is set to 2000 N is that the maximum generated stress σmax in the conventional tie-down 10 becomes substantially equal to the fatigue limit σw of the base material at this load. That is, when the load exceeds this, even the conventional tie-down 10 is a load that causes fatigue failure. The life of analysis numbers 1 to 5 where induction hardening was not performed was evaluated from the fatigue test results of the base metal, and the life of analysis numbers 6 to 9 where induction hardening was performed was evaluated from the fatigue test results of the induction hardening material.

表1、図10のグラフ、および図11のグラフから、以下に列記する事項(a)〜(e)がわかる。
(a)ビード5及び高周波焼入れ組織6の形成を行わず、単に補強部品を除去した一体成形加工品からなるタイダウン(解析番号2)では、従来のタイダウン10の58%の荷重で破断する。
(b)解析番号2のタイダウンにおけるL=31.5mmの範囲に高周波焼入れを行ったタイダウン(解析番号6)の破断荷重は、従来のタイダウン10の84%に上昇する。
(c)ビード5を導入して形状強化を図った解析番号3〜5では、解析番号5のTypeCのビード5cの補強効果が最も高い。焼入強化なしでも破断荷重は従来のタイダウン10の98%まで上昇し、定常荷重(2000N)負荷時の発生応力は疲労限以下となる。
(d)解析番号5のTypeCのビード5cを有するタイダウンに、強化範囲L=11.5mmで焼入強化した解析番号7の破断荷重は、従来のタイダウン10と略同等であり、補強部品を省略して一体成形加工品とすることが可能となる。疲労限σwに対する2000N負荷時の発生応力σIの比は、従来のタイダウン10の1.78倍に上昇し、疲労破壊に対して有利になる。
(e)解析番号8、9のように焼入強化範囲が広くなるほど破断荷重は上昇し、疲労限σwと発生応力σIの比も大きくなる。ただし、焼入強化範囲の拡大に伴う破断荷重ならびに疲労限σwとσI比の上昇率は収束傾向にあり、必要以上に広範囲を焼入れても高強度化効果には限界がある。
From Table 1, the graph of FIG. 10, and the graph of FIG. 11, the items (a) to (e) listed below can be understood.
(A) In the case of a tie-down (analysis number 2) made of an integrally formed product in which the bead 5 and the induction-hardened structure 6 are not formed and the reinforcing parts are simply removed, the tie-down breaks at 58% of the load of the conventional tie-down 10. .
(B) The breaking load of the tie-down (analysis number 6) subjected to induction hardening in the range of L = 31.5 mm in the tie-down of analysis number 2 rises to 84% of the conventional tie-down 10.
(C) In analysis numbers 3 to 5 in which the bead 5 is introduced to enhance the shape, the reinforcing effect of the type C bead 5c of analysis number 5 is the highest. Even without quenching strengthening, the breaking load increases to 98% of the conventional tie-down 10, and the generated stress at the time of steady load (2000 N) load is below the fatigue limit.
(D) A tie-down having a Type C bead 5c of analysis number 5 and a rupture load of analysis number 7 obtained by quenching strengthening with a strengthening range L = 11.5 mm is substantially the same as the conventional tie-down 10 and is a reinforced part. It becomes possible to omit and to make an integrally molded product. The ratio of the generated stress σI at a load of 2000 N to the fatigue limit σw is 1.78 times that of the conventional tie-down 10, which is advantageous for fatigue fracture.
(E) As the hardening strengthening range becomes wider as in analysis numbers 8 and 9, the breaking load increases and the ratio between the fatigue limit σw and the generated stress σI also increases. However, the breaking load accompanying the expansion of the quenching strengthening range and the rate of increase of the fatigue limit σw and σI ratio tend to converge, and there is a limit to the effect of increasing the strength even if quenching a wider range than necessary.

これらの知見(a)〜(e)から、ビード5の形成による形状強化、高周波焼入れによる焼入強化をそれぞれ単独に行っても、タイダウンの破断強度および疲労強度の両方を従来のタイダウン10以上にすることは不可能であり、ビード5の形成による形状強化と高周波焼入れによる焼入強化とを併用することが有効であることがわかる。   From these findings (a) to (e), both the tie-down breaking strength and the fatigue strength of the conventional tie-down 10 can be obtained even if the shape strengthening by forming the bead 5 and the quenching strengthening by induction hardening are performed independently. It is impossible to make the above, and it can be seen that it is effective to use both shape strengthening by forming the beads 5 and quenching strengthening by induction hardening.

特に、貫通穴3の周りを取り囲むようにビード5cを導入したTypeCの一体成形加工品に、少なくともL=11.5〜31.5mmの範囲を高周波焼入れすることにより、破断強度および疲労強度をともに従来のタイダウン10と同等以上に確実に高めることができ、望ましい。   In particular, the Type C integrated molded product with the beads 5c introduced so as to surround the through hole 3 is induction hardened at least in the range of L = 11.5 to 31.5 mm, so that both the breaking strength and the fatigue strength are obtained. This is desirable because it can be surely increased to the same level as or more than the conventional tie-down 10.

特に、解析番号9の条件(TypeCのビード5c、かつL=31.5mmの高周波焼入れ)での破断強度は、従来のタイダウン10の1.5倍であるとともに疲労強度は2.0倍である。このため、従来のタイダウン10と同等の性能確保を目標とするならば、タイダウン本体部品の薄肉化による軽量化を図ることができる。   In particular, the breaking strength under the condition of analysis number 9 (Type C bead 5c and induction hardening of L = 31.5 mm) is 1.5 times that of the conventional tie-down 10 and the fatigue strength is 2.0 times. is there. For this reason, if the goal is to secure the same performance as that of the conventional tie-down 10, the weight of the tie-down main body can be reduced by reducing the thickness.

表3および図12のグラフには、解析番号9の条件で板厚を変更した場合の、破断荷重と2000N負荷時の発生応力を検討した結果を示す。   The graphs in Table 3 and FIG. 12 show the results of studying the fracture load and the generated stress at a load of 2000 N when the plate thickness is changed under the condition of analysis number 9.

Figure 2007008212
Figure 2007008212

表3および図12のグラフに示す結果から、次のことが分かる。
(f)板厚を1.4mmまで薄くしても、従来のタイダウン10の破断荷重より僅かに高い。
(g)板厚を1.4mmまで薄くしても、2000N負荷時の発生応力は焼入れ材の疲労限σw以下である。
(h)従来のタイダウン10と同等の性能とする最小板厚は1.4mmであり、この場合には従来のタイダウン10や、補強部品を有さない板厚1.8mmの一体成形加工品からなるタイダウンに比較して、実に約22%の軽量化を達成できる。
From the results shown in Table 3 and the graph of FIG. 12, the following can be understood.
(F) Even if the plate thickness is reduced to 1.4 mm, the breaking load of the conventional tie-down 10 is slightly higher.
(G) Even if the plate thickness is reduced to 1.4 mm, the generated stress at a load of 2000 N is below the fatigue limit σw of the quenched material.
(H) The minimum plate thickness that achieves the same performance as the conventional tie-down 10 is 1.4 mm. In this case, the conventional tie-down 10 and an integral molding process with a plate thickness of 1.8 mm without reinforcing parts. Compared to a tie-down made of products, the weight can be reduced by about 22%.

なお、TypeCのビード5cの形状で応力低減効果が特に高かったことに関して、ビードを導入しない解析番号2の最大主応力は、図13に黒矢印で示すように、貫通穴3を取り囲むような方向、すなわち貫通穴3と略平行して発生しており、ビード5は最大主応力方向と平行な方向に向けて形成することが、応力低減に効果的であることがわかる。このことは、本発明においてビードを形成することの原点となった、図3を参照しながら説明した片持ち長方形平板8の曲げ変形において、最大主応力の発生方向と平行な方向にビード9を導入することにより低変形となることと、同様である。   Incidentally, regarding the fact that the stress reduction effect was particularly high in the shape of the Type C bead 5c, the maximum principal stress of the analysis number 2 in which the bead is not introduced is a direction surrounding the through hole 3 as indicated by a black arrow in FIG. That is, it is generated substantially parallel to the through-hole 3 and it can be seen that forming the bead 5 in a direction parallel to the maximum principal stress direction is effective in reducing the stress. This is because in the bending deformation of the cantilevered rectangular flat plate 8 described with reference to FIG. 3, which is the origin of forming the bead in the present invention, the bead 9 is placed in a direction parallel to the direction in which the maximum principal stress is generated. This is the same as introducing low deformation.

実施の形態のタイダウンの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the tie-down of embodiment. 図1におけるA−A断面を、タイダウンフックととともに示す説明図である。It is explanatory drawing which shows the AA cross section in FIG. 1 with a tie-down hook. 片持ち長方形平板の先端に荷重Fを負荷すれば片持ち長方形平板は荷重方向へ撓むが、最大主応力の発生する方向と平行な方向へ、凹状あるいは凸状のビードを設ければ撓み量が減少するという材料力学的知見を示す説明図である。If a load F is applied to the tip of the cantilevered rectangular flat plate, the cantilevered rectangular flat plate will bend in the load direction, but if a concave or convex bead is provided in a direction parallel to the direction in which the maximum principal stress is generated, the amount of bending will be It is explanatory drawing which shows the material-mechanical knowledge that is decreased. 本体部品の所定の位置に補強部品を重ね合わせてスポット溶接することにより構成される従来のタイダウンの構成を示す説明図である。It is explanatory drawing which shows the structure of the conventional tie-down comprised by superposing | stacking a reinforcement component in the predetermined position of a main body component, and carrying out spot welding. 図5(a)〜図5(c)は、それぞれ、強度検討に供した3種類のビードを形成されたTypeA〜Cのタイダウンを示す説明図である。FIG. 5A to FIG. 5C are explanatory views showing tie-downs of Type A to C formed with three types of beads subjected to strength examination, respectively. 概楕円形状を有する渦巻き状のコイルを示す説明図である。It is explanatory drawing which shows the spiral coil which has a substantially elliptical shape. 磁場解析および温度−組織解析から推定したマルテンサイト硬化領域の分布の一例を示す説明図である。It is explanatory drawing which shows an example of distribution of the martensitic hardening area | region estimated from the magnetic field analysis and the temperature-structure analysis. 高周波焼入れを行った範囲を示す平面図である。It is a top view which shows the range which performed induction hardening. 荷重入力点近傍の応力分布状況を示す説明図である。It is explanatory drawing which shows the stress distribution condition of the load input point vicinity. 荷重と発生応力の関係を示すグラフである。It is a graph which shows the relationship between a load and generated stress. 2000N負荷時に発生する最大応力をS−N線図上に重ね合わせて示すグラフである。It is a graph which piles up and shows the maximum stress which generate | occur | produces at the time of 2000N load on a SN diagram. 解析番号9の条件で板厚を変更した場合の、破断荷重と2000N負荷時の発生応力を示すグラフである。It is a graph which shows the generation | occurrence | production stress at the time of a rupture load and 2000N load when plate | board thickness is changed on the conditions of the analysis number 9. FIG. 最大主応力の発生方向を示す説明図である。It is explanatory drawing which shows the generation | occurrence | production direction of the largest principal stress.

符号の説明Explanation of symbols

1 タイダウン
1a 底面
2 鋼板
3 貫通穴(バーリング穴)
4 円筒状フランジ
5 ビード
6 高周波焼入れ組織
7 タイダウンフック
8 片持ち長方形平板
9 ビード
10 タイダウン
11 本体部品
12 補強部品
13 加熱コイル
1 Tie-down 1a Bottom 2 Steel plate 3 Through hole (burring hole)
4 Cylindrical flange 5 Bead 6 Induction hardening structure 7 Tie-down hook 8 Cantilevered rectangular plate 9 Bead 10 Tie-down 11 Body part 12 Reinforcement part 13 Heating coil

Claims (5)

鋼板からなるとともに、周囲に円筒状フランジを伴うバーリング穴を形成された一の外面を有する一体成形加工品であって、該バーリング穴の周辺部に、凹状又は凸状に設けられるビードと高周波焼入れ組織とを、ともに有することを特徴とする自動車用部品。 An integrally molded product made of a steel plate and having one outer surface formed with a burring hole with a cylindrical flange around it, and a bead and induction hardening provided in a concave or convex shape around the burring hole An automotive part characterized by having an organization. 前記ビードは、前記円筒状フランジの立ち上がり部の外郭に略沿う方向へ設けられる請求項1に記載された自動車用部品。 The automotive part according to claim 1, wherein the bead is provided in a direction substantially along an outline of a rising portion of the cylindrical flange. 前記ビードは、前記円筒状フランジの立ち上がり部の外郭に沿って環状に設けられる請求項1に記載された自動車用部品。 The automotive part according to claim 1, wherein the bead is provided in an annular shape along an outline of a rising portion of the cylindrical flange. 前記成形加工品は輸送時の自動車を拘束するタイダウンフックを取り付けるための部品であるとともに、前記バーリング穴はタイダウンフック取付穴である請求項1から請求項3までのいずれか1項に記載された自動車用部品。 The said molded product is a part for attaching the tie-down hook which restrains the motor vehicle at the time of transportation, and the said burring hole is a tie-down hook attachment hole. Automotive parts. 鋼板からなる一体成形加工品の一の外面に形成された、周囲に円筒状フランジを伴うバーリング穴の周辺部に、凹状又は凸状にビードを設けるとともに高周波焼入れを行うことを特徴とする自動車用部品の製造法。 For automobiles characterized in that a bead is provided in a concave or convex shape at the periphery of a burring hole with a cylindrical flange on the outer periphery formed on one outer surface of an integrally molded processed product made of a steel plate and induction hardening is performed. Manufacturing method of parts.
JP2005188401A 2005-06-28 2005-06-28 Tie-down and its manufacturing method Active JP4804048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188401A JP4804048B2 (en) 2005-06-28 2005-06-28 Tie-down and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188401A JP4804048B2 (en) 2005-06-28 2005-06-28 Tie-down and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007008212A true JP2007008212A (en) 2007-01-18
JP4804048B2 JP4804048B2 (en) 2011-10-26

Family

ID=37747268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188401A Active JP4804048B2 (en) 2005-06-28 2005-06-28 Tie-down and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4804048B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218637A (en) * 2011-04-12 2012-11-12 Toyota Motor Corp Vehicle end structure
JP2013129253A (en) * 2011-12-20 2013-07-04 Mitsubishi Motors Corp Vehicle body skeleton member
JP2018149848A (en) * 2017-03-10 2018-09-27 三菱自動車工業株式会社 Shipping bracket

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338508A (en) * 1992-06-05 1993-12-21 Honda Motor Co Ltd Construction of bumper mounting part of vehicle body
JPH10258768A (en) * 1997-03-18 1998-09-29 Nissan Motor Co Ltd Automobile car body component and its manufacture
JPH10278524A (en) * 1997-04-11 1998-10-20 Suzuki Motor Corp Toeing hook mounting structure for automobile
JP2002068012A (en) * 2000-08-30 2002-03-08 Shinko Seisakusho:Kk Vehicular skeleton member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338508A (en) * 1992-06-05 1993-12-21 Honda Motor Co Ltd Construction of bumper mounting part of vehicle body
JPH10258768A (en) * 1997-03-18 1998-09-29 Nissan Motor Co Ltd Automobile car body component and its manufacture
JPH10278524A (en) * 1997-04-11 1998-10-20 Suzuki Motor Corp Toeing hook mounting structure for automobile
JP2002068012A (en) * 2000-08-30 2002-03-08 Shinko Seisakusho:Kk Vehicular skeleton member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218637A (en) * 2011-04-12 2012-11-12 Toyota Motor Corp Vehicle end structure
JP2013129253A (en) * 2011-12-20 2013-07-04 Mitsubishi Motors Corp Vehicle body skeleton member
JP2018149848A (en) * 2017-03-10 2018-09-27 三菱自動車工業株式会社 Shipping bracket

Also Published As

Publication number Publication date
JP4804048B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP7299956B2 (en) Method for manufacturing steel plate for press hardening and method for manufacturing laser welded blank for press hardening
KR102402130B1 (en) Steel sheet for manufacturing press-hardened parts, press-hardened parts having a combination of high strength and impact ductility, and manufacturing method thereof
Singh Application of steel in automotive industry
US10633031B2 (en) B-pillar central beam and method for manufacturing
US20180370578A1 (en) Body component or chassis component of a motor vehicle having improved crash performance, and method for producing same
JP2006240441A (en) Vehicle body reinforcing member
JP2017214648A (en) High strength steel sheet and manufacturing method therefor
JP7077309B2 (en) A method for manufacturing hot-rolled high-strength steel with excellent stretch flange formability and edge fatigue performance.
WO2017208759A1 (en) High-strength steel sheet and method for producing same
Fekete et al. Design of auto body: Materials perspective
JP2008081788A (en) Ultrahigh-strength thin steel sheet for punching
US20190389178A1 (en) Steel material composite with inhomogeneous property distribution
JP4804048B2 (en) Tie-down and its manufacturing method
CA2999634C (en) Method for producing a zinc-coated steel component for a vehicle
WO2018025674A1 (en) High-strength steel plate and manufacturing method thereof
KR20190086702A (en) METHOD OF PRODUCING CHASSIS PARTS WITH MOLD ALLOY STEEL WITH IMPROVED COLD WORKING PROCESS
JP5894469B2 (en) Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP2014024080A (en) Hot press formed product having low strength part and manufacturing method of the same
JP2019014935A (en) Steel sheet for hot press, manufacturing method therefor, hot press molded member and manufacturing method therefor
JP2018538439A (en) Method for producing austenitic steel member and use of member
Mohrbacher High-performance steels for sustainable manufacturing of vehicles
WO2023013676A1 (en) Structural member design method, steel sheet manufacturing method, tailored blank manufacturing method, structural member manufacturing method, and structural member
JP7239079B1 (en) car body
JPS62116753A (en) High strength and high ductility cold rolled steel sheet for bumper reinforcing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250