JP2007006673A - Digital protective relay system for main circuit of generator - Google Patents
Digital protective relay system for main circuit of generator Download PDFInfo
- Publication number
- JP2007006673A JP2007006673A JP2005186900A JP2005186900A JP2007006673A JP 2007006673 A JP2007006673 A JP 2007006673A JP 2005186900 A JP2005186900 A JP 2005186900A JP 2005186900 A JP2005186900 A JP 2005186900A JP 2007006673 A JP2007006673 A JP 2007006673A
- Authority
- JP
- Japan
- Prior art keywords
- generator
- current
- transformer
- main
- main circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Protection Of Generators And Motors (AREA)
- Emergency Protection Circuit Devices (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
本発明は、発電機主回路のディジタル保護継電システムに係り、特に、ディジタル演算の特性を生かし、保護機能を損なうことなく発電機主回路の状態量の検出点及び演算量を減らすことができるディジタル保護継電システムに関する。 The present invention relates to a digital protection relay system for a generator main circuit, and in particular, can make use of the characteristics of digital computation to reduce the detection points and the computation amount of the state quantity of the generator main circuit without impairing the protection function. The present invention relates to a digital protection relay system.
従来の発電プラントの発電機主回路設備の概略構成、及び発電機主回路保護システムを図4に示す。発電機主回路は、図示のように、主変圧器用遮断器1と主変圧器2を介して送電系統に接続された発電機3と、発電機3と主変圧器2との間の発電機出力端に接続された所内変圧器4及び励磁電源変圧器6とを含んで構成される。そして、発電機3で発電した電力は、主変圧器2、主変圧器用遮断器1を経由して発電所外部の系統に送電されると同時に、所内変圧器4を経由して発電に必要な発電所内の負荷に給電され、励磁電源変圧器6から発電機3を励磁する界磁巻線5に励磁電源が供給される。
FIG. 4 shows a schematic configuration of a generator main circuit facility of a conventional power plant and a generator main circuit protection system. The generator main circuit includes a generator 3 connected to a power transmission system via a main transformer circuit breaker 1 and a main transformer 2, and a generator between the generator 3 and the main transformer 2, as shown in the figure. An in-house transformer 4 and an
このように構成される発電機主回路では、短絡等の電気事故が発生した場合に適切に事故点を検出して切離すことを目的として、発電機主回路保護継電システムが設置される。図4の例では、アナログ保護継電器が適用され、発電機主回路に設置された電流、電圧の検出点から得られた電気量(状態量)を用いて、機械的若しくは電気回路を用いた処理を行って電気事故を検知するように構成されている。 In the generator main circuit configured as described above, a generator main circuit protection relay system is installed for the purpose of appropriately detecting and disconnecting an accident point when an electrical accident such as a short circuit occurs. In the example of FIG. 4, an analog protection relay is applied, and a process using a mechanical or electrical circuit using a quantity of electricity (state quantity) obtained from a current and voltage detection point installed in the generator main circuit. To detect electrical accidents.
このような発電機主回路に必要な保護項目は、表1に示すように、基本的に短絡(過負荷、過電流を含む)、地絡、電磁機器であるための過励磁、同期機であるための界磁喪失、逆相電流、及び、発電機の駆動源であるタービン保護の逆電力、周波数検出に大別することができる。アナログ保護継電器で保護する場合は、表1の保護項目を、各々独立、専用の動作原理と動作機構を持つ単一要素の保護継電器を組合せて保護継電システムを構築している。また、アナログ保護継電器ごとに、電流、電圧の状態量を検出する計器用変成器も基本的に専用のものが必要となる。 As shown in Table 1, the protection items required for such a generator main circuit are basically short circuits (including overload and overcurrent), ground faults, overexcitation for electromagnetic equipment, and synchronous machines. It can be broadly divided into field loss, reverse phase current, and reverse power and frequency detection for turbine protection, which is a driving source of the generator. When protecting with an analog protective relay, a protective relay system is constructed by combining the protection items in Table 1 with single-element protective relays having independent and dedicated operating principles and operating mechanisms. In addition, for each analog protection relay, an instrument transformer for detecting current and voltage state quantities is basically required.
さらに、一つの保護継電器が誤不動作となった場合に、主機の損傷及び事故の拡大を防止することを目的に、一つの保護項目に対して、原則として動作原理の異なる保護継電器を2台以上組合せて保護する主保護/後備保護により、信頼性を確保するようにしている。 In addition, in order to prevent damage to the main engine and the spread of accidents when one protective relay malfunctions, in principle, two protective relays with different operating principles for one protection item. Reliability is ensured by the main protection / rear protection provided in combination.
87G:発電機比率差動継電器
87GMT:発電機−主変圧器比率差動継電器
44G:距離継電器
64G1、64G2:発電機地絡継電器
59/95G:発電機−変圧器過励磁継電器
59G:過電圧継電器
40G:界磁喪失継電器
87ET:励磁電源変圧器比率差動継電器
46G:発電機逆相電流継電器
67G:発電機逆電力継電器
95G:周波数継電器
51ET:励磁電源変圧器過電流継電器
64F:発電機界磁地絡継電器
51NMT:主変圧器中性点過電流継電器
87HT:所内変圧器比率差動継電器
51HT:所内変圧器過電流継電器
64HT:所内変圧器地絡継電器
一方、従来、発電機主回路の電圧、電流の状態量をディジタル量に変換して、マイクロプロセッサー(CPU)に取り込み、予め用意されたソフトに従って演算処理することにより事故を検知するディジタル保護継電装置が用いられている。
87G: Generator ratio differential relay 87GMT: Generator-main transformer ratio
しかし、従来の発電機主回路のディジタル保護継電装置は、アナログ保護継電器の構成をそのまま踏襲している。つまり、事故を検知する方法は、アナログ保護継電器それぞれの機構をソフトウエア化したものであり、電圧、電流の状態量の検出点についてもアナログ保護継電器と同じである。 However, the conventional digital protective relay device of the generator main circuit follows the configuration of the analog protective relay as it is. In other words, the method of detecting an accident is a software mechanism of each analog protection relay, and the detection points of the state quantities of voltage and current are the same as those of the analog protection relay.
また、後備保護の機能についても、アナログ保護継電器の保護思想をそのまま引き継いで、各保護項目毎に設けられている。しかし、従来の発電機主回路のディジタル保護継電装置は、一つのCPUで保護項目に係る主保護/後備保護のそれぞれの演算処理を行う構成となっているため、必ずしも信頼性向上にはつながらない場合がある。 In addition, the protection function is also provided for each protection item, taking over the protection concept of the analog protection relay as it is. However, since the conventional digital protection relay device for the generator main circuit is configured to perform the respective arithmetic processing of main protection / rear-end protection related to the protection item with one CPU, it does not necessarily lead to improvement in reliability. There is a case.
すなわち、主保護の演算が不動作の場合、後備保護の演算も不動作となる可能性が高いことから、主保護/後備保護のバックアップ動作は期待できない可能性が高い。しかも、全ての演算を一つのCPUで行うにも関わらず、複数の演算を行っているため、演算処理量が多く、電圧、電流の状態量の検出点も多いことから、ハード物量が多くなる為コスト高となる問題があった。 That is, when the main protection operation is inoperative, there is a high possibility that the back-up protection operation is also inoperative. Therefore, it is highly possible that the backup operation of the main protection / rear protection cannot be expected. Moreover, since all calculations are performed by one CPU, since a plurality of calculations are performed, the amount of calculation processing is large, and the number of detection points for the state quantities of voltage and current is large. Therefore, there was a problem that the cost was high.
従来のディジタル保護継電装置としては、特許文献1、2に記載されたものが知られている。 As conventional digital protective relay devices, those described in Patent Documents 1 and 2 are known.
本発明は、保護機能を損なうことなく発電機主回路の状態量の検出点及び演算量を減らすことができるディジタル保護継電システムを実現することを課題とする。 An object of the present invention is to realize a digital protection relay system capable of reducing the detection points and the calculation amount of the state quantity of the generator main circuit without impairing the protection function.
上記の課題を解決するため、本発明は、ディジタル演算によれば電圧、電流の位相の演算が可能なこと、及び時系列的な監視が可能なことに鑑み、従来のディジタル保護演算に代えて、保護機能を損なうことなく発電機主回路の状態量の検出点及び演算量を減らすことができるディジタル保護継電システムを実現した。 In order to solve the above problems, the present invention replaces the conventional digital protection calculation in view of the fact that the calculation of the phase of voltage and current can be performed by digital calculation and that time series monitoring is possible. The digital protection relay system that can reduce the detection points and the amount of calculation of the state quantity of the generator main circuit without impairing the protection function has been realized.
具体的には、本発明は、遮断器を介して系統に接続された主変圧器と、該主変圧器の低圧側に接続された発電機と、該発電機の出力端に接続された所内変圧器と、前記発電機の出力端に接続され該発電機の励磁電源を供給する励磁電源変圧器とを備えてなる発電機主回路のディジタル保護継電システムにおいて、前記主変圧器の系統側電流と、前記発電機の中性点側電流と、前記所内変圧器の2次側電流と、前記励磁電源変圧器の2次側電流を測定する変流器をそれぞれ設置し、それぞれの変流器から得られた電流検出値と前記発電機の出力端電圧の電圧検出値との位相差を演算し、該位相差に基づいて前記発電機主回路の短絡事故を検出することを特徴とする。 Specifically, the present invention comprises a main transformer connected to the system via a circuit breaker, a generator connected to the low-voltage side of the main transformer, and an in-house connected to the output end of the generator In a digital protection relay system for a main circuit of a generator comprising a transformer and an excitation power transformer connected to an output end of the generator and supplying excitation power of the generator, the system side of the main transformer Current transformer, neutral point side current of the generator, secondary side current of the in-house transformer, and secondary current of the excitation power transformer are installed, respectively, Calculating a phase difference between the current detection value obtained from the generator and the voltage detection value of the output terminal voltage of the generator, and detecting a short circuit accident in the generator main circuit based on the phase difference. .
例えば、発電機主回路において短絡事故が発生した場合、発電機主回路の電流方向が変化し、三相回路の内の健全相の電流値と短絡相の電流値が相違するように、発電機主回路の電流値又は各相のバランスが健全時と異なる。そこで、本発明は、ディジタル演算により電圧、電流の位相の演算が可能なこと、及び時系列的な監視が可能なことを利用して、発電機の出力端電圧の位相を基準として、発電機主回路の各部の検出電流値の位相を比較して、さらに、位相差の変化を時系列的に監視することにより、短絡事故を検出することを基本とする。つまり、健全時と短絡事故発生時では、各相のバランス及び電流の流れる方向が変化することから、位相の監視を行い、前状態(健全時)との比較を行い、整定値以上の変動があった場合に事故として検出する。 For example, if a short-circuit accident occurs in the generator main circuit, the current direction of the generator main circuit changes, so that the current value of the healthy phase in the three-phase circuit is different from the current value of the short-circuit phase. The current value of the main circuit or the balance of each phase is different from the normal state. Therefore, the present invention makes use of the fact that the phase of voltage and current can be calculated by digital calculation and that the time series monitoring is possible, and the generator is based on the phase of the output terminal voltage of the generator. The basic principle is to detect a short-circuit accident by comparing the phase of the detected current value of each part of the main circuit and monitoring the change of the phase difference in time series. In other words, since the balance of each phase and the direction of current flow change between a healthy state and a short-circuit accident, the phase is monitored, compared with the previous state (when healthy), and fluctuations exceeding the set value If there is, detect it as an accident.
また、主変圧器で短絡事故が発生した場合は、事故点に向かって電流が流れるため、主変圧器の系統側電流は通常とは逆に、系統側から発電機に向かって電流が流れる。そこで、発電機の出力端電圧を基準として、主変圧器の系統側電流の位相を比較すると、事故発生前の通常時の位相の比較結果と位相が逆転していることがわかり、これによって事故を検知することができる。 In addition, when a short-circuit accident occurs in the main transformer, current flows toward the point of the accident, so that the current on the system side of the main transformer flows from the system side toward the generator on the contrary. Therefore, comparing the phase of the system current of the main transformer with reference to the output terminal voltage of the generator, it can be seen that the phase is reversed from the normal phase comparison result before the accident occurred. Can be detected.
また、例えば、主変圧器の系統側で短絡事故(外部短絡事故)が発生すると、発電機主回路の電流と電圧の位相が急変し、遅れ力率90°に近くなる。また、主変圧器の系統側電流は、発電機短絡電流式に従って、時系列的に初期リアクタンス(Xd”)、過渡リアクタンス(Xd’)、同期リアクタンス(Xd)により抑制される短絡電流が流れる。つまり、事故発生時は定格電流以上の電流が流れるが、少し時間が経過すれば、定格電流程度の電流が流れ、その後は定格電流以下の電流が流れるので、発電機の出力端電圧を基準として、発電機の中性点側電流の位相と検出電流値を比較し、時系列的に監視することにより、外部短絡事故を検知することができる。 Further, for example, when a short circuit accident (external short circuit accident) occurs on the system side of the main transformer, the phase of the current and voltage of the generator main circuit changes suddenly and approaches a delay power factor of 90 °. Further, the system current of the main transformer is subjected to a short-circuit current that is suppressed by the initial reactance (Xd ″), the transient reactance (Xd ′), and the synchronous reactance (Xd) in time series according to the generator short-circuit current equation. In other words, when an accident occurs, a current that exceeds the rated current flows, but after a while, a current that is about the rated current flows, and after that, a current that is less than the rated current flows. The external short circuit accident can be detected by comparing the phase of the neutral point side current of the generator with the detected current value and monitoring in time series.
その他、系統側から発電機に電力が流入する逆電力などについても、後述するように、主変圧器の系統側電流と、発電機の中性点側電流の電流検出値を取込み、該電流検出値と発電機の出力端電圧の電圧検出値との位相差を演算し、該位相差に基づいて発電機主回路の電力値と電力方向の演算を行い、逆電力を検出することができる。 In addition, with regard to reverse power that flows into the generator from the grid side, as described later, the current detection values of the main transformer grid side current and the neutral point current of the generator are taken in and detected. It is possible to calculate the phase difference between the value and the voltage detection value of the output terminal voltage of the generator, calculate the power value and the power direction of the generator main circuit based on the phase difference, and detect the reverse power.
また、本発明は、前記主変圧器の系統側電流と、前記発電機の中性点側電流と、前記所内変圧器の2次側電流と、前記励磁電源変圧器の2次側電流の電流検出値及び発電機の出力端の電圧検出値を取込み、電流位相比較演算と、電圧/周波数演算と、零相電圧演算と、周波数演算と、電力演算と、インピーダンス演算と、逆相電流演算と、零相電流演算の8つの演算により、短絡事故、地絡事故、発電機の過励磁、発電機の負荷不平衡、逆電力、周波数低を含む発電機主回路の事故を検出するディジタル演算部を設けて構成することができる。 Further, the present invention provides a current of a system side current of the main transformer, a neutral point side current of the generator, a secondary side current of the in-house transformer, and a secondary side current of the excitation power transformer. Takes the detected value and the detected voltage value of the output of the generator, current phase comparison calculation, voltage / frequency calculation, zero phase voltage calculation, frequency calculation, power calculation, impedance calculation, reverse phase current calculation, Digital arithmetic unit that detects the main circuit accident including short circuit accident, ground fault, generator overexcitation, generator load imbalance, reverse power, low frequency by 8 operations of zero phase current calculation Can be provided.
本発明によれば、ディジタル保護継電の演算量、計器用変圧器や変流器等の数量を減少させることができ、簡略化したシステムで必要な保護機能を達成できる。その結果、より合理的な発電機主回路のディジタル保護継電システムを構成することができる。また、システム構成を単純化することによりディジタル保護継電システムの信頼性を向上させることができる。さらに、ディジタル特有の偶発故障に対しても、本発明のディジタル保護継電システムは簡略なシステムであることから、発電システムの要求する信頼性に応じて多重化することができる。したがって、従来のアナログ保護継電器の主保護/後備保護の考え方を採用しなくても、要求される信頼性に応じて本発明のディジタル保護継電システムを二重化することにより、信頼性向上を図ることができる。 According to the present invention, it is possible to reduce the amount of digital protection relay operation, the number of instrument transformers, current transformers, and the like, and achieve a necessary protection function with a simplified system. As a result, a more rational generator main circuit digital protection relay system can be configured. Further, the reliability of the digital protection relay system can be improved by simplifying the system configuration. Furthermore, the digital protection relay system of the present invention can be multiplexed according to the reliability required by the power generation system, even for accidental failures peculiar to digital, since the digital protection relay system of the present invention is a simple system. Therefore, it is possible to improve the reliability by duplicating the digital protection relay system of the present invention according to the required reliability without adopting the concept of main protection / rear-end protection of the conventional analog protection relay. Can do.
ところで、主変圧器の系統側(高圧側)に設置される変流器は、一般に、ディジタル保護継電システムが設置される建屋から離れている。したがって、検出電流値を伝送するケーブルが長くなり、ノイズ対策を施す必要がある。そこで、本発明は、主変圧器の系統側に設置される変流器により検出された電流検出値をディジタル化して光信号に変換する信号変換器を設け、光ケーブルでディジタル保護継電システムに伝送させる。これによれば、従来のメタルケーブル布設に係る物量を低減できるだけでなく、ノイズ対策コストの低減を図ることができる。 By the way, the current transformer installed on the system side (high voltage side) of the main transformer is generally separated from the building where the digital protection relay system is installed. Therefore, the cable for transmitting the detected current value becomes long and it is necessary to take measures against noise. Therefore, the present invention provides a signal converter that digitizes a current detection value detected by a current transformer installed on the system side of the main transformer and converts it into an optical signal, and transmits it to a digital protection relay system using an optical cable. Let According to this, not only the amount of conventional metal cable laying can be reduced, but also the noise countermeasure cost can be reduced.
本発明によれば、保護機能を損なうことなく発電機主回路の状態量の検出点及び演算量を減らしたディジタル保護継電システムを実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the digital protection relay system which reduced the detection point and calculation amount of the state quantity of the generator main circuit, without impairing a protection function is realizable.
以下、本発明の実施形態を図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施形態1)
図1は、本発明を発電プラントに適用してなる一実施形態の発電機主回路のディジタル保護継電システムの構成を示す。図示のように、発電機主回路は、主変圧器用遮断器1と主変圧器2を介して系統に接続された発電機3と、発電機3と主変圧器2との間の発電機出力端に接続された所内変圧器4及び励磁電源変圧器6とを含んで構成される。そして、発電機3で発電した電力は、主変圧器2、主変圧器用遮断器1を経由して発電所外部の系統に送電されると同時に、所内変圧器4と遮断器16を経由して発電に必要な発電所内の負荷に給電され、励磁電源変圧器6から発電機3を励磁する界磁巻線5に励磁電源が供給される。また、発電機3の中性点回路は二次抵抗器15によって高抵抗接地されている。
(Embodiment 1)
FIG. 1 shows a configuration of a digital protection relay system for a generator main circuit according to an embodiment in which the present invention is applied to a power plant. As shown in the figure, the generator main circuit includes a generator 3 connected to the system via the main transformer circuit breaker 1 and the main transformer 2, and a generator output between the generator 3 and the main transformer 2. An in-house transformer 4 and an
本実施形態のディジタル保護継電システムは、ディジタル保護継電装置10、主変圧器の高圧側に設置された変流器CT11、発電機3の中性点側に設置された変流器CT12、所内変圧器4の二次側に設置された変流器CT13、励磁電源変圧器6の二次側に設置された変流器CT14、発電機3の出力端側に設置された計器用変圧器PT1 7とから構成される。
The digital protection relay system of this embodiment includes a digital
図2に、ディジタル保護継電装置10の一実施形態を示す。ディジタル保護継電装置10は、発電機主回路に設置されたPT17、CT11、12、13、14により検出された電圧又は電流の検出値を入力変換器20を介して取込み、アナログ/ディジタル変換部21でA/D変換して演算処理部22に入力するようになっている。演算処理部22は、予め設定されたディジタル保護継電のソフトウェアに従って保護演算処理することにより、発電機主回路における事故の有無を判断する。演算処理部22により事故を検知したときは、伝送部・I/O部23を介して、整定・表示部24に検知結果を出力するとともに、遮断器などを駆動する出力リレーに動作指令を出力して発電機主回路を保護するようになっている。
FIG. 2 shows an embodiment of the digital
表2に、本実施形態のディジタル保継電装置10の保護項目及び保護要素を対比して示す。表2に示すように、保護項目は、基本的に短絡(過負荷、過電流を含む)、地絡、過励磁、界磁喪失、逆相電流、及びタービン保護の逆電力、周波数低下である。
Table 2 shows a comparison of protection items and protection elements of the
表2の保護要素(1)〜(8)に対応して、演算処理部22は、図1に示すように保護演算機能を有して構成されている。すなわち、電流位相比較部101はPT17の電圧検出値Eと、各CT11、CT12、CT13、CT14の電流検出値A〜Dを取込んで保護演算を行い、保護出力(1)を出力するようになっている。電圧/周波数(V/F)検出部102は、PT17の電圧検出値Eを取込んで保護演算を行い、保護出力(2)を出力するようになっている。Vo検出部103は、PT17の電圧検出値Eを取込んで零相電圧を検出し、保護出力(3)を出力するようになっている。F検出部104は、PT17の電圧検出値Eを取込んで周波数低下を検出し、保護出力(4)を出力するようになっている。電力検出部105は、PT17の電圧検出値EとCT12値の検出電流を取込んで、逆電力を検出し、保護出力(5)を出力するようになっている。インピーダンス検出部106は、PT17の電圧検出値EとCT12値の検出電流を取込んで、界磁喪失を検出し、保護出力(6)を出力するようになっている。I2検出部107は、CT12値の検出電流を取込んで、逆相電流を検出し、保護出力(7)を出力するようになっている。Io検出部108は、CT12値の検出電流を取込んで、零相電流を検出し、保護出力(7)を出力するようになっている。
Corresponding to the protection elements (1) to (8) in Table 2, the
このように構成されるディジタル保護継電装置10の各部の事故検知機能の詳細及び動作を、それぞれの事故ごとに説明する。
The details and operation of the accident detection function of each part of the digital
(短絡検知)
発電機主回路において短絡事故が発生すると、発電機主回路の電流方向が変化し、三相回路の内の健全相の電流値と短絡相の電流値が相違するように、発電機主回路の電流値又は各相のバランスが健全時と異なる。発電機の出力端電圧であるPT17の検出電圧の位相を基準として、CT11、CT12、CT13、CT14により検出された各部の検出電流値の位相を比較して、さらに、位相差の変化を時系列的に監視することにより、短絡事故を検出する。
(Short-circuit detection)
When a short circuit accident occurs in the generator main circuit, the current direction of the generator main circuit changes, and the current value of the healthy phase in the three-phase circuit differs from the current value of the short circuit phase so that the generator main circuit The current value or the balance of each phase is different from the normal state. The phase of the detected current value of each part detected by CT11, CT12, CT13, CT14 is compared on the basis of the phase of the detected voltage of PT17 which is the output terminal voltage of the generator, and the change of the phase difference is further time-sequentially. To detect a short-circuit accident.
例えば、発電機主回路において短絡事故が発生した場合、発電機主回路の電流方向が変化し、三相回路の内の健全相の電流値と短絡相の電流値が相違するように、発電機主回路の電流値又は各相のバランスが健全時と異なる。そこで、本実施形態では、発電機の出力端電圧の位相を基準として、発電機主回路の各部の検出電流値の位相を比較して、さらに、位相差の変化を時系列的に監視することにより短絡事故を検出する。つまり、健全時と短絡事故発生時では、各相のバランス及び電流の流れる方向が変化することから、位相の監視を行い、前状態(健全時)との比較を行い、整定値以上の変動があった場合に事故として検出する。 For example, if a short-circuit accident occurs in the generator main circuit, the current direction of the generator main circuit changes, so that the current value of the healthy phase in the three-phase circuit is different from the current value of the short-circuit phase. The current value of the main circuit or the balance of each phase is different from the normal state. Therefore, in this embodiment, the phase of the output terminal voltage of the generator is used as a reference, the phase of the detected current value of each part of the generator main circuit is compared, and the change in the phase difference is further monitored in time series. A short-circuit accident is detected. In other words, since the balance of each phase and the direction of current flow change between a healthy state and a short-circuit accident, the phase is monitored, compared with the previous state (when healthy), and fluctuations exceeding the set value If there is, detect it as an accident.
また、主変圧器で短絡事故が発生した場合は、事故点に向かって電流が流れるため、主変圧器の系統側電流は通常とは逆に、系統側から発電機に向かって電流が流れる。そこで、発電機の出力端電圧を基準として、主変圧器の系統側電流の位相を比較すると、事故発生前の通常時の位相の比較結果と位相が逆転していることがわかり、これによって事故を検知することができる。 In addition, when a short-circuit accident occurs in the main transformer, current flows toward the point of the accident, so that the current on the system side of the main transformer flows from the system side toward the generator on the contrary. Therefore, comparing the phase of the system current of the main transformer with reference to the output terminal voltage of the generator, it can be seen that the phase is reversed from the normal phase comparison result before the accident occurred. Can be detected.
また、例えば、主変圧器の系統側で短絡事故(外部短絡事故)が発生すると、発電機主回路の電流と電圧の位相が急変し、遅れ力率90°に近くなる。また、主変圧器の系統側電流は、発電機短絡電流式に従って、時系列的に初期リアクタンス(Xd”)、過渡リアクタンス(Xd’)、同期リアクタンス(Xd)により抑制される短絡電流が流れる。つまり、事故発生時は定格電流以上の電流が流れるが、少し時間が経過すれば、定格電流程度の電流が流れ、その後は定格電流以下の電流が流れるので、発電機の出力端電圧を基準として、発電機の中性点側電流の位相と検出電流値を比較し、時系列的に監視することにより、外部短絡事故を検知することができる。 Further, for example, when a short circuit accident (external short circuit accident) occurs on the system side of the main transformer, the phase of the current and voltage of the generator main circuit changes suddenly and approaches a delay power factor of 90 °. Further, the system current of the main transformer is subjected to a short-circuit current that is suppressed by the initial reactance (Xd ″), the transient reactance (Xd ′), and the synchronous reactance (Xd) in time series according to the generator short-circuit current equation. In other words, when an accident occurs, a current that exceeds the rated current flows, but after a while, a current that is about the rated current flows, and after that, a current that is less than the rated current flows. The external short circuit accident can be detected by comparing the phase of the neutral point side current of the generator with the detected current value and monitoring in time series.
さらに、短絡電流が発電機のリアクタンスによって抑制され、図5に示すように、時系列的に変化することから、発電機の主回路の電流地の変化を監視し、図5に示すような変化が見られた場合に、短絡事故として検出できる。 Furthermore, since the short circuit current is suppressed by the reactance of the generator and changes in time series as shown in FIG. 5, the change in the current location of the main circuit of the generator is monitored, and the change as shown in FIG. Can be detected as a short-circuit accident.
これらの短絡事故の検出法をまとめると、表3のようになる Table 3 summarizes the detection methods for these short-circuit accidents.
(地絡事故)
まず、発電機3、励磁電源変圧器6の一次側、主変圧器2の一次側、所内変圧器4の一次側の地絡事故の検知について説明する。これらの部位における地絡事故発生時に、これらの機器の損傷を防ぐために、本実施形態では、二次抵抗器15付の変圧器接地(高抵抗接地)を適用している。この接地方式は、地絡事故発生時に主回路−対地間を流れる地絡電流を接地変圧器二次側に接続した二次抵抗器15で抑制し、機器が重大な損傷に至らないよう対策している。
(Ground fault)
First, detection of a ground fault in the primary side of the generator 3, the
地絡事故が発生した場合、発電機主回路の電圧のバランスが崩れ、三相不平衡になり、発電機主回路に零相電圧Voが発生する。従来、地絡事故時の零相電圧Voは、二次抵抗器15の両端に発生する電圧として検出していた。本実施形態では、発電機主回路電圧の各相電圧のベクトル和として、零相電圧Voを演算して検出する。つまり、PT17により検出される電圧検出値Eに基づいて、Vo検出部103で零相電圧Vo求め、整定値を越えたときに地絡を検知する。
When a ground fault occurs, the voltage balance of the generator main circuit is lost, resulting in a three-phase imbalance, and a zero-phase voltage Vo is generated in the generator main circuit. Conventionally, the zero-phase voltage Vo at the time of the ground fault has been detected as a voltage generated at both ends of the
次に、主変圧器2の系統側の地絡事故について説明する。主変圧器2の系統側は、一般に、2kV〜500kV等の超高圧系統が採用されるから、送電系統の接地系に合せて地絡事故を瞬時に検知する目的で、直接接地が適用されている。そのため、主変圧器2の系統側の地絡事故発生時には大きな地絡電流が地絡点に流れる。この地絡電流は発電機側と系統側の両方から流れ込むこととなり、基本的には主変圧器2の系統側の相短絡と同一事象となるから、前述の短絡事故の検出方法で検知できる。また、インピーダンスの分布から、地絡電流に対する寄与分の大きいCT11の電流検出値Aに含まれる零相分を相電流のベクトル和から演算することにより、より直接的に検知することができる。この地絡事故の検出は、図1の電流位相比較部101にて実施される。
Next, a ground fault on the system side of the main transformer 2 will be described. The system side of the main transformer 2 is generally an ultra-high voltage system such as 2 kV to 500 kV, so that direct grounding is applied for the purpose of instantaneously detecting a ground fault in accordance with the grounding system of the transmission system. Yes. Therefore, when a ground fault occurs on the system side of the main transformer 2, a large ground fault current flows to the ground fault point. This ground fault current flows from both the generator side and the system side, and basically the same event as the phase short circuit on the system side of the main transformer 2, and thus can be detected by the above-described short-circuit accident detection method. Further, it is possible to more directly detect the zero phase component included in the detected current value A of CT11 having a large contribution to the ground fault current from the vector sum of the phase currents from the impedance distribution. The detection of the ground fault is performed by the current
(過励磁検知)
過励磁については、電圧上昇あるいは周波数低下により発生するので、PT17で検出された電圧検出値Eの電圧及び周波数を基に、V/F検出部102により、電圧と周波数の比を演算することにより検知する。つまり、V/Fの値が、主変圧器、所内変圧器、励磁電源変圧器及び発電機の過励磁耐量より定まる整定値を上回ると、過励磁状態であると検知する。
(Overexcitation detection)
Since overexcitation occurs due to voltage increase or frequency decrease, the V / F detection unit 102 calculates the voltage to frequency ratio based on the voltage and frequency of the voltage detection value E detected by the PT 17. Detect. That is, when the value of V / F exceeds a set value determined by the overexcitation withstand capability of the main transformer, the in-house transformer, the excitation power transformer, and the generator, it is detected as an overexcitation state.
(界磁喪失検知)
同期発電機の界磁が喪失すると、発電機主回路のインピーダンス軌跡が急激に変化することから、CT12で検出される電流検出値Bと、PT17で検出された電圧検出値Eを基に、発電機主回路のインピーダンス軌跡を求め、これに基づいて界磁喪失を検知する。つまり、界磁喪失が起こると発電機回路のインピーダンスは減少して発電機リアクタンスに近づく。このインピーダンス値が整定値範囲に入ると、界磁喪失として検知する。
(Field loss detection)
When the field of the synchronous generator is lost, the impedance trajectory of the generator main circuit changes abruptly. Therefore, based on the current detection value B detected by CT12 and the voltage detection value E detected by PT17, power generation The impedance trajectory of the main circuit is obtained and the loss of field is detected based on this. That is, when field loss occurs, the impedance of the generator circuit decreases and approaches the generator reactance. When this impedance value falls within the set value range, it is detected as a field loss.
(逆相電流検知)
発電機3の負荷が三相不平衡状態になると、発電機主回路の電流に逆相分が含まれるようになり、発電機3の回転子コイルの端部が局部加熱する。これを防止するため、I2検出部107はCT12の検出電流Bを取込み、正相電流、逆相電流、零相電流に分解して逆相電流を求め、求めた逆相電流が整定値を超えたときに、保護出力(7)を出力する。
(Reverse phase current detection)
When the load of the generator 3 is in a three-phase unbalanced state, the current of the generator main circuit includes a reverse phase component, and the end of the rotor coil of the generator 3 is locally heated. In order to prevent this, the I 2 detection unit 107 takes in the detection current B of CT12 and decomposes it into a positive phase current, a negative phase current, and a zero phase current to obtain a negative phase current. When it exceeds, a protection output (7) is output.
(逆電力検知)
逆電力とは、通常と逆に系統から発電機3に電力が流入する状態のことであり、電力検出部105によりCT12の検出電流BとPT17の検出電圧Eを取込み、これらに基づいて発電機主回路の電力値と電力方向の演算を行い、電力が発電機3に流入していないかを監視することにより検知する。
(Reverse power detection)
The reverse power is a state in which power flows into the generator 3 from the system in the reverse manner, and the
(周波数低検知)
周波数低は、発電機3の運転周波数の低下によるタービン翼の保護である。F検出部104は、PT17の検出電圧Eを取込み、周波数を演算することにより、周波数低を検知する。
(Low frequency detection)
The low frequency is protection of the turbine blades due to a decrease in the operating frequency of the generator 3. The
以上に説明したように、本実施形態によれば、発電機主回路において必要とされる保護項目の全てについて、PT17の電圧検出値Eと、各CT11、CT12、CT13、CT14の電流検出値A〜Dとに基づいて、検知することができる。 As described above, according to the present embodiment, the detected voltage value E of PT17 and the detected current value A of each CT11, CT12, CT13, and CT14 for all the protection items required in the generator main circuit. Based on ~ D, it can be detected.
また、信頼性については高いほど望ましいのは当然であるが、発電設備自体の規模、系統側での運用等により要求される信頼性は異なり、コストパフォーマンスを考慮することも重要である。上記の実施形態は、シングル系を基本としているが、従来の構成に比べ、構成物品が少ないが、同等の信頼性を有するものであり、発電設備の要求信頼性に応じて外部で容易に多重化が可能である。したがって、発電設備の要求信頼度に応じて多重化による信頼性向上を図ることができ、要求信頼度に対し自由度の大きいシステム構成とすることができる。 Of course, the higher the reliability, the more desirable, but the reliability required depends on the scale of the power generation equipment itself, the operation on the system side, etc., and it is also important to consider the cost performance. The above embodiment is based on a single system, but has fewer components than the conventional configuration, but has the same reliability, and can be easily multiplexed externally according to the required reliability of the power generation equipment. Is possible. Therefore, the reliability can be improved by multiplexing according to the required reliability of the power generation equipment, and a system configuration having a high degree of freedom with respect to the required reliability can be obtained.
(実施形態2)
図3に、本発明を発電プラントに適用してなる他の実施形態の発電機主回路のディジタル保護継電システムの構成を示す。本実施形態が、図1の実施形態と異なる点は、CT11の電流検出値Aをディジタル化して光信号に変換する信号変換装置25をCT11の近傍に設け、光信号に変換された電流検出値Aを光ケーブル26でディジタル保護継電装置10に伝送するようにしたことにある。その他は、図1と同一であるから、同一符号を付して説明を省略する。
(Embodiment 2)
FIG. 3 shows the configuration of a digital protection relay system for a generator main circuit according to another embodiment in which the present invention is applied to a power plant. The present embodiment differs from the embodiment of FIG. 1 in that a
1 主変圧器用遮断器
2 主変圧器
3 発電機
4 所内変圧器
5 界磁巻線
6 励磁電源変圧器
10 ディジタル保護継電装置
15 二次抵抗器
101 電流位相比較部
102 V/F検出部
103 Vo検出部
104 F検出部
105 電力検出部
106 インピーダンス検出部
107 I2検出部
108 Io検出部
CT11 変流器
CT12 変流器
CT13 変流器
CT14 変流器
PT17 計器用変圧器
DESCRIPTION OF SYMBOLS 1 Circuit breaker for main transformer 2 Main transformer 3 Generator 4 In-
Claims (3)
前記主変圧器の系統側電流と、前記発電機の中性点側電流と、前記所内変圧器の2次側電流と、前記励磁電源変圧器の2次側電流を測定する変流器をそれぞれ設置し、それぞれの変流器から得られた電流検出値と前記発電機の出力端電圧の電圧検出値との位相差を演算し、該位相差に基づいて前記発電機主回路の短絡事故を検出するディジタル演算部を設けたことを特徴とする発電機主回路のディジタル保護継電システム。 A main transformer connected to the system via a circuit breaker, a generator connected to the low voltage side of the main transformer, an in-house transformer connected to the output end of the generator, and the output of the generator In the digital protective relay system of the generator main circuit comprising an excitation power transformer connected to the end and supplying the excitation power of the generator,
A current transformer for measuring the system side current of the main transformer, the neutral point side current of the generator, the secondary side current of the in-house transformer, and the secondary side current of the excitation power transformer, respectively. Install and calculate the phase difference between the current detection value obtained from each current transformer and the voltage detection value of the output terminal voltage of the generator, and based on the phase difference, short circuit accidents of the generator main circuit A digital protection relay system for a generator main circuit, characterized in that a digital arithmetic unit for detection is provided.
前記主変圧器の系統側電流と、前記発電機の中性点側電流と、前記所内変圧器の2次側電流と、前記励磁電源変圧器の2次側電流の電流検出値と、発電機出力側に設置した電圧検出点から得られた電圧検出値を取込み、電流位相比較演算と、電圧/周波数演算と、零相電圧演算と、周波数演算と、電力演算と、インピーダンス演算と、逆相電流演算と、零相電流演算の8つの演算により、短絡事故、地絡事故、発電機の過励磁、発電機の負荷不平衡、逆電力、周波数低を含む発電機主回路の事故を検出するディジタル演算部を設けたことを特徴とする発電機主回路のディジタル保護継電システム。 A main transformer connected to the system via a circuit breaker, a generator connected to the low voltage side of the main transformer, an in-house transformer connected to the output end of the generator, and the output of the generator In the digital protective relay system of the generator main circuit comprising an excitation power transformer connected to the end and supplying the excitation power of the generator,
A system-side current of the main transformer, a neutral-point-side current of the generator, a secondary-side current of the in-house transformer, a current detection value of a secondary-side current of the excitation power transformer, and a generator Takes the voltage detection value obtained from the voltage detection point installed on the output side, current phase comparison calculation, voltage / frequency calculation, zero phase voltage calculation, frequency calculation, power calculation, impedance calculation, reverse phase Detects accidents in the main circuit of the generator, including short-circuit accidents, ground faults, generator overexcitation, generator load imbalance, reverse power, and low frequency, through eight calculations: current calculation and zero-phase current calculation A digital protection relay system for a generator main circuit, characterized in that a digital arithmetic unit is provided.
前記主変圧器の系統側電流を検出する変流器の近傍に、該変流器により検出された電流検出値をディジタル化して光信号に変換する信号変換器を設け、光信号に変換された前記電流検出値を光ケーブルで前記ディジタル演算部に伝送することを特徴とする発電機主回路のディジタル保護継電システム。 In the digital protection relay system of the generator main circuit according to claim 1 or 2,
A signal converter for digitizing the current detection value detected by the current transformer and converting it to an optical signal is provided in the vicinity of the current transformer for detecting the system side current of the main transformer, and converted into an optical signal. A digital protection relay system for a main circuit of a generator, wherein the detected current value is transmitted to the digital arithmetic unit by an optical cable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005186900A JP4352267B2 (en) | 2005-06-27 | 2005-06-27 | Digital protection relay system for generator main circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005186900A JP4352267B2 (en) | 2005-06-27 | 2005-06-27 | Digital protection relay system for generator main circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007006673A true JP2007006673A (en) | 2007-01-11 |
JP4352267B2 JP4352267B2 (en) | 2009-10-28 |
Family
ID=37691706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005186900A Active JP4352267B2 (en) | 2005-06-27 | 2005-06-27 | Digital protection relay system for generator main circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4352267B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223424A (en) * | 2012-04-17 | 2013-10-28 | Siemens Ag | Fault protection system for power system of dynamically positioned vessel |
US9543748B2 (en) | 2012-04-17 | 2017-01-10 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
CN107769162A (en) * | 2017-11-22 | 2018-03-06 | 国网新疆电力有限公司电力科学研究院 | Generator protection tripgear based on 3/2 wiring condition power plant |
CN109217854A (en) * | 2017-07-04 | 2019-01-15 | 许继集团有限公司 | It is applicable in the indicating circuit of two kinds of level driving |
-
2005
- 2005-06-27 JP JP2005186900A patent/JP4352267B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223424A (en) * | 2012-04-17 | 2013-10-28 | Siemens Ag | Fault protection system for power system of dynamically positioned vessel |
US9083177B2 (en) | 2012-04-17 | 2015-07-14 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
US9543748B2 (en) | 2012-04-17 | 2017-01-10 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
CN109217854A (en) * | 2017-07-04 | 2019-01-15 | 许继集团有限公司 | It is applicable in the indicating circuit of two kinds of level driving |
CN109217854B (en) * | 2017-07-04 | 2023-06-02 | 许继集团有限公司 | Indication circuit suitable for two level driving |
CN107769162A (en) * | 2017-11-22 | 2018-03-06 | 国网新疆电力有限公司电力科学研究院 | Generator protection tripgear based on 3/2 wiring condition power plant |
Also Published As
Publication number | Publication date |
---|---|
JP4352267B2 (en) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7944068B2 (en) | Optimizing converter protection for wind turbine generators | |
Lee et al. | A study on wind-turbine generator system sizing considering overcurrent relay coordination with SFCL | |
JP4352267B2 (en) | Digital protection relay system for generator main circuit | |
CN103296651B (en) | The line inter-phase fault distance protection method of overload faulty action preventing and resistance to high resistant | |
KR101884388B1 (en) | System for detecting voltage unbalance of three phase motor control center | |
KR20160076878A (en) | Setting parameter processing apparatus and method for protection relay test | |
KR20030042222A (en) | Sub-system connecting device in power supply system | |
US8542469B2 (en) | Methodology for protection of current transformers from open circuit burden | |
JP2001258145A (en) | Protective relay system | |
Rook et al. | Application of protective relays on a large industrial-utility tie with industrial cogeneration | |
Miller et al. | Fault contribution considerations for wind plant system design and power system protection issues | |
JP7159236B2 (en) | Short circuit breaker for DC power supply equipment | |
EP2498360B1 (en) | DC electrical power system | |
EP3547476B1 (en) | Overvoltage protection device of variable speed power generation system | |
KR102064132B1 (en) | Apparatus for diagnosis of excitation control system | |
JP3899687B2 (en) | Gas turbine generator shear pin protection device | |
Wong et al. | Analysis of Electrical Distribution System for Offshore Oil and Gas Platform | |
JP2607500B2 (en) | Spot network power receiving substation protection device | |
Hunt | Dimensioning CTs for small generator differential protection | |
JP2023147430A (en) | Bus voltage abnormality detection device and bus voltage abnormality detection method | |
JP2022148181A (en) | Three-phase power conversion system for electric railway | |
JP2021175246A (en) | Protection device and protection method for power distribution system with inverter as main power source | |
KR20240024653A (en) | Apparatus and Method for Diagnosing Parallel Operation of Power Transformers for Substation | |
JP2001231159A (en) | Grounding protection method and device of low-voltage ac bus | |
JPS6146676B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070717 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090623 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4352267 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |