JP2007005371A - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP2007005371A
JP2007005371A JP2005180696A JP2005180696A JP2007005371A JP 2007005371 A JP2007005371 A JP 2007005371A JP 2005180696 A JP2005180696 A JP 2005180696A JP 2005180696 A JP2005180696 A JP 2005180696A JP 2007005371 A JP2007005371 A JP 2007005371A
Authority
JP
Japan
Prior art keywords
power generation
voltage
current value
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180696A
Other languages
Japanese (ja)
Other versions
JP4715326B2 (en
Inventor
Yoshiki Fukada
善樹 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005180696A priority Critical patent/JP4715326B2/en
Publication of JP2007005371A publication Critical patent/JP2007005371A/en
Application granted granted Critical
Publication of JP4715326B2 publication Critical patent/JP4715326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electromechanical Clocks (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric generator capable of making output of the thermoelectric generator follow the maximum power in accordance with an actual voltage current characteristic when power is generated. <P>SOLUTION: The actual voltage current characteristic V=Vo-(R+αβ)I into which a temperature change due to a Peltier effect of a thermal generation module is taken is estimated when the thermal generator generates power, and a target current value Ip=Vo/2(R+αβ) corresponding to the maximum power in the actual voltage current characteristic is obtained. A correction voltage value for changing the current value of the thermal generator module so the current value follows the maximum current using the target current value Ip as a center of searching is obtained as V-V1. Accordingly, the current value is changed with the corrected voltage value, thereby controlling the output of the thermal generator so that it may follow the maximum power in accordance with the actual voltage current characteristic in operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱電発電モジュールにより熱エネルギーを電気エネルギーに直接変換する熱電発電装置に関し、詳しくは、最大電力に追尾するように出力制御される熱電発電装置に関するものである。   The present invention relates to a thermoelectric power generation apparatus that directly converts thermal energy into electrical energy by a thermoelectric power generation module, and more particularly to a thermoelectric power generation apparatus that is output-controlled so as to track maximum power.

熱電発電モジュールは、ゼーベック効果により温度差に応じた熱起電力を発生するn型熱電発電素子およびp型熱電発電素子が高温側の伝熱部材と低温側の伝熱部材との間に複数個設置された構造を有し、熱エネルギーを電気エネルギーに直接変換することができる。そして、このような熱電発電モジュールの高温側伝熱部材に高熱源を接触させ、その低温側伝熱部材に冷却源を接触させることで熱電発電装置が構成される。   The thermoelectric power generation module includes a plurality of n-type thermoelectric power generation elements and p-type thermoelectric power generation elements that generate a thermoelectromotive force according to a temperature difference by the Seebeck effect between a high-temperature side heat transfer member and a low-temperature side heat transfer member. It has an installed structure and can directly convert thermal energy into electrical energy. And a thermoelectric generator is comprised by making a high heat source contact the high temperature side heat transfer member of such a thermoelectric power generation module, and making a low temperature side heat transfer member contact a cooling source.

この種の熱電発電装置においては、例えば特許文献1に記載の太陽光発電装置と同様に、従来周知のMPPT(Muximum Power Point Tracker)制御によって出力が最大電力に追尾するように制御される。   In this type of thermoelectric generator, as in the solar power generator described in Patent Document 1, for example, the output is controlled to track the maximum power by conventionally known MPPT (Muximum Power Point Tracker) control.

ここで、熱電発電装置のMPPT制御においては、熱電発電装置の出力の電圧電流特性に応じ、最大電力(パワーピーク)に対応する目標電流値を中心として出力電流を数Hz以上の高い周波数で変化させつつ出力電力の増減を判定しており、出力電力が増加する際には出力電流の変化方向を維持し、出力電力が減少する際には出力電流の変化方向を反転することで、平均電流値が目標電流値に近づくように制御している。
特開平08−179840号公報(段落番号3、4)
Here, in the MPPT control of the thermoelectric generator, the output current changes at a high frequency of several Hz or more around the target current value corresponding to the maximum power (power peak) according to the voltage-current characteristics of the output of the thermoelectric generator. The output current increase / decrease is determined while maintaining the change direction of the output current when the output power increases, and by reversing the change direction of the output current when the output power decreases, the average current The value is controlled to approach the target current value.
Japanese Patent Laid-Open No. 08-179840 (paragraph numbers 3 and 4)

ところで、前述した熱電発電装置においては、その発電作用により出力電流値ゼロの開放電圧値から出力電流値が増加してゆくと、熱電発電モジュールのペルチェ効果による吸熱、発熱現象によって熱電発電素子の高温側の温度が低下し、低温側の温度が上昇する。このため、熱電発電素子内の温度勾配が小さくなって各熱電発電素子の起電力が低下し、熱電発電装置の出力電圧が当初の電圧電流特性から外れて低下してゆく。   By the way, in the above-described thermoelectric power generation device, when the output current value increases from the open circuit voltage value of zero output current value due to the power generation action, heat absorption due to the Peltier effect of the thermoelectric power generation module, the heat generation phenomenon causes the high temperature of the thermoelectric power generation element. The temperature on the side decreases and the temperature on the low temperature side increases. For this reason, the temperature gradient in the thermoelectric power generation element becomes smaller, the electromotive force of each thermoelectric power generation element decreases, and the output voltage of the thermoelectric power generation apparatus deviates from the initial voltage-current characteristics.

従って、従来の熱電発電装置のMPPT制御においては、熱電発電装置の作動に伴う実際の電圧電流特性に合わせて目標電流値を正確に定めることができず、その結果、熱電発電装置の出力を最大電力に確実に追尾させることが困難となるという問題があり、この問題は熱電発電装置の発電性能が向上すると無視できなくなる。   Therefore, in the MPPT control of the conventional thermoelectric generator, the target current value cannot be accurately determined in accordance with the actual voltage-current characteristics accompanying the operation of the thermoelectric generator, and as a result, the output of the thermoelectric generator is maximized. There is a problem that it is difficult to reliably track electric power, and this problem cannot be ignored when the power generation performance of the thermoelectric power generator is improved.

そこで、本発明は、熱電発電装置の出力を発電時の実際の電圧電流特性に合わせて最大電力に追尾させることができる熱電発電装置を提供することを課題とする。   Then, this invention makes it a subject to provide the thermoelectric generator which can track the output of a thermoelectric generator to maximum electric power according to the actual voltage-current characteristic at the time of electric power generation.

本発明に係る熱電発電装置は、熱電発電モジュールの電圧電流特性に基づいて最大電力に追尾するように出力制御される熱電発電装置であって、熱電発電モジュールの発電作用に伴う温度勾配の変化を考慮した実際の電圧電流特性を推定する手段と、推定された電圧電流特性から実際の最大電力に対応する目標電流値を求める手段と、求められた目標電流値を探索中心として最大電力に追尾するように電流値を変化させるための補正電圧値を求める手段とを備えていることを特徴とする。   A thermoelectric power generation device according to the present invention is a thermoelectric power generation device that is output-controlled so as to track the maximum power based on the voltage-current characteristics of the thermoelectric power generation module. Means for estimating the actual voltage-current characteristics in consideration, means for obtaining the target current value corresponding to the actual maximum power from the estimated voltage-current characteristics, and tracking the maximum power with the obtained target current value as the search center And a means for obtaining a correction voltage value for changing the current value.

本発明に係る熱電発電装置では、その発電時における熱電発電モジュールのペルチェ効果による温度勾配の変化を考慮した実際の電圧電流特性が推定され、推定された電圧電流特性から実際の最大電力に対応する目標電流値が求められる。そして、求められた目標電流値を探索中心として最大電力に追尾するように電流値を変化させるための補正電圧値が求められる。従って、この補正電圧値で電流値を変化させることにより、熱電発電装置の出力が発電時の実際の電圧電流特性に合わせて最大電力に追尾するように制御される。   In the thermoelectric generator according to the present invention, an actual voltage-current characteristic is estimated in consideration of a change in temperature gradient due to the Peltier effect of the thermoelectric generator module at the time of power generation, and corresponds to the actual maximum power from the estimated voltage-current characteristic. A target current value is obtained. Then, a correction voltage value for changing the current value so as to track the maximum power with the obtained target current value as a search center is obtained. Therefore, by changing the current value with this correction voltage value, the output of the thermoelectric power generator is controlled to track the maximum power in accordance with the actual voltage-current characteristics during power generation.

本発明に係る熱電発電装置では、その発電時における熱電発電モジュールのペルチェ効果による温度勾配の変化を考慮した実際の電圧電流特性が推定され、推定された電圧電流特性から実際の最大電力に対応する目標電流値が求められる。そして、求められた目標電流値を探索中心として最大電力に追尾するように電流値を変化させるための補正電圧値が求められる。従って、本発明によれば、補正電圧値で電流値を変化させることにより、熱電発電装置の出力を発電時の実際の電圧電流特性に合わせて最大電力に追尾させることができる。   In the thermoelectric generator according to the present invention, an actual voltage-current characteristic is estimated in consideration of a change in temperature gradient due to the Peltier effect of the thermoelectric generator module at the time of power generation, and corresponds to the actual maximum power from the estimated voltage-current characteristic. A target current value is obtained. Then, a correction voltage value for changing the current value so as to track the maximum power with the obtained target current value as a search center is obtained. Therefore, according to the present invention, by changing the current value with the correction voltage value, the output of the thermoelectric generator can be tracked to the maximum power in accordance with the actual voltage-current characteristics during power generation.

以下、図面を参照して本発明に係る熱電発電装置の実施の形態を説明する。参照する図面において、図1は一実施形態に係る熱電発電装置を構成する熱電発電モジュールの概略構造を示す斜視図、図2は図1に示した熱電発電モジュールの発電作用に伴う温度勾配の変化を示す図、図3は図2に示した熱電発電モジュールを備える熱電発電装置の出力制御系のブロック構成図である。   Embodiments of a thermoelectric generator according to the present invention will be described below with reference to the drawings. In the drawings to be referred to, FIG. 1 is a perspective view showing a schematic structure of a thermoelectric power generation module constituting a thermoelectric power generation device according to an embodiment, and FIG. 2 is a change in temperature gradient accompanying a power generation action of the thermoelectric power generation module shown in FIG. FIG. 3 is a block configuration diagram of an output control system of a thermoelectric power generation apparatus including the thermoelectric power generation module shown in FIG.

一実施形態に係る熱電発電装置は、例えば図1に示すような構造の熱電発電モジュール1を備えている。この熱電発電モジュール1は、ゼーベック効果により温度差に応じた熱起電力を発生するn型熱電発電素子Nおよびp型熱電発電素子Pが高温側の伝熱部材である絶縁セラミックス製の受熱基板1Aと、低温側の伝熱部材である絶縁セラミックス製の放熱基板1Bとの間に複数個設置され、これらのn型熱電発電素子Nおよびp型熱電発電素子Pが電極板1Cを介して交互に直列に接続された基本構造を有する。   A thermoelectric generator according to an embodiment includes a thermoelectric generator module 1 having a structure as shown in FIG. This thermoelectric power generation module 1 includes a heat receiving substrate 1A made of insulating ceramics in which an n-type thermoelectric power generation element N and a p-type thermoelectric power generation element P that generate thermoelectromotive force according to a temperature difference by the Seebeck effect are heat transfer members on a high temperature side. And a plurality of insulating ceramics heat dissipation substrates 1B, which are heat transfer members on the low temperature side, and these n-type thermoelectric generation elements N and p-type thermoelectric generation elements P are alternately arranged via electrode plates 1C. It has a basic structure connected in series.

このような構造の熱電発電モジュール1は、図2に示すように、受熱基板1Aが適宜の高熱源2に接触し、放熱基板1Bが適宜の冷却源3に接触することで直列に接続された各n型熱電発電素子Nおよびp型熱電発電素子P(図1参照)が熱起電力を発生して発電する。   As shown in FIG. 2, the thermoelectric power generation module 1 having such a structure is connected in series by the heat receiving substrate 1 </ b> A contacting the appropriate high heat source 2 and the heat radiating substrate 1 </ b> B contacting the appropriate cooling source 3. Each n-type thermoelectric generator N and p-type thermoelectric generator P (see FIG. 1) generates thermoelectromotive force to generate electricity.

ここで、各n型熱電発電素子Nおよびp型熱電発電素子Pにはペルチェ効果があるため、熱電発電モジュール1の発電作用に応じてその出力電流が増大すると、吸熱、発熱現象によって各n型熱電発電素子Nおよびp型熱電発電素子Pの高温側の温度が低下し、低温側の温度が上昇する。すなわち、熱電発電モジュール1内の温度勾配は、図2に実線で示す当初の温度勾配から点線で示す温度勾配に変化し、各n型熱電発電素子Nおよびp型熱電発電素子Pの高温側の温度Thと低温側の温度Tcとの温度差が次第に小さくなって各n型熱電発電素子Nおよびp型熱電発電素子Pの起電力が低下する。   Here, since each n-type thermoelectric power generation element N and p-type thermoelectric power generation element P has a Peltier effect, when the output current increases in accordance with the power generation action of the thermoelectric power generation module 1, each n-type thermoelectric power generation element P is affected by heat absorption and heat generation. The temperature on the high temperature side of the thermoelectric power generation element N and the p-type thermoelectric power generation element P decreases, and the temperature on the low temperature side increases. That is, the temperature gradient in the thermoelectric generator module 1 changes from the initial temperature gradient shown by the solid line in FIG. 2 to the temperature gradient shown by the dotted line, and the temperature gradient of each n-type thermoelectric generator N and p-type thermoelectric generator P increases. The temperature difference between the temperature Th and the temperature Tc on the low temperature side is gradually reduced, and the electromotive force of each n-type thermoelectric generator N and p-type thermoelectric generator P is lowered.

そこで、このような温度勾配の変化を伴う熱電発電モジュール1の発電出力から最大電力(パワーピーク)を取り出すため、一実施形態の熱電発電装置には、図3に示すように、演算制御部4、電流制御部5、電圧変換部6が設けられている。   Therefore, in order to take out the maximum power (power peak) from the power generation output of the thermoelectric power generation module 1 accompanied by such a change in temperature gradient, the thermoelectric power generation apparatus according to one embodiment includes an arithmetic control unit 4 as shown in FIG. A current control unit 5 and a voltage conversion unit 6 are provided.

演算制御部4および電流制御部5は、マイクロコンピュータのハードウェアおよびソフトウェアを利用して構成されており、入出力インターフェースI/O、A/Dコンバータ、プログラムおよびデータを記憶したROM(Read Only Memory)、入力データ等を一時記憶するRAM(Random Access Memory)、プログラムを実行するCPU(CentralProcessing Unit)等をハードウェアとして備えている。   The arithmetic control unit 4 and the current control unit 5 are configured by using microcomputer hardware and software, and an input / output interface I / O, an A / D converter, a ROM (Read Only Memory) storing programs and data. ), A RAM (Random Access Memory) that temporarily stores input data and the like, a CPU (Central Processing Unit) that executes a program, and the like as hardware.

この演算制御部4および電流制御部5は、熱電発電モジュール1から入力される電圧信号に基づいて従来周知のMPPT(Muximum Power Point Tracker)制御を実行し、その際、後述するように、熱電発電モジュール1の発電時におけるペルチェ効果による温度勾配の変化を考慮した実際の電圧電流特性に合わせて熱電発電モジュール1の出力を最大電力(パワーピーク)に追尾させるように制御する。   The arithmetic control unit 4 and the current control unit 5 execute conventionally well-known MPPT (Muximum Power Point Tracker) control based on the voltage signal input from the thermoelectric power generation module 1. At this time, as will be described later, Control is performed so that the output of the thermoelectric power generation module 1 is tracked to the maximum power (power peak) in accordance with the actual voltage-current characteristics in consideration of changes in temperature gradient due to the Peltier effect during power generation of the module 1.

電流制御部5は、チョッパ回路を備えており、演算制御部4から出力される制御信号に応じ、図4に示すような最大電圧値V(M)、最小電圧値V(m)の脈動電圧に対応する脈動電流、すなわち、平均電流値I(mean)を中心として脈動する最大電流値I(M)、最小電流値I(m)の脈動電流を電圧変換部6に出力する。   The current control unit 5 includes a chopper circuit, and a pulsating voltage having a maximum voltage value V (M) and a minimum voltage value V (m) as shown in FIG. , That is, the pulsating current having the maximum current value I (M) and the minimum current value I (m) that pulsate around the average current value I (mean), is output to the voltage converter 6.

電圧変換部6は、DC−DCコンバータを備えており、電流制御部5から入力される脈動電流の平均電流値I(mean)に対応した直流電圧を負荷の要求電圧に変換して出力する。   The voltage conversion unit 6 includes a DC-DC converter, converts a DC voltage corresponding to the average current value I (mean) of the pulsating current input from the current control unit 5 into a required voltage of the load, and outputs it.

ここで、演算制御部4には、熱電発電モジュール1の発電作用に伴う温度勾配の変化を考慮した実際の電圧電流特性を推定する第1手段と、熱電発電モジュール1の実際の最大電力に対応する目標電流値を求める第2手段と、求められた目標電流値を探索中心として最大電力に追尾するように電流値を変化させるための補正電圧値を求める第3手段とがソフトウェアとして構成されている。   Here, the arithmetic control unit 4 corresponds to a first means for estimating an actual voltage-current characteristic in consideration of a change in temperature gradient accompanying the power generation operation of the thermoelectric power generation module 1 and the actual maximum power of the thermoelectric power generation module 1. The second means for obtaining the target current value to be performed and the third means for obtaining the correction voltage value for changing the current value so as to track the maximum power with the obtained target current value as the search center are configured as software. Yes.

図5は、熱電発電モジュール1の電圧電流特性を示しており、図中、二点鎖線で示す電圧電流特性は、熱電発電モジュール1の発電作用に伴うペルチェ効果による温度勾配の変化を無視した理想特性である。この理想特性は、n型熱電発電素子Nおよびp型熱電発電素子Pの高温側の温度Thと低温側の温度Tcとの温度差Tの初期値をTo、温度差Toに対応した熱電発電モジュール1のゼロ電流時の開放電圧をVo、n型熱電発電素子Nおよびp型熱電発電素子Pによる内部抵抗をR、熱電発電モジュール1の出力電流値をIとしたとき、V=Vo−RIの式で表される。   FIG. 5 shows the voltage-current characteristics of the thermoelectric power generation module 1. In the figure, the voltage-current characteristics indicated by the two-dot chain line are ideals ignoring changes in the temperature gradient due to the Peltier effect associated with the power generation operation of the thermoelectric power generation module 1. It is a characteristic. This ideal characteristic is that the initial value of the temperature difference T between the high temperature side temperature Th and the low temperature side temperature Tc of the n-type thermoelectric power generation element N and the p-type thermoelectric power generation element P is To, and the thermoelectric power generation module corresponds to the temperature difference To. When the open circuit voltage at zero current of 1 is Vo, the internal resistance by the n-type thermoelectric generator N and the p-type thermoelectric generator P is R, and the output current value of the thermoelectric generator module 1 is I, V = Vo-RI It is expressed by a formula.

一方、図5に実線で示す電圧電流特性は、熱電発電モジュール1の発電作用に伴うペルチェ効果による温度勾配の変化を考慮した実際の静特性であり、この実際の静特性は、演算制御部4の第1手段が以下の手順により推定する。まず、前述の温度差Tに対応した熱電発電モジュール1のゼロ電流時の開放電圧をVoc、n型熱電発電素子Nおよびp型熱電発電素子Pの材料と設計によって決まる不変の定数をαとしたとき、開放電圧Vocは比例定数αで温度差Tに比例するため、Voc=αTの式(1)が成立する。   On the other hand, the voltage-current characteristic indicated by the solid line in FIG. 5 is an actual static characteristic that takes into account a change in temperature gradient due to the Peltier effect associated with the power generation operation of the thermoelectric power generation module 1. The first means is estimated by the following procedure. First, Voc is the open circuit voltage at zero current of the thermoelectric generator module 1 corresponding to the temperature difference T described above, and α is an invariant constant determined by the material and design of the n-type thermoelectric generator N and p-type thermoelectric generator P. Since the open circuit voltage Voc is proportional to the temperature difference T with a proportional constant α, the equation (1) of Voc = αT is established.

また、前記の温度差Tは、n型熱電発電素子Nおよびp型熱電発電素子のペルチェ効果により、初期値Toから熱電発電モジュール1の出力電流Iに比例して減少するため、n型熱電発電素子Nおよびp型熱電発電素子P、受熱基板1Aおよび放熱基板1Bの材料と設計によって決まる不変の定数をβとしたとき、T=To−βIの式(2)が成立する。そして、前述した理想特性の式V=Vo−RIと同様に、V=Voc−RIの式(3)が成立する。   The temperature difference T decreases in proportion to the output current I of the thermoelectric power generation module 1 from the initial value To due to the Peltier effect of the n-type thermoelectric power generation element N and the p-type thermoelectric power generation element. When an constant constant determined by the material and design of the element N, the p-type thermoelectric power generation element P, the heat receiving substrate 1A, and the heat dissipation substrate 1B is β, the equation (2) of T = To−βI is established. Then, the equation (3) of V = Voc-RI is established in the same manner as the ideal characteristic equation V = Vo-RI described above.

ここで、式(3)のVocに式(1)を代入し、その式のTに式(2)を代入して整理すると、V=αTo−(R+αβ)Iとなる。一方、前述した温度差Tの初期値Toに対応した開放電圧Voは、式(1)と同様にVo=αToで表される。そこで、αToをVoに置き換えることでV=Vo−(R+αβ)Iの式(4)が得られる。すなわち、演算制御部4の第1手段は、熱電発電モジュール1の発電作用に伴うペルチェ効果による温度勾配の変化を考慮した実際の静特性をV=Vo−(R+αβ)Iの式(4)として推定する。   Here, when formula (1) is substituted into Voc of formula (3) and formula (2) is substituted into T of the formula and rearranged, V = αTo− (R + αβ) I is obtained. On the other hand, the open circuit voltage Vo corresponding to the initial value To of the temperature difference T described above is expressed by Vo = αTo as in the equation (1). Therefore, by replacing αTo with Vo, equation (4) of V = Vo− (R + αβ) I is obtained. That is, the first means of the arithmetic control unit 4 uses the actual static characteristic considering the change of the temperature gradient due to the Peltier effect accompanying the power generation operation of the thermoelectric power generation module 1 as the equation (4) of V = Vo− (R + αβ) I. presume.

ところで、図3に示した演算制御部4および電流制御部5によるMPPT制御に伴い、電流制御部5が図4に示すような数Hz以上の高い周波数の脈動電流を出力する際には、熱電発電モジュール1内の温度勾配の変化が電流変動に追従しないため、熱電発電モジュール1の実際の静特性は、見掛け上、図5に点線で示す動特性となる。この動特性は、V=Vo−(R+αβ)Iの式(4)中のαβ項を無視したものであり、図5に二点鎖線で示した理想特性と平行なV=Vc−RIの式(5)で表される。なお、この式(5)において、Vcは、MPPT制御による目標電流値の探索中心値に応じて変わる定数である。   Incidentally, when the current control unit 5 outputs a pulsating current having a high frequency of several Hz or more as shown in FIG. 4 in accordance with the MPPT control by the arithmetic control unit 4 and the current control unit 5 shown in FIG. Since the change in the temperature gradient in the power generation module 1 does not follow the current fluctuation, the actual static characteristics of the thermoelectric power generation module 1 are apparently dynamic characteristics indicated by dotted lines in FIG. This dynamic characteristic is obtained by ignoring the αβ term in the equation (4) of V = Vo− (R + αβ) I, and the equation of V = Vc−RI parallel to the ideal characteristic shown by the two-dot chain line in FIG. It is represented by (5). In this equation (5), Vc is a constant that changes according to the search center value of the target current value by MPPT control.

しかしながら、図5に点線で示す見掛け上の動特性における最大電力(パワーピーク)に対応した電流値Icは、図5に実線で示す熱電発電モジュール1の実際の静特性における最大電力(パワーピーク)に対応した目標電流値Ipと異なる。そこで、この目標電流値Ipを演算制御部4の第2手段が求める。すなわち、第2手段は、図5に実線で示される熱電発電モジュール1の実際の静特性として第1手段により推定されたV=Vo−(R+αβ)Iの式(4)において、V=0を満足する電流値Iの1/2を目標電流値Ipとして求める。この目標電流値Ipは、Ip=Vo/2(R+αβ)の式(6)で表される。   However, the current value Ic corresponding to the maximum power (power peak) in the apparent dynamic characteristic indicated by the dotted line in FIG. 5 is the maximum power (power peak) in the actual static characteristic of the thermoelectric power generation module 1 indicated by the solid line in FIG. Is different from the target current value Ip corresponding to. Therefore, the second means of the calculation control unit 4 obtains this target current value Ip. That is, the second means sets V = 0 in the equation (4) of V = Vo− (R + αβ) I estimated by the first means as the actual static characteristic of the thermoelectric power generation module 1 shown by a solid line in FIG. 1/2 of the satisfactory current value I is obtained as the target current value Ip. This target current value Ip is expressed by Expression (6) where Ip = Vo / 2 (R + αβ).

次に、演算制御部4の第2手段により求められた目標電流値Ipを探索中心として最大電力(パワーピーク)に追尾するように熱電発電モジュール1の電流値を変化させるための補正電圧値を第3手段が以下の手順で求める。ここで、図5に破線で示す電圧電流特性は、点線で示す見掛けの動特性の電圧をV1だけ減少補正した動特性であり、V=0の電流値Ioが図5に実線で示す実際の静特性と一致しており、最大電力(パワーピーク)に対応した電流値Ip’が前述の目標電流値Ipと一致している。従って、電圧補正量V1が解れば、図5に点線およびV=Vc−RIの式(5)で示される見掛けの動特性を電圧補正量V1だけ補正した補正電圧値を使用することにより、目標電流値Ip=Ip’を探索中心として最大電力(パワーピーク)に追尾するように熱電発電モジュール1の電流値を変化させることができる。   Next, a correction voltage value for changing the current value of the thermoelectric power generation module 1 so as to track the maximum power (power peak) with the target current value Ip obtained by the second means of the arithmetic control unit 4 as the search center is obtained. The third means obtains by the following procedure. Here, the voltage-current characteristic indicated by the broken line in FIG. 5 is a dynamic characteristic obtained by correcting and correcting the apparent dynamic characteristic voltage indicated by the dotted line by V1, and the current value Io at V = 0 is the actual value indicated by the solid line in FIG. The current value Ip ′ corresponding to the maximum power (power peak) matches the aforementioned target current value Ip. Therefore, if the voltage correction amount V1 is known, the target voltage can be obtained by using the correction voltage value obtained by correcting the apparent dynamic characteristic shown by the dotted line and the equation (5) of V = Vc−RI in FIG. 5 by the voltage correction amount V1. The current value of the thermoelectric power generation module 1 can be changed so as to track the maximum power (power peak) with the current value Ip = Ip ′ as the search center.

そこで、演算制御部4の第3手段は、図5に点線およびV=Vc−RIの式(5)で表される見掛けの動特性を電圧補正量V1だけ補正した補正電圧値を得るため、まず、V=Vc−RIの式(5)で表される見掛けの動特性において、Ip=Vo/2(R+αβ)の式(6)で表される目標電流値Ipを探索中心とした場合の定数Vcを求め、この定数Vcに基づいて図5に破線で示す最大電力(パワーピーク)に対応した電流値Ip’を求める。そして、目標電流値Ip=Ip’を満足する値として電圧補正量V1を演算する。   Therefore, the third means of the arithmetic control unit 4 obtains a corrected voltage value obtained by correcting the apparent dynamic characteristic represented by the dotted line and the equation (5) of V = Vc−RI in FIG. 5 by the voltage correction amount V1. First, in the apparent dynamic characteristic expressed by the equation (5) of V = Vc−RI, the target current value Ip expressed by the equation (6) of Ip = Vo / 2 (R + αβ) is used as the search center. A constant Vc is obtained, and a current value Ip ′ corresponding to the maximum power (power peak) indicated by a broken line in FIG. 5 is obtained based on the constant Vc. Then, the voltage correction amount V1 is calculated as a value satisfying the target current value Ip = Ip ′.

まず、目標電流値Ipを探索中心とした場合の式(5)中の定数Vcは、式(5)の電圧Vが電流値I=Ipで式(4)の電圧Vと一致する条件を満足する値として求められる。すなわち、Vc−RI=Vo−(R+αβ)Iの等式において、Iに式(6)のIpを代入し、これを整理することにより、Vc=(2R+αβ)Vo/2(R+αβ)の式(7)として定数Vcが求められる。   First, the constant Vc in the equation (5) when the target current value Ip is the search center satisfies the condition that the voltage V in the equation (5) matches the voltage V in the equation (4) when the current value I = Ip. It is calculated as a value to be That is, in the equation of Vc−RI = Vo− (R + αβ) I, by substituting Ip of equation (6) for I and rearranging it, the equation of Vc = (2R + αβ) Vo / 2 (R + αβ) ( The constant Vc is obtained as 7).

つぎに、図5に破線で示す最大電力(パワーピーク)に対応した電流値Ip’は、式(7)で表されるVcを式(5)中のVcに代入したV=(2R+αβ)Vo/2(R+αβ)−RIの式において、V−V1=0を満足する電流値Iの1/2として求められる。すなわち、V−V1=(2R+αβ)Vo/2(R+αβ)−RI−V1=0の等式を整理してI=(2R+αβ)Vo/2R(R+αβ)−V1/Rの式を求め、その1/2として電流値Ip’が求められる。この電流値Ip’は、Ip’=(2R+αβ)Vo/4R(R+αβ)−V1/2Rの式(8)で表される。   Next, the current value Ip ′ corresponding to the maximum power (power peak) indicated by the broken line in FIG. 5 is obtained by substituting Vc represented by Expression (7) into Vc in Expression (5), V = (2R + αβ) Vo. In the equation / 2 (R + αβ) −RI, it is obtained as 1/2 of the current value I satisfying V−V1 = 0. That is, the equation of V−V1 = (2R + αβ) Vo / 2 (R + αβ) −RI−V1 = 0 is arranged to obtain an equation of I = (2R + αβ) Vo / 2R (R + αβ) −V1 / R. The current value Ip ′ is obtained as / 2. This current value Ip ′ is expressed by the following equation (8): Ip ′ = (2R + αβ) Vo / 4R (R + αβ) −V1 / 2R.

そして、図5に点線で示した式(5)の見掛けの動特性から図5に破線で示した電圧電流特性を得るための電圧補正量V1は、式(6)のIpと式(8)のIp’が等しくなる条件を満足する値として求められる。すなわち、Vo/2(R+αβ)=(2R+αβ)Vo/4R(R+αβ)−V1/2Rの等式を整理することで、電圧補正量V1を求める。この電圧補正量V1は、V1=αβVo/2(R+αβ)の式(9)で表される。   The voltage correction amount V1 for obtaining the voltage-current characteristic indicated by the broken line in FIG. 5 from the apparent dynamic characteristic indicated by the dotted line in FIG. 5 is represented by Ip in Expression (6) and Expression (8). Is obtained as a value that satisfies the condition of equalizing Ip ′. That is, the voltage correction amount V1 is obtained by arranging the equation Vo / 2 (R + αβ) = (2R + αβ) Vo / 4R (R + αβ) −V1 / 2R. This voltage correction amount V1 is expressed by an equation (9) where V1 = αβVo / 2 (R + αβ).

そこで、演算制御部4の第3手段は、図5に点線およびV=Vc−RIの式(5)で示される見掛けの動特性を電圧補正量V1で補正することにより、目標電流値Ipを探索中心として最大電力(パワーピーク)に追尾するように熱電発電モジュール1の電流値を変化させるための補正電圧値を求める。   Therefore, the third means of the arithmetic control unit 4 corrects the apparent dynamic characteristic shown by the dotted line and the equation (5) of V = Vc−RI in FIG. 5 with the voltage correction amount V1, thereby obtaining the target current value Ip. A correction voltage value for changing the current value of the thermoelectric power generation module 1 is obtained so as to track the maximum power (power peak) as the search center.

以上のように構成された一実施形態の熱電発電装置では、図3に示した熱電発電モジュール1が発電作用を開始すると、その発電作用に伴うペルチェ効果によって熱電発電モジュール1の内部の温度勾配が変化する。その際、演算制御部4の第1手段がペルチェ効果による温度勾配の変化を考慮した熱電発電モジュール1の実際の静特性、すなわち、図5に実線で示される実際の静特性をV=Vo−(R+αβ)Iの式(4)として推定する。   In the thermoelectric power generator according to one embodiment configured as described above, when the thermoelectric power generation module 1 shown in FIG. 3 starts a power generation operation, the temperature gradient inside the thermoelectric power generation module 1 is caused by the Peltier effect associated with the power generation operation. Change. At that time, the first static means of the arithmetic control unit 4 takes the actual static characteristic of the thermoelectric power generation module 1 in consideration of the change in the temperature gradient due to the Peltier effect, that is, the actual static characteristic indicated by the solid line in FIG. Estimated as equation (4) for (R + αβ) I.

続いて、演算制御部4の第2手段が第1手段により推定された熱電発電モジュール1の実際の静特性における実際の最大電力に対応する目標電流値IpをIp=Vo/2(R+αβ)の式(6)として求める。そして、演算制御部4の第3手段が第2手段により求められた目標電流値Ipを探索中心として最大電力(パワーピーク)に追尾するように熱電発電モジュール1の電流値を変化させるための補正電圧値を演算する。   Subsequently, the target current value Ip corresponding to the actual maximum power in the actual static characteristics of the thermoelectric power generation module 1 estimated by the first means by the second means of the arithmetic control unit 4 is Ip = Vo / 2 (R + αβ). Obtained as equation (6). Then, a correction for changing the current value of the thermoelectric power generation module 1 so that the third means of the arithmetic control unit 4 tracks the maximum power (power peak) with the target current value Ip obtained by the second means as the search center. Calculate the voltage value.

そして、演算制御部4の第3手段が演算した制御用の補正電圧値が図3に示した電流制御部5に出力されることで、熱電発電モジュール1の出力電流がMPPT制御により図4に示すような脈動電流、すなわち、目標電流値Ipを平均電流値I(mean)とする脈動電流に制御される。   And the correction voltage value for control which the 3rd means of the calculation control part 4 calculated is output to the current control part 5 shown in FIG. 3, and the output current of the thermoelectric power generation module 1 is changed to FIG. 4 by MPPT control. As shown, that is, the pulsating current having the target current value Ip as the average current value I (mean) is controlled.

図6は、以上に述べた演算制御部4における処理手順を示しており、まず、ステップS1〜S4では、図4に示した最大電流値I(M)、最小電流値I(m)、最大電圧値V(M)、最小電圧値V(m)を順次計測する。   FIG. 6 shows a processing procedure in the arithmetic control unit 4 described above. First, in steps S1 to S4, the maximum current value I (M), the minimum current value I (m), and the maximum value shown in FIG. The voltage value V (M) and the minimum voltage value V (m) are sequentially measured.

続くステップS5では、n型熱電発電素子Nおよびp型熱電発電素子Pによる内部抵抗RをR=(V(M)−V(m))/(I(M)−I(m))の式(10)により演算し、次のステップS6では、前述したV1=αβVo/2(R+αβ)の式(9)で表される電圧補正量V1を演算する。   In the subsequent step S5, the internal resistance R by the n-type thermoelectric power generation element N and the p-type thermoelectric power generation element P is expressed by the equation R = (V (M) −V (m)) / (I (M) −I (m)). In the next step S6, the voltage correction amount V1 represented by the equation (9) of V1 = αβVo / 2 (R + αβ) is calculated.

そして、ステップS7では、最大電圧値V(M)および最小電圧値V(m)からそれぞれ電圧補正量V1を減算することにより電圧値を補正し、目標電流値Ipを探索中心として最大電力(パワーピーク)に追尾するように熱電発電モジュール1の電流値を変化させるための補正電圧値を求める。   In step S7, the voltage value is corrected by subtracting the voltage correction amount V1 from the maximum voltage value V (M) and the minimum voltage value V (m), respectively, and the maximum power (power) is set with the target current value Ip as the search center. A correction voltage value for changing the current value of the thermoelectric power generation module 1 so as to track the peak) is obtained.

そして、最後のステップS8では、ステップS7で求めた補正電圧値を電流制御部5に出力してMPTT制御を実行し、図4に示す熱電発電モジュール1の出力電流が目標電流値Ipを平均電流値I(mean)とする脈動電流となるようにする。   Then, in the last step S8, the corrected voltage value obtained in step S7 is output to the current control unit 5 to execute MPTT control, and the output current of the thermoelectric power generation module 1 shown in FIG. The pulsating current is set to the value I (mean).

従って、一実施形態の熱電発電装置によれば、熱電発電モジュール1の発電作用に伴うペルチェ効果による温度勾配の変化を考慮した実際の電圧電流特性に合わせて熱電発電モジュール1の出力を最大電力に追尾させることができ、効率の高い熱電発電装置と構成することができる。   Therefore, according to the thermoelectric power generation device of one embodiment, the output of the thermoelectric power generation module 1 is set to the maximum power in accordance with the actual voltage-current characteristics considering the temperature gradient change due to the Peltier effect accompanying the power generation operation of the thermoelectric power generation module 1. It can be tracked and can be configured as a highly efficient thermoelectric generator.

本発明に係る熱電発電装置は、前述した一実施形態に限定されるものではない。例えば、n型熱電発電素子Nおよびp型熱電発電素子Pの材料と設計によって決まる不変の定数α、および、n型熱電発電素子Nおよびp型熱電発電素子P、受熱基板1Aおよび放熱基板1Bの材料と設計によって決まる不変の定数βは、予め熱電発電モジュール1の特性を計測して得られた値に固定してもよいし、αおよびβの値を計測する装置または推測するアルゴリズムによって得られた値としてもよい。   The thermoelectric generator according to the present invention is not limited to the above-described embodiment. For example, the constant α determined by the material and design of the n-type thermoelectric generator N and the p-type thermoelectric generator P, and the n-type thermoelectric generator N and the p-type thermoelectric generator P, the heat receiving substrate 1A and the heat dissipation substrate 1B The invariant constant β determined by the material and design may be fixed to a value obtained by measuring the characteristics of the thermoelectric power generation module 1 in advance, or may be obtained by a device that measures the values of α and β or an algorithm that estimates. It may be a value.

本発明の一実施形態に係る熱電発電装置を構成する熱電発電モジュールの概略構造を示す斜視図である。It is a perspective view showing the schematic structure of the thermoelectric power generation module which constitutes the thermoelectric power generation device concerning one embodiment of the present invention. 図1に示した熱電発電モジュールの発電作用に伴う温度勾配の変化を示す図である。It is a figure which shows the change of the temperature gradient accompanying the electric power generation effect | action of the thermoelectric power generation module shown in FIG. 図2に示した熱電発電モジュールを備える熱電発電装置の出力制御系のブロック構成図である。It is a block block diagram of the output control system of a thermoelectric power generator provided with the thermoelectric power generation module shown in FIG. 図3に示した電流制御部から出力される脈動電流のグラフである。It is a graph of the pulsating current output from the current control part shown in FIG. 図3に示した熱電発電モジュールの電圧電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic of the thermoelectric power generation module shown in FIG. 図3に示した演算制御部における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the calculation control part shown in FIG.

符号の説明Explanation of symbols

1 熱電発電モジュール
1A 受熱基板(高温側伝熱部材)
1B 放熱基板(低温側伝熱部材)
2 高熱源
3 冷却源
4 演算制御部
5 電流制御部
6 電圧変換部
1 Thermoelectric power generation module 1A Heat receiving substrate (high temperature side heat transfer member)
1B Heat dissipation board (low temperature side heat transfer member)
2 High heat source 3 Cooling source 4 Operation control unit 5 Current control unit 6 Voltage conversion unit

Claims (1)

熱電発電モジュールの電圧電流特性に基づいて最大電力に追尾するように出力制御される熱電発電装置であって、
熱電発電モジュールの発電作用に伴う温度勾配の変化を考慮した実際の電圧電流特性を推定する手段と、
推定された電圧電流特性から実際の最大電力に対応する目標電流値を求める手段と、
求められた目標電流値を探索中心として最大電力に追尾するように電流値を変化させるための補正電圧値を求める手段とを備えていることを特徴とする熱電発電装置。
A thermoelectric generator that is output-controlled to track maximum power based on the voltage-current characteristics of the thermoelectric generator module,
Means for estimating an actual voltage-current characteristic in consideration of a change in temperature gradient accompanying the power generation action of the thermoelectric power generation module;
Means for obtaining a target current value corresponding to the actual maximum power from the estimated voltage-current characteristics;
A thermoelectric generator comprising: means for obtaining a correction voltage value for changing the current value so as to follow the maximum power with the obtained target current value as a search center.
JP2005180696A 2005-06-21 2005-06-21 Thermoelectric generator Expired - Fee Related JP4715326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180696A JP4715326B2 (en) 2005-06-21 2005-06-21 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180696A JP4715326B2 (en) 2005-06-21 2005-06-21 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2007005371A true JP2007005371A (en) 2007-01-11
JP4715326B2 JP4715326B2 (en) 2011-07-06

Family

ID=37690729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180696A Expired - Fee Related JP4715326B2 (en) 2005-06-21 2005-06-21 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP4715326B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019078A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 High-speed manufacturing method for flexible thermoelectric generation devices
WO2011019077A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 Thermoelectric power generation device
JP2011160552A (en) * 2010-01-30 2011-08-18 Jfe Steel Corp Thermoelectric power-generating apparatus
EP2362456A1 (en) * 2010-02-25 2011-08-31 Koninklijke Philips Electronics N.V. Thermo-electric generator system
KR20160099668A (en) 2014-03-26 2016-08-22 가부시키가이샤 케르쿠 Thermoelectric power generation apparatus and thermoelectric power generation method
CN109104539A (en) * 2017-06-20 2018-12-28 东芝泰格有限公司 Power circuit and image forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622572A (en) * 1992-06-30 1994-01-28 Aqueous Res:Kk Thermoelectric generation type charger
JPH08179840A (en) * 1994-12-21 1996-07-12 Sanyo Electric Co Ltd Photovoltaic power generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622572A (en) * 1992-06-30 1994-01-28 Aqueous Res:Kk Thermoelectric generation type charger
JPH08179840A (en) * 1994-12-21 1996-07-12 Sanyo Electric Co Ltd Photovoltaic power generation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010030713, NAGAYOSHI H. et al., "Comparison of Maximum Power Point Control Methods for Thermoelectric Power Generator", 2002 21th International Conference on Thermoelectronics, 2002, pp.450−453 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019078A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 High-speed manufacturing method for flexible thermoelectric generation devices
WO2011019077A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 Thermoelectric power generation device
JP2011160552A (en) * 2010-01-30 2011-08-18 Jfe Steel Corp Thermoelectric power-generating apparatus
EP2362456A1 (en) * 2010-02-25 2011-08-31 Koninklijke Philips Electronics N.V. Thermo-electric generator system
WO2011104645A3 (en) * 2010-02-25 2012-02-16 Koninklijke Philips Electronics N.V. Thermo-electric generator system
JP2013520953A (en) * 2010-02-25 2013-06-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thermoelectric generator system
RU2549909C2 (en) * 2010-02-25 2015-05-10 Конинклейке Филипс Электроникс Н.В. Thermoelectric generator system
KR20160099668A (en) 2014-03-26 2016-08-22 가부시키가이샤 케르쿠 Thermoelectric power generation apparatus and thermoelectric power generation method
US10193046B2 (en) 2014-03-26 2019-01-29 Kelk Ltd. Thermoelectric generating device and thermoelectric generating method
CN109104539A (en) * 2017-06-20 2018-12-28 东芝泰格有限公司 Power circuit and image forming apparatus
CN109104539B (en) * 2017-06-20 2021-10-26 东芝泰格有限公司 Power supply circuit and image forming apparatus

Also Published As

Publication number Publication date
JP4715326B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4715326B2 (en) Thermoelectric generator
Khosroshahi et al. Reliability evaluation of conventional and interleaved DC–DC boost converters
Paraskevas et al. A simple maximum power point tracker for thermoelectric generators
Montecucco et al. Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators
Park et al. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system
JP2008269596A (en) System, method and apparatus for extracting power from photovoltaic source of electrical energy
US20050178425A1 (en) Electric power generating apparatus and control method for electric power generating apparatus
Chen et al. Electrothermal-based junction temperature estimation model for converter of switched reluctance motor drive system
Huang et al. A thermoelectric generator using loop heat pipe and design match for maximum-power generation
Rodriguez et al. High frequency injection maximum power point tracking for thermoelectric generators
Yahya et al. Practical implementation of maximum power tracking based short-current pulse method for thermoelectric generators systems
JP2007012768A (en) Thermoelectric power generator
JP2008022688A (en) System for tracking and controlling maximum power operating point
JP2010010637A (en) Thermoelectric power generator
Yahya et al. Improving the performance of the MPPT for thermoelectric generator system by using Kalman filter
JP2014187783A (en) Power converter for electric vehicle
de Leon et al. Reliability of photovoltaic systems using seasonal mission profiles and the FIDES methodology
JP2012252887A (en) Temperature adjusting control system considering heat amount from external environment
JP2019140784A (en) Solar cell module characteristic measurement device, solar cell module temperature estimation method and solar cell module
JP2013055769A (en) Output control device for thermoelectric transducer
Petucco et al. Analysis of power processing architectures for thermoelectric energy harvesting
JP2006278711A (en) Control unit for solar cells
JP6754382B2 (en) Thermoelectric generator
JP5968758B2 (en) Power converter
JP2014025867A (en) Temperature sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees