JP2007003438A - Charging rate estimation device for secondary battery - Google Patents

Charging rate estimation device for secondary battery Download PDF

Info

Publication number
JP2007003438A
JP2007003438A JP2005186149A JP2005186149A JP2007003438A JP 2007003438 A JP2007003438 A JP 2007003438A JP 2005186149 A JP2005186149 A JP 2005186149A JP 2005186149 A JP2005186149 A JP 2005186149A JP 2007003438 A JP2007003438 A JP 2007003438A
Authority
JP
Japan
Prior art keywords
value
secondary battery
internal resistance
pass filter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186149A
Other languages
Japanese (ja)
Inventor
Daijiro Yumoto
大次郎 湯本
Hiroyuki Ashizawa
裕之 芦沢
Hisaaki Asai
央章 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005186149A priority Critical patent/JP2007003438A/en
Publication of JP2007003438A publication Critical patent/JP2007003438A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging rate estimation device for a secondary battery capable of reducing delay of an internal resistance estimated value, when the actual internal resistance is increased by a phenomenon in which internal resistance is increased by delay of electron delivery between positive and negative electrodes during discharge of large current from a secondary battery. <P>SOLUTION: The charging rate estimation device for the secondary battery has at least one of an adjusting means for correcting it so as to increase the adjusting gain λ<SB>3</SB>for adjusting estimated rate in a parameter estimation arithmetic means 4 and an adjusting means for correcting it so as to speed up the responsiveness in a low pass filter processing section and band pass filter processing section, when a measured current value (for example, its absolute value when charge direction is set positive and discharge direction is set negative) lies in a region ((a) or more of Fig. 6) where the internal resistance value of the secondary battery becomes larger than a predetermined value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二次電池の充電率(SOC)を推定する装置に関する。   The present invention relates to an apparatus for estimating a charging rate (SOC) of a secondary battery.

二次電池の充電率SOC(充電状態とも言う)は開路電圧V(通電遮断時の電池端子電圧であり、起電力、開放電圧とも言う)と相関があるので、開路電圧Vを求めれば充電率を推定することが出来る。しかし、二次電池の端子電圧は、通電を遮断(充放電を終了)した後も安定するまでに時間を要するので、正確な開路電圧Vを求めるには、充放電を終了してから所定の時間が必要である。したがって充放電中や充放電直後では、正確な開路電圧Vを求めることが出来ないので、上記の方法で充電率SOCを求めることが出来ない。そのため、従来は、例えば下記特許文献1に記載のように、通電中の二次電池(鉛電池やリチウムイオン電池等の充放電可能な電池)の電流と端子電圧の検出値に、適応デジタルフィルタ(適応フィルタとも言う)を用いて電池モデルのパラメータを推定(同定)し、推定パラメータを用いて開路電圧を推定し、この値を基に充電率SOCを算出するように構成している。
この特許文献1においては、開放電圧推定の追従性を向上させるため、内部抵抗推定値の大きさから適応デジタルフィルタ内にある推定速度の調整ゲインを増大補正するように構成している。推定速度の調整ゲインは、演算アルゴリズムにおいて、前回演算時のパラメータ推定値を現時点のパラメータ実際値に近づけるための前回推定値からの変化幅を決定する。調整ゲインが大きい場合は、パラメータ推定値が実際値に追従する速度は速くなるが、観測ノイズから影響を受けて行き過ぎ量が大きくなるため、パラメータ推定値が変動的になる。逆に調整ゲインが小さい場合は、パラメータ推定値が実際値に追従する速度は遅くなるが、観測ノイズから影響を受けても行き過ぎ量が小さいため、パラメータ推定値が安定的になる。従って、ある観測ノイズの環境下で推定精度と速度を良好に保つには、調整ゲインには最適値がある。そのため、調整ゲインを予め大きく設定しておくのは、観測ノイズの影響を受けて推定精度が悪化するため得策でない。
Battery charging rate SOC (also referred to as a state of charge) is (a battery terminal voltage during energization blocking, electromotive force, also referred to as open circuit voltage) open-circuit voltage V 0 so that there is a correlation, by obtaining the open-circuit voltage V 0 The charge rate can be estimated. However, since it takes time to stabilize the terminal voltage of the secondary battery even after the energization is cut off (end of charge / discharge), in order to obtain an accurate open circuit voltage V 0 , a predetermined voltage is required after the end of charge / discharge. Time is required. Therefore, during charging / discharging or immediately after charging / discharging, an accurate open circuit voltage V 0 cannot be obtained, and thus the charging rate SOC cannot be obtained by the above method. Therefore, conventionally, as described in Patent Document 1, for example, an adaptive digital filter is used to detect the current and terminal voltage of a secondary battery (a chargeable / dischargeable battery such as a lead battery or a lithium ion battery) that is energized. A battery model parameter is estimated (identified) using (also referred to as an adaptive filter), an open circuit voltage is estimated using the estimated parameter, and a charging rate SOC is calculated based on this value.
In Patent Document 1, in order to improve the followability of the open circuit voltage estimation, the adjustment gain of the estimated speed in the adaptive digital filter is increased and corrected from the size of the internal resistance estimated value. The adjustment gain of the estimated speed determines a change range from the previous estimated value for bringing the parameter estimated value at the previous calculation closer to the current parameter actual value in the calculation algorithm. When the adjustment gain is large, the speed at which the parameter estimated value follows the actual value increases, but the parameter estimated value becomes variable because the overshoot amount increases due to the influence of observation noise. Conversely, when the adjustment gain is small, the speed at which the parameter estimation value follows the actual value is slow, but the parameter estimation value is stable because the overshoot amount is small even when affected by the observation noise. Therefore, there is an optimum value for the adjustment gain in order to maintain good estimation accuracy and speed under a certain observation noise environment. Therefore, it is not a good idea to set the adjustment gain large in advance because the estimation accuracy deteriorates due to the influence of observation noise.

特開2004−14231号公報JP 2004-14231 A

二次電池の大電流放電時には、正負極間で電子の受け渡しが追い着かなくなることに起因して、内部抵抗が増大するという電池固有の現象で現れる。しかし、前記の従来例においては、内部抵抗推定値の大きさから適応デジタルフィルタの調整ゲインを決定する構成になっている。そのため上記のように大電流放電時に電池固有の現象によって実際の内部抵抗が増大した場合には、実際の内部抵抗の増大に対して内部抵抗推定値の追従が遅くなると調整ゲインの増大補正が遅れるため、内部抵抗推定値と実際値の追従が更に遅れ、結果として充電率推定に遅れが生じる、という問題があった。
本発明は上記の問題を解決するためになされたものであり、大電流放電時に電池固有の現象によって実際の内部抵抗が増大した場合に、内部抵抗推定値の遅れを小さくすることの出来る二次電池の充電率推定装置を提供することを目的とする。
When the secondary battery discharges a large current, it appears as a battery-specific phenomenon that the internal resistance increases due to the fact that the transfer of electrons between the positive and negative electrodes can no longer catch up. However, the conventional example is configured to determine the adjustment gain of the adaptive digital filter from the magnitude of the estimated internal resistance. For this reason, when the actual internal resistance increases due to a phenomenon inherent to the battery during a large current discharge as described above, the increase in adjustment gain is delayed when the follow-up of the estimated internal resistance is delayed relative to the actual increase in internal resistance. Therefore, there is a problem that the follow-up of the internal resistance estimated value and the actual value is further delayed, resulting in a delay in the charging rate estimation.
The present invention has been made in order to solve the above-described problem. When the actual internal resistance is increased due to a phenomenon inherent to the battery during large current discharge, the secondary resistance that can reduce the delay of the estimated internal resistance can be reduced. It aims at providing the charging rate estimation apparatus of a battery.

上記の目的を達成するため、本発明においては、計測した電流値(例えば充電方向を正、放電方向を負とした場合、その絶対値)が、二次電池の内部抵抗値が所定値よりも増大する領域にある場合には、パラメータ推定演算手段における推定速度を調整する調整ゲインを大きくするように補正する調整手段と、ローパスフィルタ処理部とバンドパスフィルタ処理部における応答性を速くするように補正する調整手段との少なくとも一方を備えるように構成している。すなわち、計測した電流値から、内部抵抗が増大する領域に電流値があることを検出し、その領域では調整ゲインを大きくするか、フィルタの応答性を速くするように調整する。   In order to achieve the above object, in the present invention, the measured current value (for example, the absolute value when the charging direction is positive and the discharging direction is negative) is such that the internal resistance value of the secondary battery is lower than a predetermined value. When in the increasing region, the adjustment means for correcting the adjustment speed for adjusting the estimated speed in the parameter estimation calculation means to be increased, and the responsiveness in the low-pass filter processing section and the band-pass filter processing section are made faster. It comprises so that at least one of the adjustment means to correct | amend may be provided. That is, it is detected from the measured current value that there is a current value in a region where the internal resistance increases, and in that region, adjustment gain is increased or adjustment is performed so as to increase the responsiveness of the filter.

内部抵抗が増大する領域に電流値がある場合には、調整ゲインを大きくまたはフィルタの応答性を速くするように補正する構成であるため、大電流放電時に実際の内部抵抗が増大する現象に対して内部抵抗推定値の遅れを小さくできる。そのため充電率推定の遅れを低減することが出来る、という効果がある。   When there is a current value in a region where the internal resistance increases, the configuration is such that the adjustment gain is increased or the filter responsiveness is increased, so that the actual internal resistance increases during large current discharge. Thus, the delay of the estimated internal resistance can be reduced. Therefore, there is an effect that delay in charging rate estimation can be reduced.

図1は、本発明の一実施例を機能ブロックで表した図である。図1において、1は二次電池(以下、単に電池と記載)の電流を検出する電流I(k)検出手段、2は電池の端子電圧を検出する端子電圧V(k)検出手段、3は前処理フィルタ演算手段、4はパラメータθ(k)推定演算手段、5は開路電圧演算手段〔V(k)を演算〕、6は開路電圧から充電率SOCを演算する充電率推定手段、7は調整手段である。前処理フィルタ演算手段3は後記のローパスフィルタやバンドパスフィルタからなる。また、調整手段7は電流I(k)検出手段で求めた電流値に応じて調整ゲインλ(k)やフィルタの応答性p(k)を調整する機能(詳細後述)を有する。なお、前処理フィルタ演算手段3とパラメータθ(k)推定演算手段4を合わせた部分が適応デジタルフィルタ演算手段を構成する。 FIG. 1 is a functional block diagram showing an embodiment of the present invention. In FIG. 1, 1 is a current I (k) detection means for detecting the current of a secondary battery (hereinafter simply referred to as a battery), 2 is a terminal voltage V (k) detection means for detecting the terminal voltage of the battery, Preprocessing filter calculation means, 4 is a parameter θ (k) estimation calculation means, 5 is an open circuit voltage calculation means [calculates V 0 (k)], 6 is a charge rate estimation means for calculating the charge rate SOC from the open circuit voltage, 7 Is an adjusting means. The preprocessing filter calculation means 3 is composed of a low pass filter and a band pass filter which will be described later. The adjustment means 7 has a function (details will be described later) for adjusting the adjustment gain λ 3 (k) and the response p (k) of the filter according to the current value obtained by the current I (k) detection means. The combined portion of the preprocessing filter calculation means 3 and the parameter θ (k) estimation calculation means 4 constitutes an adaptive digital filter calculation means.

図2は、実施例の具体的な構成を示すブロック図である。この実施例は、二次電池でモータ等の負荷を駆動したり、モータの回生電力で二次電池を充電するシステムに、二次電池の充電率推定装置を設けた例を示す。
図2において、10は二次電池(単に電池ともいう)、20はモータ等の負荷、30は電池の充電状態を推定する電子制御ユニットで、プログラムを演算するCPUやプログラムを記憶したROMや演算結果を記憶するRAMから成るマイクロコンピュータと電子回路等で構成される。40は電池から充放電される電流を検出する電流計、50は電池の端子電圧を検出する電圧計、60は電池の温度を検出する温度計であり、それぞれ電子制御ユニット30に接続される。上記の電子制御ユニット30は前記図1の前処理フィルタ演算手段3、パラメータθ(k)推定演算手段4、開路電圧演算手段5、充電率推定手段6および調整手段7の部分に相当する。また、電流計40は電流I(k)検出手段1に、電圧計50は端子電圧V(k)検出手段2に、それぞれ相当する。
本発明は、通電中の二次電池の端子電圧Vと電流Iの計測データに、適応デジタルフィルタを用いて開路電圧Vを推定し、公知の開路電圧Vと充電率SOCの関係から充電率を推定する装置であり、二次電池の電池モデルを前記(数1)式に示すように定義している。
FIG. 2 is a block diagram illustrating a specific configuration of the embodiment. This embodiment shows an example in which a secondary battery charge rate estimation device is provided in a system that drives a load such as a motor with a secondary battery or charges a secondary battery with regenerative power of the motor.
In FIG. 2, 10 is a secondary battery (also simply called a battery), 20 is a load of a motor, etc., 30 is an electronic control unit that estimates the state of charge of the battery, a CPU that calculates a program, a ROM that stores a program, and a calculation It consists of a microcomputer composed of a RAM for storing the results and an electronic circuit. Reference numeral 40 denotes an ammeter that detects current charged / discharged from the battery, 50 denotes a voltmeter that detects the terminal voltage of the battery, and 60 denotes a thermometer that detects the temperature of the battery, each connected to the electronic control unit 30. The electronic control unit 30 corresponds to the preprocessing filter calculation means 3, the parameter θ (k) estimation calculation means 4, the open circuit voltage calculation means 5, the charging rate estimation means 6 and the adjustment means 7 of FIG. The ammeter 40 corresponds to the current I (k) detecting means 1 and the voltmeter 50 corresponds to the terminal voltage V (k) detecting means 2.
In the present invention, an open circuit voltage V 0 is estimated by using an adaptive digital filter in the measurement data of the terminal voltage V and current I of the energized secondary battery, and charging is performed from the relationship between the known open circuit voltage V 0 and the charge rate SOC. This is a device for estimating the rate, and the battery model of the secondary battery is defined as shown in the equation (1).

上記の内容を具体的に説明すると次のようになる。
まず、本実施例で用いる「電池モデル」を説明する。図3は、二次電池の等価回路モデルを示す図であり、二次電池の電池モデルは下記(数2)式で示される。
The above contents will be specifically described as follows.
First, the “battery model” used in the present embodiment will be described. FIG. 3 is a diagram showing an equivalent circuit model of the secondary battery, and the battery model of the secondary battery is expressed by the following equation (Equation 2).

Figure 2007003438
(数2)式において、モデル入力は電流I[A](正値は充電、負値は放電)、モデル出力は端子電圧V[V]、R〔Ω]は電荷移動抵抗、R[Ω]は純抵抗、C[F]は電気二重層容量、V[V]は開路電圧である。なお、sはラプラス演算子である。本モデルは、正極、負極を特に分離していないリダクションモデル(一次)であるが、実際の電池の充放電特性を比較的正確に示すことが可能である。このように本実施例においては、電池モデルの次数を1次にした構成を例として説明する。なお、前記(数1)式は電池モデルの一般式である。
Figure 2007003438
In the equation (2), the model input is current I [A] (positive value is charging, negative value is discharging), model output is terminal voltage V [V], R 1 [Ω] is charge transfer resistance, R 2 [ Ω] is a pure resistance, C 1 [F] is an electric double layer capacitance, and V 0 [V] is an open circuit voltage. Note that s is a Laplace operator. Although this model is a reduction model (primary) in which the positive electrode and the negative electrode are not particularly separated, it is possible to show the actual charge / discharge characteristics of the battery relatively accurately. As described above, in this embodiment, a configuration in which the order of the battery model is first will be described as an example. In addition, the said (Formula 1) type | formula is a general formula of a battery model.

上記(数2)式の電池モデルから適応デジタルフィルタまでの導出を最初に説明する。
(数2)式を変形すると(数3)式になる。
Derivation from the battery model of the above (Equation 2) to the adaptive digital filter will be described first.
When formula (2) is modified, formula (3) is obtained.

Figure 2007003438
上記のように、電池パラメータK=R+Rであって、これは電池モデルの内部抵抗推定値に相当する。
開路電圧Vは、電流Iに可変な効率dを乗じたものを、ある初期状態から積分したものと考えれば、(数4)式で書ける。
Figure 2007003438
As described above, the battery parameter K = R 1 + R 2 , which corresponds to the estimated internal resistance value of the battery model.
The open circuit voltage V 0 can be expressed by the following equation (4), assuming that the current I multiplied by the variable efficiency d is integrated from a certain initial state.

Figure 2007003438
(数4)式を(数3)式に代入すれば(数5)式になり、整理すれば(数6)式になる。
Figure 2007003438
Substituting (Equation 4) into (Equation 3) gives (Equation 5), and rearranging it gives (Equation 6).

Figure 2007003438
Figure 2007003438

Figure 2007003438
安定なローパスフィルタGlp(s)を(数6)式の両辺に乗じて、整理すれば(数7)式になる。
Figure 2007003438
If a stable low-pass filter G lp (s) is multiplied by both sides of Equation (6) and rearranged, Equation (7) is obtained.

Figure 2007003438
実際に計測可能な電流Iや端子電圧Vに、ローパスフィルタやバンドパスフィルタを処理した値を、下記(数8)式のように定義する。
Figure 2007003438
A value obtained by processing a low-pass filter or a band-pass filter on the current I or the terminal voltage V that can be actually measured is defined as the following equation (8).

Figure 2007003438
なお、Glp(s)はローパスフィルタ、s・Glp(s)やs・Glp(s)はバンドパスフィルタである。
上記変数を用いて(数7)式を書き直せば(数9)式になる。
Figure 2007003438
G lp (s) is a low-pass filter, and s · G lp (s) and s 2 · G lp (s) are band-pass filters.
If equation (7) is rewritten using the above variables, equation (9) is obtained.

Figure 2007003438
更に変形すれば(数10)式になる。
Figure 2007003438
If further deformed, the formula (10) is obtained.

Figure 2007003438
(数10)式は、計測可能な値と未知パラメータの積和式になっているので、一般的な適応デジタルフィルタの標準形(数11)式と一致する。
Figure 2007003438
Since (Equation 10) is a product-sum equation of a measurable value and an unknown parameter, it agrees with a standard form (Equation 11) of a general adaptive digital filter.

Figure 2007003438
ただし、y=V、 ω=[V,I,I,I
θ=[−T,K・T,K,d]
従って、電流Iと端子電圧Vにフィルタ処理した信号を、適応デジタルフィルタ演算に用いることで、未知パラメータベクトルθを推定する。本実施例では、単純な「最小二乗法による適応デジタルフィルタ」の論理的な欠点(一度推定値が収束すると、その後パラメータが変化しても再度正確な推定ができないこと)を改善した「両限トレースゲイン方式」を用いる。
(数11)式を前提に未知パラメータベクトルθを推定するためのパラメータ推定アルゴリズムは下記(数12)式となる。ただし、k時点のパラメータ推定値をθ(k)とする。
Figure 2007003438
However, y = V 2 , ω T = [V 3 , I 3 , I 2 , I 1 ]
θ T = [− T 1 , K · T 2 , K, d]
Therefore, the unknown parameter vector θ is estimated by using the signal filtered to the current I and the terminal voltage V for the adaptive digital filter calculation. In this example, the logical disadvantage of a simple “adaptive digital filter based on the least square method” (because once the estimated value converges, accurate estimation cannot be performed again even if the parameter changes) is improved. "Trace gain method" is used.
A parameter estimation algorithm for estimating the unknown parameter vector θ based on the equation (11) is expressed by the following equation (12). However, the parameter estimated value at the time point k is θ (k).

Figure 2007003438
ただし、λ、λ(k)、γ、γは初期設定値で、0<λ<1、0<λ(k)<∞とする。P(0)は十分大きな値、θ(0)は非ゼロな十分小さな値を初期値とする。trace{P}は行列Pのトレースを意味する。
本発明では、電流値に応じて調整ゲインλ(k)を補正する。なお、或る観測ノイズの環境下で推定精度を良好に保つには、適応デジタルフィルタの推定感度を調節する定数であるλ(k)(調整ゲイン)には上限がある。そのため、調整ゲインを予め大きく設定しておくのは、上限までのマージンが小さくなるので、観測ノイズの影響を受けて推定精度が悪化するため得策でない。
また、ローパスフィルタGlp(s)の設定に関しては、(数12)式のパラメータ推定アルゴリズムの推定精度を良くするために、観測ノイズを低減するようローパスフィルタの応答性(カットオフ周波数特性)を適切に設定するけれども、電池の応答特性よりは速くする。以上が、電池モデルから適応デジタルフィルタまでの導出である。
Figure 2007003438
However, λ 1 , λ 3 (k), γ U , γ L are initial setting values, and 0 <λ 1 <1, 0 <λ 3 (k) <∞. P (0) is a sufficiently large value, and θ (0) is a non-zero sufficiently small value as an initial value. trace {P} means the trace of the matrix P.
In the present invention, the adjustment gain λ 3 (k) is corrected according to the current value. In order to maintain good estimation accuracy under certain observation noise environments, λ 3 (k) (adjustment gain), which is a constant for adjusting the estimation sensitivity of the adaptive digital filter, has an upper limit. Therefore, it is not a good idea to set the adjustment gain large in advance because the margin up to the upper limit is small, and the estimation accuracy deteriorates due to the influence of observation noise.
Further, regarding the setting of the low-pass filter G lp (s), in order to improve the estimation accuracy of the parameter estimation algorithm of the equation (12), the response of the low-pass filter (cut-off frequency characteristic) is reduced so as to reduce the observation noise. Although set appropriately, it is faster than the battery response characteristics. The above is the derivation from the battery model to the adaptive digital filter.

なお、上記の説明では、電池モデルの次数を1次にした場合を例として説明したので、内部抵抗推定値K=R+Rとしたが、(数1)式で示した一般式の場合には、内部抵抗推定値はb/aとなる。すなわち、前記(数1)式において、a、bは多項式A(s)、B(s)の定常状態時の値を示す。定常状態ではラブラス演算子s=0と考えられるので、前記(数1)式は、下式のように変形することが出来る。
V=(b/a)I+V/a
また、電池モデルの次数を1次にした場合に、一般式の(数1)式に相当する(数2)式は、s=0とすれば下式のようになる。
V=(R+R)・I+V=K・I+V
上記両式を比較すると、K=b/aとなる。前記(数3)式でも説明したように、電池パラメータK=R+Rであって、これは電池モデルの内部抵抗推定値に相当するので、一般式の場合における内部抵抗推定値はb/aとなることが判る。
In the above description, the case where the order of the battery model is set to 1 has been described as an example, so that the internal resistance estimated value K = R 1 + R 2 is used. However, in the case of the general formula shown by the formula (1) The estimated internal resistance is b 0 / a 0 . That is, in the equation (1), a 0 and b 0 represent values in the steady state of the polynomials A (s) and B (s). Since it is considered that the Labruss operator s = 0 in a steady state, the above (Equation 1) can be transformed into the following equation.
V = (b 0 / a 0 ) I + V 0 / a 0
In addition, when the order of the battery model is set to primary, the expression (equation 2) corresponding to the expression (equation 1) of the general expression is as follows when s = 0.
V = (R 1 + R 2 ) · I + V 0 = K · I + V 0
When the above two expressions are compared, K = b 0 / a 0 . As described in the above equation (3), the battery parameter K = R 1 + R 2 , which corresponds to the estimated internal resistance value of the battery model. Therefore, the estimated internal resistance value in the case of the general formula is b 0. It can be seen that / a 0 is obtained.

次に、図4は、電子制御ユニット30のマイコンが行う処理のフローチャートである。この実施例は電池モデルの次数を1次にしたものである。なお、図4のルーチンは一定周期T毎に実施される。例えば、I(k)は今回の演算値、I(k−1)は1回前の演算値を意味する。
まず、ステップS10では、電流I(k)、端子電圧V(k)を計測する。
ステップS20では、二次電池の遮断リレーの判断する。電子制御ユニット30は二次電池の遮断リレーの制御も行っており、リレー遮断時(電流I=0)はステップS30へ進む。リレー締結時はステップS40へ進む。
Next, FIG. 4 is a flowchart of processing performed by the microcomputer of the electronic control unit 30. In this embodiment, the order of the battery model is first. Note that the routine of FIG. 4 is performed every predetermined period T 0. For example, I (k) represents the current calculated value, and I (k−1) represents the previous calculated value.
First, in step S10, the current I (k) and the terminal voltage V (k) are measured.
In step S20, the secondary battery cutoff relay is determined. The electronic control unit 30 also controls the secondary battery cutoff relay, and when the relay is cut off (current I = 0), the process proceeds to step S30. When the relay is engaged, the process proceeds to step S40.

ステップS30では、端子電圧V(k)を端子電圧初期値V_iniとして記憶する。
ステップS40では、端子電圧差分値△V(k)を算出する。
ただし、△V(k)=V(k)−V_ini
これは、適応デジタルフィルタ内の推定パラメータの初期値を約0としているので、推定演算開始時に推定パラメータが発散しないように、入力を全て0とするためである。リレー遮断時はステップS30を通るので、I=0かつ△V(k)=0なので、推定パラメータは初期状態のままである。
In step S30, the terminal voltage V (k) is stored as the terminal voltage initial value V_ini.
In step S40, a terminal voltage difference value ΔV (k) is calculated.
However, ΔV (k) = V (k) −V_ini
This is because the initial value of the estimation parameter in the adaptive digital filter is set to about 0, so that all the inputs are set to 0 so that the estimation parameter does not diverge when the estimation calculation starts. Since the process goes through step S30 when the relay is cut off, since I = 0 and ΔV (k) = 0, the estimation parameters remain in the initial state.

ステップS50では、電流I(k)と端子電圧差分値ΔV(k)に、前記(数8)式に基づきローパススフィルタGlp(s)、バンドパスフィルタs・Glp(s)およびs・Glp(s)のフィルタ処理を施し、下記(数13)式に示すようにI、I、I、V、Vを算出する。前記(数12)式のパラメータ推定アルゴリズムの推定精度を良くするために、観測ノイズを低減するようローパスフィルタGlp(s)の応答性を遅く設定する。但し、電池の応答特性よりは速くする。(数13)式のpは、Glp(s)の応答性を決める定数(時定数)である。 In step S50, the low-pass filter G lp (s), the band-pass filters s · G lp (s) and s 2 are added to the current I (k) and the terminal voltage difference value ΔV (k) based on the equation (8). -Filter processing of G lp (s) is performed, and I 1 , I 2 , I 3 , V 2 , and V 3 are calculated as shown in the following (Equation 13). In order to improve the estimation accuracy of the parameter estimation algorithm expressed by the equation (12), the response of the low-pass filter G lp (s) is set so as to reduce the observation noise. However, it is faster than the response characteristics of the battery. P in the equation (13) is a constant (time constant) that determines the response of G lp (s).

Figure 2007003438
ステップS60では、図6に示す内部抵坑値Kが増大する領域に電流値があるか否かで、(数12)式のパラメータ推定アルゴリズムの調整ゲインλ(k)を補正するか否かを判定する。つまり電流値Iの絶対値(例えば充電方向を正、放電方向を負とする)が所定値aより小の領域1は補正が不要な通常領域であり、電流値Iが所定値a以上の領域2は内部抵坑値Kが増大する領域であって補正が必要と判断する。
|I(k)|<aなる場合、補正が不要と判断してステップS80へ進む。
|I(k)|≧aなる場合、補正が必要と判断してステップS70へ進む。
Figure 2007003438
In step S60, whether or not the adjustment gain λ 3 (k) of the parameter estimation algorithm of equation (12) is corrected is determined depending on whether or not there is a current value in a region where the internal resistance value K shown in FIG. 6 increases. Determine. That is, the region 1 in which the absolute value of the current value I (for example, the charging direction is positive and the discharging direction is negative) is smaller than the predetermined value a is a normal region that does not require correction, and the current value I is the predetermined value a or more. 2 is an area where the internal resistance value K increases, and it is determined that correction is necessary.
If | I (k) | <a, it is determined that correction is unnecessary, and the process proceeds to step S80.
If | I (k) | ≧ a, it is determined that correction is necessary, and the process proceeds to step S70.

ステップS70では、内部抵抗値Kが増大する領域に電流値があるので、通常の調整ゲインでは推定速度が遅いため、調整ゲインλ(k)を初期値から50%増大した値に補正する。この際、補正の値は上記のように一つの値でも良いか、図7に示すように、電流値(絶対値)に応じて増大する内部抵抗値Kに対応して、調整ゲインλ(k)の値をゲインスケジューリングしてマップ化しておき、そのときの電流値に応じてマップから読み出した値に補正すれば、より木目の細かい補正を行うことが出来る。 In step S70, since there is a current value in a region where the internal resistance value K increases, the estimated speed is slow with a normal adjustment gain, so the adjustment gain λ 3 (k) is corrected to a value increased by 50% from the initial value. At this time, the correction value may be a single value as described above, or, as shown in FIG. 7, the adjustment gain λ 3 (corresponding to the internal resistance value K that increases according to the current value (absolute value). If the value k) is gain-scheduled and mapped, and corrected to a value read from the map according to the current value at that time, finer correction can be made.

また、調整ゲインλ(k)を補正する時間を、内部抵坑値Kが増大する領域に電流値が入った時点から所定時間、あるいは電流値が通常領域に戻った時点から所定時間だけに限るように構成すれば、パラメータ推定値が実際値へ追従した後に、調整ゲインが大きいことによるパラメータ推定値の変動を防止できる。 In addition, the time for correcting the adjustment gain λ 3 (k) is set to a predetermined time from the time when the current value enters the region where the internal resistance value K increases, or the predetermined time from the time when the current value returns to the normal region. If the configuration is limited, it is possible to prevent fluctuations in the parameter estimation value due to the large adjustment gain after the parameter estimation value follows the actual value.

ステップS80では、内部抵抗値が増大する領域に電流値がないので、通常の調整ゲインであるλ(k)の初期値を用いる。
ステップS90では、ステップS50で算出したI(k)、I(k)、I(k)、V(k)、V(k)を前記(数12)式に代入する。そしてパラメータ推定アルゴリズム(適応デジタルフィルタ演算)である(数12)式を行い、パラメータ推定値θ(k)を算出する。
但し、y=V、ω=[V、I、I、I]、θ=[−T、K・T、K、d]である。
In step S80, since there is no current value in the region where the internal resistance value increases, the initial value of λ 3 (k), which is a normal adjustment gain, is used.
In step S90, I 1 (k), I 2 (k), I 3 (k), V 2 (k), and V 3 (k) calculated in step S50 are substituted into the equation (12). Then, a parameter estimation algorithm (adaptive digital filter calculation) (Expression 12) is performed to calculate a parameter estimated value θ (k).
However, y = V 2 , ω T = [V 3 , I 3 , I 2 , I 1 ], θ T = [− T 1 , K · T 2 , K, d].

ステップS100では、ステップS90で算出したパラメータ推定値θ(k)の中からT、K・T、Kを用いて、前記(数3)式と等価な(数14)式に基づきGlp(s)・Vを算出し、これを開路電圧Vの代用とする。開路電庄Vは変化が緩やかなので、Glp(s)・Vで代用できる。但し、ここで求まるのは推定演算開始時からの開路電圧推定値の変化分△V(k)である。 In step S100, G lp is calculated based on the equation (equation 14) equivalent to the equation (3) using T 1 , K · T 2 , and K from the parameter estimated values θ (k) calculated in step S90. (s) · V 0 is calculated and used as a substitute for the open circuit voltage V 0 . Since the open circuit voltage V 0 changes slowly, G lp (s) · V 0 can be used instead. However, what is obtained here is a change ΔV 0 (k) of the open circuit voltage estimated value from the start of the estimation calculation.

Figure 2007003438
ステップS110では、ステップS100で算出した△V(k)はアルゴリズム開始時からの開路電圧の変化分であるから、開路電圧初期値すなわち端子電圧初期値V_iniを加算して開路電圧推定値V(k)を(数15)式で算出する。
(k)=△V(k)+V_ini …(数15)
ステップS120では、図5に示す開路電圧と充電率の相関マップを用いて、ステップS110で算出したV(k)から充電率SOC(k)を算出する。
なお、図5のVLはSOC=0%に、VHはSOC=100%に相当する開路電圧である。
ステップS130では、次回演算に必要な数値を保存して、今回演算を終了する。
Figure 2007003438
In step S110, since ΔV 0 (k) calculated in step S100 is a change in the open circuit voltage from the start of the algorithm, the open circuit voltage initial value, that is, the terminal voltage initial value V_ini is added to determine the open circuit voltage estimated value V 0. (k) is calculated by the equation (15).
V 0 (k) = ΔV 0 (k) + V_ini (Equation 15)
In step S120, the charging rate SOC (k) is calculated from V 0 (k) calculated in step S110, using the correlation map between the open circuit voltage and the charging rate shown in FIG.
Note that VL in FIG. 5 is an open circuit voltage corresponding to SOC = 0% and VH is SOC = 100%.
In step S130, numerical values necessary for the next calculation are stored, and the current calculation ends.

図6、図7は、電流値Iと内部抵抗値Kとの関係を示す特性図であり、図6は電流値に対応した領域を通常領域1と内部抵抗値が増大する領域2との二つに分けた場合、図7は内部抵抗値が増大する領域を領域2、3、4の三つに分けた場合を示す。
図6の場合には、電流値に応じて通常領域1と内部抵抗値が増大する領域2との二つに分け、通常領域1では補正なし、領域2では通常ゲインに対して+50%増大補正を行っている。
6 and 7 are characteristic diagrams showing the relationship between the current value I and the internal resistance value K. FIG. 6 shows a region corresponding to the current value as a normal region 1 and a region 2 where the internal resistance value increases. FIG. 7 shows a case where the region where the internal resistance value increases is divided into three regions 2, 3, and 4.
In the case of FIG. 6, the normal region 1 and the region 2 in which the internal resistance value increases are divided into two according to the current value. No correction is made in the normal region 1, and + 50% increase correction with respect to the normal gain in the region 2. It is carried out.

図7の場合には、図示したマップ領域と調整ゲインの補正例に示すように、内部抵抗の増大が無い通常領域1では通常のゲインに対して補正無し、内部抵坑の増大が始まる領域2では通常ゲインに対して+10%増大補正、内部抵抗の増大が大きくなる領域3では通常ゲインに対して+25%増大補正、内部抵抗の増大が更に大きくなる領域4では通常ゲインに対して+50%増大補正というように、調整ゲインをマップ領域に応じて木目細かく補正している。そのため、増大度合が大きい領域では調整ゲインを充分大きくして内部抵抗推定値を速やかに追従させ、増大度合いが小さい領域では調整ゲインを少しだけ大きくすることで内部抵抗推定値の不要な変動を抑えながら追従遅れを小さくすることが出来る。   In the case of FIG. 7, as shown in the illustrated map area and adjustment gain correction example, in the normal area 1 where there is no increase in internal resistance, there is no correction for the normal gain, and the area 2 where the increase in the internal shaft begins. Is + 10% increase correction with respect to the normal gain, + 25% increase correction with respect to the normal gain in the region 3 where the increase in internal resistance is large, and + 50% increase with respect to the normal gain in the region 4 where the increase in internal resistance is further increased Like correction, the adjustment gain is finely corrected according to the map area. For this reason, in areas where the degree of increase is large, the adjustment gain is made sufficiently large so that the estimated internal resistance value follows quickly, and in areas where the degree of increase is small, the adjustment gain is increased slightly to suppress unnecessary fluctuations in the internal resistance estimated value. However, the tracking delay can be reduced.

図8および図9は、本発明の演算における電流、内部抵抗、調整ゲインの値を示すタイムチャートであり、図8は図6に示したように調整ゲインを一段階で補正する場合、図9は図7に示したように調整ゲインを多段階で補正する場合を示す。
図8において、従来例においては、電流値が実際の内部抵抗の増大が始まる所定値aより大きい領域(図中A)にある場合でも、内部抵抗推定値から判断する調整ゲインの増大補正ができないため(図中C)、内部抵抗推定値は実際値への追従遅れが大きい(図中B)という問題がある。しかし、1番目実施例(図6に示した特性)では、電流値が実際の内部抵抗の増大が始まる所定値aより大きい領域(図中A)にある場合、電流値から判断して調整ゲインの増大補正が行われるため(図中C)、内部抵抗推定値は実際値への追従遅れが非常に小さくなる(図中B)という効果がある。
8 and 9 are time charts showing values of current, internal resistance, and adjustment gain in the calculation of the present invention. FIG. 8 shows a case where the adjustment gain is corrected in one step as shown in FIG. Shows a case where the adjustment gain is corrected in multiple stages as shown in FIG.
In FIG. 8, in the conventional example, even when the current value is in a region (A in the figure) larger than the predetermined value a at which the actual internal resistance starts to increase, the adjustment gain increase correction determined from the internal resistance estimated value cannot be corrected. Therefore (C in the figure), there is a problem that the estimated internal resistance has a large follow-up delay to the actual value (B in the figure). However, in the first embodiment (characteristic shown in FIG. 6), when the current value is in a region (A in the figure) larger than the predetermined value a where the actual increase in internal resistance starts, the adjustment gain is determined from the current value. Is increased (C in the figure), the internal resistance estimated value has an effect that the follow-up delay to the actual value becomes very small (B in the figure).

図9において、1番目実施例(図6に示した特性)では、実際の内部抵抗の増大度合いが大きく強まる電流値bより大きい領域(図中D)では、電流値から判断する調整ゲインの増大補正は度合いを反映できず充分な大きさを得られず(図中F)、内部抵抗推定値は実際値への追従遅れがやや大きい(図中E)。しかし、2番目実施例(図7に示した特性)では、実際の内部抵抗の増大度合いが大きく強まる電流値bより大きい領域(図中D)では、電流値から判断する調整ゲインの増大補正は度合いを反映して充分な大きさが得られ(図中F)、内部抵抗推定値は実際値への追従遅れが非常に小さくなる(図中E)。   In FIG. 9, in the first embodiment (characteristic shown in FIG. 6), in the region larger than the current value b (D in the figure) where the actual increase degree of the internal resistance is greatly increased (D in the figure), the adjustment gain determined from the current value is increased. The correction cannot reflect the degree and a sufficient magnitude cannot be obtained (F in the figure), and the internal resistance estimation value has a slightly large follow-up delay to the actual value (E in the figure). However, in the second embodiment (characteristic shown in FIG. 7), in the region larger than the current value b (D in the figure) where the actual increase degree of the internal resistance is greatly increased (D in the figure), the adjustment gain increase correction determined from the current value is Reflecting the degree, a sufficient size is obtained (F in the figure), and the internal resistance estimation value has a very small follow-up delay to the actual value (E in the figure).

また、図8、図9に示したように、実際の内部抵抗値が増大する領域に電流値が入った時点tから所定時間τの間だけ調整ゲインを大きく補正するように構成した場合には、パラメータ推定値が実際値に追従後、観測ノイズの影響によるパラメータ推定値の変動を抑えることが出来る、という効果がある。また、内部抵抗が増大した領域から通常領域に戻る場合にも、戻った時点tから所定時間τの間だけ調整ゲインを大きく補正するように構成した場合には、実際の内部抵抗が増大した状態から通常状態に戻る時に、内部抵抗推定値の追従遅れを防止することが出来る、という効果がある。なお、τとτの値は、τ=τでもτ≠τでもよく、二次電池の特性と推定装置の構成に応じて設定すればよい。 Further, as shown in FIGS. 8 and 9, when the adjustment gain is largely corrected only for a predetermined time τ 1 from the time point t 1 when the current value enters the region where the actual internal resistance value increases. Has an effect that the fluctuation of the parameter estimated value due to the influence of the observation noise can be suppressed after the parameter estimated value follows the actual value. Also, when returning from the region where the internal resistance has increased to the normal region, if the adjustment gain is largely corrected only during the predetermined time τ 2 from the time t 2 when the internal resistance has increased, the actual internal resistance increases. When returning from the normal state to the normal state, it is possible to prevent a follow-up delay of the internal resistance estimation value. Note that the values of τ 1 and τ 2 may be τ 1 = τ 2 or τ 1 ≠ τ 2 and may be set according to the characteristics of the secondary battery and the configuration of the estimation device.

なお、上記の説明においては、電流値が実際の内部抵抗の増大が始まる所定値より大きい領域にある場合に、パラメータ推定演算の推定速度を調整する調整ゲインλを大きくするように補正する構成について説明したが、その代わりに、ローパスフィルタとバンドパスフィルタの応答性を速くする(前記数13式のpを小さくする)ように補正してもよい。あるいは、調整ゲインを大きく、かつ、ローパスフィルタとバンドパスフィルタの応答性を速くするように、両方を補正してもよい。このように、フィルタの応答性を速くすることにより、フィルタ処理による応答遅れが小さくなり、実際の内部抵抗が増大する現象に対して内部抵坑推定値の遅れを小さくことができる、という効果がある。 In the above description, when the current value is in a region larger than the predetermined value at which the actual internal resistance starts to increase, the correction is performed so that the adjustment gain λ 3 for adjusting the estimated speed of the parameter estimation calculation is increased. However, instead, correction may be made so that the responsiveness of the low-pass filter and the band-pass filter is increased (p in Equation 13 is reduced). Alternatively, both may be corrected so that the adjustment gain is increased and the responsiveness of the low-pass filter and the band-pass filter is increased. Thus, by increasing the responsiveness of the filter, the response delay due to the filter processing is reduced, and the delay of the internal shaft estimated value can be reduced with respect to the phenomenon in which the actual internal resistance increases. is there.

本発明の一実施例を機能ブロックで表した図。The figure which represented one Example of this invention with the functional block. 実施例の具体的な構成を示すブロック図。The block diagram which shows the specific structure of an Example. 二次電池の等価回路モデルを示す図。The figure which shows the equivalent circuit model of a secondary battery. 実施例における処理のフローチャート。The flowchart of the process in an Example. 開路電圧と充電率の関係を示す特性図。The characteristic view which shows the relationship between an open circuit voltage and a charging rate. 電流値と内部抵抗の関係を示す特性図。The characteristic view which shows the relationship between an electric current value and internal resistance. 電流値と内部抵抗の関係を示す特性図およびマップ領域と調整ゲインの特性を示す図表。The characteristic figure which shows the relationship between an electric current value and internal resistance, and the graph which shows the characteristic of a map area | region and adjustment gain. 電流値と内部抵抗値と調整ゲインの関係を示すタイムチャート1。The time chart 1 which shows the relationship between an electric current value, an internal resistance value, and an adjustment gain. 電流値と内部抵抗値と調整ゲインの関係を示すタイムチャート2。The time chart 2 which shows the relationship between an electric current value, an internal resistance value, and an adjustment gain.

符号の説明Explanation of symbols

1…電流I(k)検出手段 2…端子電圧V(k)検出手段
3…前処理フィルタ演算手段 4…パラメータθ(k)推定演算手段
5…開路電圧演算手段 6…充電率推定手段
7…調整手段
10…二次電池 20…負荷
30…電子制御ユニット 40…電流計
50…電圧計 60…温度計
DESCRIPTION OF SYMBOLS 1 ... Current I (k) detection means 2 ... Terminal voltage V (k) detection means 3 ... Pre-processing filter calculation means 4 ... Parameter (theta) (k) estimation calculation means 5 ... Open circuit voltage calculation means 6 ... Charging rate estimation means 7 ... Adjustment means 10 ... secondary battery 20 ... load 30 ... electronic control unit 40 ... ammeter 50 ... voltmeter 60 ... thermometer

Claims (4)

二次電池の電流と端子電圧とをそれぞれ計測する計測手段と、
ローパスフィルタ処理部とバンドパスフィルタ処理部から成り、前記計測手段で計測した電流と端子電圧とにローパスフィルタ処理とバンドパスフィルタ処理を施す前処理フィルタ演算手段と、
(数1)式に示す電池モデルを用いた適応デジタルフィルタに、前記フィルタ処理を施した電流および端子電圧を入力し、前記(数1)式中のパラメータを一括推定するパラメータ推定演算手段と、
前記パラメータ推定演算手段の推定値から開路電圧を推定する開路電圧演算手段と、
予め求めた開路電圧と充電率との関係に基づいて、前記推定した開路電圧から充電率を推定する充電率推定手段と、を備え、
さらに、前記計測した電流値の絶対値が、二次電池の内部抵抗値が所定値よりも増大する領域にある場合には、前記パラメータ推定演算手段における推定速度を調整する調整ゲインを大きくするように補正する調整手段と、前記ローパスフィルタ処理部とバンドパスフィルタ処理部における応答性を速くするように補正する調整手段との少なくとも一方を備えたことを特徴とする二次電池の充電率推定装置。
Figure 2007003438
ただし、sはラプラス演算子、A(s)、B(s)、C(s)はsの多項式関数で次数はn
A measuring means for measuring the current and terminal voltage of the secondary battery,
A pre-processing filter calculation unit that includes a low-pass filter processing unit and a band-pass filter processing unit, and performs low-pass filter processing and band-pass filter processing on the current and terminal voltage measured by the measuring unit;
Parameter estimation calculation means for inputting the filtered current and terminal voltage to an adaptive digital filter using the battery model shown in (Equation 1), and collectively estimating the parameters in (Equation 1);
An open circuit voltage calculation means for estimating an open circuit voltage from an estimated value of the parameter estimation calculation means;
Charge rate estimating means for estimating the charge rate from the estimated open circuit voltage based on the relationship between the open circuit voltage and the charge rate obtained in advance,
Further, when the absolute value of the measured current value is in a region where the internal resistance value of the secondary battery is larger than a predetermined value, the adjustment gain for adjusting the estimated speed in the parameter estimation calculating means is increased. A charging rate estimation device for a secondary battery, characterized in that it comprises at least one of an adjusting unit for correcting to a high speed and an adjusting unit for correcting so as to increase the responsiveness in the low-pass filter processing unit and the band-pass filter processing unit. .
Figure 2007003438
Where s is a Laplace operator, A (s), B (s), and C (s) are polynomial functions of s, and the order is n
前記調整手段は、電流値に対して二次電池の内部抵抗値が増大する度合いに応じて前記調整ゲインを大きくする程度を定めたマップまたは前記応答性を速くする程度を定めたマップを有し、内部抵坑値が所定値よりも増大する領域では前記マップにより電流値に応じて調整ゲインを大きくかまたは応答性を速くするように補正することを特徴とする請求項1に記載の二次電池の充電率推定装置。   The adjustment means has a map that defines a degree of increasing the adjustment gain according to a degree of increase in the internal resistance value of the secondary battery with respect to a current value or a map that defines a degree of speeding up the responsiveness. 2. The secondary according to claim 1, wherein in the region where the internal shaft value increases from a predetermined value, the map is corrected so as to increase the adjustment gain or speed up the response according to the current value. Battery charge rate estimation device. 前記調整手段は、電流値が、二次電池の内部抵抗値が所定値よりも増大する領域に入った時点から所定時間の間、調整ゲインを大きくするか、または応答性を速くすることを特徴とする請求項1または請求項2に記載の二次電池の充電率推定装置。   The adjustment means increases the adjustment gain or speeds up the responsiveness for a predetermined time from the time when the current value enters a region where the internal resistance value of the secondary battery increases from a predetermined value. The charging rate estimation device for a secondary battery according to claim 1 or 2. 前記調整手段は、電流値が、二次電池の内部抵抗値が所定値よりも増大する領域から通常の領域に戻った時点から所定時間の間、調整ゲインを大きくするか、または応答性を速くすることを特徴とする請求項1乃至請求項3の何れかに記載の二次電池の充電率推定装置。   The adjusting means increases the adjustment gain or accelerates the responsiveness for a predetermined time from the time when the current value returns from the region where the internal resistance value of the secondary battery increases from the predetermined value to the normal region. The charging rate estimation device for a secondary battery according to any one of claims 1 to 3, wherein:
JP2005186149A 2005-06-27 2005-06-27 Charging rate estimation device for secondary battery Pending JP2007003438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186149A JP2007003438A (en) 2005-06-27 2005-06-27 Charging rate estimation device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186149A JP2007003438A (en) 2005-06-27 2005-06-27 Charging rate estimation device for secondary battery

Publications (1)

Publication Number Publication Date
JP2007003438A true JP2007003438A (en) 2007-01-11

Family

ID=37689210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186149A Pending JP2007003438A (en) 2005-06-27 2005-06-27 Charging rate estimation device for secondary battery

Country Status (1)

Country Link
JP (1) JP2007003438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032966A (en) * 2011-08-02 2013-02-14 Toyota Motor Corp Monitoring device for secondary battery
JP2015184217A (en) * 2014-03-25 2015-10-22 富士通株式会社 Estimation program, estimation method, and estimation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032966A (en) * 2011-08-02 2013-02-14 Toyota Motor Corp Monitoring device for secondary battery
JP2015184217A (en) * 2014-03-25 2015-10-22 富士通株式会社 Estimation program, estimation method, and estimation device

Similar Documents

Publication Publication Date Title
JP4830382B2 (en) Secondary battery charge rate estimation device
JP3714333B2 (en) Secondary battery input / output possible power estimation device
JP3714321B2 (en) Secondary battery charge rate estimation device
JP4692246B2 (en) Secondary battery input / output possible power estimation device
JP6507375B2 (en) Battery state estimation device and battery state estimation method
JP4630113B2 (en) Secondary battery deterioration state determination method and secondary battery deterioration state determination device
JP4547908B2 (en) Secondary battery input / output possible power estimation device
JP2006284431A (en) System for estimation of charging rate of secondary cell
JP4910300B2 (en) Secondary battery full charge capacity estimation device
JP4788307B2 (en) Secondary battery input / output possible power estimation device
JP5163542B2 (en) Secondary battery input / output possible power estimation device
JP4923462B2 (en) Secondary battery charge rate estimation device
JP3714314B2 (en) Secondary battery charge rate estimation device
JP2010203935A (en) Device of estimating inputtable/outputtable power of secondary battery
JP3852372B2 (en) Secondary battery charge rate estimation device
JP3714330B2 (en) Secondary battery charge rate estimation device
JP2007003438A (en) Charging rate estimation device for secondary battery
JP2018146343A (en) Battery management device and battery management method
JP2003075517A (en) Charging rate estimating device for secondary battery
JP4720364B2 (en) Secondary battery internal resistance estimation device
JP4103569B2 (en) Secondary battery charge rate estimation device
JP4666149B2 (en) Secondary battery input / output possible power estimation device
JP2010210457A (en) Control device of secondary battery
JP3852371B2 (en) Secondary battery charge rate estimation device
JP3714284B2 (en) Secondary battery charge rate estimation device