JP2007003253A - Gas concentration measuring instrument - Google Patents

Gas concentration measuring instrument Download PDF

Info

Publication number
JP2007003253A
JP2007003253A JP2005181495A JP2005181495A JP2007003253A JP 2007003253 A JP2007003253 A JP 2007003253A JP 2005181495 A JP2005181495 A JP 2005181495A JP 2005181495 A JP2005181495 A JP 2005181495A JP 2007003253 A JP2007003253 A JP 2007003253A
Authority
JP
Japan
Prior art keywords
gas
cell
sample
signal
concentration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005181495A
Other languages
Japanese (ja)
Other versions
JP4790330B2 (en
Inventor
Katsumi Kumazawa
克巳 熊澤
Masayuki Watanabe
昌之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2005181495A priority Critical patent/JP4790330B2/en
Publication of JP2007003253A publication Critical patent/JP2007003253A/en
Application granted granted Critical
Publication of JP4790330B2 publication Critical patent/JP4790330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas concentration measuring instrument which simplifies its circuit constitution, reduces cost, and improves a measuring precision by digitally processing the function of a lock-in amplifier. <P>SOLUTION: This infrared absorbing type gas concentration measuring instrument is constituted so that infrared rays emitted from an infrared light source are allowed to intermittently enter a sample cell into which a sample gas is introduced, the quantity of the infrared rays transmitted through the sample cell is detected by a detector to be subjected to A/D conversion and the signal after the A/D conversion is used to operate the concentration of the measuring target gas in the sample gas. A digital signal processing circuit 70 is constituted so that the cycle of the rotation signal of a gas correlation cell 13 is measured and the output signal of an amplifying circuit 30 (detector 20) is sampled by an A/D conversion timing signal formed by dividing the measured cycle by a predetermined number N to be subjected to A/D conversion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、信号処理技術を改良して測定精度を向上させた、ガス相関法等による赤外線吸収方式のガス濃度測定装置に関するものである。   The present invention relates to an infrared absorption type gas concentration measurement apparatus using a gas correlation method or the like, in which signal processing technology is improved to improve measurement accuracy.

ガス相関法は、米国環境保護庁が開発した赤外線吸収方式のガス濃度測定方法として知られており、CO,COを始めとした各種のガス濃度の測定に使用されている。その原理は、CO等の測定対象ガスを含む試料ガスが導入される試料セルと、この試料セルに赤外光を入射させる赤外光源との間に、測定対象ガスを封入した測定対象ガスセルとN等の不活性ガス(ゼロガス)を封入した比較ガスセルとを有するガス相関セル(ガス相関フィルタ)を配置し、このガス相関セルを回転させて、赤外光の光路上に測定対象ガスを介在させた時の試料セルの透過赤外線光量と、不活性ガスを介在させた時の試料セルの透過赤外線光量との差を測定することにより、試料ガス中の測定対象ガス濃度を測定するものである。
なお、このようなガス相関法を用いたガス濃度測定装置は、後述する特許文献1等に記載されている。
The gas correlation method is known as an infrared absorption method gas concentration measurement method developed by the US Environmental Protection Agency, and is used for measurement of various gas concentrations including CO and CO 2 . The principle is that a measurement target gas cell in which a measurement target gas is enclosed between a sample cell into which a measurement target gas such as CO is introduced and an infrared light source that makes infrared light incident on the sample cell; A gas correlation cell (gas correlation filter) having a comparison gas cell filled with an inert gas (zero gas) such as N 2 is disposed, and this gas correlation cell is rotated to place the measurement target gas on the optical path of infrared light. It measures the concentration of the gas to be measured in the sample gas by measuring the difference between the amount of transmitted infrared light of the sample cell when it is interposed and the amount of transmitted infrared light of the sample cell when the inert gas is interposed. is there.
Note that a gas concentration measuring apparatus using such a gas correlation method is described in Patent Document 1 described later.

図3は、この種のガス濃度測定装置の概略的な構成を示すブロック図である。
図3において、光学系10は、赤外光源を始めとして、前述した測定対象ガスセル及び比較ガスセルを備えた回転可能なガス相関セル、赤外光を断続させるためのスリットを有する回転可能な円板状のチョッパ(回転セクタ)、試料セル内の多重反射用ミラー等の赤外光の透過経路に存在する構成要素を纏めて示したものである。
検出器20は、上記測定対象ガスセルまたは不活性ガスセルを経て試料セルを透過した赤外光を検出し、その透過光量を電気信号に変換する。
FIG. 3 is a block diagram showing a schematic configuration of this type of gas concentration measuring apparatus.
In FIG. 3, an optical system 10 includes an infrared light source, a rotatable gas correlation cell including the measurement target gas cell and the comparison gas cell described above, and a rotatable disk having a slit for interrupting infrared light. The components existing in the infrared light transmission path, such as a chopper (rotating sector) and a multiple reflection mirror in the sample cell, are collectively shown.
The detector 20 detects infrared light that has passed through the sample cell through the measurement target gas cell or the inert gas cell, and converts the transmitted light amount into an electrical signal.

ここで、図4はガス相関法によるガス濃度測定装置の一例を示す全体構成図であり、11は赤外光源、12はチョッパ(回転セクタ)、13はガス相関セル、13aは測定対象ガスセル、13bは比較ガスセル、14はバンドパスフィルタ、15は試料セル、16a〜16cはミラー、20は前述の検出器である。   Here, FIG. 4 is an overall configuration diagram showing an example of a gas concentration measuring device by the gas correlation method, 11 is an infrared light source, 12 is a chopper (rotating sector), 13 is a gas correlation cell, 13a is a measurement target gas cell, Reference numeral 13b is a reference gas cell, 14 is a band-pass filter, 15 is a sample cell, 16a to 16c are mirrors, and 20 is the above-described detector.

図3に戻って、増幅回路30は検出器20の出力信号を増幅するものであり、次段のロックインアンプ40は、増幅回路30の出力信号から、赤外光が測定対象ガスセルまたは不活性ガスセルを透過した時の赤外線透過光量を直流のアナログ信号として得る。
なお、上記ロックインアンプ40は、周知のように微少信号の測定を主目的とした一種の同期検波器であり、前記光学系10のチョッパ(回転セクタ)12によるチョッピング周波数に同期させてアナログスイッチ等のスイッチング手段を操作することで入力信号(増幅回路30の出力信号)を取り込み、この信号を積分(平均化)して一定の直流値に収束させることにより、ノイズを除去した入力信号を直流信号として検出するものである。
Returning to FIG. 3, the amplifier circuit 30 amplifies the output signal of the detector 20, and the lock-in amplifier 40 in the next stage receives infrared light from the output signal of the amplifier circuit 30 as a measurement target gas cell or inactive. The amount of transmitted infrared light when passing through the gas cell is obtained as a DC analog signal.
The lock-in amplifier 40 is a kind of synchronous detector whose main purpose is to measure a minute signal as is well known, and is an analog switch synchronized with a chopping frequency by a chopper (rotating sector) 12 of the optical system 10. The input signal (the output signal of the amplifier circuit 30) is taken in by operating the switching means such as, and this signal is integrated (averaged) and converged to a constant DC value, so that the input signal from which noise has been removed is converted to DC. It is detected as a signal.

A/D変換器50は、ロックインアンプ40から出力される直流のアナログ信号をディジタル信号に変換する。
ディジタル信号処理回路60は、上記ディジタル信号を処理して比較ガスセルを透過した時の赤外線透過光量と測定対象ガスセルを透過した時の赤外線透過光量との差分を演算することにより試料ガス中の測定対象ガス濃度を算出し、図示されていない記録計や表示装置等に出力する。
The A / D converter 50 converts the DC analog signal output from the lock-in amplifier 40 into a digital signal.
The digital signal processing circuit 60 processes the digital signal and calculates the difference between the amount of transmitted infrared light when transmitted through the comparison gas cell and the amount of transmitted infrared light when transmitted through the measurement target gas cell, thereby measuring the measurement target in the sample gas. The gas concentration is calculated and output to a not-shown recorder or display device.

このように、ロックインアンプを用いてガス濃度を測定するガス濃度測定装置は、例えば特許文献2,3等に記載されている。   As described above, for example, Patent Documents 2 and 3 disclose a gas concentration measuring device that measures a gas concentration using a lock-in amplifier.

特許第3424364号公報([0015]〜[0024],図1、図2等)Japanese Patent No. 3424364 ([0015] to [0024], FIG. 1, FIG. 2, etc.) 特許第2744728号公報([0046]〜[0057]、図1等)Japanese Patent No. 2744728 ([0046] to [0057], FIG. 1 etc.) 特許第2744742号公報([0029]〜[0047]、図1等)Japanese Patent No. 2744742 ([0029] to [0047], FIG. 1 etc.)

図3に示したように、ロックインアンプ40を用いる従来のガス濃度測定装置では、ロックインアンプ40を構成する回路部品数が多く、コストが増加すると共に、回路定数のばらつきや温度によるドリフト、外来ノイズの影響等によってその出力信号に誤差を生じ、これがガス濃度の測定誤差に直結してしまうという問題があった。
そこで本発明の解決課題は、ロックインアンプの機能をディジタル的に処理することにより、回路構成を簡略化し、コストの低減や測定精度の向上を可能にしたガス濃度測定装置を提供しようとするものである。
As shown in FIG. 3, in the conventional gas concentration measuring apparatus using the lock-in amplifier 40, the number of circuit components constituting the lock-in amplifier 40 is large, the cost increases, and the circuit constant variation, temperature drift, There is a problem that an error is generated in the output signal due to the influence of external noise and the like, which is directly related to a measurement error of gas concentration.
Therefore, the problem to be solved by the present invention is to provide a gas concentration measuring device that simplifies the circuit configuration by digitally processing the function of the lock-in amplifier, thereby reducing the cost and improving the measurement accuracy. It is.

上記課題を解決するため、請求項1に記載した発明は、赤外光源から放射された赤外線を試料ガスが導入された試料セルに断続的に入射させ、
前記試料セルを透過した赤外線の光量を検出器により検出してアナログ/ディジタル変換すると共に、アナログ/ディジタル変換後の信号を用いて前記試料ガス中の測定対象ガス濃度を演算する赤外線吸収方式のガス濃度測定装置において、
前記赤外線を断続的に入射させる周期を測定する手段と、
この手段による測定周期を所定数により分割してタイミング信号を生成する手段と、
前記タイミング信号を用いて前記検出器の出力信号をサンプリングし、アナログ/ディジタル変換する手段と、
を備えたものである。
In order to solve the above-mentioned problem, the invention described in claim 1 makes the infrared ray emitted from the infrared light source intermittently enter the sample cell into which the sample gas is introduced,
Infrared absorption type gas that detects the amount of infrared light transmitted through the sample cell by a detector and performs analog / digital conversion, and calculates the concentration of the gas to be measured in the sample gas using the signal after analog / digital conversion. In the concentration measuring device,
Means for measuring the period of intermittent incidence of the infrared rays;
Means for generating a timing signal by dividing a measurement cycle by this means by a predetermined number;
Means for sampling the output signal of the detector using the timing signal and performing analog / digital conversion;
It is equipped with.

請求項2に記載した発明は、請求項1に記載したガス濃度測定装置において、
前記ガス濃度測定装置は、回転可能なガス相関セルを備えたガス相関法によるガス濃度測定装置であり、前記ガス相関セルの回転周期を測定し、この周期を所定数により分割してタイミング信号を生成するものである。
The invention described in claim 2 is the gas concentration measuring device according to claim 1,
The gas concentration measuring device is a gas concentration measuring device based on a gas correlation method including a rotatable gas correlation cell, and measures a rotation period of the gas correlation cell and divides the period by a predetermined number to generate a timing signal. Is to be generated.

本発明によれば、ロックインアンプを用いなくても、ディジタル信号処理回路の演算処理により、ガス相関セル等の回転周期を分割して得たA/D変換タイミング信号を用いて検出器の出力信号をサンプリングすると共にA/D変換させ、その出力信号を用いて、ガス濃度測定のための演算処理を行うことができる。このため、ロックインアンプを構成する回路部品を不要として回路構成の簡略化、コストの低減を図ることができ、また、回路定数の誤差や温度ドリフト、外来ノイズの影響等に起因した測定誤差をなくしてガス濃度の測定精度を従来よりも向上させることができる。   According to the present invention, without using a lock-in amplifier, the output of the detector using the A / D conversion timing signal obtained by dividing the rotation period of the gas correlation cell or the like by the arithmetic processing of the digital signal processing circuit. The signal is sampled and A / D converted, and the output signal can be used to perform arithmetic processing for gas concentration measurement. This eliminates the need for the circuit components that make up the lock-in amplifier, simplifying the circuit configuration and reducing costs, and avoiding measurement errors caused by circuit constant errors, temperature drift, and external noise effects. Without this, the measurement accuracy of the gas concentration can be improved as compared with the conventional case.

以下、図1,図2を参照しながら本発明の実施形態を説明する。
まず、図1は、この実施形態の概略的な構成を示すブロック図である。図1において、図3と同一の構成要素には同一の番号を付して説明を省略し、以下では異なる部分を中心に説明する。
また、図2はこの実施形態の動作を時系列に沿って示した概念的な波形図である。なお、チョッパ(回転セクタ)12の機能については本発明の要旨ではないため、その説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
First, FIG. 1 is a block diagram showing a schematic configuration of this embodiment. In FIG. 1, the same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, different portions will be mainly described.
FIG. 2 is a conceptual waveform diagram showing the operation of this embodiment in time series. Since the function of the chopper (rotating sector) 12 is not the gist of the present invention, the description thereof is omitted.

図1において、光学系10からはガス相関セル回転信号が出力されており、この回転信号はCPUやDSP(ディジタル・シグナル・プロセッサ)等からなるディジタル信号処理回路70に入力されている。ガス相関セル回転信号は、ガス相関セルの回転周期を例えばフォトカプラや磁気センサにより検出して得られる信号であり、図2(a)に示すように、図4の比較ガスセル13bを透過した赤外線を測定するサンプル周期と、図4の測定対象ガスセル13aを透過した赤外線を測定するリファレンス周期とからなっている。   In FIG. 1, a gas correlation cell rotation signal is output from the optical system 10, and this rotation signal is input to a digital signal processing circuit 70 including a CPU, a DSP (digital signal processor) and the like. The gas correlation cell rotation signal is a signal obtained by detecting the rotation period of the gas correlation cell by, for example, a photocoupler or a magnetic sensor. As shown in FIG. 2A, the infrared light transmitted through the comparison gas cell 13b in FIG. 4 and a reference cycle for measuring infrared rays transmitted through the measurement target gas cell 13a in FIG.

ディジタル信号処理回路70は、図2(b)に示すごとくサンプル周期T(以下、T,T,……)及びリファレンス周期T(以下、T,T,……)をそれぞれ測定し、これらの周期をその都度、内部のメモリに一時的に記憶する。なお、サンプル周期T,T,T,……及びリファレンス周期T,T,T,……は、ガス相関セル13の回転速度が一定であれば理論的に同一値であるが、ガス相関セル13を駆動するモータ等の電源周波数や機械的構造による回転ムラ等に起因して周期に誤差が生じるため、ガス相関セル13の一回転ごとに測定する必要がある。
図2(b)において、ガス相関セル回転信号が各周期内で「High」レベル(透過)及び「Low」レベル(遮断)となっているのは、ガス相関セル13とチョッパ(回転セクタ)12との位置関係に応じて検出器20に到達する赤外光の有無に対応させたものである。
As shown in FIG. 2B, the digital signal processing circuit 70 has a sample period T 1 (hereinafter, T 3 , T 5 ,...) And a reference period T 2 (hereinafter, T 4 , T 6 ,...). Measure and periodically store these cycles in the internal memory each time. The sample periods T 1 , T 3 , T 5 ,... And the reference periods T 2 , T 4 , T 6 ,... Are theoretically the same values as long as the rotation speed of the gas correlation cell 13 is constant. However, since an error occurs in the cycle due to a power supply frequency of a motor or the like that drives the gas correlation cell 13 and rotation unevenness due to a mechanical structure, it is necessary to measure every rotation of the gas correlation cell 13.
In FIG. 2 (b), the gas correlation cell rotation signal is at “High” level (transmission) and “Low” level (cut-off) within each period. In correspondence with the presence or absence of infrared light reaching the detector 20.

さて、ディジタル信号処理回路70では、内部のメモリに適宜な分割値N(整数)を保持しており、サンプル周期及びリファレンス周期をそれぞれ測定した時点でT/N(n=1,2,3,……)を演算し、図2(c)に示すように前記間隔T/Nを有するA/D変換タイミング信号を生成する。そして、これらのA/D変換タイミング信号をA/D変換器50に出力する。 In the digital signal processing circuit 70, an appropriate division value N (integer) is held in the internal memory, and T n / N (n = 1, 2, 3) when the sample period and the reference period are measured. ,... Are calculated, and an A / D conversion timing signal having the interval T n / N is generated as shown in FIG. Then, these A / D conversion timing signals are output to the A / D converter 50.

A/D変換器50には、図2(d)に示すように、サンプル周期における透過赤外光による増幅回路30の出力信号(図2(d)において「サンプル」と表記してある)と、リファレンス周期における透過赤外光による増幅回路30の出力信号(同じく「リファレンス」と表記してある)とが交互に入力されており、図4の試料セル15に導入された試料ガス中の測定対象ガス濃度は、「サンプル」信号と「リファレンス」信号との振幅の差に基づいて求めることができる。   As shown in FIG. 2D, the A / D converter 50 includes an output signal of the amplifier circuit 30 by the transmitted infrared light in the sample period (indicated as “sample” in FIG. 2D). , The output signal of the amplifier circuit 30 (also referred to as “reference”) by the transmitted infrared light in the reference period is alternately input, and measurement in the sample gas introduced into the sample cell 15 of FIG. The target gas concentration can be obtained based on the difference in amplitude between the “sample” signal and the “reference” signal.

そこで、A/D変換器50では、ディジタル信号処理回路70から出力された間隔T/NごとのA/D変換タイミング信号を用いて増幅回路30の出力信号をサンプリングし、それぞれディジタル信号に変換する。
例えば、ディジタル信号処理回路70は、測定したサンプル周期Tから間隔T/NのA/D変換タイミング信号を生成し、A/D変換器50は、次のリファレンス周期Tにおいて、増幅回路30から出力された「リファレンス」信号を間隔T/NごとにサンプリングしてA/D変換する。なお、図2(d)において、a,aは透過赤外光によるリファレンス信号、b〜bは遮断赤外光によるリファレンス信号(すなわち、ゼロ値)であり、ディジタル信号処理回路70では、これらのリファレンス信号a,a及びb〜bのディジタル値をそれぞれ平均化して差を求めることにより、リファレンス信号の振幅を演算する。
Therefore, in the A / D converter 50, the output signal of the amplifier circuit 30 is sampled using the A / D conversion timing signal for each interval T n / N output from the digital signal processing circuit 70, and converted into a digital signal. To do.
For example, the digital signal processing circuit 70 generates an A / D conversion timing signal having an interval T 1 / N from the measured sample period T 1 , and the A / D converter 50 performs an amplification circuit in the next reference period T 2 . The “reference” signal output from 30 is sampled at intervals T 1 / N and A / D converted. In FIG. 2D, a 1 and a 2 are reference signals based on transmitted infrared light, and b 1 to b 3 are reference signals based on cut-off infrared light (ie, zero values). Then, the amplitudes of the reference signals are calculated by averaging the digital values of these reference signals a 1 , a 2 and b 1 to b 3 to obtain the difference.

同様にしてディジタル信号処理回路70は、測定したリファレンス周期Tから間隔T/NのA/D変換タイミング信号を生成し、A/D変換器50は、次のサンプル周期Tにおいて、増幅回路30から出力された「サンプル」信号を間隔T/NごとにサンプリングしてA/D変換を行う。そして、ディジタル信号処理回路70が、透過赤外光によるサンプル信号c〜c、遮断赤外光によるサンプル信号(すなわち、ゼロ値)d,dの各ディジタル値をそれぞれ平均化して差を求めることにより、サンプル信号の振幅を演算する。 Similarly, the digital signal processing circuit 70 generates an A / D conversion timing signal having an interval T 2 / N from the measured reference period T 2 , and the A / D converter 50 amplifies in the next sample period T 3 . The “sample” signal output from the circuit 30 is sampled at intervals T 2 / N to perform A / D conversion. Then, the digital signal processing circuit 70 averages and compares the respective digital values of the sample signals c 1 to c 3 using transmitted infrared light and the sample signals (ie, zero values) d 1 and d 2 using cut-off infrared light. Is obtained to calculate the amplitude of the sample signal.

ディジタル信号処理回路70では、上記により求めたサンプル信号の振幅からリファレンス信号の振幅を減算し、赤外線吸収量の差分を求める。この差分は、試料セル15に導入された試料ガス中の測定対象ガス濃度に相当するため、適宜な換算を行って目的とする測定対象ガス濃度を演算するものである。   The digital signal processing circuit 70 subtracts the amplitude of the reference signal from the amplitude of the sample signal obtained as described above to obtain the difference in the amount of infrared absorption. Since this difference corresponds to the measurement target gas concentration in the sample gas introduced into the sample cell 15, the target measurement target gas concentration is calculated by performing appropriate conversion.

上記のように、本実施形態によれば、従来技術のようにロックインアンプを用いなくても、ディジタル信号処理回路70による演算処理により、ガス相関セル13の回転周期に同期させて検出器20(増幅回路30)の出力信号を所定間隔でサンプリングし、A/D変換して赤外線吸収量の演算に用いることができる。これにより、ロックインアンプを構成する回路部品を不要としてコストの低減が可能であると共に、これらの回路部品の回路定数のばらつきや温度ドリフト、ノイズの影響等に起因した測定誤差をなくすることができる。   As described above, according to the present embodiment, the detector 20 is synchronized with the rotation period of the gas correlation cell 13 by the arithmetic processing by the digital signal processing circuit 70 without using a lock-in amplifier as in the prior art. The output signal of the (amplifier circuit 30) can be sampled at a predetermined interval, A / D converted, and used for the calculation of the infrared absorption amount. This eliminates the need for the circuit components that make up the lock-in amplifier, thereby reducing costs and eliminating measurement errors caused by variations in circuit constants, temperature drift, and noise. it can.

また、ガス相関セル13を駆動する電源周波数の変動や機械的構造による回転ムラ等の変動要因が存在する場合でも、ガス相関セル回転信号はこれらの変動要因を常に反映しており、ディジタル信号処理回路70はその都度測定したガス相関セル回転信号の周期に応じた間隔T/NのA/D変換タイミング信号を生成するので、増幅回路30の出力信号を常に適切なタイミングでサンプリングし、A/D変換することが可能である。 Even when there are fluctuation factors such as fluctuations in the power supply frequency for driving the gas correlation cell 13 and rotation unevenness due to the mechanical structure, the gas correlation cell rotation signal always reflects these fluctuation factors, and digital signal processing is performed. Since the circuit 70 generates an A / D conversion timing signal having an interval T n / N corresponding to the cycle of the gas correlation cell rotation signal measured each time, the output signal of the amplifier circuit 30 is always sampled at an appropriate timing, and A / D conversion is possible.

なお、本発明の原理は、ディジタル信号処理回路70が、試料セルに赤外線が断続して入射する周期に応じた間隔T/Nを演算して検出器出力信号をサンプリングし、A/D変換させることにあり、上述したガス相関法によるガス濃度測定装置ばかりでなく、例えば、非分散形赤外線吸収法(NDIR)によるガス濃度測定装置において、チョッパ(回転セクタ)により赤外光を断続させて試料セルに入射させ、ガス濃度を測定する場合にも適用することができる。 The principle of the present invention is that the digital signal processing circuit 70 samples the detector output signal by calculating the interval T n / N according to the period in which the infrared rays are intermittently incident on the sample cell, and performs A / D conversion. In addition to the gas concentration measurement device based on the gas correlation method described above, for example, in a gas concentration measurement device based on the non-dispersive infrared absorption method (NDIR), infrared light is intermittently transmitted by a chopper (rotating sector). The present invention can also be applied when the gas concentration is measured by entering the sample cell.

本発明の実施形態の概略的な構成を示すブロック図である。It is a block diagram which shows the schematic structure of embodiment of this invention. 実施形態の動作を示す波形図である。It is a wave form diagram which shows operation | movement of embodiment. 従来のガス濃度測定装置の概略的な構成を示すブロック図である。It is a block diagram which shows the schematic structure of the conventional gas concentration measuring apparatus. ガス濃度測定装置の一例を示す全体構成図である。It is a whole lineblock diagram showing an example of a gas concentration measuring device.

符号の説明Explanation of symbols

10:光学系
11:赤外光源
12:チョッパ(回転セクタ)
13:ガス相関セル
13a:測定対象ガスセル
13b:比較ガスセル
14:バンドパスフィルタ
15:試料セル
16a〜16c:ミラー
20:検出器
30:増幅回路
40:ロックインアンプ
50:A/D変換器
60,70:ディジタル信号処理回路
10: Optical system 11: Infrared light source 12: Chopper (rotating sector)
13: Gas correlation cell 13a: Gas cell to be measured 13b: Comparison gas cell 14: Band pass filter 15: Sample cell 16a to 16c: Mirror 20: Detector 30: Amplifier circuit 40: Lock-in amplifier 50: A / D converter 60, 70: Digital signal processing circuit

Claims (2)

赤外光源から放射された赤外線を試料ガスが導入された試料セルに断続的に入射させ、
前記試料セルを透過した赤外線の光量を検出器により検出してアナログ/ディジタル変換すると共に、アナログ/ディジタル変換後の信号を用いて前記試料ガス中の測定対象ガス濃度を演算する赤外線吸収方式のガス濃度測定装置において、
前記赤外線を断続的に入射させる周期を測定する手段と、
この手段による測定周期を所定数により分割してタイミング信号を生成する手段と、
前記タイミング信号を用いて前記検出器の出力信号をサンプリングし、アナログ/ディジタル変換する手段と、
を備えたことを特徴とするガス濃度測定装置。
Infrared light emitted from an infrared light source is intermittently incident on a sample cell into which a sample gas is introduced,
Infrared absorption type gas that detects the amount of infrared light transmitted through the sample cell by a detector and performs analog / digital conversion, and calculates the concentration of the gas to be measured in the sample gas using the signal after analog / digital conversion. In the concentration measuring device,
Means for measuring the period of intermittent incidence of the infrared rays;
Means for generating a timing signal by dividing a measurement cycle by this means by a predetermined number;
Means for sampling the output signal of the detector using the timing signal and performing analog / digital conversion;
A gas concentration measuring device comprising:
請求項1に記載したガス濃度測定装置において、
前記ガス濃度測定装置は、回転可能なガス相関セルを備えたガス相関法によるガス濃度測定装置であり、
前記ガス相関セルの回転周期を測定し、この周期を所定数により分割してタイミング信号を生成することを特徴とするガス濃度測定装置。
In the gas concentration measuring apparatus according to claim 1,
The gas concentration measuring device is a gas concentration measuring device by a gas correlation method including a rotatable gas correlation cell,
A gas concentration measuring apparatus that measures a rotation period of the gas correlation cell and generates a timing signal by dividing the period by a predetermined number.
JP2005181495A 2005-06-22 2005-06-22 Gas concentration measuring device Active JP4790330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181495A JP4790330B2 (en) 2005-06-22 2005-06-22 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181495A JP4790330B2 (en) 2005-06-22 2005-06-22 Gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2007003253A true JP2007003253A (en) 2007-01-11
JP4790330B2 JP4790330B2 (en) 2011-10-12

Family

ID=37689043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181495A Active JP4790330B2 (en) 2005-06-22 2005-06-22 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP4790330B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210565A (en) * 2008-02-04 2009-09-17 Optex Fa Co Ltd Light quantity monitor sensor and image processing system equipped with this
JP2015213956A (en) * 2014-05-09 2015-12-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. Flux for solder paste, solder paste and solder bump manufacturing method
KR101848233B1 (en) 2015-08-31 2018-04-16 주식회사 위드텍 Gas monitoring system that automatically compensate for water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587736A (en) * 1991-09-26 1993-04-06 Horiba Ltd Gas analyzer
JPH05203573A (en) * 1992-01-28 1993-08-10 Tsukasa Sotsuken:Kk Infrared ray gas analyzer
JPH08184562A (en) * 1994-12-29 1996-07-16 Shimadzu Corp Gas concentration measuring apparatus
JPH09196849A (en) * 1996-01-23 1997-07-31 Fuji Electric Co Ltd Infrared gas analyzer
JP2002081991A (en) * 2000-09-08 2002-03-22 Shimadzu Corp Optical analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587736A (en) * 1991-09-26 1993-04-06 Horiba Ltd Gas analyzer
JPH05203573A (en) * 1992-01-28 1993-08-10 Tsukasa Sotsuken:Kk Infrared ray gas analyzer
JPH08184562A (en) * 1994-12-29 1996-07-16 Shimadzu Corp Gas concentration measuring apparatus
JPH09196849A (en) * 1996-01-23 1997-07-31 Fuji Electric Co Ltd Infrared gas analyzer
JP2002081991A (en) * 2000-09-08 2002-03-22 Shimadzu Corp Optical analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210565A (en) * 2008-02-04 2009-09-17 Optex Fa Co Ltd Light quantity monitor sensor and image processing system equipped with this
JP2015213956A (en) * 2014-05-09 2015-12-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. Flux for solder paste, solder paste and solder bump manufacturing method
KR101848233B1 (en) 2015-08-31 2018-04-16 주식회사 위드텍 Gas monitoring system that automatically compensate for water

Also Published As

Publication number Publication date
JP4790330B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5176535B2 (en) Laser gas analyzer
ATE317115T1 (en) GAS DETECTION METHOD AND GAS DETECTION DEVICE
EP2082214B1 (en) Photo acoustic detector with improved signal processing
CN109596538B (en) Analysis device and analysis method
CN111537470B (en) TDLAS gas concentration detection method based on digital modulation
JP2019533817A (en) Infrared spectrometer
JP5347983B2 (en) Gas analyzer
JP4790330B2 (en) Gas concentration measuring device
JP2005292009A (en) Infrared gas detector and detection method
JP5163360B2 (en) Laser gas analyzer and gas concentration measuring method
JPH06249779A (en) Gas analyzer
Santiago et al. Resonant photoacoustic gas sensing by PC-based audio detection
NL7908629A (en) DEVICE FOR DETECTING COMPONENTS IN GASES BY RADIATION.
JP7259813B2 (en) Gas analysis system and gas analysis method
JP7439974B1 (en) gas analyzer
JP2012068164A (en) Infrared gas analyzer
JP4206618B2 (en) Fourier transform infrared spectrophotometer
WO2018113440A1 (en) Measurement device for measuring concentration of water-soluble protein in water
JP2009063364A (en) Gas detection device
JPS6211295B2 (en)
JP7339292B2 (en) Optical spectrum analyzer and pulse modulated light measurement method
JP4906477B2 (en) Gas analyzer and gas analysis method
RU2044303C1 (en) Gas analyzer
SU1114150A1 (en) Double-channel gas analyzer
JPH0113527B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250