JP2007003131A - Hot water circulation system - Google Patents

Hot water circulation system Download PDF

Info

Publication number
JP2007003131A
JP2007003131A JP2005185856A JP2005185856A JP2007003131A JP 2007003131 A JP2007003131 A JP 2007003131A JP 2005185856 A JP2005185856 A JP 2005185856A JP 2005185856 A JP2005185856 A JP 2005185856A JP 2007003131 A JP2007003131 A JP 2007003131A
Authority
JP
Japan
Prior art keywords
hot water
water
bath
circulation
water circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005185856A
Other languages
Japanese (ja)
Inventor
Hiroto Fukui
浩人 福井
Hisataka Sonoda
寿貴 園田
Yasushi Shibata
裕史 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005185856A priority Critical patent/JP2007003131A/en
Publication of JP2007003131A publication Critical patent/JP2007003131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Control For Baths (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy of water flow detection in a hot water circulation passage, and to accurately carry out condition grasping in the hot water circulation passage in a hot water circulation system. <P>SOLUTION: By providing an ultrasonic flow velocity meter 6 in the hot water circulation passage, calculating a circulation flow rate in the hot water circulation passage and a sound velocity in the hot water circulation passage from a measured amount from the ultrasonic flow velocity meter 6 by a control means 12, and carrying out various types of operation control based on the calculated circulation flow rate and sound velocity, the water flow detection in the hot water circulation passage and the condition grasping in the hot water circulation passage can be carried out accurately. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃焼熱や電気熱を温水に与える熱交換部を有し、温水循環ポンプによって温水を搬送して温水を加熱する温水循環装置において、温水が流れる温水循環流路中に超音波流速計を備え、超音波流速計での計測量から温水循環流路を流れる温水の循環流量や温水循環流路内の音速を演算し、これらの循環流量や音速に基づく動作制御を行う技術に関するものである。   The present invention has a heat exchanging unit that supplies combustion heat and electric heat to warm water, and in the warm water circulation device that heats warm water by conveying warm water by a warm water circulation pump, an ultrasonic flow velocity in the warm water circulation channel through which warm water flows This technology relates to the technology that calculates the circulation flow rate of the hot water flowing through the hot water circulation channel and the speed of sound in the hot water circulation channel from the measured quantity with the ultrasonic current meter, and controls the operation based on these circulation flow rate and sound velocity. It is.

まず、従来の超音波流速計の構成について述べる。   First, the configuration of a conventional ultrasonic velocimeter will be described.

従来、この種の超音波流速計としては流体の流れ方向と平行に送波器と受波器を向かい合わせて2組備え、一方は流れの上流から下流へ、他方は流れの下流から上流に向かって超音波を送り、受波器で検出する。また流体の流れ方向と平行に送波器と受波器を配置することで流れの妨げとなる場合には、送波器と受波器を流路壁に配置し、上流側と下流側に一定の角度を持たせて配置することもある。これらの超音波流速計では計測時間差を測定して流速を求める方式であるが、音速の値すなわち温度の値に影響を受ける。   Conventionally, this type of ultrasonic anemometer has two sets of transmitter and receiver facing each other in parallel with the fluid flow direction, one from upstream to downstream of the flow, and the other from downstream to upstream of the flow. Ultrasonic waves are sent toward and detected by a receiver. If the transmitter and receiver are placed in parallel with the fluid flow direction and the flow is hindered, the transmitter and receiver are placed on the flow path wall, and the upstream and downstream sides are arranged. It may be arranged with a certain angle. These ultrasonic velocimeters measure the measurement time difference and obtain the flow velocity, but are affected by the value of sound velocity, that is, the temperature value.

音速の影響を受けない超音波流速計としては、流れの上流側と下流側に配置された送・受信系において、上流側から下流側への伝播時間と下流側から上流側への伝播時間から流速を求める方式がある(例えば、特許文献1参照)。この方式はシングアラウンド方式などと呼ばれる。   As an ultrasonic anemometer that is not affected by the speed of sound, in the transmission / reception system arranged on the upstream and downstream sides of the flow, the propagation time from the upstream side to the downstream side and the propagation time from the downstream side to the upstream side There is a method for obtaining a flow velocity (see, for example, Patent Document 1). This method is called a sing-around method.

図3は、特許文献1に記載された従来の超音波流速計の計測原理を示すものである。図3において、流路中の流体は右側から左側へ流速Uで流れているものとする。流路の上流側には上流側超音波振動子が、流路の下流側には下流側超音波振動子が、距離L、角度θで配置されている。上流側超音波振動子が送信側に下流側超音波振動子が受信側として振る舞い、上流側から下流側へ超音波が発射され、伝播距離Lの伝播時間をtとする。上流側超音波振動子が受信側に下流側超音波振動子が送信側として振る舞い、下流側から上流側へ超音波が発射され、伝播距離Lの伝播時間をtとする。音速をAとすると、tおよびtは下式で表される。 FIG. 3 shows the measurement principle of the conventional ultrasonic velocimeter described in Patent Document 1. In FIG. 3, it is assumed that the fluid in the flow path flows from the right side to the left side at a flow velocity U. An upstream ultrasonic transducer is arranged at a distance L and an angle θ on the upstream side of the flow channel, and a downstream ultrasonic transducer is arranged on the downstream side of the flow channel. The upstream ultrasonic transducer behaves as the transmitting side and the downstream ultrasonic transducer as the receiving side, ultrasonic waves are emitted from the upstream side to the downstream side, and the propagation time of the propagation distance L is assumed to be t 1 . Acts as an upstream side ultrasonic transducers downstream ultrasonic transducers sender to the receiver, ultrasonic upstream side is emitted from the downstream side to the propagation time of the propagation distance L and t 2. When the speed of sound and A, t 1 and t 2 is expressed by the following equation.

=L/(A+Ucosθ) ・・・(1)
=L/(A−Ucosθ) ・・・(2)
(1)式と(2)式より音速Aを消去すると、流速Uは(3)式のように求まる。
t 1 = L / (A + U cos θ) (1)
t 2 = L / (A−U cos θ) (2)
If the sound velocity A is eliminated from the equations (1) and (2), the flow velocity U is obtained as in the equation (3).

U=(L/2cosθ)(1/t−1/t) ・・・(3)
(3)式で算出される流速Uに流路面積を乗じれば流体の流量を表現することができる。また(1)式と(2)式より流速Uを消去すると、音速Aは(4)式のように求まる。
U = (L / 2 cos θ) (1 / t 1 −1 / t 2 ) (3)
The flow rate of the fluid can be expressed by multiplying the flow velocity U calculated by the equation (3) by the channel area. Further, when the flow velocity U is eliminated from the equations (1) and (2), the sound velocity A is obtained as the equation (4).

A=(L/2)(1/t+1/t) ・・・(4)
次に従来の温水循環装置について述べる。温水循環装置としてたとえば、浴槽水を温水循環ポンプで搬送し、都市ガスなどの燃料ガスを燃焼させて得られる燃焼熱で加熱して浴槽水を追い焚きする強制循環式ガス風呂釜を考える。ここで強制循環式とは、装置内部に温水循環ポンプを有し、強制的に温水を循環させる方式のことを指し、与えられた熱から対流が生じることで温水が循環する自然対流式と区別している。
A = (L / 2) (1 / t 1 + 1 / t 2 ) (4)
Next, a conventional hot water circulation device will be described. As a hot water circulation device, for example, consider a forced circulation type gas bath that transports bathtub water with a hot water circulation pump and heats it with combustion heat obtained by burning fuel gas such as city gas to replenish the bathtub water. Here, the forced circulation type refers to a system that has a hot water circulation pump inside the device and forcibly circulates the hot water, and is divided into a natural convection type in which hot water circulates by generating convection from given heat. Separated.

図4は従来の強制循環式ガス風呂釜の基本構成図を示すものである。   FIG. 4 shows a basic configuration diagram of a conventional forced circulation gas bath.

図4において従来の強制循環式ガス風呂釜は、空気を供給する燃焼用ファン1と、燃料ガスの供給量を調整するガスガバナ弁2と、燃料ガスを供給する燃料ガス噴射ノズル3と、前記燃料ガス噴射ノズル3から供給された燃料ガスを前記燃焼用ファン1で供給された空気で燃焼させる燃焼バーナー4と、前記燃焼バーナー4で発生する燃焼熱で温水を加熱するための熱交換部5と、浴槽18内の浴槽水19を装置内に循環させるための温水循環ポンプ7と、前記熱交換部5で加熱された温水が流れる温水往き流路8と、前記熱交換部に流入し加熱される前の温水が流れる温水戻り流路9と、前記温水往き流路8に備えられ前記熱交換部5で加熱された温水の温度を測定するための温水往きサーミスタ10と、前記温水戻り流路9に備えられ戻り温水の温度を測定するための温水戻りサーミスタ11と、温水循環流路内を流れる温水の水流を検知するための水流スイッチ31と、諸動作を制御するための制御手段12とから構成されている。なお温水循環ポンプ7としては、ここでは出力値が一定のAC駆動型のものを想定する。   In FIG. 4, a conventional forced circulation type gas bath has a combustion fan 1 for supplying air, a gas governor valve 2 for adjusting the supply amount of fuel gas, a fuel gas injection nozzle 3 for supplying fuel gas, and the fuel. A combustion burner 4 for burning the fuel gas supplied from the gas injection nozzle 3 with the air supplied by the combustion fan 1, and a heat exchanging unit 5 for heating the hot water with the combustion heat generated by the combustion burner 4. The hot water circulation pump 7 for circulating the bathtub water 19 in the bathtub 18, the hot water flow path 8 through which the hot water heated by the heat exchange section 5 flows, and the heat exchange section are heated and heated. A warm water return passage 9 through which the warm water before flowing, a warm water return thermistor 10 for measuring the temperature of the warm water heated in the heat exchange section 5 provided in the warm water delivery channel 8, and the warm water return channel Returned to 9 A hot water return thermistor 11 for measuring the temperature of the hot water, a water flow switch 31 for detecting the water flow of the hot water flowing in the hot water circulation channel, and a control means 12 for controlling various operations. . Here, it is assumed that the hot water circulation pump 7 is an AC drive type having a constant output value.

そして強制循環式ガス風呂釜は、温水往き配管接続口13で温水往き配管15と接続され、温水戻り配管接続口14で温水戻り配管16と接続される。温水往き配管15と温水戻り配管16は風呂アダプタ17で浴槽18と接続される。   The forced circulation gas bath is connected to the warm water return pipe 15 at the warm water return pipe connection port 13 and to the warm water return pipe 16 at the warm water return pipe connection port 14. The hot water return pipe 15 and the hot water return pipe 16 are connected to a bathtub 18 by a bath adapter 17.

以上のように構成された従来の強制循環式ガス風呂釜の風呂追い焚き運転動作について以下説明する。   The bath reheating operation of the conventional forced circulation gas bath having the above-described configuration will be described below.

使用者がリモートコントローラー等の外部入力手段で浴槽水19の風呂追い焚き温度(たとえば40℃)を設定し、制御手段12に風呂追い焚き運転開始の入力が行われると、制御手段12は温水循環ポンプ7を駆動させる。温水循環ポンプ7によって、浴槽18内の浴槽水19は温水戻り配管16および温水戻り流路9を経て熱交換部5へ流れる。温水循環流路内の水流検知は、温水循環流路内に設けられた水流スイッチ31によって判定される。図4においては、水流スイッチ31が温水戻り流路9に設けられた構成を示している。   When the user sets the bath reheating temperature (for example, 40 ° C.) of the bath water 19 with an external input means such as a remote controller and the control means 12 is input to start the bath reheating operation, the control means 12 The pump 7 is driven. By the hot water circulation pump 7, the bathtub water 19 in the bathtub 18 flows to the heat exchange unit 5 through the hot water return pipe 16 and the hot water return channel 9. The water flow detection in the hot water circulation channel is determined by the water flow switch 31 provided in the hot water circulation channel. FIG. 4 shows a configuration in which the water flow switch 31 is provided in the hot water return flow path 9.

水流スイッチ31としては、たとえばバタフライ形状の構成が考えられる。このバタフライ部に所定の重さのマグネットを取り付けておき、温水循環流路の水流が所定流量(たとえば3L/min)以上となればバタフライ部が持ち上げられて電気同通状態を生じさせて、温水循環流路内に水流が生じていることを検知させることができる。また温水循環流路内の水流が所定流量(たとえば2L/min)以下となればバタフライ部を持ち上げることができず水流が生じていないことを検知させることができる。図4には水流スイッチ31の水流検知有無状態を模式的に示している。すなわち、破線の状態の時には水流が生じておらず水流スイッチ31がOFF時の状態を示し、実線の状態の時には水流が生じていてバタフライ部が持ち上げられ水流スイッチ31がON時の状態を示している。   As the water flow switch 31, for example, a butterfly-shaped configuration is conceivable. A magnet having a predetermined weight is attached to the butterfly portion, and when the water flow in the hot water circulation channel becomes a predetermined flow rate (for example, 3 L / min) or more, the butterfly portion is lifted to cause an electric communication state. It can be detected that a water flow is generated in the circulation channel. Further, if the water flow in the hot water circulation channel becomes a predetermined flow rate (for example, 2 L / min) or less, it is possible to detect that the butterfly portion cannot be lifted and no water flow is generated. FIG. 4 schematically shows a water flow detection presence / absence state of the water flow switch 31. That is, in the state of the broken line, no water flow is generated and the water flow switch 31 is in the OFF state. In the solid line state, the water flow is generated, the butterfly portion is lifted and the water flow switch 31 is in the ON state. Yes.

温水循環ポンプ7が駆動され水流スイッチ31がON状態を検知すると、制御手段12は温水循環流路内に水流が生じていることを検知して燃焼を開始させる。この時の燃焼制御はたとえば次のように行われる。   When the hot water circulation pump 7 is driven and the water flow switch 31 detects the ON state, the control means 12 detects that a water flow is generated in the hot water circulation flow path and starts combustion. The combustion control at this time is performed as follows, for example.

制御手段12は装置として最大燃焼量出力値Qmax(たとえば7500kcal/h)で燃焼を開始させる。ここで循環流量がたとえば10L/min、燃焼開始時に温水戻りサーミスタ11で検出される浴槽水19の温度が20℃であるとすると、燃焼開始時に温水往きサーミスタ10で検出される温水往き温度は、
20+(7500/60/10)=32.5 ℃
であるが、浴槽水19の加熱が進み温水往きサーミスタ10で検出される温水往き温度がある所定の値(たとえば、「風呂追い焚き設定温度(ここでは40℃)」+3℃)に達す
ると、制御手段12は温水往きサーミスタ10で検出される温度がその所定の値(ここでは43℃)となるような燃焼制御を行う。すなわち装置としての最大燃焼量出力値Qmaxから装置としての最小燃焼量出力値Qmin(たとえば3500kcal/h)まで燃焼量を徐々に絞るような燃焼制御を行う。燃焼量が装置としての最小燃焼量出力値Qmin(たとえば3500kcal/h)に達した場合には、制御手段12は装置としての最小燃焼量出力値Qminで固定燃焼を行う。このような燃焼制御を行う過程で温水戻りサーミスタ11で検出される浴槽水19の温度である温水戻り温度が風呂追い焚き設定温度(ここでは40℃)に達すると、風呂追い焚き運転動作は終了する。
The control means 12 starts combustion at a maximum combustion amount output value Q max (for example, 7500 kcal / h) as a device. If the circulation flow rate is, for example, 10 L / min, and the temperature of the bath water 19 detected by the hot water return thermistor 11 at the start of combustion is 20 ° C., the hot water return temperature detected by the hot water return thermistor 10 at the start of combustion is
20+ (7500/60/10) = 32.5 ° C.
However, when the heating of the bathtub water 19 proceeds and the hot water going temperature detected by the hot water going thermistor 10 reaches a certain value (for example, “bath reheating set temperature (40 ° C. here)” + 3 ° C.) The control means 12 performs combustion control so that the temperature detected by the hot water going-up thermistor 10 becomes a predetermined value (here, 43 ° C.). That is, combustion control is performed such that the combustion amount is gradually reduced from the maximum combustion amount output value Q max as the device to the minimum combustion amount output value Q min (for example, 3500 kcal / h) as the device. When the combustion amount reaches the minimum combustion amount output value Q min (for example, 3500 kcal / h) as the device, the control means 12 performs fixed combustion at the minimum combustion amount output value Q min as the device. When the hot water return temperature, which is the temperature of the bathtub water 19 detected by the hot water return thermistor 11 in the process of performing such combustion control, reaches the bath reheating set temperature (40 ° C. in this case), the bath reheating operation is finished. To do.

次に従来の温水循環装置として、浴槽水を追い焚きする強制循環式ガス風呂釜の機能に加え、所定量の湯を浴槽へお湯はりすることのできるガス給湯機付き風呂釜を考える。ガス給湯機付き風呂釜の風呂お湯はり方式としては、所定量の水量をカウントしてお湯はりする水量式と、浴槽水の水位を検出して所定水位までお湯はりする水位式があるが、ここでは後者の水位式の場合を考える。   Next, as a conventional hot water circulation device, a bath with a gas water heater capable of pouring a predetermined amount of hot water into a bathtub in addition to the function of a forced circulation type gas bath that retreats bathtub water will be considered. There are two types of bath hot water systems for gas kettles with gas water heaters: a water volume system that counts a predetermined amount of water and heats it, and a water level system that detects the water level of the bathtub water and heats it up to a predetermined water level. Now consider the latter water level equation.

図5は従来の水位式のガス給湯機付き風呂釜の構成図を示すものである。   FIG. 5 shows a configuration diagram of a conventional water bath with a water level type gas water heater.

図5において、図4のガス風呂釜の構成と異なるところは、浴槽水19を追い焚きする風呂追い焚き運転機能に加え、カランやシャワーなどにお湯を供給する給湯機能とその給湯機能を用いて浴槽18に所定水位のお湯はりを行う風呂お湯はり機能とが追加されたところである。図5では、給湯側水管と風呂追い焚き側水管の2水管が1つの熱交換部缶体に配置された1缶2水式の熱交換器の構成を示している。図5に示したガス給湯機付き風呂釜は、温水戻り流路9に備えられ浴槽水19の水位を検出するための水位センサ32と、給湯側流路から温水循環流路側へと注湯する際に開閉される注湯弁33と、1缶2水式熱交換部において風呂追い焚き運転時に閉止された給湯側流路が過熱された場合に温水循環流路側へ圧力を逃がすための過圧逃がし弁34と、前記注湯弁33を有し給湯側流路と温水循環流路を接続し注湯時に給湯側流路からのお湯が流れる注湯流路35と、燃焼バーナー4の燃焼部分切替えを行うために燃料ガスの供給部分の開閉を行うための切替電磁弁36と、装置内に供給される水が流れる入水流路37と、前記入水流路37を流れる水の温度を検出する入水サーミスタ38と、入水流量を検出するための水流センサ39と、装置内に供給された水と熱交換部5を出た湯の混合量を制御するための給湯バイパス制御弁40と、前記給湯バイパス制御弁40を有し前記入水流路37から分岐した給湯バイパス流路41と、熱交換部5を出た後の給湯側を流れる湯の温度を検出するための給湯側熱交換部出口サーミスタ42と、熱交換部5を出た湯と前記給湯バイパス流路41を流れる水とが混合された湯の温度を検出するための出湯サーミスタ43と、熱交換部5を出た後の湯および前記給湯バイパス流路41を流れる水で混合された後の湯が流れる出湯流路44と、給湯流量を制御するための水量制御弁45とから構成される。なおこれら以外の構成は図4で示した強制循環式ガス風呂釜の場合と同様であり省略する。   In FIG. 5, the difference from the configuration of the gas bath pot of FIG. 4 is that a hot water supply function for supplying hot water to a currant or a shower and the hot water supply function are used in addition to a bath reheating operation function for retreating the bathtub water 19. A bath hot water function for adding hot water at a predetermined water level to the bathtub 18 has been added. FIG. 5 shows a configuration of a one-can two-water heat exchanger in which two water pipes of a hot water supply side water pipe and a bath reheating side water pipe are arranged in one heat exchange unit can body. 5 has a hot water return channel 9 and a water level sensor 32 for detecting the water level of the bathtub water 19 and a hot water supply channel to the hot water circulation channel side. When the hot water supply side channel closed at the time of the bath reheating operation is overheated in the hot water recirculation channel side when the hot water supply valve 33 that is opened and closed at the time is opened and closed, the overpressure is released. There is a relief valve 34, a hot water supply valve 33 having a hot water supply side flow path and a hot water circulation flow path, and a hot water flow path 35 through which hot water flows from the hot water supply side flow path during pouring, and a combustion portion of the combustion burner 4. A switching solenoid valve 36 for opening and closing a fuel gas supply portion for switching, a water inlet passage 37 through which water supplied into the apparatus flows, and a temperature of water flowing through the water inlet passage 37 are detected. An incoming water thermistor 38, a water flow sensor 39 for detecting the incoming water flow rate, A hot water supply bypass control valve 40 for controlling the amount of water supplied into the apparatus and the hot water exiting the heat exchange section 5, and a hot water supply bypass having the hot water supply bypass control valve 40 and branching from the incoming water flow path 37. A flow path 41, a hot water supply side heat exchange section outlet thermistor 42 for detecting the temperature of hot water flowing on the hot water supply side after exiting the heat exchange section 5, and the hot water exiting the heat exchange section 5 and the hot water supply bypass flow path The hot water thermistor 43 for detecting the temperature of hot water mixed with the water flowing through 41, the hot water after leaving the heat exchanging section 5 and the hot water after mixed with the water flowing through the hot water supply bypass passage 41 are It comprises a flowing hot water flow path 44 and a water amount control valve 45 for controlling the hot water supply flow rate. Other configurations are the same as in the case of the forced circulation gas bath shown in FIG.

以上のように構成された従来のガス給湯機付き風呂釜の各動作について以下説明する。   Each operation of the conventional bath with a gas water heater configured as described above will be described below.

まずカランやシャワーなどに設定温度のお湯を供給する給湯運転について図5を用いながら説明する。   First, a hot water supply operation for supplying hot water at a set temperature to a currant or a shower will be described with reference to FIG.

使用者がリモートコントローラー等でお湯の温度(たとえば40℃)を設定し、カラン等の給湯栓を開とすると給湯側の燃焼が開始する。給湯側流路への水流はたとえば入水流路37に設けられた水流センサ39で所定流量(たとえば2.5L/min)以上を検出すると給湯側流路に水流が生じたと判定することができる。ここで水流センサ39としては、流路中に羽根車を有して水流により生じた羽根車の回転を流量に対応したパルス信号として取り出すような構成が考えられる。制御手段12は、水流センサ39で検出される
入水流量と給湯バイパス制御弁40開度の関係から熱交換部5を流れる流量を演算し、入水サーミスタ38で検出される入水温度を検出しながら、給湯側熱交換部出口サーミスタ42で検出される熱交換部5を出た後の湯の温度が所定温度(たとえば60℃)となるように燃焼量制御を行う。そして出湯サーミスタ43で検出される湯の温度が使用者の設定したお湯の温度(たとえば40℃)となるように給湯バイパス制御弁40の弁開度を調整する。このように給湯運転の場合、制御手段12は燃焼量制御と給湯バイパス制御弁40の弁開度調整を行い、出湯サーミスタ43で検出されるお湯の温度が使用者の設定した温度(たとえば40℃)となるような動作制御を行う。ここで燃焼制御においては、図4で示した従来の強制循環式ガス風呂釜の場合と同様に、ガスガバナ弁2の弁開度を調整することで燃料ガス供給量を調整し、燃焼バーナー4の燃焼部分は切替電磁弁36を開閉し燃焼バーナー4に供給する燃料ガスを開閉することによって行う。また給湯バイパス制御弁40の構成としては、たとえば制御手段12からの駆動パルス信号に応じてステッピングモーターが駆動され弁開度が調整される構成が考えられる。
When a user sets the temperature of hot water (for example, 40 ° C.) with a remote controller or the like and opens a hot water tap such as a curan, combustion on the hot water supply side starts. For example, when the water flow to the hot water supply side channel is detected by a water flow sensor 39 provided in the incoming water flow channel 37 at a predetermined flow rate (for example, 2.5 L / min) or more, it can be determined that the water flow has occurred in the hot water supply side channel. Here, the water flow sensor 39 may have a configuration in which an impeller is provided in the flow path and the rotation of the impeller generated by the water flow is extracted as a pulse signal corresponding to the flow rate. The control means 12 calculates the flow rate flowing through the heat exchange unit 5 from the relationship between the incoming water flow rate detected by the water flow sensor 39 and the opening degree of the hot water supply bypass control valve 40, and detects the incoming water temperature detected by the incoming water thermistor 38. Combustion amount control is performed so that the temperature of the hot water after exiting the heat exchange unit 5 detected by the hot water supply side heat exchange unit outlet thermistor 42 becomes a predetermined temperature (for example, 60 ° C.). And the valve opening degree of the hot water supply bypass control valve 40 is adjusted so that the temperature of hot water detected by the hot water thermistor 43 becomes the temperature of hot water set by the user (for example, 40 ° C.). In this way, in the hot water supply operation, the control means 12 performs the combustion amount control and the valve opening adjustment of the hot water supply bypass control valve 40, and the hot water temperature detected by the hot water thermistor 43 is set to a temperature set by the user (for example, 40 ° C. ) Is controlled. Here, in the combustion control, the fuel gas supply amount is adjusted by adjusting the valve opening degree of the gas governor valve 2 as in the case of the conventional forced circulation gas bath shown in FIG. The combustion part is performed by opening and closing the switching electromagnetic valve 36 and opening and closing the fuel gas supplied to the combustion burner 4. As a configuration of the hot water supply bypass control valve 40, for example, a configuration in which the stepping motor is driven and the valve opening degree is adjusted in accordance with the drive pulse signal from the control means 12 is conceivable.

次に浴槽18に所定水位のお湯を注湯する風呂お湯はり運転について図5を用いながら説明する。   Next, a bath hot water operation in which hot water of a predetermined level is poured into the bathtub 18 will be described with reference to FIG.

使用者がリモートコンローラー等で注湯するお湯の温度(たとえば40℃)と設定水位(たとえば水位設定範囲「1」〜「10」のうち「6」)を入力して風呂お湯はり運転を開始させると、制御手段12は注湯弁33を開とし注湯流路35に水流が生じることで給湯側流路に水流が生じ、上述の給湯運転と同様な運転動作が行われる。注湯流路35は温水戻り流路9に接続され、給湯運転で供給された湯が温水戻り流路9の接続部で図5の矢印で示すように2方向に分岐される。すなわち一方は温水戻り流路9および温水戻り配管16を流れて浴槽18へ注湯され、他方は温水戻り流路9、熱交換部5、温水往き流路8、および温水往き配管15を流れて浴槽18へ注湯される。ここで風呂お湯はり運転時の給湯運転動作においては、制御手段12は出湯サーミスタ43で検出される注湯温度が、使用者が設定したお湯の温度(たとえば40℃)よりも所定の温度(たとえば2℃)だけ低い温度(ここでは38℃)となるように動作制御を行う。これは、注湯流路35から分岐した一方の湯が再び熱交換部5を流れる際に加熱されるからである。水位式の場合、制御手段12は水流センサ39で検出される入水流量をもとにして所定量の注湯を行うごとに、温水循環ポンプ7を駆動させて水流スイッチ31でON、OFF動作を確認する循環水チェック動作を行った後、温水循環ポンプ7を停止させて所定の時間(たとえば30秒)浴槽水19の水位が安定するのを待ち、水位センサ32で浴槽水19の水位を確認しながら使用者が設定した水位になるまで注湯動作を行う。使用者が設定した水位まで注湯されると、制御手段12は上述の強制循環式ガス風呂釜の場合と同様に風呂追い焚き運転を行い、使用者が設定した温度(たとえば40℃)まで風呂追い焚き運転を行い、風呂お湯はり運転は終了する。   The user enters the hot water temperature (eg, 40 ° C.) and the set water level (eg, “6” out of the water level setting range “1” to “10”) and starts bath hot water operation. Then, the control means 12 opens the pouring valve 33 and a water flow is generated in the pouring flow channel 35, whereby a water flow is generated in the hot water supply side flow channel, and the same operation as the above-described hot water supply operation is performed. The hot water flow path 35 is connected to the hot water return flow path 9, and hot water supplied in the hot water supply operation is branched in two directions as indicated by arrows in FIG. That is, one flows through the hot water return flow path 9 and the hot water return pipe 16 and is poured into the bathtub 18, and the other flows through the hot water return flow path 9, the heat exchange unit 5, the warm water return flow path 8, and the warm water return pipe 15. Hot water is poured into the bathtub 18. Here, in the hot water supply operation during the bath hot water operation, the control means 12 is such that the pouring temperature detected by the hot water thermistor 43 is a predetermined temperature (for example, 40 ° C.) than the hot water temperature (for example, 40 ° C.) set by the user. Operation control is performed so that the temperature is lower by 2 ° C.) (38 ° C. in this case). This is because one hot water branched from the pouring channel 35 is heated when it flows through the heat exchanging section 5 again. In the case of the water level type, the control means 12 drives the hot water circulation pump 7 to turn the water flow switch 31 ON and OFF every time when a predetermined amount of pouring is performed based on the incoming water flow rate detected by the water flow sensor 39. After performing the circulating water check operation to be confirmed, the hot water circulation pump 7 is stopped, waits for a predetermined time (for example, 30 seconds), and the water level of the bathtub water 19 is stabilized, and the water level sensor 32 confirms the water level of the bathtub water 19 While pouring until the water level set by the user is reached. When the hot water is poured to the water level set by the user, the control means 12 performs the bath reheating operation in the same manner as in the case of the forced circulation gas bath described above, and takes the bath to the temperature set by the user (for example, 40 ° C.). A chasing operation is performed, and the bath / hot water operation ends.

上述の循環水チェック動作後の水位センサ39の水位検出値が安定するまでの所定の待ち時間長さはガス給湯機付き風呂釜、浴槽18、風呂往き配管15、および風呂戻り配管16の設置条件ごとに設定する。一般に風呂往き配管15と風呂戻り配管16の配管長さが長くなれば長くなるほど配管内の水の流動が安定するまでには時間を要する。したがって、たとえば機器設置時に風呂往き配管15と風呂戻り配管16の配管長さが所定長さ(たとえば15m)以上であれば、施工業者等が制御手段12内に設けられたディップスイッチ等の切替えスイッチで配管長さ「長い」の設定を選択すれば、水位センサ39の水位検出時安定待ち時間を長く(たとえば90秒)設定させることができる。   The predetermined waiting time until the water level detection value of the water level sensor 39 after the above circulating water check operation is stabilized is the installation condition of the bathtub with the gas water heater, the bathtub 18, the bath outlet pipe 15, and the bath return pipe 16. Set for each. In general, the longer the pipe length of the bath outlet pipe 15 and the bath return pipe 16, the longer it takes to stabilize the water flow in the pipe. Therefore, for example, if the pipe length of the bath outlet pipe 15 and the bath return pipe 16 is equal to or longer than a predetermined length (for example, 15 m) at the time of equipment installation, a construction switch or the like is provided with a switch such as a dip switch provided in the control means 12. If the setting of the pipe length “long” is selected, the stabilization wait time when the water level sensor 39 detects the water level can be set long (for example, 90 seconds).

図5では水位式のガス給湯機付き風呂釜の構成を示し、上述で水位式のガス給湯機付き風呂釜における風呂お湯はり運転動作について説明したが、風呂戻り配管9に水位センサ32を有さず水量センサ39から検出される流量から注湯量をカウントして所定量の湯を
浴槽18に注湯する水量式のガス給湯機付き風呂釜においては、浴槽18内に浴槽水19が存在した状態から風呂お湯はり運転を行う場合には、浴槽18内に存在する浴槽水19の量を演算する「残湯演算」動作を行う必要がある。この残湯演算によって、浴槽18内に浴槽水19の量がたとえば80Lであると演算されたとすると、使用者が設定した注湯量がたとえば180Lであるとするならば、制御手段12は残り100Lを水量センサ39で注湯量をカウントして風呂お湯はり運転動作を行う。この残湯演算はたとえば下記のように行われる。
FIG. 5 shows the configuration of a water kettle with a water level type gas water heater, and the bath hot water operation in the bath kettle with a water level type gas water heater has been described above. However, the bath return pipe 9 has a water level sensor 32. In the bathtub with water-type gas water heater that counts the amount of pouring from the flow rate detected by the water amount sensor 39 and pours a predetermined amount of hot water into the bathtub 18, the bath water 19 exists in the bathtub 18. In the case of performing hot water bath operation, it is necessary to perform a “remaining hot water calculation” operation for calculating the amount of bathtub water 19 present in the bathtub 18. Assuming that the amount of bath water 19 in the bathtub 18 is calculated to be, for example, 80 L by this remaining hot water calculation, if the amount of pouring water set by the user is, for example, 180 L, the control means 12 will allocate the remaining 100 L. The amount of hot water is counted by the water amount sensor 39 and the bath hot water operation is performed. This remaining hot water calculation is performed as follows, for example.

残湯演算は、浴槽18内の浴槽水19を所定の温度上昇分まで風呂追い焚き運転を行い、その間に循環温水が得た総熱量を計算し、その総熱量を所定の温度上昇分で割ることによって行う。   In the remaining hot water calculation, the bath water 19 in the bathtub 18 is bathed up to a predetermined temperature rise, the total amount of heat obtained by the circulating hot water during that time is calculated, and the total heat amount is divided by the predetermined temperature rise. By doing.

浴槽18内の浴槽水19の残湯量をV(L)、所定の温度上昇分をΔTc(K)とすると、残湯量V(L)がΔTc(K)温度上昇することで得た熱量Q(kcal)は、(5)式で表せる。浴槽水19の温度は、温水戻りサーミスタ11で検出できるので、残湯演算開始時の浴槽水温度からの温度上昇分を監視することで所定の温度上昇分ΔTc(K)を測定することができる。ここで所定の温度上昇分ΔTc(K)としては、たとえば3K程度のような値である。   Assuming that the amount of remaining hot water in the bathtub water 19 in the bathtub 18 is V (L) and the predetermined temperature rise is ΔTc (K), the amount of heat Q (() obtained by the temperature rise of the remaining hot water V (L) by ΔTc (K) kcal) can be expressed by equation (5). Since the temperature of the bath water 19 can be detected by the hot water return thermistor 11, a predetermined temperature rise ΔTc (K) can be measured by monitoring the temperature rise from the bath water temperature at the start of the remaining hot water calculation. . Here, the predetermined temperature rise ΔTc (K) has a value of about 3K, for example.

Q=VΔTc ・・・ (5)
一方、制御手段12は所定の時間間隔Δt(min)ごとに、温水往きサーミスタ10で検出される温水往き温度と温水戻りサーミスタ11で検出される温水戻り温度との温度差ΔTi(K)を測定する。ここでΔTi(K)は、残湯演算を開始してから時刻iΔt(min)における温水往きサーミスタ10で検出される温水往き温度と温水戻りサーミスタ11で検出される温水戻り温度との温度差を表す。また所定の時間間隔Δt(min)としては、たとえば0.1min程度のような値である。機器設置時に行われる試運転時の循環流量学習値をq学習(L/min)とすると、時刻iΔt(min)における時間間隔Δt(min)に循環温水が得る熱量Qi(kcal)は、(6)式で表せる。
Q = VΔTc (5)
On the other hand, the control means 12 measures a temperature difference ΔTi (K) between the warm water return temperature detected by the warm water return thermistor 10 and the warm water return temperature detected by the warm water return thermistor 11 at every predetermined time interval Δt (min). To do. Here, ΔTi (K) is a temperature difference between the warm water return temperature detected by the warm water return thermistor 10 and the warm water return temperature detected by the warm water return thermistor 11 at the time iΔt (min) after the remaining hot water calculation is started. To express. The predetermined time interval Δt (min) is a value such as about 0.1 min. Assuming that the learning value of the circulating flow during the trial operation performed at the time of equipment installation is q learning (L / min), the amount of heat Qi (kcal) obtained by the circulating hot water at the time interval Δt (min) at time iΔt (min) is (6) It can be expressed by an expression.

Qi=q学習ΔtΔTi ・・・ (6)
ここで機器設置時に行われる試運転時の循環流量学習動作は、制御手段12が所定の燃焼量出力値(たとえば4800kcal/h)を保った状態で、温水往きサーミスタ10と温水戻りサーミスタ11との温度差を測定して行われる。この時温水往きサーミスタ10と温水戻りサーミスタ11との温度差がたとえば10Kであったとすると、循環流量は
4800/60/10=8 L/min
であると演算される。
Qi = q learning ΔtΔTi (6)
Here, the circulation flow rate learning operation at the time of trial installation performed at the time of equipment installation is performed with the temperature of the warm water thermistor 10 and the warm water return thermistor 11 in a state where the control means 12 maintains a predetermined combustion amount output value (for example, 4800 kcal / h). This is done by measuring the difference. At this time, if the temperature difference between the warm water return thermistor 10 and the warm water return thermistor 11 is 10K, for example, the circulation flow rate is 4800/60/10 = 8 L / min.
It is calculated that

制御手段12は、浴槽18内の浴槽水19の残湯量V(L)が所定の温度上昇ΔTc(K)となるまでの間、(7)式で示すように、(6)式で計算されるΔt(min)間に循環温水の得た熱量Qi(kcal)をiについて足すことにより、浴槽18内の浴槽水19の残湯量V(L)が所定の温度上昇ΔTc(K)となるまでに循環温水が得た総熱量Q(kcal)を演算する。   The control means 12 is calculated by the equation (6) as shown by the equation (7) until the remaining hot water amount V (L) of the bathtub water 19 in the bathtub 18 reaches a predetermined temperature rise ΔTc (K). The amount of remaining hot water V (L) in the bathtub water 19 in the bathtub 18 reaches a predetermined temperature rise ΔTc (K) by adding the amount of heat Qi (kcal) obtained from the circulating hot water to i during Δt (min) The total amount of heat Q (kcal) obtained by circulating hot water is calculated.

Q=ΣQi=q学習Δt(ΣΔTi) ・・・ (7)
(5)式と(7)式を等置し、Vについて解くと残湯量V(L)は(8)式のように表せる。
Q = ΣQi = q learning Δt (ΣΔTi) (7)
When equations (5) and (7) are placed equally and solved for V, the remaining hot water amount V (L) can be expressed as equation (8).

V={q学習Δt(ΣΔTi)}/ΔTc ・・・ (8)
特開平8−122117号公報
V = {q learning Δt (ΣΔTi)} / ΔTc (8)
JP-A-8-122117

しかしながら、前記従来の強制循環式ガス風呂釜やガス給湯機付き風呂釜では、水流スイッチ31で水流の有無のみしか判定できず、温水循環流路の循環流量を測定することができないため、温水循環流路内の状態を詳細に判定できないという問題を有していた。たとえば温水循環流路内の状態を詳細に判定できない問題例としては、使用者が入浴中に風呂追い焚き運転を行った場合に、使用者がタオル等を風呂アダプタ17部分から詰まらせ、循環流量が低下したとしても水流スイッチ31がONとなっている限り、温水循環流路に詰まりが発生した等の異常状態を検出することができないことが挙げられる。また同様な場合で、髪の毛が長い女児が風呂アダプタに髪の毛を吸い込まれてその状態から逃れることができず、溺死に至ったという事例もある。また水流スイッチ31では、所定重さのマグネットが重さのばらつきやマグネットの磁力などの部品ばらつきにより、水流が検出される所定流量にばらつきが生じるという問題もあった。   However, in the conventional forced circulation type gas bath and the bath with a gas water heater, only the presence or absence of water flow can be determined by the water flow switch 31, and the circulation flow rate of the hot water circulation channel cannot be measured. There was a problem that the state in the flow channel could not be determined in detail. For example, as an example of a problem in which the state in the hot water circulation channel cannot be determined in detail, when the user performs a bath chasing operation during bathing, the user clogs a towel or the like from the bath adapter 17 portion, and the circulation flow rate As long as the water flow switch 31 is ON, an abnormal state such as clogging in the hot water circulation channel cannot be detected. In the same case, there is a case where a girl with long hair is drawn into the bath adapter and cannot escape from that state, leading to drowning. In addition, the water flow switch 31 has a problem in that the predetermined flow rate at which the water flow is detected varies due to variations in the weight of the magnet and component variations such as the magnetic force of the magnet.

また水位式のガス給湯機付き風呂釜においては、風呂往き配管15と風呂戻り配管16の配管長さによって、水位センサ39の水位検出値の安定待ち時間を設定しなければならない手間が生ずるという問題もあった。   Further, in a water bath with a water level type gas water heater, there is a problem in that it takes time to set a stabilization waiting time for the water level detection value of the water level sensor 39 depending on the length of the bath outlet pipe 15 and the bath return pipe 16. There was also.

また水量式のガス給湯機付き風呂釜においては、残湯演算を行う際に、温水循環流路内の循環流量を測定できないため、機器設置時に行う試運転時に循環流量学習動作を行う必要があるという問題もあった。   Also, in a water bath with a water-type gas water heater, it is necessary to perform a circulating flow learning operation during a trial run when installing the equipment, because the circulating flow in the hot water circulation channel cannot be measured when calculating the remaining hot water. There was also a problem.

本発明は、前記従来の課題を解決するもので、温水が流れる温水循環流路中に超音波流速計を備え、超音波流速計での計測量から温水循環流路を流れる温水の循環流量や温水循環流路内の音速を演算し、これらの循環流量や音速に基づいて動作制御される温水循環装置を提供することを目的とする。   The present invention solves the above-described conventional problem, and includes an ultrasonic velocity meter in a hot water circulation channel through which hot water flows, and a circulating flow rate of hot water flowing through the hot water circulation channel from a measurement amount by the ultrasonic velocity meter, It is an object of the present invention to provide a hot water circulation device that calculates the speed of sound in the hot water circulation channel and that is controlled in operation based on the circulation flow rate and the sound speed.

前記従来の課題を解決するために、本発明の温水循環装置は、温水が流れる温水循環流路中に超音波流速計を備え、超音波流速計の計測量から温水循環流路を流れる温水の循環流量や温水循環流路内の音速を演算し、これらの循環流量や音速に基づく動作制御を行うようにしたものである。   In order to solve the above-mentioned conventional problems, the hot water circulation device of the present invention includes an ultrasonic current meter in a warm water circulation channel through which hot water flows, and hot water flowing through the hot water circulation channel from a measurement amount of the ultrasonic current meter. The circulation flow rate and the sound velocity in the hot water circulation channel are calculated, and the operation control based on the circulation flow rate and the sound velocity is performed.

これによって、循環流量や音速に基づく動作制御や、循環流量や音速に基づいて温水循環流路内の状態把握を行うことができる。   Thereby, it is possible to perform operation control based on the circulation flow rate and the sound velocity, and to grasp the state in the hot water circulation channel based on the circulation flow rate and the sound velocity.

本発明の温水循環装置は、温水が流れる温水循環流路中に超音波流速計を備え、超音波流速計の計測量から温水循環流路を流れる温水の循環流量や温水循環流路内の音速を演算し、これらの循環流量や音速に基づいてより詳細な動作制御を実現させることができる。   The hot water circulation device of the present invention includes an ultrasonic velocity meter in the hot water circulation channel through which the hot water flows, and the circulating flow rate of the hot water flowing through the hot water circulation channel and the sound velocity in the hot water circulation channel from the measurement amount of the ultrasonic velocity meter. And more detailed operation control can be realized based on the circulating flow rate and the sound speed.

第1の発明は、温水循環流路中に超音波流速計を設け、その計測量から温水循環流路の循環流量の演算を制御手段で行い、制御手段は演算された循環流量に基づいて諸動作制御を行うことができる。   In the first invention, an ultrasonic current meter is provided in the hot water circulation flow path, and the control means calculates the circulation flow rate of the hot water circulation flow path from the measured amount. The control means performs various operations based on the calculated circulation flow rate. Operation control can be performed.

第2の発明は、特に、第1の発明の超音波流速計を、温水循環流路のうちの温水戻り流路中に設けることで、温水戻り流路における超音波流速計の計測量から循環流量の演算を制御手段で行い、制御手段は演算された循環流量に基づいて諸動作制御を行うことができる。   In particular, the second invention circulates from the measured amount of the ultrasonic current meter in the hot water return channel by providing the ultrasonic current meter of the first invention in the hot water return channel of the hot water circulation channel. The calculation of the flow rate is performed by the control means, and the control means can control various operations based on the calculated circulation flow rate.

第3の発明は、特に、第1の発明の超音波流速計を、温水循環流路のうちの温水往き流路中に設けることで、温水往き流路における超音波流速計の計測量から循環流量の演算を制御手段で行い、制御手段は演算された循環流量に基づいて諸動作制御を行うことができる。   In particular, the third invention circulates from the measured amount of the ultrasonic current meter in the hot water flow channel by providing the ultrasonic current meter of the first invention in the warm water flow channel of the hot water circulation channel. The calculation of the flow rate is performed by the control means, and the control means can control various operations based on the calculated circulation flow rate.

第4の発明は、特に、第1〜3のいずれか1つの発明の制御手段において、超音波流速計からの計測量から演算される循環流量に基づいて、温水循環流路内の状態を把握する機能を備えることで、制御手段は温水循環流路内の状態を詳細に把握することができる。   In the fourth aspect of the invention, in particular, in the control means of any one of the first to third aspects, the state in the hot water circulation channel is grasped based on the circulation flow rate calculated from the measurement amount from the ultrasonic current meter. By providing the function to perform, the control means can grasp the state in the hot water circulation channel in detail.

第5の発明は、特に、第1〜4のいずれか1つの発明の温水循環装置において、超音波流速計からの計測量から温水循環流路内の音速の演算を制御手段で行い、制御手段は演算された音速に基づいて諸動作制御を行うことができる。   According to a fifth aspect of the invention, in particular, in the hot water circulation apparatus according to any one of the first to fourth aspects of the invention, the control means calculates the speed of sound in the hot water circulation flow path from the measured amount from the ultrasonic current meter, and the control means Can control various operations based on the calculated sound speed.

第6の発明は、特に、第5の発明の制御手段において、超音波流速計からの計測量から演算される音速に基づいて、温水循環流路内の状態を把握する機能を備えることで、制御手段は温水循環流路内の状態を詳細に把握することができる。   The sixth aspect of the invention is, in particular, in the control means of the fifth aspect of the invention, by providing a function of grasping the state in the hot water circulation channel based on the speed of sound calculated from the measurement amount from the ultrasonic current meter, The control means can grasp the state in the hot water circulation channel in detail.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
本実施の形態においては、第1〜第3の発明に対応させ、従来の温水循環装置としての強制循環式ガス風呂釜やガス給湯機付き風呂釜の水流スイッチ31の水流検知機能の替わりとして、超音波流速計からの計測量による循環流量演算から水流検知を行う動作制御について述べる。
(Embodiment 1)
In this embodiment, instead of the water flow detection function of the water flow switch 31 of the forced circulation type gas bath as a conventional hot water circulation device or a bath with a gas water heater, corresponding to the first to third inventions, The operation control for detecting the water flow from the calculation of the circulation flow rate based on the measurement amount from the ultrasonic anemometer will be described.

図1は、第1〜第6の発明の実施の形態における強制循環式ガス風呂釜の構成図を示すものである。   FIG. 1 shows a configuration diagram of a forced circulation gas bath in the first to sixth embodiments.

図1において、図4に示した従来の強制循環式ガス風呂釜の構成図と異なるところは、図4に示した水流スイッチ31の替わりに図3に示した超音波流速計6を配置し、制御手段12に超音波流速計6からの計測量である伝播時間tおよび伝播時間tから循環流量や音速を演算し、これらの循環流量や音速に基づいた動作制御する機能を設けたところである。 1 differs from the configuration diagram of the conventional forced circulation gas bath shown in FIG. 4 in that the ultrasonic anemometer 6 shown in FIG. 3 is arranged instead of the water flow switch 31 shown in FIG. The control means 12 is provided with a function for calculating the circulation flow rate and the sound speed from the propagation time t 1 and the propagation time t 2 which are measured quantities from the ultrasonic current meter 6 and controlling the operation based on the circulation flow rate and the sound speed. is there.

また図2は、第1〜第6の発明の実施の形態におけるガス給湯機付き風呂釜の構成図を示すものである。   Moreover, FIG. 2 shows the block diagram of the bathtub with a gas water heater in Embodiment of 1st-6th invention.

図2において、図5に示した従来のガス給湯機付き風呂釜の構成図と異なるところは、図1に示した本発明の第1〜第6の発明の実施の形態における強制循環式ガス風呂釜の、図4に示した従来の強制循環式ガス風呂釜の構成図と異なるところと同様に、図5に示した水流スイッチ31の変わりに図3に示した超音波流速計6を配置し、制御手段12に超音波流速計6からの計測量である伝播時間tおよび伝播時間tから循環流量や音速を演算し、これらの循環流量や音速に基づいた動作制御する機能を設けたところである。 2 differs from the configuration diagram of the conventional bath with a gas water heater shown in FIG. 5 in that the forced circulation gas bath in the first to sixth embodiments of the present invention shown in FIG. Similarly to the configuration of the conventional forced circulation gas bath shown in FIG. 4, the ultrasonic current meter 6 shown in FIG. 3 is arranged in place of the water flow switch 31 shown in FIG. The control means 12 is provided with a function of calculating the circulation flow rate and the sound speed from the propagation time t 1 and the propagation time t 2 which are measurement amounts from the ultrasonic current meter 6 and controlling the operation based on the circulation flow rate and the sound speed. By the way.

なお図1および図2における超音波流速計6の温水循環流路内での配置は、第2の発明における温水戻り流路9内に行っているが、第3の発明における温水往き流路8内に超音波流速計6を配置させてもその効果は同様である。なお以下のすべての実施の形態においては、図1および図2に示したように、超音波流速計6を温水循環流路のうちの温水戻り
流路9中に配置させた構成で説明するものとする。
1 and 2 is arranged in the hot water return flow path 9 in the second invention, the hot water flow path 8 in the third invention. The effect is the same even if the ultrasonic velocimeter 6 is arranged inside. In all the following embodiments, as shown in FIGS. 1 and 2, the ultrasonic velocimeter 6 will be described in a configuration in which it is arranged in the hot water return flow path 9 in the hot water circulation flow path. And

以上のように構成された強制循環式ガス風呂釜やガス給湯機付き風呂釜について、以下その動作、作用について説明する。   The operation and action of the forced circulation gas bath having the above-described configuration and the bath with a gas water heater will be described below.

図1および図2において、温水循環流路内に超音波流速計6を設け、制御手段12で超音波流速計6からの計測量である伝播時間tおよび伝播時間tから循環流量を演算することで、図4や図5に示した従来の水流スイッチ31の水流検知機能の替わりの機能とすることができる。すなわち風呂追い焚き運転時に、制御手段12は温水循環ポンプ7を駆動させて循環流量を演算し、所定の循環流量(たとえば3L/min)以上を検出した時点で温水循環流路中に水流が生じたことを検出する動作制御を行う。ここで循環流量qは、温水循環流路の断面積をSとすると(3)式を用いて(9)式のように演算できる。 1 and 2, an ultrasonic current meter 6 is provided in the hot water circulation channel, and the control means 12 calculates the circulation flow rate from the propagation time t 1 and the propagation time t 2 that are measured quantities from the ultrasonic current meter 6. By doing so, it can be set as the function instead of the water flow detection function of the conventional water flow switch 31 shown in FIG. 4 and FIG. That is, at the time of bathing operation, the control means 12 drives the hot water circulation pump 7 to calculate the circulation flow rate, and when a predetermined circulation flow rate (for example, 3 L / min) or more is detected, a water flow is generated in the hot water circulation channel. Control the operation to detect this. Here, the circulation flow rate q can be calculated as in equation (9) using equation (3), where S is the cross-sectional area of the hot water circulation channel.

q=SU=S(L/2cosθ)(1/t−1/t) ・・・(9)
以上のように、本実施の形態においては超音波流速計6を温水循環流路内に設け、制御手段12で超音波流速計6からの計測量である伝播時間tおよび伝播時間tから(9)式によって循環流量を演算することで、従来の水流スイッチ31の水流検知機能の代替機能とすることができる。これによって循環流量qに基づく水流検知を行うことができるので、従来の温水循環装置の水流スイッチ31の部品ばらつきによる水流検知ばらつきを解消することができる。
q = SU = S (L / 2 cos θ) (1 / t 1 −1 / t 2 ) (9)
As described above, in the present embodiment, the ultrasonic velocity meter 6 is provided in the hot water circulation channel, and the control unit 12 determines the propagation time t 1 and the propagation time t 2 that are the measurement amounts from the ultrasonic velocity meter 6. By calculating the circulation flow rate according to the equation (9), it can be an alternative function of the water flow detection function of the conventional water flow switch 31. As a result, water flow detection based on the circulation flow rate q can be performed, so that water flow detection variations due to component variations of the water flow switch 31 of the conventional hot water circulation device can be eliminated.

(実施の形態2)
本実施の形態においては、第4の発明に対応させ、従来の温水循環装置としての強制循環式ガス風呂釜やガス給湯機付き風呂釜において、風呂アダプタ17が浴槽水19に水没しているかどうかの温水循環流路内の状態把握を、超音波流速計6からの計測量による循環流量演算から行う動作制御について述べる。
(Embodiment 2)
In the present embodiment, whether or not the bath adapter 17 is submerged in the bath water 19 in a forced circulation gas bath or a hot water bath with a gas water heater as a conventional hot water circulation device corresponding to the fourth invention. Next, the operation control performed by the circulation flow rate calculation based on the measurement amount from the ultrasonic velocity meter 6 will be described.

従来の温水循環装置としての強制循環式ガス風呂釜やガス給湯機付き風呂釜において、風呂追い焚き運転を行う際には、制御手段12はまず温水循環ポンプ7を駆動させて水流スイッチ31の検出信号から風呂アダプタ17が浴槽水19に水没しているかどうかの状態把握をたとえば次のように行っていた。
<状態1>水流スイッチ31が所定の時間(たとえば60秒間)OFFの場合
風呂アダプタ17が浴槽水19に全く水没していない。
<状態2>水流スイッチ31が所定の時間(たとえば60秒間)ON/OFFを繰り返す場合
風呂アダプタ17が浴槽水19に完全に水没していない。
<状態3>水流スイッチ31が所定の時間(たとえば60秒間)ONの場合
風呂アダプタ17が浴槽水19に完全に水没している。
In a forced circulation gas bath with a conventional hot water circulation device or a bath with a gas water heater, the control means 12 first drives the hot water circulation pump 7 to detect the water flow switch 31 when performing a bath reheating operation. For example, the state of whether or not the bath adapter 17 is submerged in the bathtub water 19 is determined as follows from the signal.
<State 1> When the water flow switch 31 is OFF for a predetermined time (for example, 60 seconds) The bath adapter 17 is not submerged in the bath water 19 at all.
<State 2> When the water flow switch 31 repeats ON / OFF for a predetermined time (for example, 60 seconds) The bath adapter 17 is not completely submerged in the bath water 19.
<State 3> When the water flow switch 31 is ON for a predetermined time (for example, 60 seconds) The bath adapter 17 is completely submerged in the bath water 19.

ここで風呂アダプタ17が浴槽水19に完全に水没した<状態3>の場合にのみ、制御手段12は風呂追い焚き運転を続けて行うことが可能である。<状態1>や<状態2>の場合、たとえば従来の強制循環式ガス風呂釜においては風呂アダプタ17が浴槽水19に水没していないということで風呂追い焚き運転を継続することができないためエラー停止させたり、使用者に風呂アダプタ17が浴槽水19に完全に水没するまで浴槽水を追加する内容の報知を行っていた。また<状態1>や<状態2>の場合、たとえば従来のガス給湯機付き風呂釜においては、風呂アダプタ17が浴槽水19に完全に水没するまで注湯弁33を開として浴槽水を追加させるような動作制御を行っていた。   Here, only in the case of <state 3> where the bath adapter 17 is completely submerged in the bathtub water 19, the control means 12 can continue the bath reheating operation. In the case of <State 1> or <State 2>, for example, in the conventional forced circulation gas bath, the bath adapter 17 cannot be continued in the bath water 19 because the bath adapter 17 is not submerged. The user has been informed of the content of adding the bath water until the bath adapter 17 is completely submerged in the bath water 19. In the case of <state 1> or <state 2>, for example, in a conventional bath with a gas water heater, the hot water valve 33 is opened until the bath adapter 17 is completely submerged in the bath water 19 to add bath water. Such operation control was performed.

また従来の水流スイッチ31では、<状態3>を検出した場合でも、水流スイッチ31の部品ばらつきによって、たとえば水流スイッチ31のマグネット重さが軽かったような
場合、風呂アダプタ17が完全に浴槽水19に水没していない場合でも完全に水没している場合に検知してしまうことがあった。
Further, in the conventional water flow switch 31, even when <state 3> is detected, if the magnet weight of the water flow switch 31 is light due to variations in the components of the water flow switch 31, for example, the bath adapter 17 is completely removed from the bath water 19 Even if it is not submerged, it may be detected when it is completely submerged.

そこで本実施の形態においては、温水循環流路内に超音波流速計6を設け、超音波流速計6からの計測量から演算される循環流量に基づいて、風呂アダプタ17の浴槽水19への水没状態を従来の水流スイッチ31の場合よりもより精度良く検出する方法について述べる。   Therefore, in the present embodiment, an ultrasonic velocity meter 6 is provided in the hot water circulation channel, and the bath adapter 17 is supplied to the bathtub water 19 based on the circulation flow rate calculated from the measurement amount from the ultrasonic velocity meter 6. A method of detecting a submerged state with higher accuracy than in the case of the conventional water flow switch 31 will be described.

まず制御手段12は温水循環ポンプ7を駆動して正常に風呂追い焚き運転を行っている際に、所定の循環流量(たとえば3L/min)以上の範囲での循環流量最大値qmaxを記憶し、qmaxを風呂アダプタ17が浴槽水19に完全に水没した状態であると学習する。ここで循環流量最大値qmaxは、温水循環ポンプ7の搬送能力や機器、浴槽18、風呂往き配管15、および風呂戻り配管16の設置条件が同じであればいつも同じ値を示すはずであるが、経年時の影響や測定誤差を含めてたとえば随時更新できるようにしておく。 First, the control means 12 stores the circulating flow maximum value q max in a range of a predetermined circulating flow rate (for example, 3 L / min) or more when the hot water circulation pump 7 is driven and the bath reheating operation is normally performed. Q max is learned that the bath adapter 17 is completely submerged in the bath water 19. Here, the maximum circulation flow rate q max should always show the same value as long as the conveying capacity of the hot water circulation pump 7 and the installation conditions of the equipment, the bathtub 18, the bath outlet pipe 15, and the bath return pipe 16 are the same. For example, it can be updated at any time, including the effects of aging and measurement errors.

次に制御手段12は、風呂追い焚き運転(9)式によって演算される循環流量qと記憶している循環流量最大値qmaxと比較して図1に示した強制循環式ガス風呂釜においては、たとえば次のような動作制御を行い、風呂アダプタ17の浴槽水19への水没状態を検出するものとする。
<場合1>qが0.95qmax以下
制御手段12は風呂アダプタ17が浴槽水19に水没していない状態を検出し、温水循環ポンプ7の駆動を停止させ、使用者に浴槽水19の量が風呂追い焚き運転を行うには不十分であることの内容を報知し、浴槽水19を追加するように促す。
<場合2>q>0.95qmax
制御手段12は風呂アダプタ17が浴槽水19に完全に水没している状態を検出し、そのまま風呂追い焚き運転を行う。
Next, the control means 12 compares the circulating flow rate q calculated by the bath reheating operation (9) with the stored circulating flow rate maximum value q max in the forced circulation type gas bath shown in FIG. For example, the following operation control is performed to detect the submerged state of the bath adapter 17 in the bath water 19.
<Case 1> q is 0.95q max or less The control means 12 detects a state in which the bath adapter 17 is not submerged in the bath water 19, stops the driving of the hot water circulation pump 7, and allows the user to make an amount of the bath water 19 Informs the user that the bath is not sufficient for the chasing operation and prompts the user to add bathtub water 19.
<Case 2>q> 0.95q max
The control means 12 detects the state in which the bath adapter 17 is completely submerged in the bath water 19 and performs the bath chasing operation as it is.

以上のように、本実施の形態においては超音波流速計6を温水循環流路内に設け、制御手段12で超音波流速計6からの計測量である伝播時間tおよび伝播時間tから(9)式によって演算される循環流量に基づいて温水循環流路内の状態把握を行うことで、従来の水流スイッチ31を用いた水流検知よりもより精度良く風呂アダプタ17の浴槽水19への水没状態を検出することができる。 As described above, in the present embodiment, the ultrasonic velocity meter 6 is provided in the hot water circulation channel, and the control unit 12 determines the propagation time t 1 and the propagation time t 2 that are the measurement amounts from the ultrasonic velocity meter 6. By grasping the state in the hot water circulation channel based on the circulation flow rate calculated by the equation (9), the bath adapter 17 can be supplied to the bathtub water 19 more accurately than the water flow detection using the conventional water flow switch 31. A submerged state can be detected.

(実施の形態3)
本実施の形態においては、第4の発明に対応させ、温水循環装置としての強制循環式ガス風呂釜やガス給湯機付き風呂釜において、入浴中に使用者が風呂追い焚き運転を行っている際に、誤ってタオルや髪の毛を風呂アダプタ17に吸い込まれた詰まり状態を、超音波流速計6からの計測量によって演算される循環流量を用いて温水循環流路内の状態把握を行うことで検出する動作制御について述べる。
(Embodiment 3)
In the present embodiment, in response to the fourth invention, in a forced circulation type gas bath as a hot water circulation device or a bath with a gas water heater, when a user is performing a bath retreat operation during bathing In addition, a clogged state in which towel or hair is accidentally sucked into the bath adapter 17 is detected by grasping the state in the hot water circulation channel using the circulation flow rate calculated by the measurement amount from the ultrasonic current meter 6. The operation control will be described.

この場合、図1や図2において、制御手段12は風呂追い焚き運転時に超音波流速計6からの計測量による循環流量演算値から、所定の時間内(たとえば30秒間)の循環流量演算値の変化量を監視しておく。通常に問題なく風呂追い焚き運転が行われている場合には、循環流量演算値qは実施の形態2で述べた循環流量最大値qmaxとほぼ同じ値(たとえば、0.95qmax<q<1.05qmax)となる。ここで風呂アダプタ17においてタオルや髪の毛が吸い込まれた場合、結果として温水循環流路が閉塞されるため循環流量演算値qは減少する。この状態を制御手段12にたとえば次の詰まり検出条件として認識させる。
<詰まり検出条件>
所定の時間内(たとえば30秒間)で、循環流量演算値qが連続して所定の時間(たとえば5秒)循環流量最大値qmaxの所定比率(たとえばqmaxの80%に対応した0.8qmax)未満に急変した場合、温水循環流路に詰まりが生じた状態として検出する。
In this case, in FIG. 1 and FIG. 2, the control means 12 calculates the circulating flow rate calculated value within a predetermined time (for example, 30 seconds) from the circulating flow rate calculated value based on the measurement amount from the ultrasonic velocimeter 6 during the bath chasing operation. Monitor the amount of change. When the bath reheating operation is normally performed without any problem, the circulation flow rate calculation value q is substantially the same as the circulation flow rate maximum value q max described in the second embodiment (for example, 0.95q max <q < 1.05q max ). Here, when towel or hair is sucked in the bath adapter 17, the hot water circulation channel is closed as a result, and the circulation flow rate calculation value q decreases. For example, the controller 12 recognizes this state as the next clogging detection condition.
<Clogging detection conditions>
Within a predetermined time (for example, 30 seconds), the circulation flow rate calculation value q continues for a predetermined time (for example, 5 seconds). A predetermined ratio (for example, 0.8q corresponding to 80% of q max ) of the circulation flow rate maximum value q max If it changes suddenly to less than max ), it is detected as a clogged hot water circulation channel.

上記詰まり検出を行った場合には、制御手段12は風呂追い焚き運転を停止させ、たとえば警報音を発して周囲に報知するなどの動作制御を行う。   When the clogging is detected, the control means 12 stops the bath chasing operation and performs operation control such as generating an alarm sound to notify the surroundings.

以上のように、本実施の形態においては超音波流速計6を温水循環流路内に設け、制御手段12で超音波流速計6からの計測量である伝播時間tおよび伝播時間tから(9)式によって演算される循環流量を監視することで、温水循環流路内の詰まり状態を検出することができる。これによって入浴中に使用者が風呂追い焚き運転を行っている際に、誤ってタオルや髪の毛を風呂アダプタ17に吸い込まれた状態を検出することができ、使用者の安全を確保することができる。 As described above, in the present embodiment, the ultrasonic velocity meter 6 is provided in the hot water circulation channel, and the control unit 12 determines the propagation time t 1 and the propagation time t 2 that are the measurement amounts from the ultrasonic velocity meter 6. The clogged state in the hot water circulation channel can be detected by monitoring the circulation flow rate calculated by the equation (9). This makes it possible to detect a state in which a towel or hair has been accidentally sucked into the bath adapter 17 when the user is chasing the bath while taking a bath, thereby ensuring the safety of the user. .

(実施の形態4)
本実施の形態においては、第5および第6の発明に対応させ、上述実施の形態2の風呂アダプタ17の浴槽水19への水没状態を、超音波流速計6からの計測量によって(4)式から演算される音速Aによる温水循環流路内の状態把握を行うことで検出する動作制御について述べる。
(Embodiment 4)
In this embodiment, corresponding to the fifth and sixth inventions, the submerged state in the bath water 19 of the bath adapter 17 of the above-described second embodiment is determined by the measurement amount from the ultrasonic current meter 6 (4). The operation control detected by grasping the state in the hot water circulation channel by the sound speed A calculated from the equation will be described.

音速は気体中と液体中では液体中の方が大きく、たとえば0℃の場合、空気中では約330m/sであるが、水中では約1400m/sである。音速は温度の影響を大きく受けるが、空気中と水中では音速のオーダーが10異なることを考慮すると、風呂アダプタ17の浴槽水19への水没状態を判定する程度であれば温度の影響を無視しても実使用上問題ないと考えられる。また、図1や図2において、上述実施の形態2の<状態2>における風呂アダプタ17が完全に浴槽水19に水没していない状態であれば、温水循環流路中に空気が存在していると考えられ、その分温水循環流路が完全に温水に満たされた<状態3>の場合よりも音速が低下するはずである。そこで制御手段12はたとえば下記条件に従い、上述実施の形態2と同様な風呂アダプタ17の浴槽水19への水没状態を検出し、動作制御を行うものとする。
<場合1>音速Aが1300m/s以下
制御手段12は風呂アダプタ17が浴槽水19に水没していない状態を検出し、温水循環ポンプ7の駆動を停止させ、使用者に浴槽水19の量が風呂追い焚き運転を行うには不十分であることの内容を報知し、浴槽水19を追加するように促す。
<場合2>音速A>1300m/s
制御手段12は風呂アダプタ17が浴槽水19に完全に水没している状態を検出し、そのまま風呂追い焚き運転を行う。
The speed of sound is greater in liquid than in gas and in liquid. For example, at 0 ° C., it is about 330 m / s in air but about 1400 m / s in water. Sound velocity greatly influenced by the temperature, but ignored when the air and water order sound velocity considering the 10 1 different, the effect of temperature be about determining the submerged state to bath water 19 bath Adapter 17 However, there is no problem in actual use. In FIG. 1 and FIG. 2, if the bath adapter 17 in <State 2> of the second embodiment is not completely submerged in the bath water 19, air is present in the hot water circulation channel. Therefore, the sound velocity should be lower than that in the case of <State 3> where the hot water circulation passage is completely filled with hot water. Therefore, for example, the control unit 12 detects the submerged state of the bath adapter 17 in the bath water 19 similar to that of the above-described second embodiment according to the following conditions, and performs operation control.
<Case 1> The speed of sound A is 1300 m / s or less The control means 12 detects a state in which the bath adapter 17 is not submerged in the bath water 19, stops driving the hot water circulation pump 7, and allows the user to make an amount of the bath water 19. Informs the user that the bath is not sufficient for the chasing operation and prompts the user to add bathtub water 19.
<Case 2> Sound velocity A> 1300 m / s
The control means 12 detects the state in which the bath adapter 17 is completely submerged in the bath water 19 and performs the bath chasing operation as it is.

以上のように、本実施の形態においては超音波流速計6を温水循環流路内に設け、制御手段12で超音波流速計6からの計測量である伝播時間tおよび伝播時間tから(4)式によって演算される音速に基づいて温水循環流路内の状態把握を行うことで、従来の水流スイッチ31を用いた水流検知よりもより精度良く風呂アダプタ17の浴槽水19への水没状態を検出することができる。 As described above, in the present embodiment, the ultrasonic velocity meter 6 is provided in the hot water circulation channel, and the control unit 12 determines the propagation time t 1 and the propagation time t 2 that are the measurement amounts from the ultrasonic velocity meter 6. By substituting the state in the hot water circulation channel based on the speed of sound calculated by the equation (4), the bath adapter 17 is submerged in the bathtub water 19 with higher accuracy than the conventional water flow detection using the water flow switch 31. The state can be detected.

(実施の形態5)
本実施の形態においては、第5および第6の発明に対応させ、超音波流速計6からの計測量によって(4)式から演算される音速Aと、(9)式から演算される循環流量qとの両方を用いることで温水循環流路内の状態把握を行い、諸動作制御を行う場合について述べる。
(Embodiment 5)
In the present embodiment, corresponding to the fifth and sixth inventions, the sound velocity A calculated from the equation (4) based on the measurement amount from the ultrasonic current meter 6 and the circulating flow rate calculated from the equation (9). The case where the state in the hot water circulation channel is grasped by using both q and various operations are controlled will be described.

風呂追い焚き運転時などの温水循環ポンプ7が駆動されている場合に、循環流量qはほぼ循環流量最大値qmaxの値(たとえばq>0.9qmax)であるが、音速Aが上述実施の形態4における1300m/s以下の場合、配管途中に配管接続不良や配管破損が生じ、温水循環流路系に空気噛みが生じている状態であると考えられる。このような場合、たとえば制御手段12は配管異常状態を検知し、使用者にその状態を報知するような動作制御を行う。 When the hot water circulation pump 7 is driven at the time of bathing operation or the like, the circulation flow rate q is substantially the value of the maximum circulation flow rate q max (for example, q> 0.9q max ), but the sound speed A is implemented as described above. In the case of 1300 m / s or less in Form 4, it is considered that a pipe connection failure or a pipe breakage occurs in the middle of the pipe, and air is caught in the hot water circulation channel system. In such a case, for example, the control means 12 detects an abnormal piping state and performs operation control to notify the user of the state.

また上記実施の形態3に対応させ、温水循環流路に詰まりが生じた場合には、実施の形態3中の<詰まり検出条件>に記載したように急激な循環流量低下が生じる条件に加え、音速A>1300m/sの条件を同時に満たすと温水循環流路に詰まりが生じた状態を検出することができる。   In addition, in the case where clogging occurs in the hot water circulation flow path in correspondence with the above-described third embodiment, in addition to the conditions that cause a sudden decrease in the circulation flow rate as described in <clogging detection conditions> in the third embodiment, When the sonic velocity A> 1300 m / s is satisfied at the same time, it is possible to detect a state in which the hot water circulation channel is clogged.

以上のように、本実施の形態においては超音波流速計6を温水循環流路内に設け、超音波流速計6からの計測量によって(4)式から演算される音速Aと、(9)式から演算される循環流量qとの両方を用いることで温水循環流路内の状態把握でき、配管異常状態の検出や上述実施の形態3の場合よりもより詳細な詰まり検出を行うことができる。   As described above, in the present embodiment, the ultrasonic velocity meter 6 is provided in the hot water circulation channel, and the sound velocity A calculated from the equation (4) by the measurement amount from the ultrasonic velocity meter 6 is obtained. By using both of the circulation flow rate q calculated from the equation, it is possible to grasp the state in the hot water circulation flow path, and it is possible to detect the abnormal piping state and more detailed clogging detection than in the case of the third embodiment. .

(実施の形態6)
本実施の形態においては、第5および第6の発明に対応させ、上述実施の形態4および実施の形態5における温水循環流路が温水で満たされた場合の音速Aを、各温水温度に対して学習し、温水温度を考慮してより精度良く温水循環流路内の状態把握を行って諸動作制御する方法について述べる。
(Embodiment 6)
In the present embodiment, the sound speed A when the hot water circulation channel in the above-described fourth and fifth embodiments is filled with warm water corresponding to the fifth and sixth inventions is determined for each warm water temperature. This section describes how to control various operations by learning and learning the state of the hot water circulation flow path with higher accuracy in consideration of the hot water temperature.

各温水温度に対する音速Aの学習は、たとえば風呂追い焚き運転を行う際に、温水循環流路が温水で満たされた(たとえば0.95qmax<q<1.05qmax)条件下で、音速Aを演算し温水温度が1℃ごと変化するたびにその時の音速値を学習することが考えられる。ここで温水温度は図1や図2における温水戻りサーミスタ11で検出することが可能である。このようにして得られた温水温度T℃における温水循環流路が温水で満たされた条件下での音速Aを、制御手段12は温水温度T℃の関数A(T)として学習する。 The learning of the sonic speed A for each hot water temperature is performed, for example, under the condition that the hot water circulation channel is filled with hot water (for example, 0.95q max <q <1.05q max ) when performing a bath chasing operation. It is considered that every time the hot water temperature changes by 1 ° C., the sound speed value at that time is learned. Here, the hot water temperature can be detected by the hot water return thermistor 11 in FIGS. The control means 12 learns the sound speed A under the condition that the hot water circulation channel at the hot water temperature T ° C. thus obtained is filled with hot water as a function A (T) of the hot water temperature T ° C.

あるいは、機器設置時に行う試運転時に、風呂アダプタ17が浴槽水19に完全に水没して温水循環流路内が温水で満たされた状態で風呂追い焚き運転を行い、所定の数箇所の温水温度(たとえば6箇所の、30℃、34℃、38℃、42℃、46℃、50℃)時の音速Aを測定し、制御手段12はこれらの測定された音速Aを基にしてたとえば最小二乗法で温水温度T℃における音速Aを、温水温度T℃の関数A(T)として学習する。   Alternatively, at the time of a trial run performed at the time of equipment installation, the bath adapter 17 is completely submerged in the bath water 19 and the hot water circulation channel is filled with the hot water, and the hot water circulation operation is performed. For example, the sound speed A at six locations (30 ° C., 34 ° C., 38 ° C., 42 ° C., 46 ° C., 50 ° C.) is measured, and the control means 12 is based on these measured sound speeds A, for example, the least square method. The sound speed A at the hot water temperature T ° C is learned as a function A (T) of the hot water temperature T ° C.

このようにして温水温度T℃の関数A(T)としての音速Aを用いて、上述実施の形態4での風呂アダプタ17の浴槽水19への水没状態はたとえば次のような条件で精度良く判定することができる。
<場合1>温水温度T℃において演算された音速Aが、0.95A(T)以下
制御手段12は風呂アダプタ17が浴槽水19に水没していない状態を検出し、温水循環ポンプ7の駆動を停止させ、使用者に浴槽水19の量が風呂追い焚き運転を行うには不十分であることの内容を報知し、浴槽水19を追加するように促す。
<場合2>温水温度T℃において演算された音速Aが、A>0.95A(T)
制御手段12は風呂アダプタ17が浴槽水19に完全に水没している状態を検出し、そのまま風呂追い焚き運転を行う。
In this way, using the speed of sound A as the function A (T) of the hot water temperature T ° C., the submerged state of the bath adapter 17 in the bathtub water 19 in the above-described fourth embodiment is accurate under the following conditions, for example. Can be determined.
<Case 1> The speed of sound A calculated at the hot water temperature T ° C. is 0.95 A (T) or less. The control means 12 detects a state where the bath adapter 17 is not submerged in the bath water 19 and drives the hot water circulation pump 7. Is stopped, and the user is informed of the fact that the amount of bathtub water 19 is insufficient to perform the bath chasing operation, and urges the user to add bathtub water 19.
<Case 2> The speed of sound A calculated at the hot water temperature T ° C is A> 0.95A (T)
The control means 12 detects the state in which the bath adapter 17 is completely submerged in the bath water 19 and performs the bath chasing operation as it is.

また温水温度T℃の関数A(T)としての音速Aを用いて、上述実施の形態5に対応さ
せると、風呂追い焚き運転時などの温水循環ポンプ7が駆動されている場合に、循環流量qはほぼ循環流量最大値qmaxの値(たとえばq>0.9qmax)であるが、温水温度T℃において演算された音速Aが0.95A(T)以下の場合、温水循環流路系に空気噛みが生じている状態と認識して配管異常状態を検出できる。
Further, using the speed of sound A as the function A (T) of the hot water temperature T ° C. and corresponding to the fifth embodiment, the circulation flow rate is obtained when the hot water circulation pump 7 is driven, such as during a bath reheating operation. q is approximately the value of the maximum circulation flow rate q max (for example, q> 0.9q max ), but when the sonic velocity A calculated at the hot water temperature T ° C. is 0.95 A (T) or less, the hot water circulation channel system It is possible to detect an abnormal piping condition by recognizing that the air is stuck in the air.

また同様に温水温度T℃の関数A(T)としての音速Aを用いて、上述実施の形態5に対応させると、上述実施の形態3中の<詰まり検出条件>に記載したように急激な循環流量低下が生じる条件に加え、音速A>0.95A(T)の条件を同時に満たすと温水循環流路に詰まりが生じた状態を検出することができる。   Similarly, when the sound velocity A as the function A (T) of the hot water temperature T ° C. is used to correspond to the above-described fifth embodiment, it is abrupt as described in <clogging detection condition> in the third embodiment. When the condition of sonic velocity A> 0.95 A (T) is satisfied at the same time in addition to the condition where the circulating flow rate is reduced, it is possible to detect a state where the hot water circulation channel is clogged.

以上のように本実施の形態においては、温水戻りサーミスタ11で温水温度を測定しながら、制御手段12は学習した温水温度T℃の関数A(T)としての音速Aを用いて諸動作制御することができるので、上述実施の形態4および実施の形態5よりもさらに精度良く諸動作制御を行うことが可能となる。   As described above, in the present embodiment, while the hot water temperature is measured by the hot water return thermistor 11, the control means 12 controls various operations using the learned sound speed A as the function A (T) of the hot water temperature T ° C. Therefore, various operation controls can be performed with higher accuracy than in the fourth and fifth embodiments.

(実施の形態7)
本実施の形態においては、第1〜第3の発明に対応させ、図2に示した水位式のガス給湯機付き風呂釜における風呂お湯はり運転時に、水位センサ32の水位検出値安定待ち時間を超音波流速計6からの計測量から演算される循環流量に基づいて動作制御を行う場合について述べる。
(Embodiment 7)
In the present embodiment, the water level detection value stabilization wait time of the water level sensor 32 during the bath hot water operation in the water bath with a water level type gas water heater shown in FIG. 2 corresponding to the first to third inventions. A case where operation control is performed based on the circulation flow rate calculated from the measurement amount from the ultrasonic current meter 6 will be described.

上述背景技術のように、水位式のガス給湯機付き風呂釜では、図5において制御手段12は水流センサ39で検出される流量をもとに所定量の注湯を行うごとに、温水循環ポンプ7を駆動させて水流スイッチ31でON、OFF動作を確認する循環水チェック動作を行った後、温水循環ポンプ7を停止させて所定の時間(たとえば30秒)浴槽水19の水位が安定するのを待ち、水位センサ32で浴槽水19の水位を確認しながら使用者が設定した水位になるまで注湯動作を行う。ここで水流スイッチ31による循環水チェック動作については、たとえば上述実施の形態1のように演算される循環流量から水流を判定する方法が適用できる。本実施の形態においては、温水循環ポンプ7が停止した後に水位センサ32の水位検出値安定待ち時間を超音波流速計6からの計測量から演算される循環流量に基づいて決定して動作制御を行う方法について述べる。   As in the background art described above, in a water bath with a water level type gas water heater, the control means 12 in FIG. 5 each time a predetermined amount of hot water is poured based on the flow rate detected by the water flow sensor 39, the hot water circulation pump 7 is driven and the water flow switch 31 is operated to check the ON / OFF operation, and then the hot water circulation pump 7 is stopped to stabilize the water level of the bath water 19 for a predetermined time (for example, 30 seconds). The water pouring operation is performed until the water level set by the user is reached while the water level sensor 32 confirms the water level of the bathtub water 19. Here, for the circulating water check operation by the water flow switch 31, for example, a method of determining the water flow from the circulating flow rate calculated as in the first embodiment can be applied. In the present embodiment, after the hot water circulation pump 7 is stopped, the water level detection value stabilization waiting time of the water level sensor 32 is determined based on the circulation flow rate calculated from the measurement amount from the ultrasonic velocimeter 6. Describe how to do it.

循環流量は、温水往き配管15や温水戻り配管16の配管長さや配管途中の曲がり数の設置条件に大きく影響され、配管長さが長い場合や配管途中の曲がり数が多くなれば流路抵抗が増加して循環流量は小さくなる。したがって図2において、超音波流速計6からの計測量から演算される循環流量が小さければ小さいほど、配管の流路抵抗が大きい設置状態、すなわち長い配管であったり配管途中の曲がり数が多い設置状態であると考えられ温水循環流路内の温水流動が安定するまで時間を要するため、水位センサ32の水位検出値安定待ち時間を長く設定する必要がある。そこで制御手段12は、たとえば次に示すような循環流量条件に基づき、風呂お湯はり運転時の動作制御を行う。
<条件1>循環水チェック時に演算されるq(ただし、0.95qmax<q<1.05qmaxの場合)が、5L/min未満の場合
水位センサ検出値安定待ち時間を90秒とする。
<条件2>循環水チェック時に演算されるq(ただし、0.95qmax<q<1.05qmaxの場合)が、5L/min以上8L/min未満の場合
水位センサ検出値安定待ち時間を60秒とする。
<条件3>循環水チェック時に演算されるq(ただし、0.95qmax<q<1.05qmaxの場合)が、8L/min以上の場合
水位センサ検出値安定待ち時間を30秒とする。
The circulation flow rate is greatly influenced by the installation conditions of the length of the hot water return pipe 15 and the hot water return pipe 16 and the number of bends in the middle of the pipe, and if the pipe length is long or the number of bends in the middle of the pipe increases, the flow resistance will increase. Increasing the circulating flow rate decreases. Therefore, in FIG. 2, the smaller the circulating flow rate calculated from the measured amount from the ultrasonic anemometer 6, the larger the pipe flow resistance, that is, the longer pipe or the more bent the pipe is. Since it takes time until the warm water flow in the warm water circulation flow path is stabilized, it is necessary to set the water level detection value stabilization waiting time of the water level sensor 32 to be long. Therefore, the control means 12 performs operation control during bath hot water operation, for example, based on the following circulation flow rate conditions.
<Condition 1> When q (provided that 0.95q max <q <1.05q max ) calculated at the time of circulating water check is less than 5 L / min, the water level sensor detection value stabilization wait time is 90 seconds.
<Condition 2> When q (provided that 0.95q max <q <1.05q max ) calculated during the circulating water check is 5 L / min or more and less than 8 L / min, the water level sensor detection value stabilization waiting time is 60 Seconds.
<Condition 3> When q (provided that 0.95q max <q <1.05q max ) calculated at the time of circulating water check is 8 L / min or more, the water level sensor detection value stabilization wait time is 30 seconds.

あるいは、下記(10)式に示すように循環水チェック時に演算されるq(ただし、0.95qmax<q<1.05qmaxの場合)の関数として水位センサ検出値安定待ち時間を決定することも考えられる。ただし(10)式において、qは3L/min以上とする。 Alternatively, as shown in the following formula (10), the water level sensor detection value stabilization waiting time is determined as a function of q (provided that 0.95q max <q <1.05q max ) calculated during the circulating water check. Is also possible. However, in Formula (10), q shall be 3 L / min or more.

(水位センサ検出値安定待ち時間 秒)=−10q+140 ・・・(10)
以上のように本実施の形態においては、水位式のガス給湯機付き風呂釜における風呂お湯はり運転時に、水位センサ32の水位検出値安定待ち時間を超音波流速計6からの計測量から演算される循環流量に基づいて動作制御を行うため、図5に示した従来のガス給湯機付き風呂釜において、風呂往き配管15と風呂戻り配管16の配管長さによって、施工業者が機器設置時に行う制御手段12内に設けられたディップスイッチ等の切替えスイッチで配管長さ「長い」の設定を行う手間を省くことができる。
(Water level sensor detection value stabilization wait time in seconds) = − 10q + 140 (10)
As described above, in the present embodiment, the water level detection value stabilization waiting time of the water level sensor 32 is calculated from the measured amount from the ultrasonic anemometer 6 at the time of bath hot water operation in a bath with a water level type gas water heater. In the conventional bath with a gas water heater shown in FIG. 5, the control performed by the contractor when installing the equipment according to the length of the bath outlet pipe 15 and the bath return pipe 16 in the conventional bath with gas water heater shown in FIG. The trouble of setting the pipe length “long” with a changeover switch such as a dip switch provided in the means 12 can be saved.

(実施の形態8)
本実施の形態においては、第1〜第4の発明に対応させ、図2に示した水位式のガス給湯機付き風呂釜における風呂お湯はり運転時に、水位センサ32の水位検出値安定状態を超音波流速計6からの計測量から演算される循環流量から判定する動作制御について述べる。
(Embodiment 8)
In the present embodiment, the water level detection value stable state of the water level sensor 32 is exceeded during the bath hot water operation in the bath with water level type gas water heater shown in FIG. 2, corresponding to the first to fourth inventions. The operation control determined from the circulating flow rate calculated from the measured amount from the sonic anemometer 6 will be described.

実施の形態7では温水循環ポンプ7を駆動させることによる循環水チェック時の循環流量演算値から、流路抵抗を想定した水位センサ32の水位検出値安定待ち時間に基づく風呂お湯はり運転動作を行う方法を示したが、本実施の形態では温水循環ポンプ7を駆動させることによる循環水チェック後に、温水循環ポンプ7の駆動を停止した時点からの温水循環流路内の循環流量を演算して、その循環流量演算値から温水循環流路内の温水の流動状態を判断する。すなわち、循環水チェック後に温水循環ポンプ7の駆動を停止させても、しばらくの間は慣性のために温水循環流路内の温水は流動するが、やがて温水流動が減衰して循環流量演算値qがある所定の値の範囲(たとえば、−0.5L/min<q<0.5L/min)となれば、制御手段12は温水循環流路内の温水流動が収束し水位センサ32の水位検出値を取り込むような動作制御を行う。   In the seventh embodiment, the hot water circulating pump 7 is operated based on the flow rate calculation value at the time of circulating water check by driving the hot water circulation pump 7 and based on the water level detection value stabilization waiting time of the water level sensor 32 assuming the channel resistance. In the present embodiment, after the circulating water check by driving the hot water circulation pump 7, in this embodiment, the circulation flow rate in the hot water circulation channel from the time when the driving of the hot water circulation pump 7 is stopped is calculated, The flow state of the hot water in the hot water circulation channel is determined from the calculated circulation flow rate. That is, even if the drive of the hot water circulation pump 7 is stopped after the circulating water check, the hot water in the hot water circulation channel flows due to inertia for a while, but the hot water flow is attenuated and the circulation flow rate calculation value q Is within a predetermined value range (for example, −0.5 L / min <q <0.5 L / min), the control means 12 converges the hot water flow in the hot water circulation channel and detects the water level of the water level sensor 32. Performs operation control that captures values.

以上のように本実施の形態においては、水位式のガス給湯機付き風呂釜における風呂お湯はり運転時に、水位センサ32の水位検出値安定状態を超音波流速計6からの計測量から演算される循環流量から判定するため上述実施の形態7の場合よりもより簡素かつ精度良く水位センサ32の水位検出値を取り込むことができる。   As described above, in the present embodiment, the water level detection value stable state of the water level sensor 32 is calculated from the measurement amount from the ultrasonic anemometer 6 during the bath hot water operation in the bath with a water level type gas water heater. Since the determination is based on the circulation flow rate, the water level detection value of the water level sensor 32 can be taken in more simply and accurately than in the case of the seventh embodiment.

(実施の形態9)
本実施の形態においては、第5〜第6の発明に対応させ、図2に示した水位式のガス給湯機付き風呂釜における風呂お湯はり運転時に、水位センサ32の水位検出値安定状態を超音波流速計6からの計測量から演算される循環流量および音速から判定する動作制御について述べる。
(Embodiment 9)
In the present embodiment, the water level detection value stable state of the water level sensor 32 is exceeded at the time of bath hot water operation in the bath with water level type gas water heater shown in FIG. 2 corresponding to the fifth to sixth inventions. The operation control determined from the circulation flow rate calculated from the measurement amount from the sonic velocimeter 6 and the sound velocity will be described.

温水循環流路内に空気噛みが生じた場合、もしその空気塊が水位センサ32の水圧検知部分に存在すると、水位センサ32で正しく浴槽水19の水位を検出することができない。そこで本実施の形態においては、実施の形態8で述べた温水循環ポンプ7駆動停止後の循環流量の減衰状態から水位センサ32の水位検出値取り込みを行うことに加え、循環水チェック時の音速演算値から温水循環流路内に空気噛みが存在しないことを確認する動作制御を行う。ここで循環水チェック時の音速演算値には、たとえば上述実施の形態6のように温水戻りサーミスタ11で検出される温度T℃における音速A(T)を適用する。   When air is caught in the hot water circulation channel, if the air mass is present in the water pressure detection portion of the water level sensor 32, the water level sensor 32 cannot correctly detect the water level of the bathtub water 19. Therefore, in the present embodiment, in addition to taking in the water level detection value of the water level sensor 32 from the attenuated state of the circulating flow after driving of the hot water circulation pump 7 described in the eighth embodiment, the sound speed calculation at the time of circulating water check is performed. Operation control is performed to confirm that there is no air bite in the hot water circulation channel from the value. Here, for example, the sound speed A (T) at the temperature T ° C. detected by the hot water return thermistor 11 as in the sixth embodiment is applied to the sound speed calculation value at the time of circulating water check.

以上のように本実施の形態においては、水位式のガス給湯機付き風呂釜における風呂お
湯はり運転時に、水位センサ32の水位検出値安定状態を超音波流速計6からの計測量から演算される循環流量から判定することに加え、循環水チェック時に水位センサ32の水位検出値に影響を与える空気噛みの有無を音速演算値から確認する動作制御を行うため、上述実施の形態8の場合よりもより精度良く水位センサ32の水位検出値を取り込むことができる。
As described above, in the present embodiment, the water level detection value stable state of the water level sensor 32 is calculated from the measurement amount from the ultrasonic anemometer 6 during the bath hot water operation in the bath with a water level type gas water heater. In addition to determining from the circulating flow rate, in order to perform operation control for confirming the presence or absence of air biting that affects the water level detection value of the water level sensor 32 at the time of circulating water check, the operation control is performed compared to the case of the eighth embodiment. The water level detection value of the water level sensor 32 can be taken in more accurately.

(実施の形態10)
本実施の形態においては、第1〜第3の発明に対応させ、水量式のガス給湯機付き風呂釜において、上述背景技術の残湯演算に用いる循環流量に超音波流速計から演算される循環流量を用いる方法について述べる。
(Embodiment 10)
In the present embodiment, the circulation calculated from the ultrasonic anemometer to the circulation flow rate used in the remaining hot water calculation of the background art described above in the water tank with a water-type gas water heater corresponding to the first to third inventions. A method using the flow rate will be described.

本発明においては、たとえば図2に示すように温水循環流路内に設けた超音波流速計6による計測量から循環流量を演算できるので、この循環流量を用いて背景技術で述べた残湯演算を行うことができる。   In the present invention, for example, as shown in FIG. 2, the circulating flow rate can be calculated from the amount measured by the ultrasonic velocimeter 6 provided in the hot water circulation channel, and the remaining hot water calculation described in the background art is performed using this circulating flow rate. It can be performed.

以上のように本実施の形態においては、温水循環流路内に設けた超音波流速計6による計測量から循環流量を演算できるため、従来の水量式ガス給湯機付き風呂釜において機器設置時に行う試運転時の循環流量学習動作を不要とすることができる。   As described above, in the present embodiment, since the circulation flow rate can be calculated from the amount measured by the ultrasonic velocimeter 6 provided in the hot water circulation flow path, this is performed at the time of equipment installation in the conventional bath with water-type gas water heater. Circulating flow rate learning operation at the time of trial operation can be made unnecessary.

以上のように、本発明にかかる温水循環装置は、温水循環流路内に超音波流速計6を設け、その計測量から温水循環流路を流れる温水の循環流量や温水循環流路内の音速を演算し、これらの循環流量や音速に基づく動作制御や温水循環流路内の状態把握を行うことができる。したがって本発明の技術を応用すれば、相変化を伴う流体が流れる流路における流路内解析等に利用することができる。たとえば気液二相流ならば、音速を測定することから流路内の気体の存在割合を表すボイド率を算出することが可能であると考えられる。   As described above, the hot water circulation device according to the present invention is provided with the ultrasonic current meter 6 in the hot water circulation channel, and the circulating flow rate of the hot water flowing through the hot water circulation channel or the sound velocity in the hot water circulation channel is measured. Can be calculated, and the operation control based on the circulation flow rate and the speed of sound and the state in the hot water circulation channel can be grasped. Therefore, if the technique of the present invention is applied, it can be used for analysis in a channel in a channel through which a fluid accompanied by a phase change flows. For example, in the case of a gas-liquid two-phase flow, it is considered possible to calculate the void ratio representing the gas existing ratio in the flow path from measuring the speed of sound.

本発明の実施の形態1〜6における強制循環式ガス風呂釜の構成図Configuration diagram of forced circulation type gas bath in Embodiments 1 to 6 of the present invention 本発明の実施の形態1〜10におけるガス給湯機付き風呂釜の構成図The block diagram of the bathtub with a gas water heater in Embodiment 1-10 of this invention 超音波流速計の計測原理の説明図Illustration of the measurement principle of an ultrasonic current meter 従来の強制循環式ガス風呂釜の構成図Configuration diagram of a conventional forced circulation gas bath 従来のガス給湯機付き風呂釜の構成図Configuration diagram of a conventional bathtub with a gas water heater

符号の説明Explanation of symbols

5 熱交換部
6 超音波流速計
7 温水循環ポンプ
8 温水往き流路
9 温水戻り流路
12 制御手段
5 Heat Exchanger 6 Ultrasonic Current Meter 7 Hot Water Circulation Pump 8 Warm Water Outflow Channel 9 Hot Water Return Channel 12 Control Means

Claims (6)

熱交換を行う熱交換部と、温水を循環させるための温水循環ポンプと、温水循環流路として前記熱交換部へ流入する温水が流れる温水戻り流路と、温水循環流路として前記熱交換部で受熱した後の温水が流れる温水往き流路と、温水循環流路中に備えられた超音波流速計と、前記超音波流速計での計測量から温水循環流路を通過する温水の循環流量を演算し、その循環流量に基づいて諸動作を制御する制御手段とを備えた温水循環装置。 A heat exchanging part for exchanging heat, a hot water circulation pump for circulating hot water, a hot water return channel through which hot water flowing into the heat exchanging unit flows as a hot water circulating channel, and the heat exchanging unit as a hot water circulating channel The warm water flow path through which the hot water after receiving the heat flows, the ultrasonic flow velocity meter provided in the warm water circulation flow channel, and the circulating flow rate of the warm water passing through the warm water circulation flow channel from the measurement amount of the ultrasonic flow velocity meter And a control means for controlling various operations based on the circulation flow rate. 超音波流速計は前記温水戻り流路中に備える構成とした請求項1に記載の温水循環装置。 The hot water circulation apparatus according to claim 1, wherein an ultrasonic current meter is provided in the hot water return flow path. 超音波流速計は前記温水往き流路中に備える構成とした請求項1に記載の温水循環装置。 The hot water circulation device according to claim 1, wherein an ultrasonic current meter is configured to be provided in the warm water outgoing flow path. 制御手段は演算された循環流量に基づいて温水循環流路内の状態を把握する機能を備えた請求項1〜3のいずれか1項に記載の温水循環装置。 The hot water circulation device according to any one of claims 1 to 3, wherein the control means has a function of grasping a state in the hot water circulation channel based on the calculated circulation flow rate. 制御手段は前記超音波流速計での計測量から温水循環流路内の音速を演算し、その音速に基づいて諸動作を制御する機能を備えた請求項1〜4のいずれか1項に記載の温水循環装置。 5. The control device according to claim 1, wherein the control unit has a function of calculating a sound velocity in the hot water circulation channel from a measurement amount of the ultrasonic current meter and controlling various operations based on the sound velocity. Hot water circulation device. 制御手段は演算された音速に基づいて温水循環流路内の状態を把握する機能を備えた請求項5に記載の温水循環装置。 The hot water circulation device according to claim 5, wherein the control means has a function of grasping a state in the hot water circulation channel based on the calculated sound speed.
JP2005185856A 2005-06-27 2005-06-27 Hot water circulation system Pending JP2007003131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185856A JP2007003131A (en) 2005-06-27 2005-06-27 Hot water circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185856A JP2007003131A (en) 2005-06-27 2005-06-27 Hot water circulation system

Publications (1)

Publication Number Publication Date
JP2007003131A true JP2007003131A (en) 2007-01-11

Family

ID=37688930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185856A Pending JP2007003131A (en) 2005-06-27 2005-06-27 Hot water circulation system

Country Status (1)

Country Link
JP (1) JP2007003131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130119086A (en) * 2012-04-23 2013-10-31 엘지전자 주식회사 Dishwasher
JP2015132488A (en) * 2014-01-10 2015-07-23 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130119086A (en) * 2012-04-23 2013-10-31 엘지전자 주식회사 Dishwasher
JP2015132488A (en) * 2014-01-10 2015-07-23 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
JP4674540B2 (en) Water heater
CN106369807A (en) Zero-cold-water gas water heater and system thereof
EP3106764B1 (en) Hot and cold water mixing device
CN207035459U (en) A kind of intelligent thermostatic electric water heater
JP2013255832A (en) Beverage maker flow detection logic
KR101111052B1 (en) Installation for the preparation of hot water
CN111664591B (en) Water heater constant temperature system and control method thereof
CN110616776B (en) Electronically controlled liquid mixing apparatus with high dynamic regulation and method of operation thereof
CN106940081A (en) One kind drinks water heating system and its control method
JP2007003131A (en) Hot water circulation system
JP5459546B2 (en) Bath equipment
CN104930715B (en) Water heater
JP6420713B2 (en) Bathroom heating device and control method of bathroom heating device
JP6414390B2 (en) Water heater
JP2019132463A (en) Instantaneous hot water tapping device
JP2011058744A (en) Water heater
CN209040227U (en) A kind of water temperature regulation device and closestool control water circuit system
JP3728243B2 (en) Hot water mixing unit for water heater
JP2635510B2 (en) Hot water supply control device for bathtub
JPH07174411A (en) Automatic hot water supply bath apparatus
JPH0933107A (en) Measuring method for remaining amount of bath water
JP2945351B2 (en) Hot water supply / reheating unit
JPH04353340A (en) Bath circulation device
RU46836U1 (en) HEATING SYSTEM
JP2928728B2 (en) Hot water filling amount control method in automatic bath apparatus with water heater and apparatus