JP2007002334A - Low core loss grain-oriented electrical steel sheet and method for producing the same - Google Patents
Low core loss grain-oriented electrical steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP2007002334A JP2007002334A JP2006121576A JP2006121576A JP2007002334A JP 2007002334 A JP2007002334 A JP 2007002334A JP 2006121576 A JP2006121576 A JP 2006121576A JP 2006121576 A JP2006121576 A JP 2006121576A JP 2007002334 A JP2007002334 A JP 2007002334A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- grain
- oriented electrical
- electrical steel
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は変圧器等の静止誘導器に使用される方向性電磁鋼板の鉄損低減技術に関する。 The present invention relates to a technique for reducing iron loss of grain-oriented electrical steel sheets used for static inductors such as transformers.
方向性電磁鋼板は、主として変圧器に代表される静止誘導器に使用される。その満たすべき特性としては、(1) 交流で励磁したときのエネルギー損失すなわち鉄損が小さいこと、(2) 機器の使用励磁域での透磁率が高く容易に励磁できること、(3) 騒音の原因となる磁歪が小さいこと等があげられる。特に(1) に関しては、変圧器が据え付けられてから廃棄されるまでの長期間にわたって連続的に励磁されエネルギー損失を発生し続けることから、変圧器の価値を表わす指標であるT.O.C.(Total Owning Cost) を決定する主要なパラメータとなる。 The grain-oriented electrical steel sheet is mainly used for a static inductor represented by a transformer. The characteristics to be satisfied are: (1) low energy loss, ie, iron loss, when excited with alternating current, (2) high permeability in the excitation range of equipment, and easy excitation, and (3) cause of noise. For example, the magnetostriction is small. In particular, for (1), T. is an index representing the value of the transformer because it continuously energizes and generates energy loss over a long period from when the transformer is installed until it is discarded. O. C. This is the main parameter that determines (Total Owning Cost).
この方向性電磁鋼板の鉄損を低減するために、今までに多くの開発がなされてきた。すなわち、(1) ゴス方位と呼ばれる(110)[001]方位への集積を高めること、(2) 電気抵抗を高めるSi等固溶元素の含有量を高めること、(3) 鋼板の板厚を薄くすること、(4) 鋼板に面張力を与えるセラミック被膜や絶縁被膜を付与すること、(5) 結晶粒の大きさを小さくすること等である。しかしこれら冶金学的な手法による鉄損改善には限度があり他の手法による鉄損低減が求められていた。 Many developments have been made so far in order to reduce the iron loss of the grain-oriented electrical steel sheet. (1) Increasing the accumulation in the (110) [001] orientation, called the Goss orientation, (2) Increasing the content of solid solution elements such as Si, which increases the electrical resistance, (3) These include thinning, (4) applying a ceramic coating or insulating coating that imparts surface tension to the steel sheet, and (5) reducing the size of crystal grains. However, iron loss improvement by these metallurgical methods is limited, and reduction of iron loss by other methods has been demanded.
この課題に対して、A. Fiedler, W. Pepperhofは特許文献1で、方向性電磁鋼板の表面にカッター等で溝をつけ磁区構造を変えることによって鉄損を低減する手法を提案している。方向性電磁鋼板は、一般的に、互いに反対方向の磁化成分を持つスラブ状の磁区が交互に並んだ磁区構造を持ち、これら磁区が外部磁場下で拡大/縮小することによって磁化が行われる。従って、方向性電磁鋼板が磁化されるときには、隣接する磁区の境界(磁壁)の部分のみで磁化変化が生じる。この磁化変化に伴って鋼板中には渦電流が流れ、前述した鉄損の原因の60〜70%を占める(渦電流損)。
渦電流損は渦電流の2乗に比例し、渦電流は磁壁の移動速度に比例する。磁区幅を狭くすると渦電流の発生する部位は多くなるが、磁壁の移動速度は磁区幅に逆比例して小さくなるから、結果として渦電流損は磁区幅にほぼ比例して小さくなる。
In response to this problem, A. Fiedler and W. Pepperhof proposed in Patent Document 1 a method for reducing iron loss by changing the magnetic domain structure by grooving the surface of a grain-oriented electrical steel sheet with a cutter or the like. A grain-oriented electrical steel sheet generally has a magnetic domain structure in which slab-like magnetic domains having magnetization components in opposite directions are alternately arranged, and magnetization is performed by expanding / reducing these magnetic domains under an external magnetic field. Therefore, when the grain-oriented electrical steel sheet is magnetized, the magnetization change occurs only at the boundary (domain wall) between adjacent magnetic domains. With this magnetization change, eddy current flows in the steel sheet, accounting for 60 to 70% of the cause of the iron loss described above (eddy current loss).
The eddy current loss is proportional to the square of the eddy current, and the eddy current is proportional to the moving speed of the domain wall. When the magnetic domain width is narrowed, more eddy currents are generated, but the domain wall moving speed decreases in inverse proportion to the magnetic domain width. As a result, the eddy current loss decreases approximately in proportion to the magnetic domain width.
この磁区細分化の手法を工業的に利用可能なものとするため、さらに様々な発明がなされた。例えば特許文献2にあるように、鋼板面に直径0.2〜10mmの小球を押しつけながら回転させ、表面にキズをつけずに歪みを導入する方法、特許文献3にあるように、圧延方向とほぼ直角方向にレーザビームを照射し微少塑性歪を加える方法、特許文献4にあるような、圧延方向とほぼ直角方向にプラズマ炎を線状に放射する方法等がある。
これらは何れも鋼板に微少な塑性歪を導入し、磁歪の逆効果によって安定化された圧延方向と直角方向の磁化成分を持つ磁区を利用して磁区を細分化する技術である。特にレーザ照射により磁区細分化した方向性電磁鋼板(以下、レーザ磁区制御方向性電磁鋼板と称す)は、低損失を必要とする電力用の積層大型変圧器に工業的に広く使用されており、近年の排出CO2 削減を目的としたエネルギー消費削減の大きな流れの中で、その需要は大きな高まりを見せている。
In order to make this magnetic domain subdivision technique industrially applicable, various inventions have been made. For example, as disclosed in Patent Document 2, a method of introducing a strain without scratching the surface by rotating while pressing a small sphere having a diameter of 0.2 to 10 mm on the steel plate surface, as disclosed in Patent Document 3, the rolling direction. There are a method of applying a small plastic strain by irradiating a laser beam in a substantially right angle direction, a method of radiating a plasma flame linearly in a direction substantially at right angles to the rolling direction as disclosed in Patent Document 4, and the like.
These are techniques for introducing a small plastic strain into a steel sheet and subdividing the magnetic domain using a magnetic domain having a magnetization component perpendicular to the rolling direction stabilized by the inverse effect of magnetostriction. In particular, grain-oriented electrical steel sheets that have been subdivided by laser irradiation (hereinafter referred to as laser domain-controlled grain-oriented electrical steel sheets) are widely used industrially for laminated large-scale transformers for electric power that require low loss. In the recent trend of reducing energy consumption for the purpose of reducing CO 2 emissions, the demand has increased greatly.
しかし、特許文献2では機械的な歪の導入のみであり、大きい鉄損の低減は望めないことに加え、鋼球を圧延直角方向に移動する必要があることから、工業的実現することが困難である。特許文献3では、鉄損低減率は高いものの、磁歪との両立の面で更なる改善が望まれる。特許文献4では、歪量を制御することが難しく、安定して低鉄損を得ることが困難であるという課題がある。 However, in Patent Document 2, only mechanical strain is introduced, and a large reduction in iron loss cannot be expected. In addition, it is necessary to move the steel ball in the direction perpendicular to the rolling, so that it is difficult to realize industrially. It is. In Patent Document 3, although the iron loss reduction rate is high, further improvement is desired in terms of compatibility with magnetostriction. In Patent Document 4, there is a problem that it is difficult to control the amount of strain and it is difficult to stably obtain a low iron loss.
さらに特許文献5において、方向性電磁鋼板の表面にレーザ光束を照射して幅50〜300μm、深さが鋼板板厚の5〜35%で通板方向に対し直角から±15°以内で間隔が5〜30mmの溶融凝固線部を形成させた後に、張力付与絶縁被膜処理を施すことを特徴とする低鉄損方向性電磁鋼板の製造方法が開示されている。しかし上記技術は、歪取り焼鈍を施す小型の巻鉄心変圧器での鉄損低減を企図したものであり、歪取り焼鈍行わない大型の積鉄心変圧器では、過剰な歪が導入されることにより安定して低鉄損、低磁歪を得難く、むしろ鉄損が大きくなるという課題がある。 Furthermore, in Patent Document 5, the surface of a grain-oriented electrical steel sheet is irradiated with a laser beam, the width is 50 to 300 μm, the depth is 5 to 35% of the thickness of the steel sheet, and the interval is within ± 15 ° from the right angle to the sheet passing direction. A method for producing a low iron loss grain-oriented electrical steel sheet is disclosed in which a tension-imparting insulating coating is applied after forming a 5-30 mm melt-solidified line portion. However, the above technique is intended to reduce iron loss in small wound core transformers that are subjected to strain relief annealing, and large strain core transformers that do not perform strain relief annealing introduce excessive strain. There is a problem that it is difficult to stably obtain low iron loss and low magnetostriction, but rather iron loss becomes large.
一方で変圧器やリアクトル等の静止誘導器は、鉄心を交流励磁すると騒音を発生するが、この騒音は電力需要の増大に伴い多数の変圧器が都市内に設置されていること、また近年の環境重視の風潮から、その低減が強く求められている。騒音の原因としては、励磁コイル間の電磁力による振動、鉄心の継ぎ目および層間の磁気力による振動、電磁鋼板の磁歪による振動等が考えられる。 On the other hand, static inductors such as transformers and reactors generate noise when the iron core is AC-excited. This noise is due to the fact that a large number of transformers are installed in cities with increasing demand for power. Due to the environment-oriented trend, there is a strong need to reduce it. Possible causes of noise include vibration due to electromagnetic force between exciting coils, vibration due to magnetic force between the joints and layers of the iron core, vibration due to magnetostriction of the electromagnetic steel sheet, and the like.
これらの内、鉄心からの騒音を低減する方法については、例えば鉄心の設計磁束密度を低くすることにより低磁束密度での電磁鋼板の低磁歪性を利用すること、あるいは非特許文献1に示されているように、高配向性の方向性電磁鋼板を用いて磁歪を低減すること、表面皮膜の張力を上げること等が有効であることが知られている。また、特許文献6に開示されるように、鉄心の締め付け方法を限定することによっても騒音を低減することができる。さらに、特許文献7に開示されるように、鉄心を遮音ケースで取り囲むことや、特許文献8に開示されるように、変圧器を防振ゴムの上に設置することによっても騒音を減らすことができる。
Among these, the method for reducing the noise from the iron core, for example, uses the low magnetostriction property of the electrical steel sheet at a low magnetic flux density by reducing the design magnetic flux density of the iron core, or is shown in Non-Patent
しかしこれらの技術では、変圧器に付帯の設備を設置する必要があり、著しいコスト増を招くという課題がある。 However, in these techniques, it is necessary to install incidental equipment in the transformer, and there is a problem that the cost is significantly increased.
上述したレーザ磁区制御方向性電磁鋼板はレーザの照射条件によって磁歪特性が変化することが、非特許文献2に報告されている。具体的には、レーザの照射エネルギー密度Ua値を変化させることにより、磁歪特性が変化し、適正なUa値を選択することにより、磁歪を低減できることが報告されている。しかし上記技術では、磁歪低減に関して最大限の効果が得られないという問題がある。
このようにして、方向性電磁鋼板の鉄損は著しく改善されてきたが、文明化、工業化によってエネルギー消費は伸びており、また化石エネルギー資源の枯渇に対する懸念、CO2 による地球温暖化に対する要望から、より一層の鉄損低減が求められている。また変電設備が都市部に作られるようになり、変圧器の発生する騒音をより低減することが求められてきている。 In this way, the iron loss of grain-oriented electrical steel sheets has been remarkably improved. However, energy consumption has increased due to civilization and industrialization, and there are concerns about the depletion of fossil energy resources and the demand for global warming due to CO 2. Therefore, there is a demand for further reduction of iron loss. In addition, substation facilities have been built in urban areas, and it has been required to further reduce noise generated by transformers.
本発明者らは、レーザ照射による磁区制御を施した低鉄損方向性電磁鋼板を鋭意研究の結果、レーザ照射によって導入される凝固層の厚み、およびレーザ照射部の表面粗度及び凹型の断面形状を制御することによって極めて低い鉄損で、かつ低騒音の方向性電磁鋼板及びその製造方法を実現できた。 As a result of earnest research on the low iron loss directional electrical steel sheet subjected to magnetic domain control by laser irradiation, the present inventors have found that the thickness of the solidified layer introduced by the laser irradiation, the surface roughness of the laser irradiation part, and the concave cross section By controlling the shape, it was possible to realize a grain-oriented electrical steel sheet having a very low iron loss and low noise and a method for manufacturing the same.
すなわち、本発明は以下の構成を要旨とする。
(1)レーザ照射して磁区制御を行う方向性電磁鋼板において、レーザ照射部の凝固層厚みが4μm以下であることを特徴とする励磁磁束密度1.9Tの高磁場での鉄損に優れ、かつ低磁歪である方向性電磁鋼板。
(2)レーザ照射部を圧延方向に走査して粗度測定を行った際の表面粗度Rzの値が4μm以下であることを特徴とする励磁磁束密度1.9Tの高磁場での鉄損に優れ、かつ低磁歪である方向性電磁鋼板。
(3)板幅方向に線状あるいは点列状にレーザ照射して磁区制御を行う方向性電磁鋼板において、レーザ照射部を圧延直角方向よりみた断面形状が幅200μm以下、深さ10μm以下の凹型形状である前記(1)または(2)に記載の方向性電磁鋼板。
(4)鋼板上の隣接する連続あるいは点列状の線の間の距離が30mm以下である前記 (1)または(2)に記載の方向性電磁鋼板。
(5)鋼板上の隣接する連続あるいは点列状の線の間の距離が3〜5mmである前記(4)に記載の方向性電磁鋼板。
(6)凹型形状部の幅が30〜180μmで深さが1〜4μmである前記(3)に記載の方向性電磁鋼板。
That is, the gist of the present invention is as follows.
(1) In a grain-oriented electrical steel sheet that performs magnetic domain control by laser irradiation, the laser irradiation portion has a solidified layer thickness of 4 μm or less, and excels in iron loss in a high magnetic field with an excitation magnetic flux density of 1.9 T, A grain-oriented electrical steel sheet with low magnetostriction.
(2) Iron loss in a high magnetic field with an excitation magnetic flux density of 1.9 T, wherein the surface roughness Rz is 4 μm or less when the laser irradiation part is scanned in the rolling direction to measure the roughness. Oriented electrical steel sheet that is excellent in resistance and low magnetostriction.
(3) In a grain-oriented electrical steel sheet that performs magnetic domain control by irradiating a laser beam in the plate width direction in a line or a sequence of dots, a concave shape having a cross-sectional shape of 200 μm or less in width and 10 μm or less in depth when viewed from the direction perpendicular to the rolling direction. The grain-oriented electrical steel sheet according to (1) or (2), which has a shape.
(4) The grain-oriented electrical steel sheet according to (1) or (2), wherein a distance between adjacent continuous or point-sequence-like lines on the steel sheet is 30 mm or less.
(5) The grain-oriented electrical steel sheet according to (4), wherein a distance between adjacent continuous or point-sequence-like lines on the steel sheet is 3 to 5 mm.
(6) The grain-oriented electrical steel sheet according to (3), wherein the concave shape portion has a width of 30 to 180 μm and a depth of 1 to 4 μm.
(7)レーザ照射して磁区制御を行う方向性電磁鋼板の製造方法において、レーザ照射部の凝固層厚みを4μm以下とすることを特徴とする励磁磁束密度1.9Tの高磁場での鉄損に優れ、かつ低磁歪である方向性電磁鋼板の製造方法。
(8)板幅方向に線状あるいは点列状にレーザ照射して磁区制御を行う方向性電磁鋼板の製造方法において、レーザ照射部を圧延直角方向よりみた断面形状が幅200μm以下、深さ10μm以下の凹型形状とし、凹底部の凝固層厚みを4μm以下とする方向性電磁鋼板の製造方法。
(9)前記レーザ照射が、コア直径500μm以下のファイバーを有するファイバーレーザ装置によりレーザ照射されることを特徴とする前記(7)または(8)記載の磁気特性の優れた方向性電磁鋼板の製造方法。
(10)前記レーザ照射が、コア直径200μm以下のファイバーを有するファイバーレーザ装置によりレーザ照射されることを特徴とする前記(7)または(8)記載の磁気特性の優れた方向性電磁鋼板の製造方法。
(11)鋼板上の隣接する連続あるいは点列状の線の間の距離が30mm以下である前記(7)または(8)に記載の方向性電磁鋼板の製造方法。
(12)鋼板上の隣接する連続あるいは点列状の線の間の距離が3〜5mmである前記 (11)に記載の方向性電磁鋼板の製造方法。
(13)凹型形状部の幅が30〜180μmで深さが2〜4μmである前記(7)または(8)に記載の方向性電磁鋼板。
(7) In a method for manufacturing a grain-oriented electrical steel sheet that performs magnetic domain control by laser irradiation, the solidified layer thickness of the laser irradiation portion is 4 μm or less, and the iron loss in a high magnetic field with an excitation magnetic flux density of 1.9 T Of a grain-oriented electrical steel sheet that is excellent in resistance and low magnetostriction.
(8) In a method for manufacturing a grain-oriented electrical steel sheet in which magnetic domain control is performed by irradiating a laser beam linearly or in a sequence of dots in the width direction of the plate, the cross-sectional shape of the laser irradiation part viewed from the direction perpendicular to the rolling is 200 μm or less in width and 10 μm in depth. A method for producing a grain-oriented electrical steel sheet having the following concave shape, wherein the solidified layer thickness of the concave bottom portion is 4 μm or less.
(9) Production of grain-oriented electrical steel sheet having excellent magnetic properties according to (7) or (8), wherein the laser irradiation is performed by a fiber laser device having a fiber having a core diameter of 500 μm or less. Method.
(10) Production of grain-oriented electrical steel sheet having excellent magnetic properties according to (7) or (8), wherein the laser irradiation is performed by a fiber laser device having a fiber having a core diameter of 200 μm or less. Method.
(11) The method for producing a grain-oriented electrical steel sheet according to (7) or (8), wherein a distance between adjacent continuous or point-sequence-like lines on the steel sheet is 30 mm or less.
(12) The method for producing a grain-oriented electrical steel sheet according to (11), wherein a distance between adjacent continuous or point-sequence-like lines on the steel sheet is 3 to 5 mm.
(13) The grain-oriented electrical steel sheet according to (7) or (8), wherein the concave shape portion has a width of 30 to 180 μm and a depth of 2 to 4 μm.
本発明により、方向性電磁鋼板の鉄損と磁歪を低減することができる。 By this invention, the iron loss and magnetostriction of a grain-oriented electrical steel sheet can be reduced.
本発明者等は、質量にして3.3%のSiを含む方向性電磁鋼板の成品板(板厚0.23mm)に、鋼板表面片面のほぼ圧延直角方向にファイバー径10μmのファイバーレーザ装置を使って線状のレーザ照射を施した。レーザ照射線の間隔は4mm、圧延方向の照射部長さは50μm〜200μmまで変化させた。また、レーザ照射径、レーザパワー、パワー密度、スキャン速度のレーザ照射条件を変更することにより、圧延直角方向より見た凹型断面形状および凝固層厚み(図1に例示)を変更した。また、比較例としてCO2 レーザ、YAGレーザについても実施した。各試料の磁気測定結果を表1に示す。鉄損、磁束密度、磁歪は、それぞれ鋼板に応力を負荷しない状態で磁束正弦波条件で測定した値である。
表1より解るように、(1)、(2)、(4)、(5)の試料が励磁磁束密度1.9Tの高磁場における鉄損(高磁場鉄損)W19/50 、磁歪λ19p-p がともに他の試料に較べて優れている。
The inventors of the present invention applied a fiber laser apparatus having a fiber diameter of 10 μm in a direction substantially perpendicular to the rolling direction of one surface of a steel sheet on a product plate (thickness 0.23 mm) of a grain-oriented electrical steel sheet containing 3.3% Si by mass. A linear laser irradiation was applied. The interval between the laser irradiation lines was 4 mm, and the length of the irradiated portion in the rolling direction was changed from 50 μm to 200 μm. Further, by changing the laser irradiation conditions of the laser irradiation diameter, laser power, power density, and scanning speed, the concave cross-sectional shape and the solidified layer thickness (illustrated in FIG. 1) as viewed from the direction perpendicular to the rolling were changed. Moreover, CO 2 laser as a comparative example was also performed for the YAG laser. Table 1 shows the magnetic measurement results of each sample. Iron loss, magnetic flux density, and magnetostriction are values measured under magnetic flux sine wave conditions without applying stress to the steel sheet.
As can be seen from Table 1, the samples (1), (2), (4), and (5) are iron loss (high magnetic field iron loss) W 19/50 in a high magnetic field with an excitation magnetic flux density of 1.9 T, magnetostriction λ19. Both pp are superior to other samples.
本発明により、励磁磁束密度1.9Tの高磁場(高磁束密度)での低鉄損と低磁歪が同時に満足される理由について、本発明者らは以下のように考察している。
レーザ照射により磁区幅が細分化され、鉄損が低減される機構は、レーザ照射によって導入される残留歪(熱歪ないしはプラズマ反力による衝撃歪)により形成される高エネルギーの還流磁区の総体積を減少させることを駆動力としていると考えられている(例えば非特許文献3)。
The mechanism by which the magnetic domain width is subdivided by laser irradiation and the iron loss is reduced is the total volume of the high-energy return magnetic domain formed by residual strain (thermal strain or impact strain by plasma reaction force) introduced by laser irradiation. It is considered that the driving force is to reduce the frequency (for example, Non-Patent Document 3).
上記のように種々の条件でレーザ照射を行った結果、凝固層厚みを、さらには照射部の凹部断面形状を本発明の範囲に制御することにより、高い鉄損低減効果が得られることが解った。これは、凝固層厚み、さらには照射部の凹部幅、凹部深さの制御により、適正量の残留歪が狭い範囲に導入され、それにより還流磁区の総体積が減少したからであると推定している。この効果は高磁束密度の鉄損において殊に顕著である。なぜなら励磁磁束密度が低い場合には、電磁鋼板の全体積の磁化が変化するわけではなく、還流磁区も部分的に磁壁移動による磁化変化を起こすのみであるが、1.9Tといった飽和磁束密度に近い高磁束密度まで励磁された場合には、還流磁区も大部分が圧延方向に平行な磁化成分を持つように変化する。この変化により損失を生じると考えられる。従って、凝固層厚みの制御が特に高磁束密度での鉄損低減に顕著な効果を持つと考える。 As a result of laser irradiation under various conditions as described above, it has been found that a high iron loss reduction effect can be obtained by controlling the thickness of the solidified layer and the cross-sectional shape of the recess of the irradiated portion within the range of the present invention. It was. This is presumed to be because the appropriate amount of residual strain was introduced in a narrow range by controlling the thickness of the solidified layer, and also the recess width and recess depth of the irradiated area, thereby reducing the total volume of the return magnetic domain. ing. This effect is particularly noticeable in high magnetic flux density iron losses. This is because when the excitation magnetic flux density is low, the magnetization of the entire volume of the magnetic steel sheet does not change, and the return magnetic domain also only partially changes the magnetization due to the domain wall movement, but the saturation magnetic flux density is 1.9T. When excited to a close high magnetic flux density, the reflux magnetic domain also changes so that most of it has a magnetization component parallel to the rolling direction. This change is considered to cause a loss. Therefore, it is considered that the control of the thickness of the solidified layer has a remarkable effect in reducing the iron loss particularly at a high magnetic flux density.
なお、本発明でいう凝固層とは、レーザ照射部の圧延方向と平行で鋼板面に直交する鋼板断面をSEM等で観察した際に見られる、方向性電磁鋼板の単結晶組織とは異なる微細な凝固組織部分をいう。凝固組織の観察には、エッチングを併用するSEM(走査電子顕微鏡)観察方法、反射電子像を用いたSEM観察方法、FE−SEM(電界放射型SEM)を用いた観察方法、光学顕微鏡を用いた方法等があるが、特に観察方法を限定するものではない。また、凝固層の厚みを変更させるには、レーザ照射条件のレーザ照射径、レーザパワー、パワー密度、スキャン速度を変更することが有効である。
なお、特許文献9の図5には凝固層厚みが2μm程度のレーザ照射部が開示されているが、特許文献9の本文中の段落[0003]にもあるように、当該発明は鉄損低減効果が歪取り焼鈍後も残る方向性電磁鋼板の鉄損低減方法を狙ったもので、特許文献9の図5にあるような溶融層のみでその厚みが20μmを超えるような条件では鉄損値はむしろ劣化する。本発明は歪み取り焼鈍を行わない鉄心、例えば大型変圧器用の鉄心に用いる低鉄損の方向性電磁鋼板を供することを目指すものであり、その技術思想は全く異なる。
FIG. 5 of Patent Document 9 discloses a laser irradiation portion having a solidified layer thickness of about 2 μm. However, as described in paragraph [0003] in the text of Patent Document 9, the present invention reduces iron loss. The effect is aimed at a method for reducing the iron loss of grain-oriented electrical steel sheets that remains even after strain relief annealing. The iron loss value is obtained under the condition that the thickness exceeds 20 μm with only a molten layer as shown in FIG. Rather deteriorate. The present invention aims to provide a low iron loss directional electrical steel sheet used for an iron core that does not undergo strain relief annealing, for example, an iron core for a large transformer, and its technical idea is completely different.
圧延方向の狭い範囲にのみ歪みが導入されることは、鉄損低減と同時に変圧器等の鉄心の騒音の原因となる磁歪変形を抑制する効果も現す。レーザによる残留歪の導入は上述する還流磁区を通じて磁区幅の細分化に効果があるが、この範囲が大きいと、同時に磁歪の発生源ともなりうる。しかるに、できるだけ局所的に効果的に還流磁区を発生させる残留歪を生じさせることが肝要となる。本発明では、レーザ照射部の凝固層厚みの平均値を4μm以下とすることにより、高磁場における低鉄損と、磁歪λ19p-p の低減を両立することを可能にした。 The introduction of strain only in a narrow range in the rolling direction has the effect of suppressing magnetostriction deformation that causes noise in iron cores such as transformers as well as reducing iron loss. The introduction of residual strain by a laser is effective in subdividing the magnetic domain width through the above-mentioned reflux magnetic domain, but if this range is large, it can also be a source of magnetostriction. However, it is important to generate a residual strain that generates a reflux magnetic domain as effectively as possible. In the present invention, by setting the average value of the solidified layer thickness of the laser irradiation portion to 4 μm or less, it is possible to achieve both low iron loss in a high magnetic field and reduction of magnetostriction λ19 pp .
なお、本発明において、レーザ照射部の凹部底面の表面粗度Rzを減らすことでも、鉄損と磁歪を低減することが可能である。以下、この点について詳細に説明する。
本発明者等は、質量にして3.3%のSiを含む方向性電磁鋼板の成品板(板厚0.27mm)に、鋼板表面片面のほぼ圧延直角方向にファイバー径10μmのファイバーレーザ装置を使って線状のレーザ照射を施した。レーザ照射線の間隔は4mm、圧延方向の照射部の長さは(1)50μm、(2)100μm、(3)200μmであった。
また、同じ方向性電磁鋼板にYAGレーザを用いて点列状のレーザ照射を行った。照射線間隔は4mmであり、圧延方向の照射部最大長さ(点の直径に相当する)は(4)100μm、(5)200μmであった。
In the present invention, iron loss and magnetostriction can also be reduced by reducing the surface roughness Rz of the bottom surface of the recess of the laser irradiation portion. Hereinafter, this point will be described in detail.
The inventors of the present invention applied a fiber laser device having a fiber diameter of 10 μm in a direction substantially perpendicular to the rolling direction of one surface of a steel sheet on a product plate (thickness 0.27 mm) of a grain-oriented electrical steel sheet containing 3.3% Si by mass. A linear laser irradiation was applied. The distance between the laser irradiation lines was 4 mm, and the length of the irradiation part in the rolling direction was (1) 50 μm, (2) 100 μm, and (3) 200 μm.
Further, the same grain-oriented electrical steel sheet was irradiated with a point-sequence laser beam using a YAG laser. The irradiation line interval was 4 mm, and the maximum irradiated portion length in the rolling direction (corresponding to the diameter of the points) was (4) 100 μm and (5) 200 μm.
以上、各試料のレーザ照射部分の表面粗度Rzおよび磁気測定結果を表2に示す。
表面粗度RzはISO4287(1997)に定められた輪郭曲線の最大高さを示す指標である。レーザ照射部分の表面粗度Rzは、表面粗さを測定する通常の表面粗さ計を用い、レーザ照射部中心線を直角(圧延方向)に横切るように触針を走査して測定した。その結果、表面粗度Rzと鉄損、磁歪とが相関が高いことが解った。
尚、表面粗度Rzの測定に際して、表面のゴミは充分に除去し、10回以上の複数回測定を行い、単発的な異常値は除去した上で平均値を求めた。また、表面粗度の測定に際しては、磁化に関係するのは鋼板部分のみであるので、表面の高張力絶縁被膜、セラミック被膜はアルカリで除去して測定することが理想的であるが、鋼板に対し強い腐食性でない酸を用いて、これらを除去しても表面プロフィールを大きく変えることはなく実用的には問題ない。また、鉄損、磁束密度、磁歪は、それぞれ鋼板に応力を付加しない状態で磁束正弦波条件で測定した値である。
Table 2 shows the surface roughness Rz and the magnetic measurement result of the laser irradiated portion of each sample.
The surface roughness Rz is an index indicating the maximum height of the contour curve defined in ISO 4287 (1997). The surface roughness Rz of the laser irradiated portion was measured by scanning a stylus so as to cross the center line of the laser irradiated portion at a right angle (rolling direction) using a normal surface roughness meter for measuring the surface roughness. As a result, it was found that the surface roughness Rz, iron loss, and magnetostriction are highly correlated.
When measuring the surface roughness Rz, dust on the surface was sufficiently removed, measurement was performed 10 times or more, and a single abnormal value was removed, and then an average value was obtained. In measuring the surface roughness, only the steel plate part is related to the magnetization, so it is ideal to measure the surface by removing the high-tensile insulation coating and ceramic coating on the surface with alkali. On the other hand, even if these acids are removed using strong non-corrosive acids, the surface profile is not greatly changed, and there is no problem in practical use. The iron loss, magnetic flux density, and magnetostriction are values measured under magnetic flux sine wave conditions without applying stress to the steel sheet.
表2より解るように、(1)、(2)、(3)の試料が高磁場鉄損、磁歪がともに他の試料に較べて優れている。
YAGレーザを用いた(4)と(5)の場合、レーザ照射部(底部)に表面粗度の大きな先鋭な突起部分が観察され、これが高磁場鉄損、磁歪を劣化されるものと思われる。
As can be seen from Table 2, the samples of (1), (2), and (3) are superior in the high magnetic field iron loss and magnetostriction compared to other samples.
In the case of (4) and (5) using a YAG laser, a sharp protrusion with a large surface roughness is observed at the laser irradiation part (bottom part), which seems to deteriorate the high magnetic field iron loss and magnetostriction. .
本発明により、高磁束密度での低鉄損と低磁歪が同時に満足される理由について、レーザ照射部の底部の突起部からの漏れ磁束の影響による還流磁区への影響から鉄損低減効果に影響を与えることが考えられる。この場合、電磁鋼板が磁気飽和に近づいた高磁束密度での鉄損W19/50 が特に影響を受ける。レーザ照射部に表面粗度の大きな部分が存在しないことが、高磁束密度での鉄損を低減することに効果がある。 The reason why the low iron loss and the low magnetostriction at the high magnetic flux density are satisfied at the same time by the present invention affects the iron loss reduction effect from the influence on the leakage magnetic domain due to the leakage magnetic flux from the protrusion at the bottom of the laser irradiation part. Can be considered. In this case, the iron loss W 19/50 at a high magnetic flux density at which the magnetic steel sheet approaches magnetic saturation is particularly affected. The absence of a portion having a large surface roughness in the laser irradiation portion is effective in reducing iron loss at a high magnetic flux density.
以下、本発明を実施する具体的形態について説明する。
本発明で用いられる方向性電磁鋼板は、一般の製品板でよい。なお、鋼板表面にフォルステライトなどによる一次被膜、及び絶縁被膜を有するのが一般的であるが、鋼板表面に被膜がない製品板についても本発明範囲内である。
Hereinafter, specific modes for carrying out the present invention will be described.
The grain-oriented electrical steel sheet used in the present invention may be a general product plate. In addition, although it is common to have the primary film by a forsterite etc. on a steel plate surface, and an insulating film, the product board which does not have a film on the steel plate surface is also within the scope of the present invention.
レーザ条件について、圧延方向のレーザ照射長さ(幅)は、照射部の熱歪により周囲に弾性変形を生ぜせしめ磁歪の逆効果により生じる還流型の磁区量に影響する。還流型の磁区は、磁区細分化の原動力となり鉄損低減に効果があるが、同時に磁歪変形の原因ともなるため、両特性を満足するための適正な範囲が存在する。
磁歪低減のためには、圧延方向のレーザ照射幅を200μm以下、好ましくは180μm以下、より好ましくは140μm以下、120μm以下、さらに好ましくは100μm以下とすることがよい。一方、低鉄損を得るために、圧延方向のレーザ照射幅を20μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上とすることがよい。
Regarding the laser conditions, the laser irradiation length (width) in the rolling direction affects the amount of magnetic domain of the reflux type caused by the inverse effect of magnetostriction by causing elastic deformation around the irradiated portion due to thermal strain. The reflux-type magnetic domain serves as a driving force for magnetic domain subdivision, and is effective in reducing iron loss. However, since it also causes magnetostriction deformation, there is an appropriate range for satisfying both characteristics.
In order to reduce magnetostriction, the laser irradiation width in the rolling direction is 200 μm or less, preferably 180 μm or less, more preferably 140 μm or less, 120 μm or less, and even more preferably 100 μm or less. On the other hand, in order to obtain a low iron loss, the laser irradiation width in the rolling direction is preferably 20 μm or more, more preferably 30 μm or more, and further preferably 50 μm or more.
レーザ照射ビームの単位面積当りのパワー、すなわちパワー密度は効率的に磁区細分化させるためには、できるだけ大きくすることが好ましいが、過度に大きい場合は凝固層厚みが大きくなるので、150kW/mm2 以下、さらに好もしくは100kW/mm2 以下にするとよい。また過度に小さい場合は凝固層厚みが小さくなるので、0.5kW/mm2 以上、さらに好もしくは1kW/mm2 以上にするとよい。 The power per unit area of the laser irradiation beam, that is, the power density is preferably increased as much as possible in order to efficiently subdivide the magnetic domain, but if it is excessively large, the solidified layer thickness increases, so 150 kW / mm 2 In the following, it is more preferable or 100 kW / mm 2 or less. If it is too small, the thickness of the solidified layer becomes small, so 0.5 kW / mm 2 or more, more preferably 1 kW / mm 2 or more is preferable.
レーザビームが鋼板上に滞留する時間、すなわち照射継続時間も過度に長いと凝固層厚みが厚くなりすぎるので1msec 以下、さらに好もしくは0.3msec 以下とすると良い。また過度に短いと凝固層厚みが小さくなりすぎるので、1μsec 以上、さらに好ましくは5μsec 以上とするとよい。 If the laser beam stays on the steel plate, that is, the irradiation duration is too long, the thickness of the solidified layer becomes too thick, so that it is preferably 1 msec or less, more preferably 0.3 msec or less. On the other hand, if it is too short, the thickness of the solidified layer becomes too small, so that it is 1 μsec or more, more preferably 5 μsec or more.
パワー密度と照射継続時間の積も凝固層厚みの重要な制御因子となる。5mJ/mm2 以上、500mJ/mm2 以下とすることが好ましく、10mJ/mm2 以上、300mJ/mm2 以下とすることがさらに好ましい。 The product of power density and irradiation duration is also an important control factor for the solidified layer thickness. 5 mJ / mm 2 or more, preferably to 500 mJ / mm 2 or less, 10 mJ / mm 2 or more, still more preferably 300 mJ / mm 2 or less.
次に、本発明の方法に好適なレーザについて説明する。
まず、本発明の電磁鋼板の製造においては、高出力のレーザビームを集光形状200μm以下にすることが好ましい。一般のYAGレーザはマルチモードと呼ばれる集光性能の低いビーム品質であり、特に高出力YAGレーザの200μmの集光は非常に困難である。またCO2 レーザも一般にマルチモード発振であり、波長もYAGレーザに比べて長いため、200μm以下の集光は困難である。これらのレーザで集光性の高いシングルモード出力を得るには、レーザ共振器内部に空間フィルターを用いる等の特殊な装置構成が必要となる。ただし、この場合レーザ出力が著しく減少するため、工業的な大量生産にはあまり向いてない。
Next, a laser suitable for the method of the present invention will be described.
First, in the manufacture of the electrical steel sheet according to the present invention, it is preferable that a high-power laser beam is set to a condensing shape of 200 μm or less. A general YAG laser has a beam quality with low focusing performance called multimode, and it is very difficult to focus 200 μm of a high power YAG laser. In addition, the CO 2 laser generally has multimode oscillation and the wavelength is longer than that of the YAG laser, so that it is difficult to collect light of 200 μm or less. In order to obtain a single-mode output with high condensing performance with these lasers, a special device configuration such as using a spatial filter inside the laser resonator is required. In this case, however, the laser output is remarkably reduced, so that it is not suitable for industrial mass production.
一方、ファイバーレーザは集光性の高いシングルモード発振が容易に達成可能である。また励起光源の半導体レーザ数を増やし、且つファイバー長を長くすることで、高出力化も容易である。またファイバーコア径の40〜50%程度までは比較的簡単なレンズ構成で集光可能であり、200μm以下の微小集光径を容易に達成できる。従って本発明の製造方法にはファイバーコア径500μm以下のファイバーレーザが好ましい。
ファイバーコア径の上限500μmは、これ以上では所望の凝固層厚みが得られず、また、所望の断面形状も得にくくなるので限定する。さらにはコア径を200μm以下とすることが好ましい。更に好ましくは、コア径を40μm以下とすることも好ましい。
On the other hand, the fiber laser can easily achieve single mode oscillation with high light condensing performance. Further, by increasing the number of semiconductor lasers as the excitation light source and increasing the fiber length, it is easy to increase the output. Further, it is possible to collect light with a relatively simple lens configuration up to about 40 to 50% of the fiber core diameter, and a minute light collection diameter of 200 μm or less can be easily achieved. Therefore, a fiber laser having a fiber core diameter of 500 μm or less is preferable for the production method of the present invention.
The upper limit of the fiber core diameter of 500 μm is limited because a desired solidified layer thickness cannot be obtained when the fiber core diameter is greater than this value, and a desired cross-sectional shape is difficult to obtain. Furthermore, the core diameter is preferably 200 μm or less. More preferably, the core diameter is preferably 40 μm or less.
YAGレーザ等で用いられるマルチモードビームは、多種の空間強度分布が重ね合わされたビームのことであるが、レーザ出力方向に垂直な断面におけるレーザ媒質の温度分布や励起強度の時間変化により、発振するモードが変化する可能性がある。その場合、本発明の凝固層厚みの制御が不安定化するという問題がある。
一方、ファイバーレーザのモードはファイバーコア径で規制されてたシングルモードであるため、このような不安定要因がなく、常に安定した凝固層を形成することが可能である。この観点でも本発明にファイバーレーザを用いることが好ましい。
A multimode beam used in a YAG laser or the like is a beam in which various spatial intensity distributions are superposed, and oscillates due to a time distribution of a laser medium temperature distribution and excitation intensity in a cross section perpendicular to the laser output direction. The mode may change. In that case, there exists a problem that control of the solidified layer thickness of this invention becomes unstable.
On the other hand, since the mode of the fiber laser is a single mode regulated by the fiber core diameter, there is no such instability factor, and it is possible to always form a stable solidified layer. Also from this viewpoint, it is preferable to use a fiber laser in the present invention.
以上のレーザ照射条件により、上記方向性電磁鋼板の表面へレーザ照射する。レーザ照射は、板幅方向に線状あるは点列状に照射すれば良い。板幅方向とは、圧延方向と略直角であればよいが、圧延直角方向から±30°内であれば本発明範囲内である。線状とは上記板幅方向に直線的にレーザ照射する場合をいい、点列状とは上記板幅方向に一定の直線上にある周期をもって点状にレーザ照射する場合をいう。また、上記線状または点列状のレーザ照射線の圧延方向の間隔は1〜100mmの範囲が好適である。この間隔は、より好ましくは30mm以下、さらに好ましくは3〜5mmである。 Under the above laser irradiation conditions, the surface of the grain-oriented electrical steel sheet is irradiated with laser. Laser irradiation may be performed linearly or in a dot array in the plate width direction. The sheet width direction may be substantially perpendicular to the rolling direction, but is within ± 30 ° from the direction perpendicular to the rolling and is within the scope of the present invention. The term “linear” refers to the case where the laser is irradiated linearly in the plate width direction, and the point sequence refers to the case where the laser is irradiated in a dotted manner with a period on a certain straight line in the plate width direction. Moreover, the range of 1-100 mm is suitable for the space | interval of the rolling direction of the said linear or point sequence-like laser irradiation line. This interval is more preferably 30 mm or less, and further preferably 3 to 5 mm.
また、上記レーザ条件により照射されたレーザ照射部の凝固層厚みが4μm以下であることが必要である。凝固層厚みは、レーザ照射部の凝固層を断面で観察した際に、凝固層が最も厚い部分における凝固層の板厚方向長さを測定することにより求めるが、このような部分は通常レーザ照射部の中心部(圧延方向幅中心部)に相当する位置であり、レーザ照射中心線(レーザ照射領域、あるいはレーザ照射痕の幅中央線)を代表部位として測定しても良い。なお、測定に際しては、実質的な凝固層厚みが測定できるよう、当該部から一定の範囲(例えば、中心線から±10μmの範囲)の凝固厚みを平均した値とすることが好ましい。
なお、凝固層の観察は、エッチングを併用するSEM観察方法、反射電子像を用いたSEM観察方法、FE−SEMを用いた観察方法、光学顕微鏡を用いた方法などにより測定可能である。この際、図3のような傾斜研磨を行って測定したSEM写真を用いることにより、凝固層厚みをより正確に求めることができる。
凝固層厚の上限値4μmは、磁歪を劣化させずにかつ高磁場鉄損を向上させる条件なので限定した。なお、凝固層厚みの下限値については、磁区細分化のための鋼板の弾性変形を維持するために必要と考えられる熱変形体積の確保の観点から0.1μm以上が望ましい。さらには0.5μm以上、2μm以下が更に好ましい。
Moreover, the solidified layer thickness of the laser irradiation part irradiated by the said laser conditions needs to be 4 micrometers or less. The thickness of the solidified layer is determined by measuring the length in the thickness direction of the solidified layer at the thickest part of the solidified layer when the solidified layer is observed in a cross section. It may be a position corresponding to the center part (width direction center part in the rolling direction) of the part, and the laser irradiation center line (laser irradiation area or the width center line of the laser irradiation mark) may be measured as a representative part. In the measurement, it is preferable that the solidified thickness within a certain range from the portion (for example, a range of ± 10 μm from the center line) is an average value so that a substantial solidified layer thickness can be measured.
The solidified layer can be observed by an SEM observation method using etching together, an SEM observation method using a backscattered electron image, an observation method using an FE-SEM, a method using an optical microscope, and the like. At this time, the solidified layer thickness can be obtained more accurately by using an SEM photograph measured by performing inclined polishing as shown in FIG.
The upper limit value of 4 μm for the solidified layer thickness is limited because it does not deteriorate the magnetostriction and improves the high magnetic field iron loss. The lower limit value of the solidified layer thickness is preferably 0.1 μm or more from the viewpoint of securing a heat deformation volume that is considered necessary for maintaining elastic deformation of the steel sheet for magnetic domain refinement. Furthermore, 0.5 μm or more and 2 μm or less are more preferable.
図2にレーザ照射部における凝固層組織( (a) 本発明例、 (b) 比較例)を示す。 (a)は圧延方向の照射部長さ(幅)70μm、パワー密度3kW/mm2 のレーザ照射条件で、(b)は圧延方向照射幅250μm、パワー密度30kW/mm2 のレーザ照射条件でレーザ照射を実施した。照射ビームを圧延直角方向に走査する速度は両者とも同一とした。圧延直角方向の線状の連続レーザ照射で、照射線の間隔は5mmであった。 FIG. 2 shows a solidified layer structure ((a) an example of the present invention and (b) a comparative example) in a laser irradiation part. (A) is a laser irradiation condition with an irradiation part length (width) of 70 μm in the rolling direction and a power density of 3 kW / mm 2 , and (b) is a laser irradiation condition with a laser irradiation condition of a rolling direction irradiation width of 250 μm and a power density of 30 kW / mm 2. Carried out. The scanning speed of the irradiation beam in the direction perpendicular to the rolling was the same for both. With the linear continuous laser irradiation in the direction perpendicular to the rolling, the distance between the irradiation lines was 5 mm.
ここでパワ−密度とは、鋼板上でのレーザ照射パワーを照射部の面積で除したものであり、照射部単位面積あたりのレーザ照射パワーを示す。図2は、鋼板断面を研磨する際に、図3のように傾斜をつけて行っており、上下方向の長さは圧延面に直角で圧延方向を含む断面での長さの5倍に引き伸ばされている。これらの観察結果から、凝固層厚みは、(a)は3.3μm、(b)は4.7μmであり、(a)は、鉄損W19/50 (W/kg)=1.34W/kg、磁歪λ19p-p =0.45×10-6、(b)は鉄損W19/50 (W/kg)=1.67W/kg、磁歪λ19p-p =0.7×10-6と、本発明例で優れた高磁場鉄損と低磁歪が得られている。尚、これらの鋼板の板厚は0.27mmであった。 Here, the power density is obtained by dividing the laser irradiation power on the steel plate by the area of the irradiation part, and indicates the laser irradiation power per unit area of the irradiation part. FIG. 2 shows that the steel plate cross section is slanted as shown in FIG. 3, and the length in the vertical direction is extended to 5 times the length in the cross section perpendicular to the rolling surface and including the rolling direction. It is. From these observation results, the solidified layer thickness is 3.3 μm for (a), 4.7 μm for (b), and (a) is the iron loss W 19/50 (W / kg) = 1.34 W / kg, magnetostriction λ19 pp = 0.45 × 10 −6 , (b) shows iron loss W 19/50 (W / kg) = 1.67 W / kg, magnetostriction λ19 pp = 0.7 × 10 −6 Excellent magnetic field iron loss and low magnetostriction are obtained in the inventive examples. The plate thickness of these steel plates was 0.27 mm.
また、上記レーザ条件により照射されたレーザ照射の圧延直角方向よりみた断面形状が幅200μm以下、深さ10μm以下の凹型形状であることが望ましい。幅の上限200μmは、大きすぎると占積率が低下するためまた、高磁場での鉄損と低磁歪を両立さるために好ましい。幅は、好ましくは30〜180μmである。深さの上限10μmは、幅と同様に深すぎると占積率を低下させるため、また、高磁場での鉄損と磁束密度の劣化を防止するために好ましい。深さは、好ましくは1〜4μmである。
なお、図1にレーザ照射部の圧延直角方向よりみた凹型断面形状の模式図を示す。図中のtmが凝固層の最大厚み、dが凹型形状の深さ、Wが凹型形状の幅(圧延方向照射幅)である。
Further, it is desirable that the cross-sectional shape seen from the direction perpendicular to the rolling direction of the laser irradiation irradiated under the laser conditions is a concave shape having a width of 200 μm or less and a depth of 10 μm or less. If the upper limit of the width is 200 μm, the space factor decreases if it is too large, and it is also preferable for achieving both iron loss and low magnetostriction in a high magnetic field. The width is preferably 30 to 180 μm. The upper limit of the depth of 10 μm is preferable to reduce the space factor when the depth is too deep as well as the width, and to prevent the iron loss and the magnetic flux density from being deteriorated in a high magnetic field. The depth is preferably 1 to 4 μm.
In addition, the schematic diagram of the concave cross-sectional shape seen from the rolling orthogonal direction of the laser irradiation part in FIG. 1 is shown. In the figure, tm is the maximum thickness of the solidified layer, d is the depth of the concave shape, and W is the width of the concave shape (irradiation width in the rolling direction).
次に、レーザ照射部の表面粗度の小さい場合の本発明を実施する具体的形態について説明する。
本発明では、方向性電磁鋼板に板幅方向に線状あるいは点列状でレーザ照射して磁区制御を行う。板幅方向とは圧延方向と直角方向から0°〜30°の範囲に線状あるいは点列状でレーザ照射する。線状とは照射痕が連続する直線状に照射すること、点列状とは円あるいは楕円の照射痕の列が直線上に配置するように照射することをいう。ただし、これらの照射痕が完全な直線ではなく、波状であっても本発明の実施を妨げるものではない。波状照射の場合には、上記の板幅方向は波状線の中心線を持って定義する。
Next, a specific mode for carrying out the present invention when the surface roughness of the laser irradiation portion is small will be described.
In the present invention, magnetic domain control is performed by irradiating a grain-oriented electrical steel sheet with a laser beam in the form of a line or a point sequence in the sheet width direction. In the sheet width direction, laser irradiation is performed in the form of a line or a point sequence within a range of 0 ° to 30 ° from the direction perpendicular to the rolling direction. The term “linear” refers to irradiation in a straight line with continuous irradiation marks, and the term “dot” refers to irradiation in such a way that circular or elliptical irradiation marks are arranged on a straight line. However, even if these irradiation traces are not a perfect straight line and are wavy, implementation of this invention is not prevented. In the case of wavy irradiation, the plate width direction is defined with the center line of the wavy line.
なお、上記レーザ照射する際、本発明では照射痕の底部形状を小さくすることが可能であり、高磁場での鉄損を低減できるということからファイバーレーザ装置を用いることが好ましい。なお、YAGレーザでは照射痕の形状を小さくすることは比較的容易であるが、十分なパワーを持たせるためには設備が大掛かりになるという欠点があり、また一般に用いられるマルチモード発振では底部のレーザ照射部の表面粗度を小さくすることは困難である。CO2 レーザでは、波長が長いため照射痕の形状を小さくすることが困難であるという欠点があり、またYAGレーザと同様、一般に用いられるマルチモード発振では照射部底部のレーザ照射部の表面粗度を小さくすることは困難である。 In the present invention, it is preferable to use a fiber laser device because the bottom shape of the irradiation mark can be reduced and the iron loss in a high magnetic field can be reduced in the present invention. Note that it is relatively easy to reduce the shape of the irradiation mark in the YAG laser, but there is a drawback that the equipment becomes large in order to have sufficient power, and in the multimode oscillation generally used, the bottom part is It is difficult to reduce the surface roughness of the laser irradiation part. The CO 2 laser has a drawback that it is difficult to reduce the shape of the irradiation mark because of its long wavelength. Similarly to the YAG laser, the surface roughness of the laser irradiation part at the bottom of the irradiation part is commonly used in multimode oscillation. Is difficult to reduce.
また、レーザのビーム品質を向上させ、底部形状を小さくするための光学系を簡便化できるという理由から、ファーバーのコア径を500μm以下とすることが望ましい。上限500μmは、これ以上では、所望の底部形状が得られないという問題が起こるので限定する。さらにはコア径を200μm以下とすることが好ましい。更に好ましくは、コア径を40μm以下とすることも好ましい。 Further, it is desirable that the core diameter of the fiber is 500 μm or less because the optical system for improving the laser beam quality and reducing the bottom shape can be simplified. If the upper limit is 500 μm or more, there is a problem that a desired bottom shape cannot be obtained. Furthermore, the core diameter is preferably 200 μm or less. More preferably, the core diameter is preferably 40 μm or less.
レーザ照射された底部とは、レーザ照射された際に、鋼板表面が一部溶融するまでの影響を受けた部分をいう。方向性電磁鋼板表面のセラミック被膜がある場合にも、セラミック被膜下の鋼板部分が一部溶融している部分をもってレーザ照射部とする。図2に断面写真を示す。本発明で言う鋼板表面が一部溶融するまでの影響を受けた部分とは、地鉄部の均質な部分とは異なる、凝固組織を示す表層部分をいう。
なお、この観点から考えた場合、レーザ照射の圧延直角方向よりみた断面形状が幅が狭すぎると表面粗度が大きくなる場合があるため、30μm以上、好ましくは50μm以上とするとよい。
The bottom portion irradiated with a laser means a portion that is affected until the surface of the steel sheet is partially melted when the laser irradiation is performed. Even when there is a ceramic coating on the surface of the grain-oriented electrical steel sheet, the portion where the steel sheet portion under the ceramic coating is partially melted is used as the laser irradiation section. FIG. 2 shows a cross-sectional photograph. In the present invention, the portion affected by the steel plate surface until it partially melts refers to a surface layer portion showing a solidified structure, which is different from the homogeneous portion of the base iron portion.
From this point of view, if the cross-sectional shape viewed from the direction perpendicular to the rolling direction of the laser irradiation is too narrow, the surface roughness may increase, and therefore it is 30 μm or more, preferably 50 μm or more.
本発明では、表面粗度Rzは4μm以下とする。本発明で注目しているRzを確認するためにはより広い範囲の情報が得られる複数箇所での粗度測定を行い、それらの平均値を求めることが好ましい。例えば、照射中心線より圧延方向に幅を持ったレーザ照射部の凹底部すべてをカバーする範囲(例えばレーザ照射幅の範囲)のRzを複数回測定し、これらを平均した値とすることが好ましい。Rzは、好ましくは3.5μmまたはこれ未満、より好ましくは3.0μmまたはこれ未満、さらに好ましくは2.5μmまたはこれ未満である。 In the present invention, the surface roughness Rz is 4 μm or less. In order to confirm Rz focused on in the present invention, it is preferable to measure the roughness at a plurality of locations where a wider range of information is obtained, and obtain the average value thereof. For example, it is preferable to measure Rz of a range (for example, a range of the laser irradiation width) that covers all of the concave bottom portion of the laser irradiation portion having a width in the rolling direction from the irradiation center line, and to average these values. . Rz is preferably 3.5 μm or less, more preferably 3.0 μm or less, and even more preferably 2.5 μm or less.
以下、本発明を実施例に基づいてさらに説明する。
本発明者等は、質量にして3.2%のSiを含む方向性電磁鋼板の成品板(板厚0.23mm)に、鋼板表面片面のほぼ圧延直角方向にファイバー径10μmのファイバーレーザ装置を使って線状のレーザ照射を施した。レーザ照射線の間隔は3mm、圧延方向の照射部長さ(幅)は30μmであった。照射の際、照射ビームを圧延直角方向に走査する速度を変更して、照射部の凝固層の厚みをレーザパワーを変えることによって変化させた。 各試料の磁気測定結果を表3に示す。鉄損、磁束密度、磁歪は、それぞれ鋼板に応力を負荷しない状態で磁束正弦波条件で測定した値である。
表3より解るように、(1)、(2)の試料が高磁場鉄損、磁歪がともに比較例に較べて優れている。
Hereinafter, the present invention will be further described based on examples.
The inventors of the present invention provided a fiber laser device having a fiber diameter of 10 μm in a direction substantially perpendicular to the rolling direction of one surface of a steel sheet on a product plate (thickness 0.23 mm) of a grain-oriented electrical steel sheet containing 3.2% Si by mass. A linear laser irradiation was applied. The interval between the laser irradiation lines was 3 mm, and the irradiation part length (width) in the rolling direction was 30 μm. At the time of irradiation, the thickness of the solidified layer in the irradiated portion was changed by changing the laser power by changing the scanning speed of the irradiation beam in the direction perpendicular to the rolling direction. Table 3 shows the magnetic measurement results of each sample. The iron loss, magnetic flux density, and magnetostriction are values measured under magnetic flux sine wave conditions without applying stress to the steel sheet.
As can be seen from Table 3, the samples of (1) and (2) are superior in both high-field iron loss and magnetostriction compared to the comparative example.
本発明者等は、質量にして3.3%のSiを含む方向性電磁鋼板の成品板(板厚0.23mm)に、鋼板表面片面のほぼ圧延直角方向にファイバー径10μmのファイバーレーザ装置を使って線状のレーザ照射を施した。レーザ照射線の間隔は4mm、圧延方向の照射部長さは(1)30μm、(2)80μm、(3)250μmであった。
また、同じ方向性電磁鋼板にCO2 レーザを用いて線状のレーザ照射を行った。照射線間隔は5mmであり、圧延方向の照射部長さは(4)300μm、(5)500μmであった。凝固層の厚みはレーザパワーと照射時間を変化させることによって制御した各試料の磁気測定結果を表4に示す。鉄損、磁束密度、磁歪は、それぞれ鋼板に応力を負荷しない状態で磁束正弦波条件で測定した値である。
表4より解るように、(1)、(2)、(3)の試料が高磁場鉄損、磁歪がともに他の試料に較べて優れている。
The inventors of the present invention applied a fiber laser apparatus having a fiber diameter of 10 μm in a direction substantially perpendicular to the rolling direction of one surface of a steel sheet on a product plate (thickness 0.23 mm) of a grain-oriented electrical steel sheet containing 3.3% Si by mass. A linear laser irradiation was applied. The distance between the laser irradiation lines was 4 mm, and the length of the irradiated portion in the rolling direction was (1) 30 μm, (2) 80 μm, and (3) 250 μm.
Further, linear laser irradiation was performed on the same grain-oriented electrical steel sheet using a CO 2 laser. The irradiation line interval was 5 mm, and the irradiation part length in the rolling direction was (4) 300 μm and (5) 500 μm. Table 4 shows the magnetic measurement results of each sample in which the thickness of the solidified layer was controlled by changing the laser power and the irradiation time. Iron loss, magnetic flux density, and magnetostriction are values measured under magnetic flux sine wave conditions without applying stress to the steel sheet.
As can be seen from Table 4, the samples of (1), (2), and (3) are superior in the high magnetic field iron loss and magnetostriction compared to other samples.
本発明者等は、質量にして3.2%のSiを含む方向性電磁鋼板の成品板(板厚0.27mm)に、鋼板表面片面のほぼ圧延直角方向にファイバー径20μmのファイバーレーザ装置を使って線状のレーザ照射を施した。レーザ照射線の間隔は5mm、圧延方向の照射部長さは50μmであった。照射の際、照射ビームを圧延直角方向に走査する速度を変更して、レーザ照射部の突起有無を変化させた。以上、各試料のレーザ照射部分の形状および磁気測定結果を表5に示す。レーザ照射部分の粗度測定はレーザ照射部分を含む圧延方向と平行に触針式表面粗さ計を走査して測定した。また、鉄損、磁束密度、磁歪は、それぞれ鋼板に応力を負荷しない状態で磁束正弦波条件で測定した値である。
表5より解るように、(1)、(2)の試料が高磁場鉄損、磁歪がともに他の試料に較べて優れている。
The inventors of the present invention applied a fiber laser apparatus having a fiber diameter of 20 μm in a direction substantially perpendicular to the rolling direction of one surface of a steel sheet to a product plate (thickness 0.27 mm) of a grain-oriented electrical steel sheet containing 3.2% Si by mass. A linear laser irradiation was applied. The interval between the laser irradiation lines was 5 mm, and the length of the irradiated part in the rolling direction was 50 μm. At the time of irradiation, the scanning speed of the irradiation beam in the direction perpendicular to the rolling direction was changed to change the presence or absence of protrusions in the laser irradiation portion. Table 5 shows the shape of the laser irradiated portion of each sample and the magnetic measurement results. The roughness of the laser irradiated portion was measured by scanning a stylus type surface roughness meter parallel to the rolling direction including the laser irradiated portion. Moreover, iron loss, magnetic flux density, and magnetostriction are values measured under magnetic flux sine wave conditions without applying stress to the steel sheet.
As can be seen from Table 5, the samples of (1) and (2) are superior to the other samples in both high magnetic field iron loss and magnetostriction.
本発明者等は、質量にして3.3%のSiを含む方向性電磁鋼板の成品板(板厚0.23mm)に、鋼板表面片面のほぼ圧延直角方向にファイバー径10μmのファイバーレーザ装置を使って線状のレーザ照射を施した。レーザ照射線の間隔は5mm、圧延方向の照射部長さは(1)50μm、(2)100μm、(3)200μmであった。また、同じ方向性電磁鋼板にCO2 レーザを用いて線状のレーザ照射を行った。照射線間隔は5mmであり、圧延方向の照射部長さは(4)200μm、400μmであった。
以上、各試料のレーザ照射部分の形状および磁気測定結果を表6に示す。レーザ照射部分の形状は圧延直角方向よりみた凹型の断面形状である。また、鉄損、磁束密度、磁歪は、それぞれ鋼板に応力を負荷しない状態で磁束正弦波条件で測定した値である。
表6より解るように、(1)、(2)、(3)の試料が高磁場鉄損、磁歪がともに他の試料に較べて優れている。
The inventors of the present invention applied a fiber laser apparatus having a fiber diameter of 10 μm in a direction substantially perpendicular to the rolling direction of one surface of a steel sheet on a product plate (thickness 0.23 mm) of a grain-oriented electrical steel sheet containing 3.3% Si by mass. A linear laser irradiation was applied. The interval between the laser irradiation lines was 5 mm, and the length of the irradiated part in the rolling direction was (1) 50 μm, (2) 100 μm, and (3) 200 μm. Further, linear laser irradiation was performed on the same grain-oriented electrical steel sheet using a CO 2 laser. The irradiation line interval was 5 mm, and the irradiation part length in the rolling direction was (4) 200 μm and 400 μm.
Table 6 shows the shape of the laser irradiated portion of each sample and the magnetic measurement results. The shape of the laser irradiation portion is a concave cross-sectional shape as viewed from the direction perpendicular to the rolling. Moreover, iron loss, magnetic flux density, and magnetostriction are values measured under magnetic flux sine wave conditions without applying stress to the steel sheet.
As can be seen from Table 6, the samples of (1), (2), and (3) are superior in the high magnetic field iron loss and magnetostriction compared to other samples.
1:鋼板
W:凹部断面幅
d:凹底部深さ
tm:凝固層厚み
1: Steel plate W: Concave cross-sectional width d: Concave bottom depth tm: Solidified layer thickness
Claims (13)
The grain-oriented electrical steel sheet according to claim 7 or 8, wherein the concave-shaped portion has a width of 30 to 180 µm and a depth of 1 to 4 µm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006121576A JP4846429B2 (en) | 2005-05-09 | 2006-04-26 | Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005135763 | 2005-05-09 | ||
JP2005135763 | 2005-05-09 | ||
JP2005152218 | 2005-05-25 | ||
JP2005152218 | 2005-05-25 | ||
JP2006121576A JP4846429B2 (en) | 2005-05-09 | 2006-04-26 | Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007002334A true JP2007002334A (en) | 2007-01-11 |
JP4846429B2 JP4846429B2 (en) | 2011-12-28 |
Family
ID=37688202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006121576A Active JP4846429B2 (en) | 2005-05-09 | 2006-04-26 | Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4846429B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011030907A1 (en) * | 2009-09-14 | 2011-03-17 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same |
JP2012199506A (en) * | 2011-03-04 | 2012-10-18 | Hitachi Metals Ltd | Tape-wound core |
WO2014034128A1 (en) | 2012-08-30 | 2014-03-06 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet for iron core and method for manufacturing same |
JP2015510543A (en) * | 2011-12-29 | 2015-04-09 | ポスコ | Electric steel sheet and manufacturing method thereof |
WO2016171124A1 (en) * | 2015-04-20 | 2016-10-27 | 新日鐵住金株式会社 | Oriented magnetic steel plate |
KR20160145654A (en) | 2014-05-09 | 2016-12-20 | 신닛테츠스미킨 카부시키카이샤 | Low magnetorestriction oriented electromagnetic steel sheet with low iron loss |
JP2017095745A (en) * | 2015-11-19 | 2017-06-01 | 新日鐵住金株式会社 | Grain oriented silicon steel sheet and method for manufacturing the same |
KR20170106401A (en) | 2015-02-05 | 2017-09-20 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet, manufacturing method therefor, and method for predicting transformer noise property |
KR20170107085A (en) | 2015-04-20 | 2017-09-22 | 신닛테츠스미킨 카부시키카이샤 | Directional electromagnetic steel sheet |
JP2018508645A (en) * | 2014-12-24 | 2018-03-29 | ポスコPosco | Oriented electrical steel sheet and manufacturing method thereof |
JP2020509215A (en) * | 2016-12-22 | 2020-03-26 | ポスコPosco | Grain-oriented electrical steel sheet and its magnetic domain refinement method |
JP2020090709A (en) * | 2018-12-05 | 2020-06-11 | Jfeスチール株式会社 | Method for improving iron loss of grain-oriented electrical steel sheet and apparatus therefor |
US10804015B2 (en) | 2011-12-29 | 2020-10-13 | Posco | Electrical steel sheet and method for manufacturing the same |
CN113348257A (en) * | 2019-01-28 | 2021-09-03 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet and method for producing same |
EP3751014A4 (en) * | 2018-02-08 | 2021-10-06 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
WO2023132251A1 (en) * | 2022-01-06 | 2023-07-13 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet |
WO2024075621A1 (en) * | 2022-10-03 | 2024-04-11 | 日本製鉄株式会社 | Stacked iron core and manufacturing method of stacked iron core |
WO2024111619A1 (en) * | 2022-11-22 | 2024-05-30 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet |
WO2024111612A1 (en) * | 2022-11-22 | 2024-05-30 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116832A (en) * | 1980-02-16 | 1981-09-12 | Nippon Steel Corp | Method and apparatus for production of directional electromagnetic steel sheet excellent in magnetic property |
JPS6383227A (en) * | 1986-09-26 | 1988-04-13 | Nippon Steel Corp | Improvement of iron loss value of electrical steel sheet |
JP2000109961A (en) * | 1998-10-06 | 2000-04-18 | Nippon Steel Corp | Grain oriented silicon steel sheet excellent in magnetic property and its production |
JP2003311459A (en) * | 2002-04-19 | 2003-11-05 | Nippon Steel Corp | Laser beam surface machining device |
WO2004083465A1 (en) * | 2003-03-19 | 2004-09-30 | Nippon Steel Corporation | Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method |
-
2006
- 2006-04-26 JP JP2006121576A patent/JP4846429B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116832A (en) * | 1980-02-16 | 1981-09-12 | Nippon Steel Corp | Method and apparatus for production of directional electromagnetic steel sheet excellent in magnetic property |
JPS6383227A (en) * | 1986-09-26 | 1988-04-13 | Nippon Steel Corp | Improvement of iron loss value of electrical steel sheet |
JP2000109961A (en) * | 1998-10-06 | 2000-04-18 | Nippon Steel Corp | Grain oriented silicon steel sheet excellent in magnetic property and its production |
JP2003311459A (en) * | 2002-04-19 | 2003-11-05 | Nippon Steel Corp | Laser beam surface machining device |
WO2004083465A1 (en) * | 2003-03-19 | 2004-09-30 | Nippon Steel Corporation | Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9290831B2 (en) | 2009-09-14 | 2016-03-22 | Hitachi Metals, Ltd. | Soft-magnetic, amorphous alloy ribbon and its production method, and magnetic core constituted thereby |
JP5440606B2 (en) * | 2009-09-14 | 2014-03-12 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same |
CN102473500A (en) * | 2009-09-14 | 2012-05-23 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same |
CN102473500B (en) * | 2009-09-14 | 2014-10-15 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same |
WO2011030907A1 (en) * | 2009-09-14 | 2011-03-17 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same |
JP2012199506A (en) * | 2011-03-04 | 2012-10-18 | Hitachi Metals Ltd | Tape-wound core |
JP2015510543A (en) * | 2011-12-29 | 2015-04-09 | ポスコ | Electric steel sheet and manufacturing method thereof |
US10804015B2 (en) | 2011-12-29 | 2020-10-13 | Posco | Electrical steel sheet and method for manufacturing the same |
WO2014034128A1 (en) | 2012-08-30 | 2014-03-06 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet for iron core and method for manufacturing same |
KR20150036775A (en) | 2012-08-30 | 2015-04-07 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet for iron core and method of manufacturing the same |
US10026533B2 (en) | 2012-08-30 | 2018-07-17 | Jfe Steel Corporation | Grain-oriented electrical steel sheet for iron core and method of manufacturing the same |
KR20160145654A (en) | 2014-05-09 | 2016-12-20 | 신닛테츠스미킨 카부시키카이샤 | Low magnetorestriction oriented electromagnetic steel sheet with low iron loss |
US10610964B2 (en) | 2014-05-09 | 2020-04-07 | Nippon Steel Corporation | Grain-oriented electrical steel sheet causing low core loss and low magnetostriction |
US10815545B2 (en) | 2014-12-24 | 2020-10-27 | Posco | Grain-oriented electrical steel plate and manufacturing method thereof |
JP2018508645A (en) * | 2014-12-24 | 2018-03-29 | ポスコPosco | Oriented electrical steel sheet and manufacturing method thereof |
US11572602B2 (en) | 2015-02-05 | 2023-02-07 | Jfe Steel Corporation | Method for manufacturing a grain-oriented electrical steel sheet |
KR20170106401A (en) | 2015-02-05 | 2017-09-20 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet, manufacturing method therefor, and method for predicting transformer noise property |
WO2016171124A1 (en) * | 2015-04-20 | 2016-10-27 | 新日鐵住金株式会社 | Oriented magnetic steel plate |
KR20170107085A (en) | 2015-04-20 | 2017-09-22 | 신닛테츠스미킨 카부시키카이샤 | Directional electromagnetic steel sheet |
EP3287538A4 (en) * | 2015-04-20 | 2018-11-14 | Nippon Steel & Sumitomo Metal Corporation | Oriented magnetic steel plate |
RU2682363C1 (en) * | 2015-04-20 | 2019-03-19 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Electrical steel sheet with oriented grain structure |
US10385418B2 (en) | 2015-04-20 | 2019-08-20 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
EP3287533A4 (en) * | 2015-04-20 | 2018-11-14 | Nippon Steel & Sumitomo Metal Corporation | Oriented magnetic steel plate |
JPWO2016171130A1 (en) * | 2015-04-20 | 2017-12-21 | 新日鐵住金株式会社 | Oriented electrical steel sheet |
US10675714B2 (en) | 2015-04-20 | 2020-06-09 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
JPWO2016171124A1 (en) * | 2015-04-20 | 2017-11-24 | 新日鐵住金株式会社 | Oriented electrical steel sheet |
JP2017095745A (en) * | 2015-11-19 | 2017-06-01 | 新日鐵住金株式会社 | Grain oriented silicon steel sheet and method for manufacturing the same |
JP7245285B2 (en) | 2016-12-22 | 2023-03-23 | ポスコ カンパニー リミテッド | Grain-oriented electrical steel sheet and its magnetic domain refinement method |
JP2021167467A (en) * | 2016-12-22 | 2021-10-21 | ポスコPosco | Grain-oriented electrical steel sheet and magnetic domain refinement method therefor |
US11318562B2 (en) | 2016-12-22 | 2022-05-03 | Posco | Grain-oriented electrical steel sheet and magnetic domain refinement method therefor |
JP2020509215A (en) * | 2016-12-22 | 2020-03-26 | ポスコPosco | Grain-oriented electrical steel sheet and its magnetic domain refinement method |
US11772199B2 (en) | 2016-12-22 | 2023-10-03 | Posco | Grain-oriented electrical steel sheet and magnetic domain refinement method therefor |
EP3751014A4 (en) * | 2018-02-08 | 2021-10-06 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
JP2020090709A (en) * | 2018-12-05 | 2020-06-11 | Jfeスチール株式会社 | Method for improving iron loss of grain-oriented electrical steel sheet and apparatus therefor |
CN113348257A (en) * | 2019-01-28 | 2021-09-03 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet and method for producing same |
WO2023132251A1 (en) * | 2022-01-06 | 2023-07-13 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet |
WO2024075621A1 (en) * | 2022-10-03 | 2024-04-11 | 日本製鉄株式会社 | Stacked iron core and manufacturing method of stacked iron core |
WO2024111619A1 (en) * | 2022-11-22 | 2024-05-30 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet |
WO2024111612A1 (en) * | 2022-11-22 | 2024-05-30 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4846429B2 (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846429B2 (en) | Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof | |
US8016951B2 (en) | Low core loss grain-oriented electrical steel sheet and method for producing the same | |
RU2509163C1 (en) | Texture sheet of electric steel and method of its production | |
JP4510757B2 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
US12002607B2 (en) | Fe-based amorphous alloy ribbon and method for producing same, iron core, and transformer | |
JP5000182B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties | |
WO2013161863A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
JP7010311B2 (en) | Directional electrical steel sheet | |
JP2008106288A (en) | Grain-oriented magnetic steel sheet excellent in core-loss characteristic | |
KR20030094030A (en) | One directional electromagnetic steel plate having excellent magnetic property and manufacturing method thereof | |
JP2006233299A (en) | Grain-oriented silicon steel sheet excellent in magnetic property and producing method therefor | |
JP2006117964A (en) | Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor | |
JP7494620B2 (en) | Transformers | |
JP2003034822A (en) | Grain-oriented electromagnetic steel sheet superior in magnetic properties | |
JP2021025074A (en) | Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method | |
CN115620981A (en) | Soft magnetic alloy thin strip and magnetic core | |
CN115620983A (en) | Soft magnetic alloy thin strip and magnetic core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4846429 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |