JP2007001243A - Inkjet recording method - Google Patents

Inkjet recording method Download PDF

Info

Publication number
JP2007001243A
JP2007001243A JP2005186462A JP2005186462A JP2007001243A JP 2007001243 A JP2007001243 A JP 2007001243A JP 2005186462 A JP2005186462 A JP 2005186462A JP 2005186462 A JP2005186462 A JP 2005186462A JP 2007001243 A JP2007001243 A JP 2007001243A
Authority
JP
Japan
Prior art keywords
ink
ejection
heating element
discharge
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005186462A
Other languages
Japanese (ja)
Inventor
Runa Kano
瑠奈 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005186462A priority Critical patent/JP2007001243A/en
Publication of JP2007001243A publication Critical patent/JP2007001243A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inkjet recording method wherein a bubble energy efficiency in a discharge direction is maintained without decreasing even in re-discharging after pause of discharging, a refilling performance is also maintained without decreasing, and a discharge speed is always constant. <P>SOLUTION: An bubble jet type inkjet recording head to generate an air bubble with heat energy, is provided with: a heating body 1 for discharging which generates a first air bubble 8 for discharging an ink droplet; and a heating body 2 for controlling a discharge pressure which is provided between the heating body 1 for discharging and an ink supply passage 5, does not communicate with the first air bubble 8, and generates a second air bubble 9 to give the first air bubble 8 a pressure in a foaming chamber direction from an ink supply chamber direction. The heating body 1 for discharging is driven in continuous discharging, and both the heating body 1 for discharging and the heating body 2 for controlling a discharge pressure are driven in re-discharging after pause of discharging. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱エネルギーによりインクに気泡を発生させるバブルジェット型インクジェット記録方法に関する。   The present invention relates to a bubble jet ink jet recording method in which bubbles are generated in ink by thermal energy.

記録ヘッドよりインクを吐出させるインクジェット記録装置には、記録ヘッドに設けられるインクの吐出エネルギーの発生手段として、ピエゾ等の電気機械変換体を用いるものと、発熱体等の電気熱変換体を用いるものがある。このうち、電気熱変換体の発する熱エネルギーを用いてインクを吐出するバブルジェット(商標登録)型インクジェット記録ヘッドは、記録ヘッドの構造が簡単であり、インク滴を吐出するインク吐出部を高密度に配列することができるため、広く用いられている。   Ink jet recording apparatuses that discharge ink from a recording head use an electromechanical converter such as a piezo and an electrothermal converter such as a heating element as means for generating ink ejection energy provided in the recording head. There is. Among these, the bubble jet (registered trademark) type ink jet recording head that discharges ink using the thermal energy generated by the electrothermal transducer has a simple recording head structure and has a high density of ink discharging portions that discharge ink droplets. Are widely used.

インクジェット記録装置では、インクを吐出せずに放置しておくと、吐出口からインク中の揮発性成分(水、アルコール類)が蒸発し、インクが濃縮、乾燥することによる吐出不良が問題となっていた。そのため、現在の記録装置にはインク中の揮発性成分の蒸発(以下、インク蒸発と言う)に伴う吐出不良を防ぐ手段が設けられている。   In an ink jet recording apparatus, if ink is left without being ejected, volatile components (water, alcohols) in the ink evaporate from the ejection port, and ejection failure due to ink concentration and drying becomes a problem. It was. For this reason, the current recording apparatus is provided with means for preventing ejection failure due to evaporation of volatile components in the ink (hereinafter referred to as ink evaporation).

長期に渡る非記録時のインク蒸発を低減する手段としては、吐出口を密閉状態で覆うキャップを設け、インク蒸発を低減するとともに、記録開始直前にキャップ内に負圧を与えてインクを吸引し、吐出口内から濃縮したインクを除去する吸引回復動作が行われている。   As a means to reduce ink evaporation during non-recording over a long period of time, a cap that covers the ejection port in a sealed state is provided to reduce ink evaporation, and negative pressure is applied to the cap just before the start of recording to suck ink. A suction recovery operation for removing the concentrated ink from the inside of the ejection port is performed.

しかしながら、記録動作中であっても、画像によっては吐出を休止しているノズルがある。吐出を休止している間に、吐出口からインク中の揮発性成分(水、アルコール類)が蒸発すると、インク組成が変化する。このとき、吐出口付近のインク粘度は増加し、吐出口〜発泡室〜インク供給室に粘度分布が生じる。この状態で吐出を再開すると、最初の数発のインク滴吐出速度が低下したり、吐出体積が小さくなったりする吐出不良が見られる。更に、最悪の場合には不吐出になることさえある。これらのインク蒸発が原因で吐出休止後に生じる吐出不良は、インク滴着弾位置のずれや印字ドット径のばらつき、ドット抜け等の画像不良をもたらす。   However, even during the recording operation, there is a nozzle that stops ejection depending on the image. When the volatile components (water, alcohols) in the ink are evaporated from the ejection port while ejection is suspended, the ink composition changes. At this time, the ink viscosity in the vicinity of the ejection port increases, and a viscosity distribution is generated in the ejection port, the foaming chamber, and the ink supply chamber. When ejection is resumed in this state, ejection failure is observed in which the ejection speed of the first few ink drops is reduced or the ejection volume is reduced. Furthermore, in the worst case, there is a possibility of non-ejection. The ejection failure that occurs after ejection suspension due to the evaporation of these inks causes image failures such as deviations in ink droplet landing positions, variations in print dot diameter, and missing dots.

記録動作中にこれらのインク蒸発に伴う吐出不良を防ぐ手段としては、記録動作中のあるタイミングに、記録ヘッドを搬送するキャリッジを記録媒体外に移動させ、吐出と同じ駆動を複数回行うことにより吐出口付近の増粘したインクを除去する予備吐出と呼ばれる方法がある。   As a means for preventing the ejection failure due to ink evaporation during the recording operation, the carriage for transporting the recording head is moved out of the recording medium at a certain timing during the recording operation, and the same driving as the ejection is performed a plurality of times. There is a method called preliminary discharge that removes the thickened ink near the discharge port.

近年、インクジェット記録装置において高画質化が急速に進められており、それに伴いインク滴は小液滴化されている。バブルジェット方式では、小液滴化が進むに連れ吐出口径は小さくなり、吐出口〜発泡室の容積が小さくなる傾向にある。単位面積当たりの水の蒸発速度は吐出口径が小さいほど速くなることが分かっている。   In recent years, image quality has been rapidly improved in ink jet recording apparatuses, and ink droplets have been made smaller accordingly. In the bubble jet method, the discharge port diameter decreases as the size of the droplet decreases, and the volume of the discharge port to the foaming chamber tends to decrease. It has been found that the evaporation rate of water per unit area increases as the outlet diameter decreases.

又、吐出口の容積が小さくなると、吐出インクに対する増粘したインクの割合が増す。従って、小液滴化が進むとインク蒸発に伴う吐出不良が生じるまでの時間が短くなり、予備吐出の回数を増やさなければならなくなるが、予備吐出の回数が増えるとインクの無駄が増えることになり、ランニングコストが高くなるという問題があった。   Further, when the volume of the ejection port is reduced, the ratio of the thickened ink to the ejected ink is increased. Therefore, as the droplet size is reduced, the time until ejection failure occurs due to ink evaporation becomes shorter and the number of preliminary ejections must be increased. However, if the number of preliminary ejections increases, the waste of ink increases. Therefore, there is a problem that the running cost is high.

上記の問題を解決するため、吐出口からのインク蒸発によるインク粘度増加を抑制する発明が、特許文献1,2等に開示されている。特許文献1では、吐出口の近くに蒸発抑制溝を備え、インクから蒸発した水分やアルコール類の蒸気により吐出口周辺の雰囲気の湿度を上げることにより、吐出口からの蒸発を抑制している。特許文献2では、ノズル径が最小になる絞り部を変極点とし、発泡室側から変極点に向かうまでのノズル径はテーパー状に吐出方向に縮小し、変極点を境にして吐出方向にノズル径がテーパー状に広がっている。吐出口の開口面積が増えた効果により吐出口付近のインク粘度増加が低減できる。   In order to solve the above problems, inventions that suppress an increase in ink viscosity due to ink evaporation from the ejection port are disclosed in Patent Documents 1 and 2 and the like. In Patent Document 1, an evaporation suppression groove is provided near the discharge port, and evaporation from the discharge port is suppressed by increasing the humidity of the atmosphere around the discharge port by moisture or alcohol vapor evaporated from the ink. In Patent Document 2, the narrowed portion where the nozzle diameter becomes the minimum is the inflection point, the nozzle diameter from the foaming chamber side toward the inflection point is tapered in the discharge direction, and the nozzle in the discharge direction is bordered by the inflection point. The diameter is tapered. The increase in ink viscosity near the discharge port can be reduced by the effect of increasing the opening area of the discharge port.

これらの発明は、吐出口からのインク蒸発によるインク粘度増加を抑制することができるため、インク蒸発が原因である吐出不良が生じるまでの時間を長くする効果がある。しかしながら、吐出口付近のインク粘度が増加してしまった時には吐出不良を抑制する効果はない。   Since these inventions can suppress an increase in ink viscosity due to ink evaporation from the discharge port, there is an effect of prolonging the time until a discharge failure occurs due to ink evaporation. However, when the ink viscosity near the ejection port increases, there is no effect of suppressing ejection failure.

ここで、吐出用発熱体でインク中に発生した気泡の形状について、図2を参照しながら説明する。   Here, the shape of bubbles generated in the ink by the discharge heating element will be described with reference to FIG.

(a)図は連続吐出時の気泡形状である。このとき、吐出口〜発泡室〜インク供給室内のインク粘度は均一であり、従って、気泡は吐出方向、インク供給室方向の両方向に伸びる。図2(b)は吐出休止時に吐出口からインク中の揮発性成分が蒸発し、吐出口〜発泡室〜インク供給室にインク粘度分布が生じた後に吐出を再開したときの気泡形状である。このとき、発泡室から見て吐出口側の粘性抵抗が高く、インク供給室側の粘性抵抗が低くなる。気泡は粘性抵抗の高い吐出方向を避け、粘性抵抗の低いインク供給室方向に延びるため、図2(a)の連続吐出時の気泡形状に比べ、吐出方向に小さくインク供給室方向に大きい気泡となる。気泡形状が図2(b)のようになると、吐出力となる泡エネルギーの効率が低下し、インク滴吐出速度が低下する。   (A) The figure is a bubble shape at the time of continuous discharge. At this time, the ink viscosity in the discharge port, the foaming chamber, and the ink supply chamber is uniform, and thus the bubbles extend in both the discharge direction and the ink supply chamber direction. FIG. 2B shows a bubble shape when the ejection is resumed after the volatile component in the ink is evaporated from the ejection port during the ejection stop and the ink viscosity distribution is generated in the ejection port, the foaming chamber, and the ink supply chamber. At this time, the viscosity resistance on the ejection port side is high as viewed from the foaming chamber, and the viscosity resistance on the ink supply chamber side is low. Since the bubbles extend in the direction of the ink supply chamber having a low viscosity resistance while avoiding the discharge direction having a high viscosity resistance, the bubbles are smaller in the discharge direction and larger in the direction of the ink supply chamber than the bubble shape in the continuous discharge in FIG. Become. When the bubble shape is as shown in FIG. 2B, the efficiency of the bubble energy serving as the ejection force is lowered, and the ink droplet ejection speed is lowered.

吐出用発熱体でインク中に発生した気泡の吐出方向へのエネルギー効率を向上させるとともに、インクが吐出口まで再充填されるまでの速度、つまりリフィル性能を向上させる発明としては、例として特許文献3,4がある。特許文献3では、発熱体とインク供給口との間に、可動部材とインク供給口側への変位を制限する制限部を形成し、発泡圧力がインク供給口側へ逃げるのを防いでいる。特許文献4では、気泡発生領域のインク供給路側に設けられて気泡の成長に伴って移動する可動部材と、可動部材を挟むインク供給路側と吐出口側に可動部材の移動範囲を規制する規制部を設け、吐出圧を吐出口方向へ向けている。
特開平11−005307号公報 特開2004−042399号公報 特開2003−127399号公報 特開2003−175606号公報
As an example of an invention for improving the energy efficiency in the ejection direction of bubbles generated in the ink by the ejection heating element and improving the speed until the ink is refilled to the ejection port, that is, the refill performance, as an example, Patent Document There are three and four. In Patent Document 3, a restricting portion that restricts displacement to the movable member and the ink supply port side is formed between the heating element and the ink supply port to prevent the foaming pressure from escaping to the ink supply port side. In Patent Document 4, a movable member that is provided on the ink supply path side of the bubble generation region and moves as the bubble grows, and a restriction unit that restricts the movement range of the movable member on the ink supply path side and the discharge port side across the movable member. The discharge pressure is directed toward the discharge port.
Japanese Patent Laid-Open No. 11-005307 JP 2004-042399 A JP 2003-127399 A JP 2003-175606 A

特許文献3,4では発熱体が駆動する度に可動部材が動くため、記録ヘッドの寿命が短いという問題がある。又、これらの発明では、流路内に可動部材を設けたことを特徴とする従来の発明と比べリフィル性能は向上しているが、流路内に構造物を設けていない従来のインクジェット記録ヘッドと比較するとリフィル性能は悪い。   In Patent Documents 3 and 4, since the movable member moves each time the heating element is driven, there is a problem that the life of the recording head is short. In these inventions, the refill performance is improved as compared with the conventional invention characterized in that a movable member is provided in the flow path, but a conventional ink jet recording head in which no structure is provided in the flow path. Compared with, refill performance is poor.

本発明は、上記実情に鑑みてなされたものであり、吐出休止後の再吐出時であっても吐出方向の泡エネルギー効率が低下することなく、又、リフィル性能を低下させることなく、吐出速度が常に一定であるインクジェット記録方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and even when re-ejection after ejection suspension, the foam energy efficiency in the ejection direction is not lowered, and the ejection speed is not degraded without reducing the refill performance. An object of the present invention is to provide an ink jet recording method in which is always constant.

上記目的を達成するため、請求項1記載の発明は、インク滴を吐出させるための吐出エネルギーを発生させる吐出用発熱体と、該吐出用発熱体が配置されインクに第1の気泡が発生する発泡室と、該発泡室にインクを供給するためのインク供給室と、該インク供給室にインクを導くインク供給路と、インク滴を吐出させるインク吐出口と、を有するインクジェット記録ヘッドにおいて、前記吐出用発熱体と前記インク供給路の間に吐出圧制御用発熱体を設け、連続吐出時には前記吐出用発熱体を駆動させ、吐出休止後の再吐出時には前記吐出用発熱体と前記吐出圧制御用発熱体の両方を駆動させることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided an ejection heating element for generating ejection energy for ejecting ink droplets, and the ejection heating element is arranged to generate a first bubble in the ink. An ink jet recording head comprising: a foaming chamber; an ink supply chamber for supplying ink to the foaming chamber; an ink supply path for guiding ink to the ink supply chamber; and an ink discharge port for discharging ink droplets. An ejection pressure control heating element is provided between the ejection heating element and the ink supply path, and the ejection heating element is driven during continuous ejection, and the ejection heating element and the ejection pressure control during re-ejection after ejection suspension. It is characterized in that both of the heating elements for driving are driven.

請求項2記載の発明は、請求項1記載の発明において、吐出休止時間が長くなるに連れ、前記吐出圧制御用発熱体の発泡エネルギーが大きくなるように制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the foaming energy of the discharge pressure control heating element is controlled to increase as the discharge pause time increases.

請求項3記載の発明は、請求項1記載の発明において、吐出環境の相対湿度が低くなるに連れ、前記吐出圧制御用発熱体の発泡エネルギーが大きくなるように制御することを特徴とする。   The invention according to claim 3 is characterized in that, in the invention according to claim 1, control is performed so that the foaming energy of the discharge pressure control heating element increases as the relative humidity of the discharge environment decreases.

請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記吐出圧制御用発熱体の発泡エネルギーは、駆動電圧又はパルス幅の少なくとも一方を変えることにより制御することを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the foaming energy of the discharge pressure control heating element is controlled by changing at least one of a drive voltage and a pulse width. Features.

請求項5記載の発明は、請求項1記載の発明において、前記吐出用発熱体と前記吐出圧制御用発熱体から発生する気泡の発泡開始時期(以下、発泡タイミング)の差は、前記吐出用発熱体と前記吐出圧制御用発熱体の駆動開始時期(以下、駆動タイミング)の差又は前記吐出圧制御用発熱体の駆動電圧の少なくとも一方を変えることにより制御することを特徴とする。   According to a fifth aspect of the present invention, in the first aspect of the present invention, the difference between the foaming start timing (hereinafter referred to as foaming timing) of bubbles generated from the discharge heating element and the discharge pressure control heating element is the discharge Control is performed by changing at least one of a difference in driving start timing (hereinafter referred to as driving timing) between the heating element and the discharge pressure controlling heating element or a driving voltage of the discharge pressure controlling heating element.

本発明によれば、インク滴を吐出させるための第1の気泡を発生させる吐出用発熱体とインク供給路の間に、第1の気泡とは連通せず第1の気泡にインク供給室方向から発泡室方向の圧力を与える第2の気泡を発生させる吐出圧制御用発熱体を設け、連続吐出時には吐出用発熱体を駆動し、吐出休止後の再吐出時には吐出用発熱体と吐出圧制御用発熱体の両方を駆動させるため、吐出休止後の再吐出時であっても第1の気泡のエネルギーがインク供給室方向に逃げるのを防ぐことができ、第1の気泡の吐出方向へのエネルギー効率が低下することなく吐出方向に伝えられる。よって、気泡の吐出方向へのエネルギー効率低下によるインク滴吐出速度の低下を防ぎ、インク滴吐出速度を常に一定にすることができる。   According to the present invention, the first bubble is not communicated with the first bubble in the direction of the ink supply chamber between the discharge heating element for generating the first bubble for discharging the ink droplet and the ink supply path. Is provided with a discharge pressure control heating element that generates a second bubble that gives pressure in the direction of the foaming chamber, drives the discharge heating element during continuous discharge, and controls the discharge heat generator and discharge pressure during re-discharge after discharge suspension. Since both the heating elements for driving are driven, it is possible to prevent the energy of the first bubbles from escaping in the direction of the ink supply chamber even during re-ejection after ejection suspension, It is transmitted in the discharge direction without lowering energy efficiency. Therefore, it is possible to prevent a drop in the ink droplet discharge speed due to a decrease in energy efficiency in the bubble discharge direction, and to keep the ink droplet discharge speed constant.

以下に本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below.

図1は本発明の構成を示すインクジェット記録ヘッドの断面図である。   FIG. 1 is a cross-sectional view of an ink jet recording head showing the configuration of the present invention.

1はインク滴を吐出させるための吐出エネルギーを発生させる吐出用発熱体、2は吐出圧制御用発熱体であり、吐出用発熱体1より発生した第1の気泡8に圧力を与えるための第2の気泡9を発生させる。又、7はインク吐出口、3は吐出用発熱体の上にあり、第1の気泡8が発生する発泡室、4はインク供給室である。吐出圧制御用発熱体2は、吐出用発熱体1とインク供給路5の間に設け、吐出用発熱体1とは所望の距離を有している。   Reference numeral 1 denotes an ejection heating element for generating ejection energy for ejecting ink droplets, and reference numeral 2 denotes an ejection pressure control heating element, which is a first for applying pressure to the first bubbles 8 generated from the ejection heating element 1. 2 bubbles 9 are generated. Reference numeral 7 denotes an ink discharge port, 3 denotes a discharge heating element, a foaming chamber in which a first bubble 8 is generated, and 4 denotes an ink supply chamber. The discharge pressure control heating element 2 is provided between the discharge heating element 1 and the ink supply path 5 and has a desired distance from the discharge heating element 1.

以下、本発明の実施の形態における原理を説明する。   The principle of the embodiment of the present invention will be described below.

前述の通り、吐出休止時には吐出口からインク中の揮発性成分が蒸発し、吐出口付近のインク粘度が増加する。このとき、吐出口〜発泡室〜インク供給室にインク粘度分布を生じ、発泡室から見て吐出口側の粘性抵抗が高く、インク供給室側の粘性抵抗が低くなる。吐出休止後の再吐出時に連続吐出時と同様に吐出用発熱体1のみを駆動させると、吐出用発熱体1より発生した第1の気泡8は、図2(b)のように、(a)図の連続吐出時の気泡形状と比べて、粘性抵抗の高い吐出方向に小さく、粘性抵抗の低いインク供給室方向に大きい形状になる。吐出方向への泡成長が小さくなることで、インク滴の吐出力となる泡エネルギー効率が低下するため、インク滴吐出速度が低下する。   As described above, the volatile component in the ink evaporates from the ejection port when ejection is stopped, and the ink viscosity near the ejection port increases. At this time, an ink viscosity distribution is generated in the ejection port, the foaming chamber, and the ink supply chamber, the viscosity resistance on the ejection port side is high as viewed from the foaming chamber, and the viscosity resistance on the ink supply chamber side is low. When only the discharge heating element 1 is driven at the time of re-discharge after the discharge stop as in the case of continuous discharge, the first bubbles 8 generated from the discharge heat generating element 1 are (a) as shown in FIG. ) Compared to the bubble shape at the time of continuous discharge in the figure, the shape is small in the discharge direction with high viscosity resistance and large in the direction of the ink supply chamber with low viscosity resistance. Since the bubble growth in the ejection direction is reduced, the bubble energy efficiency that is the ejection force of the ink droplets is lowered, and thus the ink droplet ejection speed is lowered.

本発明では、吐出休止後の再吐出時におけるインク滴吐出速度を連続吐出時のインク滴吐出速度と同等にする手段として、吐出用発熱体1とインク供給路5の間に吐出圧制御用発熱体2を設け、吐出休止後の再吐出時には吐出用発熱体1と吐出圧制御用発熱体2の両方を駆動させている。吐出圧制御用発熱体2により第2の気泡9が発生する際に生じる吐出方向の圧力によって、吐出用発熱体1により発生した第1の気泡8の圧力がインク供給路方向に逃げるのを抑制し、吐出方向へ伝えることで、泡エネルギー効率を向上させることができる。   In the present invention, as means for making the ink droplet ejection speed at the time of re-ejection after ejection suspension equal to the ink droplet ejection speed at the time of continuous ejection, heat for ejection pressure control is provided between the ejection heating element 1 and the ink supply path 5. The body 2 is provided, and both the discharge heating element 1 and the discharge pressure control heating element 2 are driven at the time of re-discharge after discharge stop. The pressure in the discharge direction generated when the second bubble 9 is generated by the discharge pressure control heating element 2 prevents the pressure of the first bubble 8 generated by the discharge heating element 1 from escaping in the ink supply path direction. However, the bubble energy efficiency can be improved by transmitting in the discharge direction.

ここで、第2の気泡9が発生する際に生じる発泡室方向への圧力を第1の気泡8に与えるには、第1の気泡8と第2の気泡9が連通しないことが重要となる。本発明では、第1の気泡8と第2の気泡9が連通しないようにする手段として、第2の気泡9の発泡エネルギー制御又は第1の気泡8と第2の気泡9の発泡タイミング差の制御の少なくとも一方を行う。   Here, in order to give the pressure to the first bubble 8 generated when the second bubble 9 is generated, it is important that the first bubble 8 and the second bubble 9 do not communicate with each other. . In the present invention, as means for preventing the first bubble 8 and the second bubble 9 from communicating with each other, the control of the foaming energy of the second bubble 9 or the difference in the foaming timing between the first bubble 8 and the second bubble 9 is used. At least one of the controls is performed.

先ず、発泡エネルギーの制御方法について説明する。   First, a method for controlling foaming energy will be described.

発熱体に供給されるエネルギーEは、発熱体の抵抗をR、駆動電圧をV、パルス幅をPwとすると、Pw・V2 で表すことができる。この供給エネルギーEがインクを加熱する熱エネルギーとなり、その一部が発泡エネルギーになる。発泡エネルギーを制御するには、供給エネルギーを制御すれば良いが、発熱体の抵抗Rは発熱体の形状により決まるため、駆動電圧V又はパルス幅Pwの少なくとも一方を変えることで制御する。通常の記録動作における駆動条件から、Pw・V2 の値を一定にしたまま駆動電圧を高くする(パルス幅を短くする)と、インクが膜沸騰を発生する略315℃まで上昇するまでの時間が短くなる。 The energy E supplied to the heating element can be expressed as Pw · V 2 where R is the resistance of the heating element, V is the driving voltage, and Pw is the pulse width. This supply energy E becomes thermal energy for heating the ink, and a part thereof becomes foaming energy. In order to control the foaming energy, the supply energy may be controlled. However, since the resistance R of the heating element is determined by the shape of the heating element, it is controlled by changing at least one of the driving voltage V or the pulse width Pw. When the drive voltage is increased (the pulse width is shortened) while keeping the value of Pw · V 2 constant from the drive conditions in the normal recording operation, the time until the ink rises to approximately 315 ° C. at which film boiling occurs Becomes shorter.

このとき、発熱体により熱せられるインクの量が少なくなるため発泡エネルギーは小さくなり、発生する気泡が小さくなる。逆に、駆動電圧を低くする(パルス幅を長くする)と、インクが膜沸騰を発生する略315℃まで上昇するまでの時間が長くなる。このとき、発熱体により熱せられるインクの量が多くなるため発泡エネルギーは大きくなり、発生する気泡が大きくなる。但し、駆動電圧を高くすると発泡タイミングが早くなり、低くすると発泡タイミングが遅くなるため注意が必要となる(図3)。   At this time, since the amount of ink heated by the heating element is reduced, the foaming energy is reduced and the generated bubbles are reduced. Conversely, when the drive voltage is lowered (the pulse width is lengthened), the time until the ink rises to approximately 315 ° C. at which film boiling occurs is lengthened. At this time, since the amount of ink heated by the heating element increases, the foaming energy increases, and the generated bubbles increase. However, care must be taken because the foaming timing is advanced when the drive voltage is increased, and the foaming timing is delayed when the drive voltage is decreased (FIG. 3).

Pw・V2 の値を一定にしたまま駆動電圧とパルス幅を変えると、供給エネルギーを一定に保てるため、発熱体の空焚き、キャビテーション等による発熱体へのダメージをなくすことができるが、本発明はそれに限ったものではなく、Pw・V2 の値を一定に保たなくても良く、駆動電圧V又はパルス幅Pwのどちらか一方を変えても良い。 If the drive voltage and pulse width are changed while keeping the value of Pw · V 2 constant, the supplied energy can be kept constant, so that the heating element can be prevented from being damaged by air blown or cavitation. The invention is not limited to this, and the value of Pw · V 2 may not be kept constant, and either the drive voltage V or the pulse width Pw may be changed.

通常の記録動作における駆動条件から、パルス幅を一定にしたまま、駆動電圧を変えても、Pw・V2 の値を一定にしたまま駆動電圧とパルス幅を変化させたときと同様の効果が得られる。但し、インクが略315℃に達する時間がパルス幅より長くなると発泡しないため、パルス幅一定のまま駆動電圧を変える場合の駆動電圧は、記録動作における駆動電圧の0.85倍以上にする。 Even if the drive voltage is changed while keeping the pulse width constant from the drive conditions in the normal recording operation, the same effect as when the drive voltage and pulse width are changed while keeping the value of Pw · V 2 constant is obtained. can get. However, if the time for the ink to reach approximately 315 ° C. becomes longer than the pulse width, it does not foam, so the drive voltage when changing the drive voltage while keeping the pulse width constant is 0.85 times or more the drive voltage in the recording operation.

又、駆動電圧を一定にしたままパルス幅を変化させる場合、パルス幅を長くしてもインクが略315℃に達するまでの時間は変わらないため、発泡エネルギーは変わらない。パルス幅を短くすると駆動電圧を変化させた場合ほどの効果は得られないが、発泡エネルギーは僅かに小さくなる。但し、パルス幅がインクが略315℃に達する時間より短いと発泡しないため、駆動電圧を一定にしたままパルス幅を変化させる場合のパルス幅は、記録動作におけるパルス幅の0.8〜1.0倍にする。   Further, when the pulse width is changed while the driving voltage is kept constant, the foaming energy does not change because the time until the ink reaches approximately 315 ° C. does not change even if the pulse width is increased. If the pulse width is shortened, the effect as in the case of changing the drive voltage cannot be obtained, but the foaming energy is slightly reduced. However, if the pulse width is shorter than the time when the ink reaches approximately 315 ° C., foaming does not occur. Therefore, when the pulse width is changed while the drive voltage is kept constant, the pulse width is 0.8 to 1. Set to 0 times.

本発明においては、吐出用発熱体1の駆動条件(記録動作における駆動条件)は一定にし、吐出圧制御用発熱体2の発泡エネルギーの制御を行う。上記の説明は吐出用発熱体1と吐出圧制御用発熱体2の形状が同じ場合の発泡エネルギーの制御であり、2つの発熱体の形状が異なるときには、発熱体の抵抗Rを考慮して吐出用発熱体1と吐出圧制御用発熱体2の発泡エネルギーの制御を行えば良いことは自明である。   In the present invention, the driving conditions of the discharge heating element 1 (drive conditions in the recording operation) are made constant, and the foaming energy of the discharge pressure control heating element 2 is controlled. The above explanation is the control of foaming energy when the shape of the discharge heating element 1 and the discharge pressure control heating element 2 are the same. When the two heating elements are different in shape, the discharge R is considered in consideration of the resistance R of the heating element. It is obvious that the foaming energy of the heating element 1 and the discharge pressure control heating element 2 may be controlled.

次に、発泡タイミングの制御について説明する。   Next, control of foaming timing will be described.

気泡の成長が開始するのは発熱体にエネルギーが供給された(発熱体を駆動した)後、インクが略315℃に達した瞬間である。よって、発泡タイミングは吐出用発熱体1と吐出圧制御用発熱体2の駆動タイミングをずらすこと、又は、吐出圧制御用発熱体2の駆動電圧を変化させ、インクが略315℃に達するまでの時間を変えることにより制御することができる。発熱体により発生した気泡がインクを外側に押す圧力は、発泡した瞬間が最も大きく、その後、気泡が成長するに連れて減少していき、最大発泡時には最小となる。そのため、第2の気泡9が発生する際に生じる発泡室方向への圧力を第1の気泡8に与えるには、第2の気泡が発生した瞬間〜第2の気泡の最大発泡の間に第1の気泡が発生するようにタイミングを制御すれば良い。   The bubble growth starts at the moment when the ink reaches approximately 315 ° C. after the energy is supplied to the heating element (the heating element is driven). Therefore, the foaming timing is the time until the ink reaches approximately 315 ° C. by shifting the driving timing of the discharge heating element 1 and the discharge pressure control heating element 2 or by changing the drive voltage of the discharge pressure control heating element 2. It can be controlled by changing the time. The pressure at which the bubbles generated by the heating element push the ink outward is greatest at the moment of foaming, then decreases as the bubbles grow, and is minimal at the time of maximum foaming. Therefore, in order to apply the pressure in the direction of the foaming chamber generated when the second bubble 9 is generated to the first bubble 8, the second bubble 9 is generated between the moment when the second bubble is generated and the maximum bubble formation of the second bubble. The timing may be controlled so that one bubble is generated.

発泡タイミングを制御することで、第1の気泡8と第2の気泡9が連通しないようにすることができ、又、第1の気泡8に加える圧力をコントロールすることもできる。   By controlling the foaming timing, the first bubble 8 and the second bubble 9 can be prevented from communicating with each other, and the pressure applied to the first bubble 8 can also be controlled.

又、本発明では、吐出休止時間と吐出環境の相対湿度により発泡エネルギーの制御を行っている。吐出休止時間及び吐出環境の相対湿度と吐出休止後再吐出時のインク滴吐出速度の関係を図4及び図5を参照しながら説明する。   In the present invention, the foaming energy is controlled by the discharge pause time and the relative humidity of the discharge environment. The relationship between the ejection pause time and the relative humidity of the ejection environment and the ink droplet ejection speed during re-ejection after ejection pause will be described with reference to FIGS.

図4に吐出休止後再吐出時のインク滴吐出速度の吐出休止時間依存性を示す。吐出休止時間が長いほどインク吐出口7からのインク蒸発量は多くなるため、吐出口付近のインク粘度は増加する。そのため、吐出休止時間が長いほど吐出用発熱体1により発生する第1の気泡8の吐出方向への伸びは小さくなり、インク供給路5方向への伸びは大きくなる。よって、吐出休止時間が長いほど泡エネルギー効率が低下し、インク滴吐出速度は遅くなる。   FIG. 4 shows the dependency of the ink droplet ejection speed upon re-ejection after ejection suspension on the ejection pause time. The longer the ejection stop time, the greater the amount of ink evaporated from the ink ejection port 7, so the ink viscosity near the ejection port increases. Therefore, the longer the ejection pause time, the smaller the expansion of the first bubbles 8 generated by the ejection heating element 1 in the ejection direction, and the greater the elongation in the direction of the ink supply path 5. Therefore, the longer the ejection suspension time, the lower the bubble energy efficiency and the slower the ink droplet ejection speed.

図5に吐出休止後再吐出時のインク滴吐出速度の相対湿度依存性を示す。単位時間当たりの蒸発量は吐出環境の相対湿度が低いほど多くなり、高いほど少なくなる。そのため、吐出環境の相対湿度が低いほど吐出口付近のインク粘度は増加し、吐出用発熱体1により発生する第1の気泡8の吐出方向への伸びは小さくなり、インク供給路5方向への伸びは大きくなる。よって、吐出環境の相対湿度が低いほど泡エネルギー効率が低下し、インク滴吐出速度は遅くなる。   FIG. 5 shows the relative humidity dependence of the ink droplet ejection speed when re-ejection after ejection suspension. The amount of evaporation per unit time increases as the relative humidity of the discharge environment decreases, and decreases as it increases. Therefore, as the relative humidity of the discharge environment is lower, the ink viscosity in the vicinity of the discharge port is increased, and the first bubble 8 generated by the discharge heating element 1 is less elongated in the discharge direction, and is directed toward the ink supply path 5. Elongation increases. Therefore, the lower the relative humidity of the discharge environment, the lower the bubble energy efficiency and the slower the ink droplet discharge speed.

そこで、本発明では、吐出休止時間が長いほど、又、吐出環境の相対湿度が低いほど吐出圧制御用発熱体2の発泡エネルギーを大きくすることで、第2の気泡9が第1の気泡8に与える圧力を大きくしている。これにより吐出休止時間や吐出環境の相対湿度によらずインク滴吐出速度を常に一定にすることができる。   Therefore, in the present invention, the second bubble 9 becomes the first bubble 8 by increasing the foaming energy of the discharge pressure control heating element 2 as the discharge pause time is longer and the relative humidity of the discharge environment is lower. The pressure given to is increased. As a result, the ink droplet ejection speed can be kept constant regardless of the ejection pause time and the relative humidity of the ejection environment.

吐出休止時間と吐出環境の相対湿度に対する発泡エネルギー(駆動電圧、パルス幅)と吐出圧制御用発熱体2の駆動タイミングは予めテーブル化しておき、このテーブルを用いて駆動電圧とパルス幅を決定すれば良い。単位面積当たりのインク揮発性成分の蒸発速度は吐出口径が小さいほど速くなり、ノズルプレートの厚みが薄くなるほど、一滴に対する蒸発インクの割合が多くなる。そのため、当然のことながらプリンタヘッドの構造により吐出休止時間と吐出環境の相対湿度に対する発泡エネルギーや吐出圧制御用発熱体2の駆動タイミングは異なり、記録ヘッドの構造ごとにテーブルを作成しなければならない。吐出環境の相対湿度はキャリッジに搭載した湿度センサ(不図示)によりモニタリングを行っている。   The foaming energy (drive voltage, pulse width) and the drive timing of the discharge pressure control heating element 2 with respect to the discharge pause time and the relative humidity of the discharge environment are tabulated in advance, and the drive voltage and pulse width are determined using this table. It ’s fine. The evaporation rate of the ink volatile component per unit area increases as the discharge port diameter decreases, and as the nozzle plate thickness decreases, the ratio of the evaporated ink to one drop increases. Therefore, as a matter of course, the foaming energy with respect to the discharge pause time and the relative humidity of the discharge environment and the drive timing of the discharge pressure control heating element 2 differ depending on the structure of the printer head, and a table must be created for each print head structure. . The relative humidity of the discharge environment is monitored by a humidity sensor (not shown) mounted on the carriage.

本実施例においては、吐出口径30μm、ノズルプレート厚60μm、発泡室高さ20μm、吐出用発熱体サイズ40μm×40μmの記録ヘッドを用いた。吐出圧制御用発熱体2は吐出用発熱体1と同じ形状とし、2つの発熱体の中心間距離は55μmとした。   In this embodiment, a recording head having a discharge port diameter of 30 μm, a nozzle plate thickness of 60 μm, a foaming chamber height of 20 μm, and a discharge heating element size of 40 μm × 40 μm was used. The discharge pressure control heating element 2 had the same shape as the discharge heating element 1, and the distance between the centers of the two heating elements was 55 μm.

吐出が安定するのに十分な時間だけ連続吐出をさせた後、数10秒間吐出を休止し、吐出を再開した時に最初に吐出されるインク滴及び気泡を顕微鏡を用いて観察した。   After continuous ejection for a time sufficient for the ejection to stabilize, ejection was paused for several tens of seconds, and the ink droplets and bubbles ejected first when ejection was resumed were observed using a microscope.

先ず、吐出圧制御用発熱体2は駆動させずに吐出用発熱体1のみを駆動させ、従来の記録方法におけるインク滴及び気泡の観察を行った。このとき、吐出用発熱体1により発生した第1の気泡8は、連続吐出時の気泡に比べ、インク供給路方向に大きく、吐出方向に小さい形状となった。又、インク滴吐出速度は、連続吐出時の0.6倍であった。   First, the discharge pressure control heating element 2 was not driven, but only the discharge heating element 1 was driven, and ink droplets and bubbles were observed in the conventional recording method. At this time, the first bubbles 8 generated by the ejection heating element 1 were larger in the ink supply path direction and smaller in the ejection direction than bubbles during continuous ejection. Further, the ink droplet ejection speed was 0.6 times that during continuous ejection.

次に、本発明の記録方法により、吐出用発熱体1及び吐出圧制御用発熱体2を駆動させ、インク滴及び第1、第2の気泡の観察を行った。吐出圧制御用発熱体2の駆動タイミングは吐出用発熱体1と同時とした。駆動電圧を吐出用発熱体1の駆動電圧の1.2倍とし、供給エネルギーが吐出用発熱体1と同じになるようにパルス幅を設定した。   Next, the ejection heating element 1 and the ejection pressure control heating element 2 were driven by the recording method of the present invention, and the ink droplets and the first and second bubbles were observed. The drive timing of the discharge pressure control heating element 2 is the same as that of the discharge heating element 1. The driving voltage was set to 1.2 times the driving voltage of the discharge heating element 1, and the pulse width was set so that the supplied energy was the same as that of the discharge heating element 1.

このとき、吐出用発熱体1により発生した第1の気泡8と第2の気泡9が連通することはなく、第1の気泡8のインク供給路方向、吐出方向への伸びは連続吐出時と等しくなり、又、インク滴吐出速度も同程度となった。このように、第2の気泡9の発泡圧力により第1の気泡8に発泡室方向の圧力を与えることで、吐出休止後再吐出時における気泡形状を連続吐出時の気泡形状と同等にし、吐出休止後再吐出時におけるインク滴吐出速度の低下を防ぐことができる。   At this time, the first bubble 8 and the second bubble 9 generated by the discharge heating element 1 do not communicate with each other, and the first bubble 8 extends in the ink supply path direction and the discharge direction during continuous discharge. In addition, the ink droplet ejection speeds were about the same. In this way, by applying pressure in the direction of the foaming chamber to the first bubble 8 by the foaming pressure of the second bubble 9, the bubble shape at the time of re-discharge after discharge stop is made equal to the bubble shape at the time of continuous discharge, and the discharge is performed. It is possible to prevent a drop in ink droplet ejection speed during re-ejection after a pause.

本実施例においては、吐出休止時間によるエネルギー制御の一例を示す。休止0,20,40秒において、供給エネルギーを一定に保ったまま駆動電圧、パルス幅を変え、インク滴及び第1、第2の気泡の観察を行った。吐出用発熱体1の駆動タイミングは吐出圧制御用発熱体2と同時とし、吐出環境の相対湿度は40%とした。吐出用発熱体1の駆動電圧をVu、パルス幅をPwuとする。本実施例における実験結果を表1に示す。   In the present embodiment, an example of energy control based on the discharge pause time is shown. At rests 0, 20, and 40 seconds, the driving voltage and the pulse width were changed while keeping the supplied energy constant, and the ink droplets and the first and second bubbles were observed. The driving timing of the discharge heating element 1 was the same as that of the discharge pressure control heating element 2, and the relative humidity of the discharge environment was 40%. The drive voltage of the discharge heating element 1 is Vu and the pulse width is Pwu. The experimental results in this example are shown in Table 1.

Figure 2007001243
Figure 2007001243

本実施例においては、相対湿度によるエネルギー制御の一例を示す。吐出環境の相対湿度100,60,30%において、供給エネルギーを一定に保ったまま駆動電圧、パルス幅を変え、インク滴及び第1、第2の気泡の観察を行った。吐出用発熱体1の駆動タイミングは吐出圧制御用発熱体2と同時とし、休止時間は30秒とした。本実施例における実験結果を表2に示す。   In this embodiment, an example of energy control by relative humidity is shown. At a relative humidity of 100, 60, and 30% in the discharge environment, the drive voltage and pulse width were changed while keeping the supplied energy constant, and the ink droplets and the first and second bubbles were observed. The drive timing of the discharge heating element 1 was the same as that of the discharge pressure control heating element 2, and the rest time was 30 seconds. The experimental results in this example are shown in Table 2.

Figure 2007001243
Figure 2007001243

本発明に係るインクジェット記録ヘッドの一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of an ink jet recording head according to the present invention. 吐出用発熱体からインクに発生した気泡の形状であり、(a)は連続吐出時の気泡形状、(b)は吐出休止後再吐出時の気泡形状である。The shape of bubbles generated in the ink from the discharge heating element, (a) is the shape of bubbles during continuous discharge, and (b) is the shape of bubbles during re-discharge after discharge stop. 本発明の実施形態における発熱体に加える駆動電圧と発泡開始時間の特性図である。It is a characteristic view of the drive voltage applied to the heat generating body and the foaming start time in the embodiment of the present invention. 従来の記録法により記録動作を行ったときのインク滴吐出速度の吐出休止時間依存性を示した図である。FIG. 10 is a diagram illustrating the ejection pause time dependence of the ink droplet ejection speed when a recording operation is performed by a conventional recording method. 従来の記録法により記録動作を行ったときのインク滴吐出速度の相対湿度依存性を示した図である。It is a figure showing the relative humidity dependence of the ink droplet ejection speed when a recording operation is performed by a conventional recording method.

符号の説明Explanation of symbols

1 吐出用発熱体
2 吐出圧制御用発熱体
3 発泡室
4 インク供給室
5 インク供給路
6 ノズルプレート
7 インク吐出口
8 第1の気泡
9 第2の気泡
DESCRIPTION OF SYMBOLS 1 Heating element for discharge 2 Heating element for discharge pressure control 3 Foaming chamber 4 Ink supply chamber 5 Ink supply path 6 Nozzle plate 7 Ink discharge port 8 First bubble 9 Second bubble

Claims (5)

インク滴を吐出させるための吐出エネルギーを発生させる吐出用発熱体と、該吐出用発熱体が配置されインクに第1の気泡が発生する発泡室と、該発泡室にインクを供給するためのインク供給室と、該インク供給室にインクを導くインク供給路と、インク滴を吐出させるインク吐出口と、を有するインクジェット記録ヘッドにおいて、
前記吐出用発熱体と前記インク供給路の間に吐出圧制御用発熱体を設け、連続吐出時には前記吐出用発熱体を駆動させ、吐出休止後の再吐出時には前記吐出用発熱体と前記吐出圧制御用発熱体の両方を駆動させることを特徴とするインクジェット記録方法。
An ejection heating element that generates ejection energy for ejecting ink droplets, a foaming chamber in which the ejection heating element is arranged and generating first bubbles in the ink, and an ink for supplying ink to the foaming chamber In an inkjet recording head having a supply chamber, an ink supply path that guides ink to the ink supply chamber, and an ink discharge port that discharges ink droplets.
An ejection pressure control heating element is provided between the ejection heating element and the ink supply path, and the ejection heating element is driven during continuous ejection, and the ejection heating element and the ejection pressure during re-ejection after ejection suspension. An ink jet recording method, wherein both of the control heating elements are driven.
吐出休止時間が長くなるに連れ、前記吐出圧制御用発熱体の発泡エネルギーが大きくなるように制御することを特徴とする請求項1記載のインクジェット記録方法。   2. The ink jet recording method according to claim 1, wherein control is performed such that the foaming energy of the discharge pressure control heating element increases as the discharge pause time increases. 吐出環境の相対湿度が低くなるに連れ、前記吐出圧制御用発熱体の発泡エネルギーが大きくなるように制御することを特徴とする請求項1記載のインクジェット記録方法。   2. The ink jet recording method according to claim 1, wherein the foaming energy of the discharge pressure control heating element is controlled to increase as the relative humidity of the discharge environment decreases. 前記吐出圧制御用発熱体の発泡エネルギーは、駆動電圧又はパルス幅の少なくとも一方を変えることにより制御することを特徴とする請求項1〜3の何れかに記載のインクジェット記録方法。   The ink jet recording method according to claim 1, wherein the foaming energy of the discharge pressure controlling heating element is controlled by changing at least one of a driving voltage and a pulse width. 前記吐出用発熱体と前記吐出圧制御用発熱体から発生する気泡の発泡開始時期(以下、発泡タイミング)の差は、前記吐出用発熱体と前記吐出圧制御用発熱体の駆動開始時期(以下、駆動タイミング)の差又は前記吐出圧制御用発熱体の駆動電圧の少なくとも一方を変えることにより制御することを特徴とする請求項1記載のインクジェット記録方法。   The difference between the foaming start timing (hereinafter referred to as foaming timing) of bubbles generated from the discharge heating element and the discharge pressure control heating element is the drive start timing (hereinafter referred to as the discharge pressure control heating element). 2. The ink jet recording method according to claim 1, wherein control is performed by changing at least one of a difference in driving timing) and a driving voltage of the discharge pressure control heating element.
JP2005186462A 2005-06-27 2005-06-27 Inkjet recording method Withdrawn JP2007001243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186462A JP2007001243A (en) 2005-06-27 2005-06-27 Inkjet recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186462A JP2007001243A (en) 2005-06-27 2005-06-27 Inkjet recording method

Publications (1)

Publication Number Publication Date
JP2007001243A true JP2007001243A (en) 2007-01-11

Family

ID=37687256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186462A Withdrawn JP2007001243A (en) 2005-06-27 2005-06-27 Inkjet recording method

Country Status (1)

Country Link
JP (1) JP2007001243A (en)

Similar Documents

Publication Publication Date Title
US10300692B2 (en) Dual-mode inkjet nozzle operation
JP2656481B2 (en) Inkjet recording head
JP2008087410A (en) Inkjet recording head
US20070176976A1 (en) Print head
JP2007062272A (en) Liquid discharge head
JP2009148993A (en) Inkjet type image forming apparatus
JP2013043393A (en) Recording head and inkjet recording device
JP2000190528A (en) Ink jet recording apparatus
JP2007001243A (en) Inkjet recording method
JP2006175822A (en) Ink-jet recording head
JPH05338150A (en) Driving method for ink jet head
JP2005131829A (en) Method for sustaining liquid ejection performance and liquid ejector
JP4100896B2 (en) Inkjet recording apparatus and inkjet recording method
JP2004025851A (en) Inkjet recording apparatus and recording method
JP6566770B2 (en) Liquid discharge head control method and liquid discharge apparatus
JP2006095876A (en) Electrostatic actuator type inkjet recorder
JPH05116305A (en) Ink jet recording method
JP2020082639A (en) Inkjet printer and method for controlling inkjet printer
JP2020082640A (en) Inkjet printer and method for controlling inkjet printer
US20070139482A1 (en) Inkjet printhead
JPH03247458A (en) Ink-jet recording device
JP2000079694A (en) Ink jet recorder and ink jet recording method
JPH10235896A (en) Liquid jet recorder and its maintaining method
JPH05116341A (en) Method for driving ink jet recording head
JPH10226072A (en) Ink-jet recording head and ink-jet recording apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902