JP2007000038A - Closed-system circulatory circuit-type culturing device - Google Patents

Closed-system circulatory circuit-type culturing device Download PDF

Info

Publication number
JP2007000038A
JP2007000038A JP2005181506A JP2005181506A JP2007000038A JP 2007000038 A JP2007000038 A JP 2007000038A JP 2005181506 A JP2005181506 A JP 2005181506A JP 2005181506 A JP2005181506 A JP 2005181506A JP 2007000038 A JP2007000038 A JP 2007000038A
Authority
JP
Japan
Prior art keywords
medium
closed
culture apparatus
culture
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181506A
Other languages
Japanese (ja)
Inventor
Kentaro Ishii
健太郎 石井
Takashi Miwa
敬史 三和
Tetsuji Kondo
哲司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005181506A priority Critical patent/JP2007000038A/en
Publication of JP2007000038A publication Critical patent/JP2007000038A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closed-system circulatory circuit-type culturing device solving the following problems: in a conventional closed-system circulatory circuit-type culturing device, it is impossible to keep pH constant through controlling optimum culturing environment according to cell proliferation only by gas exchange; insertion of a lot of sensors results in being at high risk of interfusion of foreign matters; and it is necessary to make all the part getting in touch with blood disposable for being used for curing for medical use because use of an identical sensor to different patients has a risk of infection. <P>SOLUTION: The closed-system circulatory circuit-type culturing device controls pH of culture soil in a culture soil reservoir with acidic gas so as to keep pH of the culture soil constant, detects deterioration in the culture soil based on addition of the acidic gas to be controlled so as to determine the time to exchange culture soil only with a pH sensor, and employs a noncontact-type pH sensor not directly getting in touch with the culture soil so as to eliminate the need for making the sensor disposable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は細胞あるいは微生物の培養用の閉鎖系循環回路型培養装置に関するものである。詳しくは、ヒト細胞、動物細胞、昆虫細胞、植物細胞などの細胞あるいは酵母、大腸菌などの微生物を用いた有用物質生産あるいは有用細胞の増幅に応用可能な、培地制御および培地劣化検出機構を有する培養装置に関する。   The present invention relates to a closed circulation circuit type culture apparatus for culturing cells or microorganisms. Specifically, culture with medium control and medium deterioration detection mechanism applicable to production of useful substances or amplification of useful cells using cells such as human cells, animal cells, insect cells, plant cells, or microorganisms such as yeast and Escherichia coli. Relates to the device.

白血病や固形癌の治療方法として、少量の造血幹細胞や自己リンパ球を生体外で増幅して患者に戻す細胞治療法が研究されている。このような分野において生体外で閉鎖的に低コストかつ安全を確保した状態で高密度に大量培養できるような培養技術が望まれている。   As a treatment method for leukemia and solid cancer, a cell therapy method in which a small amount of hematopoietic stem cells and autologous lymphocytes are amplified in vitro and returned to the patient has been studied. In such a field, there is a demand for a culture technique that enables mass culture at high density in a closed state at low cost and with safety in vitro.

また、ハイブリドーマなど有用な生理活性物質を分泌する細胞を培養し、その培養上清から有用な生理活性物質を精製して得る方法が検討されているが、一般の培養では細胞密度が限定されている。培養上清に分泌される有用な生理活性物質が少ないことが問題となっており、例えば、細胞が分泌する生理活性物質として抗体を作製する場合には、マウス腹腔に抗体を産生するハイブリドーマを投与し、腹水を回収して精製するという方法が一般的であり、この方法はマウスの飼育を始めとする煩雑な作業が伴い、また腹水からの精製により抗体を得るため、感染性物質など様々な不純物が混入してしまう恐れがあるため、上記と同じように閉鎖的に安全を確保した状態で高密度に大量にハイブリドーマなどの有用な生理活性物質を分泌する細胞の培養する技術が望まれている。   In addition, methods for culturing cells that secrete useful physiologically active substances such as hybridomas and purifying the useful biologically active substance from the culture supernatant have been studied. However, in general culture, the cell density is limited. Yes. For example, when producing antibodies as physiologically active substances that are secreted by cells, a hybridoma that produces antibodies is administered to the peritoneal cavity of mice. However, the method of collecting and purifying ascites is common, and this method involves complicated operations such as breeding of mice, and antibodies are obtained by purification from ascites. Since impurities may be mixed in, a technique for culturing cells that secrete useful physiologically active substances such as hybridomas in high density and in large quantities in a closed and safe manner as described above is desired. Yes.

一般に、培養技術には、フラスコ培養、マイクロキャリヤー培養法、スピナーフラスコや培養タンクを用いた撹拌培養法、多孔質に細胞を接着させて培養する方法、バックを用いた培養法、ローラーボトルを用いた培養法などがあげられる。従来法であるフラスコ培養法やバックを用いた培養法では培養液内の栄養不足やpH値の低下が生じるため、1×10cells/mlより高密度にすることは現状では困難である。またスピナーフラスコや培養タンクを用いた撹拌培養法では撹拌による細胞への物理的障害が大きく、生細胞を高密度に長時間培養するには適していない。 In general, culture techniques include flask culture, microcarrier culture, agitation culture using spinner flasks and culture tanks, culture with cells attached to a porous medium, culture using a bag, and roller bottles. Culture methods and the like. In the conventional flask culture method and the culture method using the bag, nutrient deficiency in the culture solution and a decrease in pH value occur, and it is difficult to make the density higher than 1 × 10 6 cells / ml at present. In addition, the stirring culture method using a spinner flask or a culture tank is not suitable for culturing living cells at a high density for a long period of time because the physical obstacle to the cells due to stirring is large.

近年、三次元的な空間で高密度に培養を行う手段として、血液透析に利用される中空糸、スポンジ体や多孔体を用いた培養法が開発されている。中空糸を用いた培養法は、中空糸自体が細胞を培養するための足場や支持体の一部となり、生体内の組織に近似した培養状態を模擬することができる。また栄養供給と老廃物除去を目的として中空糸内腔を通る培養液と、外腔に充填された細胞とその周囲の培養液との間で物質交換が行われ、細胞を1×10cells/ml以上の高密度に培養することができるとされている。 In recent years, culture methods using hollow fibers, sponge bodies, and porous bodies used for hemodialysis have been developed as means for culturing at high density in a three-dimensional space. In the culture method using the hollow fiber, the hollow fiber itself becomes a part of a scaffold or support for culturing cells, and can simulate a culture state similar to a tissue in a living body. In addition, for the purpose of nutrient supply and waste removal, substance exchange is performed between the culture solution passing through the hollow fiber lumen, the cells filled in the outer space and the surrounding culture solution, and the cells are separated by 1 × 10 8 cells. It is said that it can be cultured at a high density of / ml or more.

しかし、高密度に培養されるために限られた容量である培地リザーバーでは内栄養物質の欠損や細胞老廃物質などによる培地劣化が著しいために培地交換の判断が困難であり、培地交換タイミングを誤ると培養モジュール内細胞を死滅されるという危険性が懸念させた。そのため、溶存酸素センサ、グルコースセンサや乳酸センサなどを装置に組み込み監視させる方法も実施されている(例えば、特許文献1、特許文献2参照。)。   However, medium reservoirs, which have a limited capacity for high-density culture, are difficult to judge for medium replacement due to lack of internal nutrients and cell deterioration due to cellular waste, etc. And there was concern about the danger of killing cells in the culture module. Therefore, a method in which a dissolved oxygen sensor, a glucose sensor, a lactic acid sensor, or the like is incorporated in the apparatus and monitored is also implemented (see, for example, Patent Document 1 and Patent Document 2).

また、閉鎖系循環回路型培養装置のガス交換法として、酸素・窒素・二酸化炭素の混合ガスを人工肺やガス交換膜、ガス透過性のチューブなどでガス交換する方法が行われてきた(例えば、特許文献3参照。)。
特許第2500137号公報 特公昭62−34394号公報 特許第3453167号公報
In addition, as a gas exchange method of a closed-system circulation circuit type culture apparatus, a method of exchanging a mixed gas of oxygen, nitrogen, and carbon dioxide with an artificial lung, a gas exchange membrane, a gas permeable tube, or the like has been performed (for example, , See Patent Document 3).
Japanese Patent No. 2500137 Japanese Patent Publication No.62-34394 Japanese Patent No. 3453167

従来の閉鎖系循環回路型培養装置のガス交換法においては、細胞増殖に合わせた最適培養環境に制御することができず、pHを一定に保つことができなかった。また、培地の性状を把握し、栄養や酸素濃度を検出し細胞の成長に最適な条件を維持するためには、溶存酸素センサ、グルコースセンサや乳酸センサなどを装置に組み込み監視する必要があり、センサを多数挿入することにより異物が混入する危険性が高かった。また、医療用として治療で使用するためには、同一のセンサを異なる患者に使用することは感染の危険性があるため、患者由来の物質に接触する部分は全てディスポーザブルにする必要があった。また、多数のセンサを培地中で使用することは培地へのセンサプローブ充填液浸みだしによる培地汚染の面で問題があった。   In the gas exchange method of the conventional closed system circulation circuit type culture apparatus, it was not possible to control the optimum culture environment in accordance with cell growth, and the pH could not be kept constant. In addition, in order to understand the properties of the culture medium, detect nutrients and oxygen concentration, and maintain the optimal conditions for cell growth, it is necessary to monitor the built-in dissolved oxygen sensor, glucose sensor, lactic acid sensor, etc. There was a high risk of foreign matter mixing in by inserting many sensors. In addition, in order to use the same sensor for medical treatment as medical treatment, there is a risk of infection if the same sensor is used for different patients. Therefore, all the parts that come into contact with the patient-derived substance must be made disposable. In addition, the use of a large number of sensors in the medium has a problem in terms of medium contamination due to the soaking of the sensor probe filling liquid into the medium.

本発明者らは、鋭意検討した結果、酸性ガスの添加量を制御することによって培地pHを制御する機構を有する閉鎖系循環回路型培養装置において上記課題を解決できることを見出し、本発明を完成した。すなわち、本発明は、設定した培地pHよりアルカリ性の場合に酸性ガスの添加量を制御することによって培地pHを制御する機構を有する閉鎖系循環回路型培養装置である。   As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved in a closed-system circulation circuit type culture apparatus having a mechanism for controlling the pH of the medium by controlling the amount of acid gas added, and the present invention has been completed. . That is, the present invention is a closed circuit culture apparatus having a mechanism for controlling the culture medium pH by controlling the amount of acid gas added when it is more alkaline than the set culture medium pH.

本発明により(1)閉鎖系循環型培養装置であり(2)ガス交換器を使用せず培地内のガス交換が可能であり(3)pHセンサのみにより培地の性状を検出かつ制御し(4)センサが非接触で、安全かつ安価な細胞あるいは微生物の培養に最適な培養装置を提供することが可能となった。また、該装置を用いることにより、異物混入の可能性が極めて低く、かつ簡便な制御装置を用いることによる安価な細胞製剤の製造方法や生理活性物質の製造方法および細胞の培養方法を提供することを可能とした。   According to the present invention, (1) a closed circulation culture apparatus (2) gas exchange in the medium is possible without using a gas exchanger (3) the property of the medium is detected and controlled only by the pH sensor (4 ) It is possible to provide a culture apparatus that is optimal for culturing cells or microorganisms that are non-contact and safe and inexpensive. In addition, by using the apparatus, there is provided an inexpensive method for producing a cell preparation, a method for producing a physiologically active substance, and a method for culturing cells by using a simple control device with a very low possibility of contamination. Made possible.

(閉鎖系循環回路型培養装置)
本発明は、設定した培地pHよりアルカリ性の場合に酸性ガスの添加量を制御することによって培地pHを制御する機構を有する閉鎖系循環回路型培養装置である。本発明の閉鎖系循環回路型培養装置とは、少なくとも後記の培地リザーバー(1)と培養モジュール(2)で構成された回路とを有し、大気と直接に接触することなく内部の培地がポンプ等により循環させることが可能な培養装置である。
(Closed circulation circuit type culture device)
The present invention is a closed circuit culture apparatus having a mechanism for controlling the medium pH by controlling the amount of acid gas added when the medium is more alkaline than the set medium pH. The closed circulation circuit type culture apparatus of the present invention has at least a circuit composed of a medium reservoir (1) and a culture module (2) described later, and the internal medium is pumped without direct contact with the atmosphere. It is a culture device that can be circulated by, for example.

本発明の閉鎖系循環回路型培養装置の例を図1に示した。また、本発明の閉鎖系循環回路型培養装置の培地制御部の拡大図を図2に示した。ただし、本発明は図1、図2に示す形態に限定されるものではない。   An example of a closed-system circulation circuit type culture apparatus of the present invention is shown in FIG. Moreover, the enlarged view of the culture medium control part of the closed system circulation circuit type culture apparatus of this invention was shown in FIG. However, the present invention is not limited to the forms shown in FIGS.

(培地のpH制御機構)
本発明における培地pHの制御機構とは、培地リザーバー(1)内の培地pHを制御する機構である。好ましくは、スターラーで攪拌した培地のpHが設定したpHよりもアルカリ性にならない様に酸性ガスを添加することによって培地pHを制御する機構である。培地は通常、静置あるいは撹拌することにより培地中に溶解していた酸性ガスが排出されアルカリ性にシフトしていくため、設定した培地pHよりアルカリ性の場合に酸性ガスを添加することを繰り返すことによって設定した培地pHよりアルカリ性にならないように維持することが可能である。添加する酸性ガスは1回の添加で培地pHを0.001〜0.2、好ましくは0.01〜0.05下げて酸性になるように添加時間および流量を調整し供給量を設定することが好ましい。
(Medium pH control mechanism)
The medium pH control mechanism in the present invention is a mechanism for controlling the medium pH in the medium reservoir (1). Preferably, the medium pH is controlled by adding an acidic gas so that the pH of the medium stirred with a stirrer is not more alkaline than the set pH. The medium is usually left standing or stirred, so that the acidic gas dissolved in the medium is discharged and shifted to alkaline. By repeating the addition of acidic gas when the medium is more alkaline than the set medium pH, It can be maintained so as not to be more alkaline than the set medium pH. Adjust the addition time and flow rate so that the acid gas to be added becomes acidic by adding the medium pH to 0.001 to 0.2, preferably 0.01 to 0.05 by one addition, and set the supply amount. Is preferred.

該酸性ガスは二酸化炭素、塩化水素、硫化水素等いずれのガスでも良いが、入手が容易で人体への毒性が少なく細胞や微生物に対しても毒性が少ない二酸化炭素を使用することが好ましい。   The acid gas may be any gas such as carbon dioxide, hydrogen chloride, and hydrogen sulfide, but it is preferable to use carbon dioxide that is easily available and has little toxicity to the human body and little toxicity to cells and microorganisms.

(培地pHの制御範囲)
本発明の培養装置で用いられる培地のpHは任意に設定できるが、好ましくは6.0〜8.0、より好ましくは6.5〜7.5が用いられる。
(Control range of medium pH)
The pH of the medium used in the culture apparatus of the present invention can be arbitrarily set, but preferably 6.0 to 8.0, more preferably 6.5 to 7.5.

(培地リザーバー内の換気機構)
本発明の培養装置は、培地リザーバーの液層部または気層部へ圧縮気体を常時流すことで、培地内のガス交換を行うことができる。このことにより、上記(培地のpH制御機構)で溶解され残った酸性ガスや下記(培地のガス交換機構)によって培地より排出された酸性ガスの再溶解を防止するために、培地リザーバー気層部に滅菌フィルター(12)を介した圧縮空気を常時一定量流して換気して酸性ガスを培地リザーバーの外へ排気させることができる。また、使用する圧縮空気の湿度が低いと培地リザーバー内の培地を蒸発させるため、培地リザーバーへの供給する直前に圧縮気体を加湿部位にて加湿させることが好ましい。
(Ventilation mechanism in the medium reservoir)
The culture apparatus of the present invention can exchange gas in the medium by constantly flowing a compressed gas to the liquid layer part or gas layer part of the medium reservoir. Thus, in order to prevent re-dissolution of the acid gas remaining dissolved in the above (medium pH control mechanism) and the acid gas discharged from the medium by the following (medium gas exchange mechanism), the medium reservoir air layer portion A constant amount of compressed air through the sterilizing filter (12) is constantly flowed and ventilated to exhaust the acidic gas out of the medium reservoir. In addition, when the humidity of the compressed air to be used is low, the medium in the medium reservoir is evaporated. Therefore, it is preferable to humidify the compressed gas at the humidified portion immediately before supplying the medium to the medium reservoir.

(培地のガス交換機構)
本発明の培養装置は、培地リザーバーの液層部または気層部へ圧縮気体を常時流すことで、培地リザーバーの気層部を換気することができ、培地リザーバー気層部に滅菌フィルター(12)を介した圧縮空気を流量が一定になるように調整し培地リザーバー内の培地へと吹き付けることによって圧縮空気に含まれる酸素を培地へと供給できる。また、通常培地中の酸性ガスは静置状態でも排出するが排出を促進させるために、好ましくは培地リザーバー内の培地をスターラーにて攪拌した方がよい。
(Medium gas exchange mechanism)
The culture apparatus of the present invention can ventilate the air layer portion of the medium reservoir by constantly flowing a compressed gas to the liquid layer portion or the air layer portion of the medium reservoir, and a sterilizing filter (12) is provided in the medium reservoir air layer portion. The oxygen contained in the compressed air can be supplied to the medium by adjusting the flow rate of the compressed air through the air flow so that the flow rate is constant and spraying the compressed air on the medium in the medium reservoir. Further, the acidic gas in the medium is usually discharged even in a stationary state, but in order to promote the discharge, it is preferable to stir the medium in the medium reservoir with a stirrer.

(培地のガス交換機構で使用する圧縮空気)
本発明の培養装置は、培地へ酸素供給を行うために圧縮気体は酸素を含み、かつ酸性ガス濃度が0.1%以下であることが好ましい。培地中に溶解した酸性ガスの排出を容易にするために、圧縮気体の酸性ガス濃度は0.1%以下である必要があり、好ましくは0.05%以下である。
(Compressed air used in the medium gas exchange mechanism)
In the culture apparatus of the present invention, in order to supply oxygen to the medium, the compressed gas preferably contains oxygen, and the acid gas concentration is preferably 0.1% or less. In order to facilitate discharge of the acid gas dissolved in the medium, the acid gas concentration of the compressed gas needs to be 0.1% or less, preferably 0.05% or less.

(培地制御のセンサ)
本発明の培地制御に使用するセンサとしては、pHセンサのみを使用することが好ましい。また、直接培地成分を測定するセンサとして、ディスポーザブルまたは培地等と非接触のpHセンサのみを使用することができる。pHセンサのみを使用することによって、多種類のセンサを使用する場合にセンサプローブからの充填液浸みだしによって培地が汚染されるという問題を回避することができる。また、培地や患者由来の物質と触れるためセンサをディスポーザブルとする必要があるが、使用するセンサをpHセンサのみとすることにより取り扱いが容易となる。
(Medium control sensor)
As a sensor used for the culture medium control of the present invention, it is preferable to use only a pH sensor. In addition, as a sensor for directly measuring a medium component, only a disposable or non-contact pH sensor can be used. By using only the pH sensor, it is possible to avoid the problem that the culture medium is contaminated by the soaking of the filling liquid from the sensor probe when using various types of sensors. Moreover, since it is necessary to make a sensor disposable in order to contact a culture medium or a patient-derived substance, handling is facilitated by using only a pH sensor as the sensor to be used.

(培地内酸性物質の算出機構)
本発明の培養装置は、酸性ガス添加量から培地内酸性物質の生産量を算出することができる。細胞または微生物を培養すると、それらの代謝物として乳酸などの酸性物質が排出し培地に溶解する。この酸性物質は上記(培地のpH制御機構)においても培地から排出されないため、酸性物質濃度が高くなるにつれて上記(培地のpH制御機構)の酸性ガス添加量が減少することになる。このことを利用して、酸性ガス添加量から培地内酸性物質の溶解濃度を算出することができる。
(Calculation mechanism of acidic substances in the medium)
The culture apparatus of the present invention can calculate the production amount of acidic substances in the medium from the amount of acidic gas added. When cells or microorganisms are cultured, acidic substances such as lactic acid are discharged as their metabolites and dissolved in the medium. Since this acidic substance is not discharged from the medium even in the above (medium pH control mechanism), the acid gas addition amount in the above (medium pH control mechanism) decreases as the concentration of the acidic substance increases. Utilizing this fact, the dissolved concentration of the acidic substance in the medium can be calculated from the amount of acidic gas added.

(酸性ガス添加量の算出)
本発明の培養装置は、酸性ガス添加量をバルブにより制御し該バルブの単位時間あたりの作動回数から培地内酸性物質の生産量を算出することができる。具体的には、酸性ガス添加時に作動するバルブの作動回数または作動間隔から算出することができる。例えば、供給に電磁弁(バルブ)を使用している場合、細胞または微生物が増殖するにつれて酸性ガスを供給するための単位時間あたりの電磁弁作動回数が減少してくるため、これを利用して電磁弁の作動回数から酸性ガスの添加量を算出することができる。
(Calculation of acid gas addition amount)
In the culture apparatus of the present invention, the amount of acidic gas added can be controlled by a valve, and the production amount of acidic substances in the medium can be calculated from the number of operations per unit time of the valve. Specifically, it can be calculated from the number of operation or the operation interval of the valve that operates when the acid gas is added. For example, when a solenoid valve (valve) is used for supply, the number of solenoid valve operations per unit time for supplying acid gas decreases as cells or microorganisms grow. The amount of acid gas added can be calculated from the number of actuations of the solenoid valve.

(培地交換時期の判断機構)
本発明の培養装置は、上記の培地内酸性物質の算出機構にて算出した培地内酸性物質の量によって、培地交換する時期を判断することができる。
(Mechanism for determining medium replacement time)
The culture apparatus of the present invention can determine when to change the medium based on the amount of the acidic substance in the medium calculated by the above-described mechanism for calculating the acidic substance in the medium.

(リザーバー内培地の交換機構)
本発明の培養装置は、該培地交換時期を判断する機構からの情報によって、自動でポンプを作動させ培地リザーバー内の培地を交換することができる。上記(培地交換時期の判断機構)にて培地交換の時期と判断した情報または信号によって、培地を交換する機構である。情報または信号の出力は、ブザーやランプによって、または制御装置の画面に情報を表示することによって、実験者に対して培地交換時期を知らせることが可能である。しかし、異物の混入や実験者不在による交換タイミングの遅れなどを防止するために、ポンプ等を自動で作動させて培地を交換させることが好ましい。また、培地交換は、リザーバー内の培地全量を交換しても、またはリザーバーへの培地追加や一部だけを交換してもよい。
(Reservoir medium exchange mechanism)
The culture apparatus of the present invention can automatically change the medium in the medium reservoir by operating the pump automatically based on information from the mechanism for determining the medium replacement time. This is a mechanism for exchanging the medium based on the information or signal determined as the medium replacement time in the above (medium replacement time determination mechanism). The output of information or signals can inform the experimenter of the medium replacement time by using a buzzer or lamp, or by displaying information on the screen of the control device. However, in order to prevent delays in replacement timing due to foreign matter contamination or the absence of an experimenter, it is preferable to automatically operate the pump or the like to change the medium. Further, the medium exchange may be performed by exchanging the whole medium in the reservoir, or by adding a medium to the reservoir or by exchanging only a part of the medium.

(非接触のpHセンサ)
本発明の培養装置は、培地の色を閉鎖系の外から検出することにより培地のpHを測定するpHセンサを有することが好ましい。例えば、pHの変化を培地内に含まれるフェノールレッドなどの指示薬による培地の色の変化を検出する非接触のpHセンサを使用することができる。センサの取付位置はリザーバー部、回路のいずれでもよい。また、このセンサは培地などとは非接触なため、ディスポーザブルとして使い捨てることなく使用することができる。
(Non-contact pH sensor)
The culture apparatus of the present invention preferably has a pH sensor that measures the pH of the medium by detecting the color of the medium from outside the closed system. For example, a non-contact pH sensor that detects a change in the color of the medium by an indicator such as phenol red contained in the medium can be used. The sensor mounting position may be either the reservoir section or the circuit. Further, since this sensor is not in contact with a culture medium or the like, it can be used as a disposable without being disposable.

(培地リザーバー)
本発明における培地リザーバーとは、培養モジュールへと供給するための培地を一時的に蓄え培地性状を調整する部分である。材質はガラス、金属等の無機材料あるいはポリプロピレン、ポリスチレン、塩化ビニール、アクリル、ポリカーボネート等の有機材料のいずれでも良く、またそれら材質の表面に異種の材質をコーティングして用いることも可能であるが、好ましくは、滅菌することが可能なガラスや有機材料を用い、より好ましくは、リザーバー表面への蛋白質の吸着を抑制するための処理を施した材質を使用する。培地リザーバーの容量は特に限定されないが、操作性の高さを考慮する場合に、50mL〜2Lが好ましく、より好ましくは200mL〜500mLの物が用いられる。ガス交換の効率を考慮した場合には培地と気層の接触面積は大きい方が好ましいが、スターラー等による攪拌や液中への気体噴入を考えると液底から液面まで20mm以上が好ましい。
(Medium reservoir)
The medium reservoir in the present invention is a part for temporarily storing a medium to be supplied to the culture module and adjusting the medium properties. The material may be either an inorganic material such as glass or metal, or an organic material such as polypropylene, polystyrene, vinyl chloride, acrylic or polycarbonate, and the surface of these materials can be used by coating different materials. Preferably, glass or organic material that can be sterilized is used, and more preferably, a material that has been subjected to treatment for suppressing adsorption of protein to the surface of the reservoir is used. The volume of the medium reservoir is not particularly limited, but when considering high operability, 50 mL to 2 L is preferable, and 200 mL to 500 mL is more preferable. In consideration of the efficiency of gas exchange, it is preferable that the contact area between the culture medium and the gas layer is large. However, considering stirring with a stirrer or the like and gas injection into the liquid, 20 mm or more from the liquid bottom to the liquid surface is preferable.

(培養モジュール)
本発明で使用する培養モジュールとは、培養環境を維持する細胞増殖スペースである。細胞が増殖する空間が常に確保され、かつ回路内に細胞や微生物が混入しないように半透過性の膜で細胞培養部分と培地循環部分が分離していることが好ましい。細胞に供給する必要がある栄養素は、主にアミノ酸、グルコース、酸素、ビタミン類であり、また、主な老廃物は乳酸、尿素、二酸化炭素などの低分子物質であることから、半透過性の膜としては分子量が10000ダルトン以下の物質が透過する膜が好ましい。細胞として接着系細胞を用いる場合には細胞懸濁液をそのままモジュール内に充填することも可能であるが、好ましくはマイクロキャリヤー、不織布、極細繊維などの糸状物などに接着させた状態にして半透過性膜の細胞培養側に細胞を供給して培養することにより、さらに高密度に培養することが可能となる。培養モジュールの形状は特に限定されない。
(Culture module)
The culture module used in the present invention is a cell growth space that maintains a culture environment. It is preferable that the cell culture part and the medium circulation part are separated by a semi-permeable membrane so that a space for cell growth is always secured and cells and microorganisms are not mixed in the circuit. Nutrients that need to be supplied to cells are mainly amino acids, glucose, oxygen, and vitamins, and because the main waste products are low-molecular substances such as lactic acid, urea, and carbon dioxide, they are semipermeable. As the membrane, a membrane through which a substance having a molecular weight of 10,000 dalton or less permeates is preferable. When adherent cells are used as cells, it is possible to fill the cell suspension as it is in the module, but it is preferable that the cell suspension be adhered to a filamentous material such as a microcarrier, non-woven fabric, or ultrafine fiber. By supplying and culturing cells on the cell culture side of the permeable membrane, it becomes possible to culture at a higher density. The shape of the culture module is not particularly limited.

(培地リザーバーの陽圧維持機構)
本発明の培地リザーバー内は、異物混入の防止や培地表面に気泡が溜まることを防止するためにリザーバー内は陽圧維持するように調整することが好ましい。培地リザーバー排気部に絞りを入れて陽圧にしてもよいが、滅菌フィルター(14)の圧損を利用してリザーバー内を常時陽圧に維持しても良い。
(Medium reservoir positive pressure maintenance mechanism)
The medium reservoir of the present invention is preferably adjusted so as to maintain a positive pressure in the reservoir in order to prevent contamination by foreign substances and to prevent air bubbles from accumulating on the medium surface. The medium reservoir exhaust part may be squeezed to be positive pressure, but the pressure inside the sterilizing filter (14) may be used to maintain the positive pressure inside the reservoir.

(ディスポーザブル回路)
本発明の培養装置に使用する患者由来物質に触れる部位である培地リザーバー、回路用チューブ、培養モジュール、pHセンサは、患者間での感染等を防止するために1度だけ使用のディスポーサブルであることが好ましい。
(Disposable circuit)
The medium reservoir, circuit tube, culture module, and pH sensor, which are parts that come into contact with the patient-derived substance used in the culture apparatus of the present invention, should be disposable only once to prevent infection between patients. Is preferred.

ディスポーサブルである培地リザーバーや培養モジュールの材質としてはガラス、金属等の無機材料あるいはポリプロピレン、ポリスチレン、塩化ビニール、アクリル、ポリカーボネート等の有機材料のいずれでも良いが、大量で安価に作られる物が好ましく、成形性のよい汎用プラスチックで作られるのがより好ましい。また、ディスポーサブルである回路用チューブで使用する材質としては、特に限定しないが、シリコンや塩化ビニール等の軟質プラスチックが好ましい。   The material of the disposable medium reservoir and the culture module may be either an inorganic material such as glass or metal, or an organic material such as polypropylene, polystyrene, vinyl chloride, acrylic or polycarbonate. More preferably, it is made of general-purpose plastic with good moldability. Further, the material used for the circuit tube that is disposable is not particularly limited, but soft plastics such as silicon and vinyl chloride are preferable.

(培養される細胞あるいは微生物の種類)
本発明で培養に使用される細胞は、接着性細胞、浮遊性細胞のいずれもが使用可能であり、例えば動物細胞としてはNIH3T3細胞、Hela細胞、COS細胞、HEK細胞、L929細胞、Daudi細胞、Jurkat細胞、KG−1a細胞などの株化細胞、各種ハイブリドーマ細胞株あるいは動物由来の血液細胞や神経細胞、肝細胞、角質化細胞、繊維芽細胞、上皮細胞、肝細胞等の初代培養細胞、あるいは昆虫細胞等が挙げられる。さらにES細胞、造血幹細胞、肝幹細胞、間葉系幹細胞などの幹細胞、前駆細胞でもよい。またこれらの細胞は、培養前に外来遺伝子を導入した細胞であってもよいし、抗体やリガンドなどの刺激因子などで予め刺激、加工されている細胞であっても良い。微生物としては大腸菌、枯草菌、乳酸菌や酵母等が挙げられる。
(Types of cells or microorganisms to be cultured)
As the cells used for culturing in the present invention, both adherent cells and suspension cells can be used. For example, NIH3T3 cells, Hela cells, COS cells, HEK cells, L929 cells, Daudi cells, Cell lines such as Jurkat cells and KG-1a cells, various hybridoma cell lines or animal-derived blood cells and nerve cells, hepatocytes, keratinocytes, fibroblasts, epithelial cells, hepatocytes, and other primary culture cells, or Insect cells and the like can be mentioned. Furthermore, stem cells and progenitor cells such as ES cells, hematopoietic stem cells, hepatic stem cells, and mesenchymal stem cells may be used. These cells may be cells into which a foreign gene has been introduced before culturing, or may be cells that have been stimulated and processed in advance with stimulating factors such as antibodies and ligands. Examples of microorganisms include Escherichia coli, Bacillus subtilis, lactic acid bacteria, and yeast.

(培養用の培地の条件)
本発明の培養装置を用いて細胞培養する培地としては、用いる細胞の種類によって適宜利用されるが、MEM培地、BME培地、DME培地、α−MEM培地、IMEM培地、ES培地、DM−160培地、Fisher培地、F12培地、WE培地、RPMI培地、StemSpan培地、StemPro培地、HybridomaSFM培地、及びこれらの混合物等が挙げられるが、これらの培地に限定されない。また、培養の際は添加物としてウシ血清、ウシ胎児血清、ウマ血清、ヒト血清など血清やインターロイキン、インターフェロン、インシュリン、トランスフェリン、セレンなどのサイトカインや増殖因子などを添加することができる。また、細胞から分泌される有用物質を製造する用途に使用する場合には、これら添加物は不純物となるためなるべく添加しないことが好ましい。
(Conditions for culture medium)
As a medium for cell culture using the culture apparatus of the present invention, it is appropriately used depending on the type of cells used, but MEM medium, BME medium, DME medium, α-MEM medium, IMEM medium, ES medium, DM-160 medium. , Fisher medium, F12 medium, WE medium, RPMI medium, StemSpan medium, StemPro medium, Hybridoma SFM medium, and mixtures thereof, but are not limited thereto. In addition, during culture, serum such as bovine serum, fetal bovine serum, horse serum, human serum, cytokines such as interleukin, interferon, insulin, transferrin, selenium, and growth factors can be added. Moreover, when using it for the use which manufactures the useful substance secreted from a cell, since these additives become impurities, it is preferable to add as little as possible.

(細胞製剤の製造方法)
本発明の培養装置は閉鎖型であり外部からの異物の混入の可能性は極めて低い。また、培地制御と培地交換判断の自動化により、人為的な操作ミスを極力減少させることが可能である。さらに、センサの再利用やディスポーサブル化が可能であり制御が簡単であることから細胞培養が安価に行える。そのため、医療用の細胞を培養することに対して有利であり、疾病や疾患に対して有効な細胞を培養することにより細胞製剤を製造することも可能である。
(Method for producing cell preparation)
The culture apparatus of the present invention is a closed type, and the possibility of contamination from outside is extremely low. In addition, it is possible to reduce human error as much as possible by automating medium control and medium replacement determination. Furthermore, since the sensor can be reused and disposable, and control is simple, cell culture can be performed at low cost. Therefore, it is advantageous for culturing medical cells, and it is also possible to produce cell preparations by culturing cells that are effective against diseases and diseases.

本発明における細胞製剤とは組織や細胞を加工した医薬品や医療用具を指し、細胞製剤の製造方法とは細胞の分離、細胞の増殖、細胞への刺激、細胞への分化誘導、細胞のアポトーシス誘導など細胞を細胞製剤として疾病や疾患に対して有効な形態に加工するためのあらゆる工程を含んでいる。   In the present invention, the cell preparation refers to a drug or medical device obtained by processing a tissue or a cell, and the cell preparation production method refers to cell separation, cell proliferation, cell stimulation, cell differentiation induction, cell apoptosis induction. All processes for processing cells as a cell preparation into a form effective for diseases and diseases are included.

細胞製剤を製造するには、まず細胞群の供給源となる組織や体液などを採取する必要がある。これら細胞群の供給源はヒト由来のものが好ましいがこれに限定されない。また、幹細胞や免疫細胞を含む細胞群が供給源として好ましく、このような細胞群の供給源として臍帯血、骨髄液、羊膜組織、胎盤組織、生殖巣、胎児組織、末梢血、G−CSF動員末梢血などがあげられるがこれらに限定されない。供給源として特に体液などを使用するときは、予め培養前に遠心法、単位重力沈降法、遠心選別法などで細胞培養に余分な成分を排除した均一な細胞群を得ることが一般的である。また、さらに培養前にフローサイトメトリー、磁気ビーズ法、アフィニティーカラム法など細胞分離の方法を用いて純度の高い幹細胞やある種の免疫細胞のサブセットにしておくことが好ましい。   In order to produce cell preparations, it is first necessary to collect tissues, body fluids, and the like that serve as a source of cell groups. The source of these cell groups is preferably derived from humans, but is not limited thereto. In addition, a cell group containing stem cells and immune cells is preferable as a source, and as a source of such a cell group, umbilical cord blood, bone marrow fluid, amniotic tissue, placenta tissue, gonad, fetal tissue, peripheral blood, G-CSF mobilization Examples include, but are not limited to, peripheral blood. When using bodily fluids as a supply source, it is common to obtain a uniform cell group that excludes extra components for cell culture by centrifugation, unit gravity sedimentation, centrifugation, etc. before culturing. . Furthermore, it is preferable to make a subset of high-purity stem cells and certain immune cells using cell separation methods such as flow cytometry, magnetic bead method, and affinity column method before culturing.

このような様々な加工を行った後、本発明の培地制御と培地交換判断の自動化を用いて上記の方法により細胞培養を行うことにより、細胞製剤として必要な細胞を純度高く得ることができる。また、本発明の培地制御と培地交換判断の自動化を用いて細胞を培養した後に再度細胞分離を行うことが好ましく、そのようなプロセスを採用することは、幹細胞や免疫細胞を増殖した細胞群から必要な細胞分離し、純度を高めることができるため、細胞製剤の製造方法として好ましい。この製造方法により目的とする有用な幹細胞や免疫細胞を高純度で大量に得ることができ、効果の優れた細胞製剤を製造することができる。さらに、また、細胞分離の後に本発明の培地制御と培地交換判断の自動化で再度培養を行い、再び細胞分離を行うということも好ましい。   After performing such various processes, cells necessary as a cell preparation can be obtained with high purity by performing cell culture by the above-described method using the medium control and the automatic medium replacement determination of the present invention. In addition, it is preferable to perform cell separation again after culturing the cells using the culture medium control and automation of medium replacement determination of the present invention, and adopting such a process is based on a group of cells in which stem cells and immune cells are grown. Since necessary cells can be separated and the purity can be increased, it is preferable as a method for producing a cell preparation. By this production method, intended useful stem cells and immune cells can be obtained in large quantities with high purity, and a cell preparation with excellent effects can be produced. Furthermore, it is also preferable that after the cell separation, the culture is performed again by automation of the medium control and the medium replacement determination of the present invention, and the cell separation is performed again.

(生理活性物質の製造方法)
本発明の培養装置は、疾病や疾患に対して有用な生理活性物質を分泌する細胞を培養することにより有用な生理活性物質を製造することも可能である。本発明における生理活性物質とは、わずかな量で生物の生理や行動に何らかの特有な作用を示す化学物質であり、細胞から分泌されるような生理活性物質としては抗体、インターロイキン、インターフェロン、エリスロポエチン、G−CSFなどのサイトカイン、FGFやEGFなどの増殖因子などがある。これらの生理活性物質は、本発明の培地制御と培地交換判断の自動化を用いて疾病や疾患に対して有用な生理活性物質を分泌する細胞を培養し、その培養上清から細胞から分泌された生理活性物質を精製することで製造することができる。このような有用な生理活性物質を分泌する細胞として、繊維芽細胞、神経細胞、肝細胞などの初代培養細胞や癌細胞を特定の分化形質を持つ細胞に融合させて得られるハイブリドーマなどがあげられる。特にモノクローナル抗体を産生するB細胞ハイブリドーマは好適に用いることができる。
(Method for producing physiologically active substance)
The culture apparatus of the present invention can also produce a useful physiologically active substance by culturing cells that secrete a physiologically active substance useful for diseases and diseases. The physiologically active substance in the present invention is a chemical substance that exhibits some specific action on the physiology and behavior of an organism in a small amount. Examples of physiologically active substances that are secreted from cells include antibodies, interleukins, interferons, and erythropoietin. , Cytokines such as G-CSF, and growth factors such as FGF and EGF. These physiologically active substances were secreted from the cells by culturing cells that secrete physiologically active substances that are useful for diseases and disorders using the medium control and medium replacement judgment automation of the present invention. It can be produced by purifying a physiologically active substance. Examples of cells that secrete such useful physiologically active substances include primary cultured cells such as fibroblasts, neurons and hepatocytes, and hybridomas obtained by fusing cancer cells with cells having specific differentiation traits. . In particular, a B cell hybridoma producing a monoclonal antibody can be preferably used.

本発明の培地制御と培地交換判断の自動化を用いて上記のような細胞を培養することにより、細胞から分泌された有用な生理活性物質が培養上清に蓄積される。この培養の際に細胞からの有用な生理活性物質の分泌を促進するような物質を培養液中に添加しても良い。培養後、この培養上清を硫安塩析、透析、限外濾過、あるいはイオン交換クロマト、ゲル濾過クロマトグラフィー、アフィニティークロマトグラフィーなどクロマトグラフィーによる手法などを用いて生理活性物質を精製することにより有用な生理活性物質を製造することができる。また、分泌される生理活性物質が抗体などの場合はプロテインAやプロテインGなど抗体のFc部位に親和性のあるアフィニティー担体を用いた方法で精製することも可能である。   By culturing the cells as described above using the medium control and the automatic medium replacement judgment of the present invention, useful physiologically active substances secreted from the cells are accumulated in the culture supernatant. A substance that promotes secretion of a useful physiologically active substance from the cells may be added to the culture solution during the culture. After culturing, the culture supernatant is useful by purifying the physiologically active substance using ammonium sulfate salting out, dialysis, ultrafiltration, or chromatographic techniques such as ion exchange chromatography, gel filtration chromatography, affinity chromatography, etc. A physiologically active substance can be produced. Further, when the secreted physiologically active substance is an antibody or the like, it can be purified by a method using an affinity carrier having affinity for the Fc part of the antibody such as protein A or protein G.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(閉鎖系培養回路)
図1において、太い実線は培地の流れ、細い実線は気体の流れ、細い波線は制御信号を示す。(1)は培地リザーバーであり2本のチューブにて培養モジュール(2)に接続し、培地(10)が循環できるようにした。第1ポンプ(7)によって培地リザーバー内の培地を培地供給側チューブから培養モジュールへと送り込み、その圧力によって培養モジュール内を通過した培地が培地リザーバーへと戻るようにした。
(Closed culture circuit)
In FIG. 1, a thick solid line indicates the flow of the medium, a thin solid line indicates the flow of gas, and a thin wavy line indicates the control signal. (1) is a medium reservoir, which is connected to the culture module (2) with two tubes so that the medium (10) can be circulated. The medium in the medium reservoir was sent from the medium supply side tube to the culture module by the first pump (7), and the medium that passed through the culture module was returned to the medium reservoir by the pressure.

(培地pHの制御)
培地リザーバーをマグネットスターラー(17)とマグネット攪拌子(18)によって常時攪拌した。また、圧縮気体ボンベ(16)の圧縮気体は第1流量計(19)で0.6L/minに流量を調整した後、第1フィルター(12)で滅菌し、加湿部(21)で加湿し常時培地リザーバー内の培地へと吹き付け、第3フィルター(14)から排気した。
(Control of medium pH)
The medium reservoir was constantly stirred by a magnetic stirrer (17) and a magnetic stirring bar (18). The compressed gas in the compressed gas cylinder (16) is adjusted to 0.6 L / min with the first flow meter (19), then sterilized with the first filter (12), and humidified with the humidifying section (21). The medium was constantly sprayed onto the medium in the medium reservoir and exhausted from the third filter (14).

pHセンサ(4)で測定された培地のpHは制御装置(3)へ数値として取り込まれ、事前に設定されたpHより培地のpHがアルカリ性の場合には、電磁バルブ(11)にて二酸化炭素ボンベ(15)より二酸化炭素を一定時間噴入しpHを酸性にした。二酸化炭素の流量は第2流量計(20)で0.2L/minに調整した後、第2フィルター(13)で滅菌して培地の液層部へと供給した。二酸化炭素供給の電磁バルブを1回の作動によりpHが設定値から0.02程度下がるよう電磁弁開放時間を0.5秒に設定した。   The pH of the medium measured by the pH sensor (4) is taken into the control device (3) as a numerical value. When the pH of the medium is more alkaline than the preset pH, carbon dioxide is output by the electromagnetic valve (11). Carbon dioxide was injected from the cylinder (15) for a certain time to make the pH acidic. The flow rate of carbon dioxide was adjusted to 0.2 L / min with the second flow meter (20), then sterilized with the second filter (13) and supplied to the liquid layer portion of the medium. The electromagnetic valve opening time was set to 0.5 seconds so that the pH of the electromagnetic valve supplied with carbon dioxide was lowered by about 0.02 from the set value by one operation.

以上のことを繰り返すことにより、培地リザーバー内の培地のpHを、設定したpHから0.02の範囲で維持することができた。   By repeating the above, the pH of the medium in the medium reservoir could be maintained in the range of 0.02 from the set pH.

(細胞培養)
培養モジュールに透析用中空糸を25%充填した。培地リザーバー内の培地としてRPMI−1640に牛胎児血清10%を添加し250mL使用した。
(Cell culture)
The culture module was filled with 25% hollow fiber for dialysis. As a medium in the medium reservoir, RPMI-1640 was added with 10% fetal calf serum and 250 mL was used.

上記培地35mLに3×10個の細胞を懸濁し培養モジュール中空糸外側に入れ、中空糸内側は培地リザーバーと接続し循環させた。 3 × 10 7 cells were suspended in 35 mL of the medium and placed outside the culture module hollow fiber, and the inside of the hollow fiber was connected to a medium reservoir and circulated.

(培地交換時期の検出)
単位時間あたりの電磁バルブ作動回数を制御装置でカウントし培養開始直後は電磁弁作動回数が約50回/時間だったが、時間が経過すると減少し、72時間後には10回/時間を下回ったことを検出し、培地交換時期の信号を出力した。培地交換時期を検出し制御装置からの信号によって第3ポンプ(9)を稼動させて培地リザーバー内の培地を廃液タンク(6)に排出させた後に、第2ポンプ(8)を稼動して予備培地タンク(5)内の培地を培地リザーバーへと供給し培地交換を行った。
(Detection of medium replacement time)
The number of operation of the electromagnetic valve per unit time was counted by the control device, and the number of operation of the electromagnetic valve was about 50 times / hour immediately after the start of the culture, but decreased with the passage of time, and was less than 10 times / hour after 72 hours. This was detected, and a medium replacement timing signal was output. After the medium replacement time is detected and the third pump (9) is operated by a signal from the control device to discharge the medium in the medium reservoir to the waste liquid tank (6), the second pump (8) is operated to reserve the medium. The medium in the medium tank (5) was supplied to the medium reservoir to exchange the medium.

(細胞の回収)
培養開始から6日後に培養モジュールの細胞を回収し細胞数を測定した。その結果、3×10個の細胞は1.5×10個まで増殖したことが確認できた。
(Recovery of cells)
Six days after the start of culture, the cells of the culture module were collected and the number of cells was measured. As a result, it was confirmed that 3 × 10 7 cells grew to 1.5 × 10 9 cells.

閉鎖系循環回路型培養装置の例示図である。It is an illustration figure of a closed system circulation circuit type culture apparatus. 閉鎖系循環回路型培養装置の培地制御部の拡大図である。It is an enlarged view of the culture medium control part of a closed system circulation circuit type culture apparatus.

符号の説明Explanation of symbols

1 培地リザーバー
2 培養モジュール
3 制御装置
4 pHセンサ
5 予備培地タンク
6 廃液タンク
7 第1ポンプ
8 第2ポンプ
9 第3ポンプ
10 培地
11 電磁バルブ
12 第1フィルター
13 第2フィルター
14 第3フィルター
15 二酸化炭素ボンベ
16 圧縮気体ボンベ
17 マグネットスターラー
18 マグネット攪拌子
19 第1流量計
20 第2流量計
21 加湿部
22 排気管
23 圧縮気体導入管
24 酸性ガス導入管
25 培地循環チューブ
26 培地循環チューブ
DESCRIPTION OF SYMBOLS 1 Medium reservoir 2 Culture module 3 Control apparatus 4 pH sensor 5 Preliminary medium tank 6 Waste liquid tank 7 1st pump 8 2nd pump 9 3rd pump 10 Medium 11 Electromagnetic valve 12 1st filter 13 2nd filter 14 3rd filter 15 Dioxide Carbon cylinder 16 Compressed gas cylinder 17 Magnet stirrer 18 Magnet stirrer 19 First flow meter 20 Second flow meter 21 Humidifier 22 Exhaust pipe 23 Compressed gas introduction pipe 24 Acid gas introduction pipe 25 Medium circulation tube 26 Medium circulation tube

Claims (12)

設定した培地pHよりアルカリ性の場合に酸性ガスの添加量を制御することによって培地pHを制御する機構を有する閉鎖系循環回路型培養装置。 A closed circuit-type culture apparatus having a mechanism for controlling the medium pH by controlling the amount of acid gas added when the medium is more alkaline than the set medium pH. 培地リザーバーの液層部または気層部へ圧縮気体を常時流すことで、培地内のガス交換を行うと同時に培地リザーバーの気層部を換気し液層部の酸性ガスを排出させつつ酸性ガスを添加することによって培地pHを制御する機構を有することを特徴とする請求項1に記載の閉鎖系循環回路型培養装置。 By constantly flowing compressed gas to the liquid layer or gas layer of the medium reservoir, gas exchange in the medium is performed, and at the same time, the gas layer of the medium reservoir is ventilated and the acid gas is discharged while the acid gas in the liquid layer is discharged. The closed-system circulation circuit type culture apparatus according to claim 1, further comprising a mechanism for controlling the pH of the medium by adding the medium. 圧縮気体は酸素を含み、かつ酸性ガス濃度が0.1%以下であることを特徴とする請求項1または2に記載の閉鎖系循環回路型培養装置。 The closed system circulation circuit type culture apparatus according to claim 1 or 2, wherein the compressed gas contains oxygen and has an acid gas concentration of 0.1% or less. 培地制御に使用するセンサとしてpHセンサのみを使用することを特徴とする請求項1〜3のいずれかに記載の閉鎖系循環回路型培養装置。 The closed system circulation circuit type culture apparatus according to any one of claims 1 to 3, wherein only a pH sensor is used as a sensor used for medium control. 酸性ガス添加量から培地内酸性物質の生産量を算出する機構を有することを特徴とする請求項1〜4いずれかに記載の閉鎖系循環回路型培養装置。 5. The closed system circulation circuit type culture apparatus according to any one of claims 1 to 4, further comprising a mechanism for calculating a production amount of an acidic substance in the medium from an addition amount of the acidic gas. 酸性ガス添加量をバルブにより制御し該バルブの単位時間あたりの作動回数から培地内酸性物質の生産量を算出する機構を有することを特徴とする請求項5に記載の閉鎖系循環回路型培養装置。 6. A closed-system circulating circuit type culture apparatus according to claim 5, further comprising a mechanism for controlling the amount of acid gas added by a valve and calculating the amount of acidic substance produced in the medium from the number of operations per unit time of the valve. . 該算出する機構からの情報によって培地交換する時期を判断する機構を有することを特徴とする請求項5または6のいずれかに記載の閉鎖系循環回路型培養装置。 7. The closed circuit culture apparatus according to claim 5, further comprising a mechanism for determining a time for replacing the medium based on information from the calculated mechanism. 該培地交換時期を判断する機構からの情報によって自動でポンプを作動させ培地リザーバー内の培地を交換する機構を有することを特徴とする請求項7に記載の閉鎖系循環回路型培養装置。 8. The closed-system circulation circuit type culture apparatus according to claim 7, further comprising a mechanism for automatically operating a pump according to information from a mechanism for determining a medium replacement timing to replace a medium in a medium reservoir. 培地の色を閉鎖系の外から検出することにより培地のpHを測定するpHセンサを有することを特徴とする請求項1〜8のいずれかに記載の閉鎖系循環回路型培養装置。 The closed system circulation circuit type culture apparatus according to any one of claims 1 to 8, further comprising a pH sensor that measures the pH of the medium by detecting the color of the medium from outside the closed system. 該酸性ガスとして二酸化炭素を使用した請求項1〜9のいずれかに記載の閉鎖系循環回路型培養装置。 The closed-system circulation circuit type culture apparatus according to any one of claims 1 to 9, wherein carbon dioxide is used as the acid gas. 動物細胞を培養することを特徴とする請求項1〜10のいずれかに記載の閉鎖系循環回路型培養装置。 An animal cell is cultured, The closed system circulation circuit type culture apparatus according to any one of claims 1 to 10. 培養中の培地に触れる部位がディスポーザブルであることを特徴とする請求項1〜11のいずれかに記載の閉鎖系循環回路型培養装置。
The closed system circulation circuit type culture apparatus according to any one of claims 1 to 11, wherein a part of the culture medium in contact with the culture medium is disposable.
JP2005181506A 2005-06-22 2005-06-22 Closed-system circulatory circuit-type culturing device Pending JP2007000038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181506A JP2007000038A (en) 2005-06-22 2005-06-22 Closed-system circulatory circuit-type culturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181506A JP2007000038A (en) 2005-06-22 2005-06-22 Closed-system circulatory circuit-type culturing device

Publications (1)

Publication Number Publication Date
JP2007000038A true JP2007000038A (en) 2007-01-11

Family

ID=37686204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181506A Pending JP2007000038A (en) 2005-06-22 2005-06-22 Closed-system circulatory circuit-type culturing device

Country Status (1)

Country Link
JP (1) JP2007000038A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005655A (en) * 2007-06-29 2009-01-15 Olympus Corp Device for recovering nucleus-having cell, and method for the same
JP2013532966A (en) * 2010-06-11 2013-08-22 セルアーティス アーベー Three-dimensional scaffold to improve differentiation of pluripotent stem cells into hepatocytes
JP2013176377A (en) * 2007-03-05 2013-09-09 Terumo Bct Inc Cell expansion system and method of use
WO2017038887A1 (en) * 2015-08-31 2017-03-09 アイ・ピース株式会社 Pluripotent stem cell production system
US9617506B2 (en) 2013-11-16 2017-04-11 Terumo Bct, Inc. Expanding cells in a bioreactor
US9677042B2 (en) 2010-10-08 2017-06-13 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US10077421B2 (en) 2014-04-24 2018-09-18 Terumo Bct, Inc. Measuring flow rate
US10577576B2 (en) 2012-08-20 2020-03-03 Terumo Bct, Inc. System for expanding cells
US11008547B2 (en) 2014-03-25 2021-05-18 Terumo Bct, Inc. Passive replacement of media
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11608486B2 (en) 2015-07-02 2023-03-21 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11667881B2 (en) 2014-09-26 2023-06-06 Terumo Bct, Inc. Scheduled feed
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176377A (en) * 2007-03-05 2013-09-09 Terumo Bct Inc Cell expansion system and method of use
US9260698B2 (en) 2007-03-05 2016-02-16 Terumo Bct, Inc. Cell expansion system and methods of use
JP2009005655A (en) * 2007-06-29 2009-01-15 Olympus Corp Device for recovering nucleus-having cell, and method for the same
JP2013532966A (en) * 2010-06-11 2013-08-22 セルアーティス アーベー Three-dimensional scaffold to improve differentiation of pluripotent stem cells into hepatocytes
US10669519B2 (en) 2010-10-08 2020-06-02 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11746319B2 (en) 2010-10-08 2023-09-05 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US9677042B2 (en) 2010-10-08 2017-06-13 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US9725689B2 (en) 2010-10-08 2017-08-08 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US10870827B2 (en) 2010-10-08 2020-12-22 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11773363B2 (en) 2010-10-08 2023-10-03 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11613727B2 (en) 2010-10-08 2023-03-28 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US10577576B2 (en) 2012-08-20 2020-03-03 Terumo Bct, Inc. System for expanding cells
US10557112B2 (en) 2013-11-16 2020-02-11 Terumo Bct, Inc. Expanding cells in a bioreactor
US10633625B2 (en) 2013-11-16 2020-04-28 Terumo Bct, Inc. Expanding cells in a bioreactor
US9617506B2 (en) 2013-11-16 2017-04-11 Terumo Bct, Inc. Expanding cells in a bioreactor
US11708554B2 (en) 2013-11-16 2023-07-25 Terumo Bct, Inc. Expanding cells in a bioreactor
US11667876B2 (en) 2013-11-16 2023-06-06 Terumo Bct, Inc. Expanding cells in a bioreactor
US11008547B2 (en) 2014-03-25 2021-05-18 Terumo Bct, Inc. Passive replacement of media
US11795432B2 (en) 2014-03-25 2023-10-24 Terumo Bct, Inc. Passive replacement of media
US10077421B2 (en) 2014-04-24 2018-09-18 Terumo Bct, Inc. Measuring flow rate
US11667881B2 (en) 2014-09-26 2023-06-06 Terumo Bct, Inc. Scheduled feed
US11608486B2 (en) 2015-07-02 2023-03-21 Terumo Bct, Inc. Cell growth with mechanical stimuli
US10508260B2 (en) 2015-08-31 2019-12-17 I Peace, Inc. Pluripotent stem cell production system
US11518974B2 (en) 2015-08-31 2022-12-06 I Peace, Inc. Pluripotent stem cell production system
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
WO2017038887A1 (en) * 2015-08-31 2017-03-09 アイ・ピース株式会社 Pluripotent stem cell production system
US11912977B2 (en) 2015-08-31 2024-02-27 I Peace, Inc. Pluripotent stem cell production system
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US11634677B2 (en) 2016-06-07 2023-04-25 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11702634B2 (en) 2017-03-31 2023-07-18 Terumo Bct, Inc. Expanding cells in a bioreactor
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion

Similar Documents

Publication Publication Date Title
JP2007000038A (en) Closed-system circulatory circuit-type culturing device
CN109843417B (en) Bioreactor and method of use
JP6696206B2 (en) Cell culture device using gas impermeable tube and cell culture method
KR101750148B1 (en) Cell culture system and cell culture method
JP2021061853A (en) Disposable bioprocess system supporting biological activity
JP2004504023A (en) Cell culture room and bioreactor for in vitro culture of animal cells
JP2012506257A (en) Perfusion bioreactor, cell culture system, and method for production of cells and cell derived products
US20160319234A1 (en) Continuously controlled hollow fiber bioreactor
KR20150125926A (en) Human and large-mammal lung bioreactor
Sielaff et al. Characterization of the three-compartment gel-entrapment porcine hepatocyte bioartificial liver
JP6469287B1 (en) Hollow fiber cell culture device, cell culture method, culture supernatant production method
WO2020061387A1 (en) Mesh rolled scaffold and advanced bioreactor
JP6848273B2 (en) Cell culture device
JPH04506149A (en) Improved cell culture system
WO2016140213A1 (en) Cell culture method using hollow fiber module
EP4267714A1 (en) Bioreactor and methods of use thereof
CN101357084B (en) Biology artificial kidney tubule bioreactor and use thereof
WO2003104386A1 (en) Culture apparatus, artificial tissue and blood preparation
JPS63233776A (en) Cell culture device and method for cell culture
KR20180061446A (en) An automated bioreactor system for precise control of cell proliferation and differentiation and a use of the same
KR20240008270A (en) Cell culture system connected with hollow fiber dialyzer and method for culturing cell using the same
JP2019097392A (en) Cell culture container and cell culture apparatus
JP2019135954A (en) Cell culture vessel containing mesh-like sheet
CN117757627A (en) Organ chip, organ chip culture platform, and culture method and application thereof
JP2007110923A (en) Culturing module