JP2006516799A - Electromagnetic drive for switchgear - Google Patents

Electromagnetic drive for switchgear Download PDF

Info

Publication number
JP2006516799A
JP2006516799A JP2006501490A JP2006501490A JP2006516799A JP 2006516799 A JP2006516799 A JP 2006516799A JP 2006501490 A JP2006501490 A JP 2006501490A JP 2006501490 A JP2006501490 A JP 2006501490A JP 2006516799 A JP2006516799 A JP 2006516799A
Authority
JP
Japan
Prior art keywords
holding
armature
magnet
magnetic field
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006501490A
Other languages
Japanese (ja)
Inventor
ブーディッヒ、ペーター‐クラウス
ヴェルナー、ラルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2006516799A publication Critical patent/JP2006516799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H53/00Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them
    • H01H53/01Details
    • H01H53/015Moving coils; Contact-driving arrangements associated therewith

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

駆動ユニット(2)が、磁石体(6)と、少なくとも部分的に磁石体内に移動可能に配置された接極子(8)と、永久駆動磁界を発生する少なくとも1つの駆動磁石(5)と、少なくとも部分的に駆動磁界内を延びる少なくとも1つの導体(10)とを有し、接極子を少なくとも一方の終端位置に保持するための保持ユニット(3)が設けられた開閉器用の電磁式駆動装置(1)を、特に簡単な様式でその終端位置に固定し、しかも単純な制御が可能なように改良する。このため保持ユニットが、接極子に固く結合された少なくとも1つの軟磁性可動部品(15)を有し、該部品が、接極子の各終端位置において、永久保持磁界に対する空隙(18)を塞ぎ、この保持磁界が、駆動磁界に無関係に少なくとも1つの保持磁石(16)で発生され、この保持磁石に、接極子を終端位置から変位させるために導体と無関係に給電される引き離しコイル(17)が付設される。A drive unit (2), a magnet body (6), an armature (8) arranged at least partially movably in the magnet body, at least one drive magnet (5) for generating a permanent drive magnetic field; An electromagnetic drive device for a switch having at least one conductor (10) extending at least partially in the drive magnetic field and provided with a holding unit (3) for holding the armature in at least one terminal position (1) is improved in such a way that it is fixed in its end position in a particularly simple manner and that simple control is possible. For this purpose, the holding unit has at least one soft magnetic movable part (15) rigidly coupled to the armature, which closes the gap (18) for the permanent holding magnetic field at each end position of the armature, This holding magnetic field is generated by at least one holding magnet (16) irrespective of the driving magnetic field, and this holding magnet has a separating coil (17) that is fed independently of the conductor in order to displace the armature from the end position. It is attached.

Description

本発明は、駆動装置を備え、該装置が、磁石体と、少なくとも部分的に磁石体内に移動可能に配置された接極子と、永久駆動磁界を発生する少なくとも1つの駆動磁石と、少なくとも部分的に駆動磁界内を延びる少なくとも1つの導体とを有し、接極子を少なくとも一方の終端位置に保持するための保持ユニットが設けられた、特に中電圧分野の開閉器用の電磁式駆動装置に関する。   The present invention comprises a drive device, the device being at least partially a magnet body, an armature disposed at least partially movably in the magnet body, at least one drive magnet generating a permanent drive magnetic field, and In particular, the present invention relates to an electromagnetic drive device for a switch in the medium voltage field, in which a holding unit for holding an armature at at least one terminal position is provided.

該電磁式駆動装置は、例えば独国特許出願公開第19815538号明細書で公知である。この装置は、複数のモータモジュールで構成した三相リニアモータを備える。モータモジュールは、所定数の固定モータコイルとそれに対し長手方向に移動可能に案内される永久磁石付き可動部品とを備える。モータコイルの励磁に伴い磁界が生じ、磁界内に可動部品の永久磁石が配置される。開閉ロッドを経て開閉器の可動接触子に結合された可動部品が、発生したローレンツ力で駆動される。真空遮断器を投入すべく、可動接触子は三相リニアモータで開閉器の固定接触子に押し付けられ、可動部品は終端位置に達する。   Such an electromagnetic drive is known, for example, from DE 198 15 538 A1. This apparatus includes a three-phase linear motor composed of a plurality of motor modules. The motor module includes a predetermined number of fixed motor coils and a movable part with a permanent magnet guided so as to be movable in the longitudinal direction. A magnetic field is generated with the excitation of the motor coil, and a permanent magnet of a movable part is arranged in the magnetic field. The movable part coupled to the movable contact of the switch via the open / close rod is driven by the generated Lorentz force. In order to insert the vacuum circuit breaker, the movable contact is pressed against the fixed contact of the switch by a three-phase linear motor, and the movable part reaches the end position.

国際公開第95/07542号パンフレットにより、渦電流を防止すべく、薄板を積層して構成した軟磁性材料から成る枠形閉鎖継鉄を持つ電磁式駆動装置が公知である。継鉄は空所を有し、軟磁性材料から成る接極子が、その空所内に両終端位置間で移動可能に案内されている。接極子はその各終端位置で、各々その片側端面が軟磁性継鉄に接触し、接極子の接触個所と反対側の、他方の端面と枠形閉鎖継鉄との間に空隙が生ずる。継鉄の空所内に、更に接極子の両端面を各々包囲するコイルが固定されている。該両コイル間に、磁束を発生する永久磁石がある。空隙に基づき、接極子は各々の終端位置に固定保持される。接極子の空隙側端面を包囲するコイルを励磁することで、磁気抵抗を減少すべく、接極子を継鉄から引き離し、空隙を閉じながら安定した第2終端位置に移動させる程の大きな磁束が空隙内に発生する。その終端位置で、接極子はそれ迄空隙を境界づけていた端面で継鉄に接触する。接極子がこの第2終端位置でも固定されるので、コイルの励磁電流を中断できる。   From International Publication No. 95/07542, an electromagnetic driving device having a frame-shaped closed yoke made of a soft magnetic material formed by laminating thin plates to prevent eddy current is known. The yoke has a void, and an armature made of a soft magnetic material is guided in the void so as to be movable between both terminal positions. At each end position of the armature, one end surface of the armature contacts the soft magnetic yoke, and a gap is formed between the other end surface opposite to the contact portion of the armature and the frame-shaped closed yoke. Coils that respectively surround both end faces of the armature are fixed in the space of the yoke. There is a permanent magnet that generates magnetic flux between the two coils. Based on the air gap, the armature is fixedly held at each end position. By energizing the coil surrounding the gap side end face of the armature, in order to reduce the magnetic resistance, a magnetic flux large enough to move the armature away from the yoke and move it to the stable second terminal position while closing the gap Occurs within. At its end position, the armature contacts the yoke at the end face that previously bounded the air gap. Since the armature is fixed even at the second end position, the exciting current of the coil can be interrupted.

上述の公知の両電磁式駆動装置は異なる物理的作用に基づいている。即ち、独国特許出願公開第19815538号明細書の電磁式駆動装置は、駆動作用を発生すべく、磁界内での荷電粒子の運動中に生ずる所謂ローレンツ力を利用している。これに対し国際公開第95/07542号パンフレットの電磁式駆動装置は、磁界が特に高透磁率の材料内、即ち小さな磁気抵抗の材料内を伝播する物理的作用に基づく。接極子の移動に伴い、装置全体が、大きな磁位のエネルギ的不良状態から、空隙が閉じられ、磁束が殆ど小さな磁気抵抗の材料のみを透過するエネルギ的良好状態に移る。装置をエネルギ的良好状態に移すための力はグラジエント形成によって生ずる。そのような効果を基礎とする駆動装置はリラクタンス式駆動装置とも呼ばれる。   Both known electromagnetic drives described above are based on different physical effects. That is, the electromagnetic drive device of German Patent Application No. 19815538 uses a so-called Lorentz force generated during the movement of charged particles in a magnetic field to generate a drive action. In contrast, the electromagnetic drive of WO 95/07542 is based on the physical action in which the magnetic field propagates in a particularly high permeability material, i.e. a material with a small magnetoresistance. As the armature moves, the entire device moves from a high magnetic potential energy failure state to a good energy state where the air gap is closed and the magnetic flux is transmitted through only a material with a small magnetoresistance. The force to move the device to a good energy state is generated by gradient formation. A drive device based on such an effect is also called a reluctance drive device.

ローレンツ力を基礎とする電磁式駆動装置は大きな運動性を有し、更に単純な様式で、つまり磁界を経て導かれる電流で制御される。しかし、この駆動装置は安定した終端位置も中間位置も持たず、必要なら補助手段で各々の終端位置に固定せねばならない。そのために、通常、ばねや爪等が採用され、その力の増大には大きな費用を要する。リラクタンス式駆動装置は一般に終端位置に安定して固定可能な点で優れている。しかし力・行程特性曲線がかなり非線形的であると言う欠点があり、これは、厄介であるか或いは終端位置における保持力の荷重或いは構造空間の荷重に影響を及ぼしてしまう。   An electromagnetic drive based on the Lorentz force has great mobility and is controlled in a simpler manner, i.e. with a current guided through a magnetic field. However, this drive device has neither a stable end position nor an intermediate position and must be fixed to each end position by auxiliary means if necessary. For this purpose, springs, claws and the like are usually employed, and increasing the force requires a large cost. The reluctance type drive device is generally superior in that it can be stably fixed at the end position. However, it has the disadvantage that the force-stroke characteristic curve is rather non-linear, which is cumbersome or affects the holding force load at the end position or the load in the structure space.

本発明の課題は、冒頭に述べた形式の電磁式駆動装置を、その終端位置に簡単な構成で固定でき、しかも駆動運動の単純制御を維持できるように改良することにある。   SUMMARY OF THE INVENTION An object of the present invention is to improve an electromagnetic drive device of the type described at the beginning so that it can be fixed to its terminal position with a simple structure, and simple control of drive motion can be maintained.

この課題は本発明に基づき、保持ユニットが、接極子に固く結合された少なくとも1つの軟磁性可動部品を有し、該部品が、接極子の各終端位置で、永久保持磁力に対する空隙を塞ぎ、該永久保持磁界が、駆動磁界と無関係に少なくとも1つの保持磁石によって発生され、この磁石に、接極子を終端位置から変位させるべく、導体と無関係に給電される引き離しコイルが付設されることで解決される。   This object is based on the present invention, in which the holding unit has at least one soft magnetic movable part rigidly coupled to the armature, which closes the gap for the permanent coercive force at each end position of the armature, The permanent holding magnetic field is generated by at least one holding magnet irrespective of the driving magnetic field, and this magnet is provided with a separating coil that is fed independently of the conductor to displace the armature from the end position. Is done.

本発明による電磁式駆動装置は、駆動ユニットと保持ユニットとを有し、その導体ないしコイルは互いに無関係に給電される。かくして、本発明による駆動装置は任意に制御でき、殆ど全部の要件に適合する。同時に、駆動装置の接極子の少なくとも1つの終端位置で電磁的な保持が生じ、この結果高価で保全を要する機械式保持ユニットは不要となる。保持ユニットに設けた空隙を塞ぐことで、保持磁石で発生された保持磁界に対する磁気抵抗が減少するか最小になり、このため終端位置からの接極子の移動は、保持ユニットのリラクタンス力に抗して初めて可能である。接極子の終端位置で、可動部品は、例えば保持ユニットの空隙を限定づける箇所に接触し、その結果この個所は、接極子のそれ以上の動きを阻止するストッパを形成する。   The electromagnetic drive device according to the present invention has a drive unit and a holding unit, and the conductors or coils are fed independently of each other. Thus, the drive according to the invention can be controlled arbitrarily and meets almost all requirements. At the same time, electromagnetic holding takes place at at least one end position of the armature of the drive, so that an expensive and maintenance-free mechanical holding unit is not required. By closing the air gap provided in the holding unit, the magnetic resistance against the holding magnetic field generated by the holding magnet is reduced or minimized, so that the movement of the armature from the end position resists the reluctance force of the holding unit. This is possible for the first time. At the end position of the armature, the movable part contacts, for example, a location that limits the gap of the holding unit, so that this location forms a stopper that prevents further movement of the armature.

更に接極子、従って可動部品を真空バルブの可動接触子に固着してもよい。真空バルブの接触位置で、可動接触子が真空バルブの固定接触子に接する。接極子との固い結合に基づく接触子相互の突き当たりに伴い、接極子の最終位置も定まる。接極子がこの終端位置にある際、可動部品が保持ユニットの空隙を境界づける軟磁性部位に接している必要はない。可動部品は保持ユニットの空隙を境界づける箇所から離し得る。   Furthermore, the armature, and thus the movable part, may be secured to the movable contact of the vacuum valve. At the contact position of the vacuum valve, the movable contact contacts the fixed contact of the vacuum valve. The final position of the armature is determined with the contact of the contacts based on the solid bond with the armature. When the armature is in this end position, it is not necessary for the movable part to be in contact with the soft magnetic part that bounds the gap of the holding unit. The moving part can be separated from the point that bounds the gap of the holding unit.

一方で駆動ユニットの導体、他方で保持ユニットの引き離しコイルへの互いに独立した給電で、例えば一方の終端位置の範囲にある接極子をそこから移動させようとした際、引き離しコイルで保持磁界を中立化する引き離し磁界を発生させることで、駆動運転時のリラクタンス力の作用、即ち保持磁石の作用を、略完全に相殺できる。   For example, when the armature in the range of one end position is moved from the drive unit conductor on the one hand and the separation coil on the other side of the holding unit on the other hand, for example, the holding magnetic field is neutralized by the separation coil. By generating the pulling-off magnetic field, the action of the reluctance force during the driving operation, that is, the action of the holding magnet can be almost completely canceled out.

更に本発明の特徴は、空隙に比べ僅かな磁気抵抗を持つ材料で可動部品を形成した点にある。この際、鉄、ミューメタル、ニッケル鉄合金等の任意の強磁性材料が使える。軟磁性材料とは、磁気特性を発生する磁界の遮断後、磁気特性が失われる材料を意味する。従って、軟磁性材料は細長いヒステリシス曲線、従って僅かな残留磁化を示す。   Further, the present invention is characterized in that the movable part is formed of a material having a slight magnetic resistance compared to the gap. In this case, any ferromagnetic material such as iron, mu metal, nickel iron alloy, etc. can be used. A soft magnetic material means a material that loses its magnetic properties after the magnetic field that generates the magnetic properties is interrupted. Thus, soft magnetic materials exhibit an elongated hysteresis curve and thus a slight residual magnetization.

保持体を2つの保持体で構成し、可動部品の両側に配置するとよい。この本発明の有利な実施態様では、接極子に固く結合された可動部品の運動空間が両側で限界づけられるので、接極子の両側終端位置が定まる。従って、本発明の好適な実施態様では、接極子を真空バルブの駆動のために用いるとき、真空バルブを介する電流の流れを可能にする真空バルブの接触位置と、接触子が間隔を隔てた分離位置が存在する。   The holding body may be composed of two holding bodies and arranged on both sides of the movable part. In this advantageous embodiment of the invention, the movement space of the moving part rigidly coupled to the armature is limited on both sides, so that the end positions on both sides of the armature are determined. Accordingly, in a preferred embodiment of the present invention, when the armature is used to drive a vacuum valve, the contact position of the vacuum valve that allows current flow through the vacuum valve and the spaced separation of the contacts. A position exists.

保持ユニットと駆動ユニットの間に、磁束を遮断する手段を設けるとよい。この手段で保持ユニットと駆動ユニットを磁気的に互いに分離する。該手段で、更に駆動磁界の重畳作用、従って保持磁界、更に引き離し磁界による不利な相互作用を回避できる。磁束の遮断手段として、例えば空気やアルミニウム等の、透磁率が1以下の非磁性物質が適する。   A means for interrupting the magnetic flux may be provided between the holding unit and the drive unit. By this means, the holding unit and the driving unit are magnetically separated from each other. By this means, it is possible to avoid further adverse effects due to the superimposing action of the driving magnetic field, and thus the holding magnetic field and further the separating magnetic field. A nonmagnetic substance having a magnetic permeability of 1 or less, such as air or aluminum, is suitable as the magnetic flux blocking means.

本発明の有利な実施態様では、保持体に保持磁石と引き離しコイルを配置する。かくして、保持磁石と引き離しコイルを、駆動中に移動できない保持体で保持し、もって、例えば真空バルブの投入時にこれらの敏感な部品の運動を防ぐ。この有利な実施態様では、電磁式駆動装置の保全感受性を減少できる。   In an advantageous embodiment of the invention, a holding magnet and a separating coil are arranged on the holding body. Thus, the holding magnet and the separating coil are held by a holding body that cannot move during driving, thereby preventing the movement of these sensitive parts, for example when the vacuum valve is turned on. In this advantageous embodiment, the maintenance sensitivity of the electromagnetic drive can be reduced.

接極子が絶縁材料から成るコイルホルダを有し、導体をコイルホルダ上に巻線として配置するとよい。この実施態様で、電磁式駆動装置はリフト駆動装置である。コイルホルダは、例えば管部材として、換言すれば管状に形成される。   The armature may have a coil holder made of an insulating material, and the conductor may be arranged as a winding on the coil holder. In this embodiment, the electromagnetic drive is a lift drive. The coil holder is formed, for example, as a tube member, in other words, in a tubular shape.

本発明の他の有利な実施態様では、磁石体は駆動磁石と軟磁性継鉄から成り、駆動磁界は磁石体に設けられた凹所を透過し、該凹所内に可動部品の導体が少なくとも部分的に配置される。この実施態様では、コイルが動き、これに対し敏感で重い永久磁石は磁石体内に固定している。永久磁石が不動なので、既述の如く寿命を延ばし又は保全感受性を減少できる。コイル運動に伴い、この駆動装置は可動コイル形とも呼び得る。   In another advantageous embodiment of the invention, the magnet body consists of a drive magnet and a soft magnetic yoke, the drive magnetic field is transmitted through a recess provided in the magnet body, and the conductor of the movable part is at least partially in the recess. Arranged. In this embodiment, the coil moves and the sensitive and heavy permanent magnets are fixed in the magnet body. Since the permanent magnet is immovable, the lifetime can be extended or the maintenance sensitivity can be reduced as described above. Along with the coil movement, this drive can also be called a moving coil type.

本発明に基づく電磁式駆動装置は、所定の時間依存制御信号を発生すべく、制御ユニットと、制御信号に応じ導体に給電するための電流増幅操作部最終段と、対応した引き離しコイルに制御信号に応じて給電する少なくとも1つの電流増幅コイル終端段とを有するとよい。この実施態様で用いる最終段は、制御ユニットの出力信号を増幅するために利用される。該ユニットの出力信号はコイルや導体に給電するのに十分でない。制御ユニットに実際の各要件に応じた制御データを記憶し、そのモデルで時間依存制御信号を発生する。この制御で、電磁式駆動装置の任意の力・行程特性曲線の特に単純な設定が可能となる。   The electromagnetic drive unit according to the present invention is configured to generate a predetermined time-dependent control signal, a control signal to a control unit, a current amplification operation unit last stage for supplying power to a conductor according to the control signal, and a corresponding separating coil. It is preferable to have at least one current amplification coil termination stage that supplies power in accordance with. The final stage used in this embodiment is used to amplify the output signal of the control unit. The output signal of the unit is not sufficient to feed the coil or conductor. Control data corresponding to each actual requirement is stored in the control unit, and a time-dependent control signal is generated by the model. This control enables a particularly simple setting of an arbitrary force / stroke characteristic curve of the electromagnetic drive device.

本発明は更に、保持コイルが導体の電流に応じて給電される本発明に基づく電磁式駆動装置の制御方法に関する。かくして、相互干渉が殆ど完全に排除される。   The invention further relates to a method for controlling an electromagnetic drive device according to the invention in which the holding coil is fed in response to the current of the conductor. Thus, mutual interference is almost completely eliminated.

本発明の他の目的に沿う実施態様と利点を、以下の図を参照した本発明の実施例の説明で明らかにする。なお各図において、同一部分には同一符号を付している。   Embodiments and advantages in accordance with other objects of the present invention will become apparent from the description of the embodiments of the present invention with reference to the following drawings. In each figure, the same portions are denoted by the same reference numerals.

図1は、本発明に基づく電磁式駆動装置1の実施例を断面図で示す。この装置1は駆動ユニット2と保持ユニット3を有し、両ユニット2、3は、環状アルミニウムブロック4として形成した絶縁手段を介して互いに結合されている。絶縁手段は駆動ユニット2の磁界を、保持ユニット3の磁界から遮断し或いは逆方向の遮断のために設けている。   FIG. 1 shows a cross-sectional view of an embodiment of an electromagnetic drive device 1 according to the present invention. This device 1 has a drive unit 2 and a holding unit 3, both units 2, 3 being connected to each other via insulating means formed as an annular aluminum block 4. The insulating means is provided to block the magnetic field of the drive unit 2 from the magnetic field of the holding unit 3 or to block in the reverse direction.

駆動ユニット2は磁石体を有し、該磁石体は、永久駆動磁界を発生する駆動磁石5と、磁石5に固く結合された軟磁性継鉄6とから成っている。磁石体5、6に環状凹所7が設けられ、該凹所7内に接極子8の一部が延びている。接極子8は絶縁材料製のカップ状コイルホルダ9を有し、該ホルダ9の管状部分が導体の巻線を支持している。この導体の巻線は駆動コイル10を形成している。   The drive unit 2 includes a magnet body, and the magnet body includes a drive magnet 5 that generates a permanent drive magnetic field and a soft magnetic yoke 6 that is firmly coupled to the magnet 5. An annular recess 7 is provided in the magnet bodies 5 and 6, and a part of the armature 8 extends into the recess 7. The armature 8 has a cup-shaped coil holder 9 made of an insulating material, and the tubular portion of the holder 9 supports a conductor winding. This conductor winding forms a drive coil 10.

接極子8はコイルホルダ9のクロスビーム11を経て運動伝達ロッド12に固く結合されている。このロッド12は通常の軸受によってその長手方向に移動可能に電磁式駆動装置1内に支持されている。   The armature 8 is firmly coupled to the motion transmission rod 12 via the cross beam 11 of the coil holder 9. The rod 12 is supported in the electromagnetic drive device 1 by an ordinary bearing so as to be movable in the longitudinal direction.

保持ユニット3は2つの保持体からなる軟磁性保持体14を有し、各保持体14は軟磁性材料から成る可動部品15の両側に配置されている。可動部品15は運動伝達ロッド12に固く結合され、従って、接極子8に固く結合されている。本実施例では、保持体14と可動部品15に、軟磁性材料として、強磁性鋼が採用されている。各保持体14、従って可動部品15の両側に、保持磁石16が存在する。該磁石16は、接極子8の運動方向に延びる保持磁界を発生する。保持磁石16は引き離しコイル17で同心的に包囲されている。可動部分15と保持体14により空隙18が境界づけられ、該空隙18を保持磁界が可動部品15の運動方向に主に軸方向に透過する。   The holding unit 3 has a soft magnetic holding body 14 composed of two holding bodies, and each holding body 14 is disposed on both sides of a movable part 15 made of a soft magnetic material. The movable part 15 is rigidly coupled to the motion transmission rod 12 and is therefore rigidly coupled to the armature 8. In this embodiment, ferromagnetic steel is used as the soft magnetic material for the holder 14 and the movable part 15. There are holding magnets 16 on each side of each holding body 14 and thus on the movable part 15. The magnet 16 generates a holding magnetic field extending in the movement direction of the armature 8. The holding magnet 16 is concentrically surrounded by a separating coil 17. The gap 18 is bounded by the movable portion 15 and the holding body 14, and the holding magnetic field is transmitted through the gap 18 mainly in the axial direction in the movement direction of the movable part 15.

駆動ユニット2により、ローレンツ力に基づく駆動運動が生ずる。そのために、接極子8の長手方向に軸方向駆動永久磁界を発生する。その磁力線は駆動磁石5内に生じ、軟磁性継鉄6を経て導かれる。該磁界は磁石体の凹所7内に配置された接極子8のコイル10を横方向に透過する。従ってコイル10の給電時、接極子8のリフト運動が生じ、この運動は運動伝達ロッド12を経て可動部品15に伝わる。従って、可動部品15は運動の方向に応じていずれか一方の保持体14に向けて移動し、この結果可動部品15と保持体14との間の空隙18が小さくなる。この空隙18の縮小は、保持磁石16で発生された軸方向保持磁界に対する磁気抵抗を低下させる。この効果は、保持体14が強磁性材料、即ち1よりはるかに大きな透過率をした材料から成り、これに対し空隙18が空気、即ち相対透過率1の物質で充填されたことに起因する。可動部品が一方の保持体14に突き当たると、接極子8は一方の終端位置に到達し、空隙縮小により発生したリラクタンス力でこの位置に保持される。接極子8を終端位置から引き離すべく、可動部品15が接している保持磁石16を包囲する引き離しコイル17が励磁される。保持磁石16の作用は、引き離しコイル17で生じた引き離し磁界により弱められるか相殺され、従って駆動ユニット2により接極子8を終端位置から離し得る。接極子8は、接極子8が反対側の保持体14に突き当たり、第2終端位置に到達する迄逆方向に移動する。この位置でも、その運動方向の側に位置する空隙18が塞がれるので、保持磁界に対する磁気抵抗が最小となる。   The drive unit 2 generates a drive motion based on the Lorentz force. For this purpose, an axial driving permanent magnetic field is generated in the longitudinal direction of the armature 8. The magnetic field lines are generated in the drive magnet 5 and guided through the soft magnetic yoke 6. The magnetic field is transmitted laterally through the coil 10 of the armature 8 disposed in the recess 7 of the magnet body. Therefore, when the coil 10 is supplied with power, a lift movement of the armature 8 occurs, and this movement is transmitted to the movable part 15 via the movement transmission rod 12. Accordingly, the movable part 15 moves toward one of the holding bodies 14 in accordance with the direction of movement, and as a result, the gap 18 between the movable part 15 and the holding body 14 is reduced. The reduction of the gap 18 reduces the magnetic resistance against the axial holding magnetic field generated by the holding magnet 16. This effect is attributed to the fact that the holding body 14 is made of a ferromagnetic material, that is, a material having a transmittance much higher than 1, whereas the gap 18 is filled with air, that is, a substance having a relative transmittance of 1. When the movable part hits one holding body 14, the armature 8 reaches one terminal position and is held at this position by the reluctance force generated by the gap reduction. In order to separate the armature 8 from the end position, the separating coil 17 surrounding the holding magnet 16 with which the movable part 15 is in contact is excited. The action of the holding magnet 16 is weakened or canceled by the separating magnetic field generated by the separating coil 17, and therefore the armature 8 can be moved away from the terminal position by the drive unit 2. The armature 8 moves in the reverse direction until the armature 8 hits the holding body 14 on the opposite side and reaches the second terminal position. Even at this position, since the air gap 18 located on the side in the movement direction is closed, the magnetic resistance to the holding magnetic field is minimized.

図2は、図1の電磁式駆動装置の制御ユニット19を概略的に示す。このユニット19はインターフェース20を有し、該インターフェース20は、入力する投入信号又は遮断信号21を制御装置20が受容する制御入力信号に変換する。制御装置22にはその記憶領域に、所定の信号モデルが時間に関する信号強さの形で記憶されている。選択された所定の信号モデルに応じ、制御ユニット19が時間依存電流値24で保持磁石操作部最終段23を制御する。その結果制御ユニット19の電流値24が保持磁石操作部最終段23で強化されて保持ユニット3の引き離しコイル17に給電される。   FIG. 2 schematically shows a control unit 19 of the electromagnetic drive device of FIG. This unit 19 has an interface 20 which converts the input or cut-off signal 21 to be input into a control input signal that is received by the control device 20. A predetermined signal model is stored in the storage area of the control device 22 in the form of signal strength with respect to time. In accordance with the selected predetermined signal model, the control unit 19 controls the holding magnet operation unit final stage 23 with the time-dependent current value 24. As a result, the current value 24 of the control unit 19 is reinforced at the last stage 23 of the holding magnet operation unit and is supplied to the separating coil 17 of the holding unit 3.

制御装置22は更に電流調整器25に接続され、この調整器25は制御装置22から受けた設定電流値26を、導体操作部最終段28の出力端に生じる実際電流値27と比較する。設定電流値26と実際電流値27が一致した際、進行信号29が生ずる。実際の進路状態(Weglage)は図示しない測定系で検出される。従って、この制御装置の調整によって、電磁式駆動装置の力・行程特性曲線の特に正確な調整が可能となる。   The control device 22 is further connected to a current regulator 25, which compares the set current value 26 received from the control device 22 with an actual current value 27 generated at the output end of the conductor operation unit final stage 28. When the set current value 26 and the actual current value 27 coincide, a progress signal 29 is generated. The actual course state (Weglage) is detected by a measurement system (not shown). Therefore, the adjustment of the control device enables a particularly accurate adjustment of the force / stroke characteristic curve of the electromagnetic drive device.

本発明の枠内で、補助的調整を省き、導体操作部最終段28を同様に制御装置22によって直接制御してもよい。   Within the framework of the present invention, the auxiliary adjustment may be omitted, and the conductor operation unit final stage 28 may be directly controlled by the control device 22 as well.

制御装置22、導体操作部最終段28および保持磁石操作部最終段23は、図2に概略的に示す電源31に接続されている。電源31は制御に必要なエネルギ30を供給する。   The control device 22, the conductor operation unit final stage 28, and the holding magnet operation unit final stage 23 are connected to a power source 31 schematically shown in FIG. The power source 31 supplies energy 30 necessary for control.

本発明に基づく電磁式駆動装置の実施例の断面図。Sectional drawing of the Example of the electromagnetic drive device based on this invention. 図1における電磁式駆動装置の制御ブロック図。The control block diagram of the electromagnetic drive device in FIG.

符号の説明Explanation of symbols

1 電磁式駆動装置、2 駆動ユニット、3 保持ユニット、5 駆動磁石、6 継鉄、8 接極子、10 導体、14 保持体、15 可動部品、17 引き離しコイル、18 空隙、22 制御ユニット、23 保持磁石操作部最終段、28 導体操作部最終段 DESCRIPTION OF SYMBOLS 1 Electromagnetic drive device, 2 Drive unit, 3 Holding unit, 5 Drive magnet, 6 yoke, 8 Armature, 10 Conductor, 14 Holding body, 15 Moving part, 17 Pull-off coil, 18 Air gap, 22 Control unit, 23 Holding Magnet operation part last stage, 28 conductor operation part last stage

Claims (9)

駆動ユニット(2)を備え、該ユニット(2)が、磁石体(6)と、少なくとも部分的に磁石体(6)内に移動可能に配置された接極子(8)と、永久駆動磁界を発生する少なくとも1つの駆動磁石(5)と、少なくとも部分的に駆動磁界内を延びる少なくとも1つの導体(10)とを有し、前記接極子(8)を少なくとも一方の終端位置に保持するための保持ユニット(3)を備える開閉器用の電磁式駆動装置(1)において、
保持ユニット(3)が、接極子(8)に固く結合された少なくとも1つの軟磁性可動部品(15)を有し、該部品(15)が、接極子(8)の各終端位置において、永久保持磁界に対する空隙(18)を塞ぎ、該磁界が、駆動磁界に無関係に少なくとも1つの保持磁石(16)によって発生され、該磁石(16)に、接極子(8)を終端位置から変位させるべく、導体と無関係に給電される引き離しコイル(17)が付設されたことを特徴とする電磁式駆動装置。
A drive unit (2), the unit (2) having a magnet body (6), an armature (8) arranged at least partially movable in the magnet body (6), and a permanent drive magnetic field; At least one drive magnet (5) generated and at least one conductor (10) extending at least partially in the drive magnetic field for holding said armature (8) in at least one terminal position In an electromagnetic drive device (1) for a switch provided with a holding unit (3),
The holding unit (3) has at least one soft magnetic movable part (15) rigidly coupled to the armature (8), the part (15) being permanent at each end position of the armature (8). To close the gap (18) for the holding magnetic field, the magnetic field is generated by at least one holding magnet (16) irrespective of the driving magnetic field, and causes the magnet (16) to displace the armature (8) from the end position. An electromagnetic drive device, characterized in that a separating coil (17) to be fed regardless of the conductor is attached.
保持ユニット(3)が磁石体に結合された保持体(14)を有し、該保持体(14)と可動部品(15)との間に空隙(18)が形成されたことを特徴とする請求項1記載の電磁式駆動装置。   The holding unit (3) has a holding body (14) coupled to a magnet body, and a gap (18) is formed between the holding body (14) and the movable part (15). The electromagnetic drive device according to claim 1. 保持体(14)が2つの保持体で形成され、可動部品(5)の両側に配置されたことを特徴とする請求項2記載の電磁式駆動装置。   The electromagnetic drive device according to claim 2, wherein the holding body (14) is formed of two holding bodies and is arranged on both sides of the movable part (5). 保持磁石(16)および引き離しコイル(17)が保持体(14)に配置されたことを特徴とする請求項2又は3記載の電磁式駆動装置。   The electromagnetic drive device according to claim 2 or 3, wherein the holding magnet (16) and the separating coil (17) are arranged on the holding body (14). 保持ユニット(3)と駆動ユニット(2)との間に、磁束を遮断するための手段が設けられたことを特徴とする請求項1から4の1つに記載の電磁式駆動装置。   5. The electromagnetic drive device according to claim 1, wherein means for interrupting magnetic flux is provided between the holding unit and the drive unit. 6. 接極子(8)が絶縁材料から成るコイルホルダ(9)を有し、その導体がコイルホルダ(9)上に配置された巻線(10)として形成されたことを特徴とする請求項1から5の1つに記載の電磁式駆動装置。   The armature (8) has a coil holder (9) made of an insulating material, the conductor of which is formed as a winding (10) arranged on the coil holder (9). The electromagnetic drive device according to one of 5. 磁石体が駆動磁石(5)並びに軟磁性継鉄(6)から成り、駆動磁界が、磁石体に設けられた凹所(7)を透過し、該凹所(7)内に導体(10)が少なくとも部分的に配置されたことを特徴とする請求項1から6の1つに記載の電磁式駆動装置。   A magnet body consists of a drive magnet (5) and a soft magnetic yoke (6), and a drive magnetic field permeate | transmits the recess (7) provided in the magnet body, and conductor (10) in this recess (7) 7. The electromagnetic driving device according to claim 1, wherein the at least part of the electromagnetic driving device is arranged. 所定の時間依存制御信号を発生する制御装置(22)と、前記制御信号に関係して導体(10)に給電するための電流増強操作部最終段(28)と、対応した引き離しコイル(17)に制御信号に関係して給電するための少なくとも1つの電流増強操作部最終段(23)とを備えることを特徴とする請求項1から7の1つに記載の電磁式駆動装置。   A control device (22) for generating a predetermined time-dependent control signal, a current boosting operation unit last stage (28) for supplying power to the conductor (10) in relation to the control signal, and a corresponding separating coil (17) 8. The electromagnetic drive device according to claim 1, further comprising at least one current-enhancement operation unit last stage (23) for supplying power in relation to the control signal. 電磁式駆動装置(1)が予め定められた力・行程特性曲線を示すように、引き離しコイル(17)を導体(10)の電流に関係して励磁することを特徴とする請求項1から8の1つに記載の電磁式駆動装置の制御方法。   9. The excitation coil (17) is excited in relation to the current of the conductor (10) so that the electromagnetic drive device (1) exhibits a predetermined force / stroke characteristic curve. A method for controlling an electromagnetic drive device according to any one of the above.
JP2006501490A 2003-02-04 2004-01-30 Electromagnetic drive for switchgear Pending JP2006516799A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003105465 DE10305465B3 (en) 2003-02-04 2003-02-04 Electromagnetic drive for switching devices
PCT/DE2004/000203 WO2004070760A1 (en) 2003-02-04 2004-01-30 Electromagnetic drive for switching devices

Publications (1)

Publication Number Publication Date
JP2006516799A true JP2006516799A (en) 2006-07-06

Family

ID=32841630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006501490A Pending JP2006516799A (en) 2003-02-04 2004-01-30 Electromagnetic drive for switchgear

Country Status (6)

Country Link
EP (1) EP1590822B1 (en)
JP (1) JP2006516799A (en)
CN (1) CN100364027C (en)
DE (1) DE10305465B3 (en)
RU (1) RU2324252C2 (en)
WO (1) WO2004070760A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877762B1 (en) * 2004-11-08 2007-07-13 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR WITH MOBILE COIL
CN101908420A (en) * 2010-08-31 2010-12-08 无锡市凯旋电机有限公司 Four-coil deblocking bistable state permanent magnet mechanism
CN101986407B (en) * 2010-12-06 2013-01-30 东南大学 Quick control mechanism of ultrahigh pressure vacuum circuit breaker and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525963A (en) * 1968-07-25 1970-08-25 English Electric Co Ltd Electro-magnetic actuator with armature assembly slidable between two limit positions
US5359307A (en) * 1993-08-12 1994-10-25 Hewlett-Packard Corporation High voltage relay
GB9318876D0 (en) * 1993-09-11 1993-10-27 Mckean Brian A bistable permanent magnet actuator for operation of circuit breakers
DE19815538A1 (en) * 1998-03-31 1999-10-07 Siemens Ag Drive devices for interrupter units of switching devices for energy supply and distribution

Also Published As

Publication number Publication date
RU2324252C2 (en) 2008-05-10
EP1590822B1 (en) 2009-04-08
CN1745448A (en) 2006-03-08
DE10305465B3 (en) 2004-12-02
WO2004070760A1 (en) 2004-08-19
CN100364027C (en) 2008-01-23
RU2005127595A (en) 2007-03-10
EP1590822A1 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
US9508514B2 (en) Switchgear operating mechanism
US8159807B2 (en) Method and device for operating a switching device
TW526629B (en) Magnet movable electromagnetic actuator
US8860537B2 (en) Electromagnetic relay
KR101024773B1 (en) Electromagnetic linear actuator
JP5649738B2 (en) Electromagnetic operation device and switchgear using the same
JP2014526876A (en) Method and apparatus for controlling electromagnetic actuator
JP6238620B2 (en) Electromagnet device
JP5179516B2 (en) Hybrid electromagnetic actuator
CN110230620B (en) Low-power consumption high-frequency actuation micro-leakage hydraulic logic valve
US20210125796A1 (en) Medium voltage circuit breaker with vacuum interrupters and a drive and method for operating the same
US946215A (en) Electromagnetic device.
JP2006511047A (en) Electromagnetic drive device
JP2006222438A (en) Electromagnet and operating mechanism of switching device using the same
JP2006324399A (en) Actuator and actuator driving device
US9953786B2 (en) Self-holding magnet with a particularly low electric trigger voltage
JP2006520517A (en) Magnetic linear drive
JP2006516799A (en) Electromagnetic drive for switchgear
US6906605B2 (en) Electromagnet system for a switch
JP6422457B2 (en) Electromagnetic actuator and electromagnetic relay using the same
CN101901723B (en) Electromagnet for an electrical contactor
JP6698450B2 (en) Switchgear
JP2003016888A (en) Operating device for power switchgear
JP2014186878A (en) Electromagnetic operation type opening/closing device
JP5189517B2 (en) Method and apparatus for detecting gap between fixed iron core and movable iron core

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222