JP2006508248A - Ready-to-use machine parts made of low-carbon steel for plastic working and their manufacturing methods - Google Patents

Ready-to-use machine parts made of low-carbon steel for plastic working and their manufacturing methods Download PDF

Info

Publication number
JP2006508248A
JP2006508248A JP2004556435A JP2004556435A JP2006508248A JP 2006508248 A JP2006508248 A JP 2006508248A JP 2004556435 A JP2004556435 A JP 2004556435A JP 2004556435 A JP2004556435 A JP 2004556435A JP 2006508248 A JP2006508248 A JP 2006508248A
Authority
JP
Japan
Prior art keywords
steel
bainite structure
plastic working
hot
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004556435A
Other languages
Japanese (ja)
Other versions
JP5036967B2 (en
Inventor
レジアック,ベルナール
コンファント,マリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Gandrange SA
Original Assignee
Mittal Steel Gandrange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mittal Steel Gandrange SA filed Critical Mittal Steel Gandrange SA
Publication of JP2006508248A publication Critical patent/JP2006508248A/en
Application granted granted Critical
Publication of JP5036967B2 publication Critical patent/JP5036967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A steel for the fabrication of a mechanical component by hot or cold plastic deformation has the following composition, in addition to iron and production impurities, (by wt %): (a) 0.02 at most C at most 0.15; (b) 1.3 at most Mn at most 2.0; (c) 0.04 at most Nb at most 0.10; (d) 0.10 at most Mo at most 0.35; (e) 0.001 at most B at most 0.005; (f) 0.15 at most Si at most 1.30; (g) 0.01 at most Al 0.08; (h) N at most 0.015 with Ti at least 3.5xN; (i) possibly up to 0.80 of chromium and/or up to 0.1 of sulfur. Independent claims are also included for: (a) the fabrication of a mechanical component by cold plastic deformation; (b) the fabrication of a mechanical component by hot plastic deformation; (c) a ready for use steel mechanical component.

Description

本発明は、陸上車両の車輪のスイベルジョイント、ピン、シャフト、サスペンションバー、リンクなどの高特性値の低炭素鋼製の機械部材、または長尺製鉄製品(線材、棒材、・・・)の塑性加工によって得られたすぐに使うことができる、その他の同様の機械部材に関するものである。   The present invention relates to a mechanical member made of low carbon steel having a high characteristic value such as a swivel joint, a pin, a shaft, a suspension bar, and a link of a wheel of a land vehicle, or a long steel product (wire rod, bar,...). The present invention relates to other similar mechanical members obtained by plastic working and ready to use.

塑性加工のための鋼は、変形性と強度の特性を同時に持たなければならないことが知られている。したがって、それらのうちのいくつかが対象とする機械部材の製造の際に、ときには最後まで高い機械的特性値を示しながらも大きな変形に破断することなく耐えることが、それらに要求される。事実、場合によっては、これらの鋼から得られた部材に要求される特性値は、ISO規格898による10.9級のもの、すなわち1000MPaの最小破断限度と900MPaの最小弾性限界に近い。くわえて、これらの鋼は、優れた加工特性を示さなければならない、なぜなら大半の用途分野は最終寸法調整のために最後の加工を必要とするからである。   It is known that steel for plastic working must have both deformability and strength properties. Therefore, they are required to withstand large deformations without breaking during the production of the mechanical parts that some of them are intended, sometimes exhibiting high mechanical properties to the end. In fact, in some cases, the characteristic values required for parts obtained from these steels are of the 10.9 class according to ISO standard 898, ie close to a minimum breaking limit of 1000 MPa and a minimum elastic limit of 900 MPa. In addition, these steels must exhibit excellent processing characteristics because most application areas require a final processing for final dimensional adjustment.

ここで、塑性加工作業は、既知の連続鋳造半製品(ビレットまたはブルーム)の熱間圧延によって従来得られた線材または棒材の裁断に由来する鋼片に対して行われる。冷間塑性加工(スタンピング、鍛造、・・・)では、必要に応じて小球化焼き鈍しの後に、鋼片はプレスで冷間成形され、得られた機械部材は次に焼き入れと焼き戻しによって熱処理される。熱間鍛造の場合、鋼片はまず約1000〜1200℃の温度まで再加熱され、熱間成形され冷却される。このようにして得られた機械部材は次に、焼き入れと焼き戻しで熱処理されるが、焼き入れは鍛造後の冷却の際に直接行うことができる。   Here, the plastic working operation is performed on a steel slab derived from the cutting of a wire or bar conventionally obtained by hot rolling of a known continuous casting semi-finished product (billet or bloom). In cold plastic working (stamping, forging, ...), the steel slab is cold formed with a press after spheroidizing annealing if necessary, and the resulting machine parts are then quenched and tempered Heat treated. In the case of hot forging, the steel slab is first reheated to a temperature of about 1000 to 1200 ° C., hot formed and cooled. The mechanical member thus obtained is then heat treated by quenching and tempering, but quenching can be performed directly during cooling after forging.

これらのぞれぞれの熱処理の実現は、たしかに成熟しているが、高価な作業が前提となり、その所期の結果は必ず達成されるわけではなく、いずれにしても、生産に時間とコストがかかる。したがって、最近数年間、それから解放され、塑性加工作業後のそれらの冶金組織を変更するために熱処理を受ける必要なしに、所期の用途に使用することができる「すぐに使用することができる」高特性値の機械部材を得ることを可能にする鋼種別が求められた。   The realization of each of these heat treatments is certainly mature, but expensive work is premised, and the expected results are not always achieved. It takes. Therefore, it can be used for the intended application without having to undergo a heat treatment to change their metallurgical structure after plastic working operations, then released from it for the last few years. A steel type that makes it possible to obtain a mechanical member having a high characteristic value was sought.

例えば、冷間スタンピングについては、例えば、変形性と最終機械的特性との間の妥協が優れたものである、大部分がベイナイト組織の(すなわち、50%を超えるベイナイト組織を含有する)鋼種別を利用することがすでに知られている。しかしながら、熱間ライン上で一般的に利用できる冷却手段の能力を考慮に入れると、これらの鋼種別は、径が実際には8mmを越えることがほとんどない、比較的小径の圧延された線材または棒材においてのみ大部分がベイナイト組織を得ることができる。これを越えると、劣化した、あるいはフェライトと組み合わされたベイナイト組織が得られ、圧延製品の力学特性が目立って劣化する。くわえて、組織は十分制御されていないため、巻き取られた線材の同一のクラウンの中に、または複数のクラウンの間に、あるいは熱間圧延に由来する同一の棒材の中に機械的特性の大きなばらつきが生じるおそれがある。   For example, for cold stamping, for example, a steel type with a predominantly bainite structure (ie, containing more than 50% bainite structure) that has an excellent compromise between deformability and final mechanical properties. It is already known to use. However, taking into account the capacity of the cooling means generally available on the hot line, these steel types are relatively small diameter rolled wire, with a diameter that rarely actually exceeds 8 mm or Most of the bar material can obtain a bainite structure. Beyond this, a bainite structure that is deteriorated or combined with ferrite is obtained, and the mechanical properties of the rolled product are significantly deteriorated. In addition, because the structure is not well controlled, mechanical properties can be found in the same crown of wound wire, between multiple crowns, or in the same bar derived from hot rolling. There is a risk that a large variation of

同様の問題が、熱間鍛造をする鋼種別において突き当たるものであり、これにおいて鍛造部材の厚みが、塊の中で所期のベイナイト組織を得るのに必要な芯冷却速度に達するのに深刻な冷却応力を課することが多い。くわえて、部材の周囲は不可避的に芯よりもはるかに強く冷却されるため、その結果内部張力が高まり、致命的な欠陥となる恒久的変形に到ることがある。   A similar problem is encountered in hot forged steel types, where the forged member thickness is serious enough to reach the core cooling rate necessary to obtain the desired bainite structure in the mass. Cooling stress is often imposed. In addition, the periphery of the member is inevitably cooled much stronger than the core, resulting in increased internal tension, which can lead to permanent deformation that becomes a fatal defect.

ここで分かるように、塑性加工のための鋼種別の用途分野において、優れた加工性と同時に、変形性と機械的的特性値との間の優れた妥協を提供するベイナイト組織が従来求められている。いずれにしても、このベイナイト組織の獲得の成功は、冷却が塑性加工の前か後かにかかわらず、芯まで鋼を冷却する応力にかかっている。冷却に課せられたこれらの応力は、現在知られていて用いられている鋼種別に対してきわめて厳しいため、このベイナイト組織は、圧延熱間加工においても、鍛造作業の後でさえも直接得ることはできないため、多くの機械部材は成形後に熱処理にかけられなければならない。   As can be seen here, there is a need in the past for a bainite structure that provides an excellent compromise between deformability and mechanical property values, as well as excellent workability, in steel-specific application fields for plastic working. Yes. In any case, the successful acquisition of this bainite structure depends on the stress of cooling the steel to the core, whether cooling is before or after plastic working. Because these stresses imposed on cooling are extremely severe for the currently known and used steel types, this bainite structure can be obtained directly in both hot rolling and even after forging operations. Many mechanical components must be subjected to a heat treatment after molding.

本発明の目的は、冷間プレスでも熱間鍛造でもすぐに使用することができる機械部材の製造のための、冷却応力が小さい、ベイナイト組織の、あるいは大部分がベイナイト組織を開発するのに適した低炭素の鋼種別を加工業者に提供することである。   The object of the present invention is suitable for the development of low cooling stress, bainite structure or mostly bainite structure for the manufacture of machine parts that can be used immediately in cold press or hot forging It is also to provide low-carbon steel types to processors.

より正確には、本発明は1℃/秒まで下がることができる、低速度の芯冷却で既に得ることが可能であり、成形後の熱処理なしに冷間または熱間変形によってこれらの機械部材を実現するための優れた変形適性と優れた加工性とを同時に提供する、ベイナイト組織、あるいは大部分がベイナイト組織を備えた機械部材の製造に特有の低炭素の鋼種別であり、前記機械部材がISO規格898による品質等級8.8〜12.9に位置づけられることを可能にする、高い機械的特性値を有する前記鋼種別の開発を目的とする。   More precisely, the present invention can already be obtained with low-speed core cooling, which can be reduced to 1 ° C./s, and these mechanical parts can be obtained by cold or hot deformation without heat treatment after molding. A bainite structure that provides both excellent deformability and excellent workability at the same time, or a low-carbon steel type that is unique to the manufacture of machine parts having a bainite structure for the most part. The aim is the development of said steel type with high mechanical property values which makes it possible to be positioned in quality grades 8.8 to 12.9 according to ISO standard 898.

本発明は、したがって、圧延長尺製鉄製品の塑性加工から得られる、すぐに使うことができる高特性値の低炭素鋼製の機械部材であり、該製品は以下のことを特徴とするものである:
・鉄と鋼の製錬の結果として生じた不可避の残留不純物を除く前記鋼の組成は、鉄に対して重量パーセントで表した、下記の分析に少なくとも対応し:
0≦0.15%
0.04%≦Nb≦0.10%
0.001%≦B≦0.005%
0.10%≦Mo≦0.35%
1.3%≦Mn≦2.0%
0.15%≦Si≦1.30%
0.01%≦Al≦0.08%
N≦0.015%かつTi≧3.5×%N;
・前記長尺製品は、連続鋳造に由来し、オーステナイト領域で熱間圧延され、ついでベイナイト組織、または大部分がベイナイト組織を得るために熱処理され、800MPaを超える破断強度で、それ自身にその最終形状を与えるために冷間または熱間塑性加工によって成形された半製品から得られることを特徴とする機械部材も対象とするものである。
Accordingly, the present invention is a machine member made of low carbon steel having a high characteristic value, which can be used immediately, obtained from plastic working of a rolled long steel product, and the product is characterized by the following: is there:
The composition of the steel, excluding inevitable residual impurities resulting from the smelting of iron and steel, corresponds at least to the following analysis, expressed in weight percent with respect to iron:
0 ≦ 0.15%
0.04% ≦ Nb ≦ 0.10%
0.001% ≦ B ≦ 0.005%
0.10% ≦ Mo ≦ 0.35%
1.3% ≦ Mn ≦ 2.0%
0.15% ≦ Si ≦ 1.30%
0.01% ≦ Al ≦ 0.08%
N ≦ 0.015% and Ti ≧ 3.5 ×% N;
The long product originates from continuous casting and is hot-rolled in the austenite region and then heat-treated to obtain a bainite structure, or most of the bainite structure, and has a final strength of more than 800 MPa. Also intended are mechanical members that are obtained from semi-finished products formed by cold or hot plastic working to give shape.

第一の推奨実施態様において、先に定義した冷間変形した鋼製の機械部材は、塑性加工によって得られた塑性加工に由来する長尺製品が、それ自身にベイナイト組織または大部分がベイナイト組織を付与するために、十分な冷却速度で圧延熱間加工における冷却によって熱処理された圧延された線材または棒材であることを特徴とする。   In the first preferred embodiment, the cold-deformed steel mechanical member as defined above is a long product derived from plastic working obtained by plastic working, and is itself a bainite structure or mostly a bainite structure. In order to provide the above, it is characterized in that it is a rolled wire or rod heat-treated by cooling in rolling hot working at a sufficient cooling rate.

本発明の第二の推奨実施態様において、先に定義した熱間鍛造した鋼製の機械部材は、鋼片が抽出された熱間塑性加工に由来する長尺製品が、それ自身に芯までベイナイト組織または大部分がベイナイト組織を付与するために、十分な冷却速度での焼き入れによって熱処理された圧延された棒材または線材であり、鋼片がその所望の最終形態へと導く鍛造による塑性加工を受ける、およそ1200℃から、さらにはそれ以上の焼き入れ温度で行われることを特徴とする。   In the second preferred embodiment of the present invention, the hot-forged steel mechanical member defined above has a long product derived from hot plastic working from which the steel slab has been extracted. Rolled bar or wire that has been heat treated by quenching at a sufficient cooling rate to impart a bainite structure to a large extent, most of which is a plastic working by forging that leads the steel slab to its desired final form It is characterized by being carried out at a quenching temperature of approximately 1200 ° C. or higher.

好適には、上述の二つの実施態様において、機械部材の製錬に関与する熱処理は、芯において1℃/秒まで下がることができる、低速冷却の最終段階を含んでいることを特徴とする。   Preferably, in the two embodiments described above, the heat treatment involved in the smelting of the mechanical component comprises a final stage of slow cooling that can be reduced to 1 ° C./second in the core.

なお、留意すべきことは、機械部材のこの冷却は、穏やかな冷却であって、この冷却というのは、通常の慣行において、焼き戻しが続けられるかもしれないような、鋼を焼き入れするような冷却作業とはいずれにしても異なる、ということである。   It should be noted that this cooling of the mechanical parts is a gentle cooling, which is to quench the steel, which may continue to be tempered in normal practice. It is different from any cooling work.

変型例において、この機械部材は、炭素含有率が0.06%と0.10%の間に含まれる鋼で実現される。   In a variant, this mechanical element is realized with steel with a carbon content comprised between 0.06% and 0.10%.

他の変形例において、この機械部材は、モリブデン含有率が0.30%を超えず、マンガン含有率が1.80%未満の鋼で実現される。   In another variant, the mechanical member is realized with a steel whose molybdenum content does not exceed 0.30% and whose manganese content is less than 1.80%.

本発明はまた、800MPaを越える破断強度を呈する、すぐに使うことができる高特性値の低炭素鋼製の機械部材の製造方法を対象とするものであり、該方法は以下の過程を含むことを特徴とする。
・鉄と鋼の製錬の結果として生じた不可避の残留不純物とを除く組成は、鉄に対して重量パーセントで表した、下記の分析に少なくとも対応する長尺製品から:
0≦0.15%
0.04%≦Nb≦0.10%
0.001%≦B≦0.005%
0.10%≦Mo≦0.35%
1.3%≦Mn≦2.0%
0.15%≦Si≦1.30%
0.01%≦Al≦0.08%
N≦0.015%かつTi≧3.5×%N、
熱間圧延の通常の慣行に従ってオーステナイト領域で長尺製品を熱間圧延する過程と、
・つづいて、得られた前記圧延長尺製品を熱処理し、この熱処理は、ベイナイト組織または大部分がベイナイト組織を得るために、芯において約1℃/秒まで下がることができる、低速冷却の最終段階を含むものであり、そして、塑性加工の操作が前記熱処理の後または間に達成することができる、所望の最終形状にするために前記長尺製品を塑性加工する過程。
The present invention is also directed to a method for producing a ready-to-use high-characteristic low-carbon steel mechanical member exhibiting a breaking strength exceeding 800 MPa, the method comprising the following steps: It is characterized by.
The composition, excluding inevitable residual impurities resulting from iron and steel smelting, is expressed in weight percent with respect to iron, from a long product corresponding at least to the following analysis:
0 ≦ 0.15%
0.04% ≦ Nb ≦ 0.10%
0.001% ≦ B ≦ 0.005%
0.10% ≦ Mo ≦ 0.35%
1.3% ≦ Mn ≦ 2.0%
0.15% ≦ Si ≦ 1.30%
0.01% ≦ Al ≦ 0.08%
N ≦ 0.015% and Ti ≧ 3.5 ×% N,
Hot rolling a long product in the austenite region according to the usual hot rolling practice;
Subsequently, the obtained rolled long product is heat treated, which heat treatment can be reduced to about 1 ° C./second in the core to obtain a bainite structure or mostly bainite structure, the final of slow cooling The process of plastic working the elongate product to the desired final shape, comprising steps and plastic working operations can be achieved after or during the heat treatment.

本発明は先に定義されたような機械部材を得るための長尺製鉄製品を対象とするものであり、熱間圧延された線材または棒材の形を呈し、また、それを構成する鋼が、鉄に対して重量パーセントで表した、下記の分析に少なくとも対応することを特徴とする:
0≦0.15%
0.04%≦Nb≦0.10%
0.001%≦B≦0.005%
0.10%≦Mo≦0.35%
1.3%≦Mn≦2.0%
0.15%≦Si≦1.30%
0.01%≦Al≦0.08%
N≦0.015%かつTi≧3.5×%N。
The present invention is directed to a long steel product for obtaining a machine member as defined above, and is in the form of a hot-rolled wire or bar, and the steel constituting it is Characterized in that it corresponds at least to the following analysis, expressed in weight percent with respect to iron:
0 ≦ 0.15%
0.04% ≦ Nb ≦ 0.10%
0.001% ≦ B ≦ 0.005%
0.10% ≦ Mo ≦ 0.35%
1.3% ≦ Mn ≦ 2.0%
0.15% ≦ Si ≦ 1.30%
0.01% ≦ Al ≦ 0.08%
N ≦ 0.015% and Ti ≧ 3.5 ×% N.

ここで分かるように、本発明は、その本質的特徴において、高特性値の機械部材に固有であり、また、少ない冷却に関する要求条件で機械部材の塊の中に均質なベイナイト組織(または大部分がベイナイト組織)を獲得するのに適した、ニオブとホウ素とモリブデンを主成分とする、低炭素の鋼の分析を定義することにある。実際、この組織は、約1℃/秒まで下げることができる低速の芯冷却からすでに得ることができるものであり、周知のごとく、この速度は設備によって、直径がおよそ20mmまたはそれ以上の線材と棒材について、それ自身が圧延熱間加工に直接達することができる。   As can be seen, the present invention is inherent in its high-value mechanical parts in its essential characteristics, and is homogeneous bainite structure (or most part) in the mass of mechanical parts with low cooling requirements. Is to define an analysis of low-carbon steels based on niobium, boron and molybdenum, suitable for obtaining a bainite structure. In fact, this structure can already be obtained from slow core cooling, which can be reduced to about 1 ° C./second, and as is well known, this speed is dependent on the equipment and with a wire having a diameter of approximately 20 mm or more. For the bar itself it can directly reach the hot rolling process.

したがって、本発明は、スタンピングまたは冷間鍛造の作業場向けの、熱間圧延された長尺製品の製造範囲を大口径に向けて開くものであり、熱間鍛造用のものについては、焼き入れ−焼き戻しの追加の最終熱処理が節約できる。構想をもっとはっきりさせるために、留意すべきは、通常の圧延熱間によって、限界直径は本発明による鋼種別については20〜25mmの周囲に位置するものとすることである。   Accordingly, the present invention opens the production range of hot-rolled long products for stamping or cold forging workshops toward a large diameter, and for hot forging, quenching- Additional final heat treatment for tempering can be saved. In order to make the concept clearer, it should be noted that, with normal rolling heat, the critical diameter should be around 20-25 mm for the steel type according to the invention.

製鉄業の用語の慣行によれば、
・「線材または小さな棒材」は、約30mmまでの直径で圧延された製品(加工業者に納入するのにクラウンの形に包装されることが多い)を、
・また、「棒材」は、直径18mmからの製品で、列の出口である長さに裁断した後、直線で納入されるもの、
を意味する。
According to the steel industry terminology practice,
"Wire or small bar" is a product rolled to a diameter of up to about 30mm (often packaged in the shape of a crown for delivery to a processor)
・ "Bars" are products from 18mm in diameter, and are delivered in a straight line after being cut to the length that is the exit of the row.
Means.

他方で、説明を明確にするために、「ベイナイト組織」という表現は「ベイナイト組織または大部分がベイナイト組織」を指すものとする。   On the other hand, for clarity of explanation, the expression “bainite structure” shall refer to “bainite structure or mostly bainite structure”.

本発明のその他の態様と利点は、実現の例として挙げられた、下記の詳細な説明を読むことによって、良く理解されより明らかになるものである。   Other aspects and advantages of the present invention will become better understood and more apparent upon reading the following detailed description, given by way of example in an implementation.

製鋼所において、連続鋳造によって、鉄の他に、鉄に対する重量パーセントで、下記の組成を有する鋼から長尺半製品(ビレットまたはブルーム)を製造する:   In steelworks, in addition to iron, long semi-finished products (billets or blooms) are produced by continuous casting from steel having the following composition, in weight percent with respect to iron:

0.02〜0.15%の、好適には0.08%の炭素の組成。これらの含有率の炭素は要求された機械的特性を有するベイナイト組織の獲得に役立つ。それは冷間塑性加工の際に優れた加工特性を得ることを可能にする。その低い含有率は、小球化処理の実現を必要とすることなしに伸長性に不利な大きな炭化物の形成を回避することも可能にする。   A composition of carbon of 0.02 to 0.15%, preferably 0.08%. These carbon contents help to obtain a bainite structure having the required mechanical properties. It makes it possible to obtain excellent processing characteristics during cold plastic processing. Its low content also makes it possible to avoid the formation of large carbides, which are disadvantageous for extensibility, without necessitating the realization of a spheronization treatment.

0.04〜0.10%の、好適には0.06〜0.08%のニオブの組成。ニオブは、ベイナイト加工領域を拡大するためにモリブデンとホウ素との相乗効果を発揮する。それは実際、鋼に含まれる有効なホウ素の含有率を増加させてホウ素の焼き入れ性の効果を増すことができる。実際、炭化物Fe23(CB6)(ホウ素を取り込み、鋼の焼き入れ性に関しては消極的)の形成はオーステナイトを安定させ、炭素の拡散を遅らせるニオブの作用の下でより困難になる。他方で、オーステナイトの再結晶化温度の増加を可能にするので、制御された圧延の際により細かいベイナイト組織を得ること、そしてそれにより機械部材の靭性を増すことを可能にする。 Composition of niobium of 0.04 to 0.10%, preferably 0.06 to 0.08%. Niobium exerts a synergistic effect of molybdenum and boron to expand the bainite processing area. In fact, it can increase the effective boron content in the steel and increase the effect of boron hardenability. In fact, the formation of the carbide Fe 23 (CB 6 ) (which incorporates boron and is passive with respect to the hardenability of the steel) becomes more difficult under the action of niobium which stabilizes the austenite and retards the diffusion of carbon. On the other hand, it makes it possible to increase the recrystallization temperature of austenite, thus making it possible to obtain a finer bainite structure during controlled rolling and thereby to increase the toughness of the machine part.

0.001〜0.005%のホウ素の組成。ホウ素はフェライトの発生を阻止し、それによってベイナイト組織の形成を助長する。それはニオブとモリブデンとの相乗作用によってベイナイト領域を拡大する。   0.001 to 0.005% boron composition. Boron prevents the formation of ferrite, thereby facilitating the formation of a bainite structure. It expands the bainite region by the synergistic action of niobium and molybdenum.

0.10〜0.35%、また好適には0.30%未満のモリブデンの組成。モリブデンは炭化物発生元素であり、フェライトの発生を遅らせてベイナイト領域の拡大を可能にする。くわえて、これらの含有率において、鋼の焼き入れ性に対する作用は、ベイナイト変化の開始温度を下げることによって、より高い機械的強度の鋼を得ることを可能にする。それによって優れた伸長性の獲得に必要な低い炭素含有率が相殺される。他方で、ホウ素およびニオブと相乗作用して、その役割を強化する。くわえて、これらの含有率において、ニオブと相乗作用によってオーステナイトの再結晶温度を上昇させる。   Molybdenum composition of 0.10 to 0.35%, and preferably less than 0.30%. Molybdenum is a carbide-generating element that delays the generation of ferrite and allows the bainite region to be expanded. In addition, at these contents, the effect on the hardenability of the steel makes it possible to obtain a steel with a higher mechanical strength by lowering the onset temperature of the bainite change. This offsets the low carbon content necessary to obtain excellent extensibility. On the other hand, it synergizes with boron and niobium to strengthen its role. In addition, at these contents, the recrystallization temperature of austenite is raised by synergy with niobium.

1.30〜2.00%、また好適には1.60%と1.80%の間のマンガンの組成。このマンガンは次に、十分な焼き入れ性を得ることを可能にし、ベイナイト組織の形成を助長し、所望の機械的特性を得ることを可能にする。   Manganese composition between 1.30 and 2.00%, and preferably between 1.60% and 1.80%. This manganese then makes it possible to obtain a sufficient hardenability, promote the formation of a bainite structure and obtain the desired mechanical properties.

0.10〜1.30%、また好適には0.20〜0.35%のケイ素の組成。これらの含有率で、鋼の控えめな硬化を得ることを可能にする。必要ならば、とくに鋼の機械的強度を上げるために、含有率を1.30%まで増すことができる。ケイ素は、鋳造の際に鋼の脱酸素も可能にする。   Silicon composition of 0.10 to 1.30%, and preferably 0.20 to 0.35%. These contents make it possible to obtain a modest hardening of the steel. If necessary, the content can be increased to 1.30%, especially in order to increase the mechanical strength of the steel. Silicon also allows deoxidation of the steel during casting.

0.007〜0.010%の窒素、ホウ素のための犠牲的遮蔽になるように窒素のこの含有率のおよそ3.5倍のチタンの含有率と組み合わせる組成。チタンは窒素の固定と、それによるホウ素の保護に役立つ。チタンがなければ、ホウ素は窒素と反応して焼き入れ力を喪失するだろう。チタンは細かいオーステナイト粒子を得ることも可能にするので冷間成形と伸長性への適性を向上させる。   0.007-0.010% nitrogen, a composition combined with a titanium content approximately 3.5 times this content of nitrogen to be a sacrificial shield for boron. Titanium helps to fix nitrogen and thereby protect boron. Without titanium, boron will react with nitrogen and lose its quenching power. Titanium also makes it possible to obtain fine austenite particles, thus improving the suitability for cold forming and extensibility.

0.08%未満のアルミニウムの組成。鋳造前の鋼の鎮静剤に由来する、この残留溶 解アルミニウムは、このチタンが窒素に対してホウ素を保護するのに利用可能のままで あるために、不可避的に存在する溶解酸素による酸化に対してチタンを保護する、優れ た脱酸素剤である。このアルミニウムは、開始の半製品の熱間圧延の際に、オーステナ イト粒子の肥大を抑え、それによって鋼に優れた靭性を付与するのにも役立つ。     Aluminum composition less than 0.08%. This residual dissolved aluminum, derived from the sedative of the steel before casting, is subject to oxidation by the unavoidable dissolved oxygen because this titanium remains available to protect the boron against nitrogen. It is an excellent oxygen scavenger that protects titanium against it. This aluminum also helps to reduce the austenite particle enlargement during hot rolling of the starting semi-finished product, thereby imparting excellent toughness to the steel.

場合によって0.001〜0.1%の硫黄。この硫黄はマンガンと組み合わされて塑 性かつ伸長性の硫化マンガンの形成のために、マンガンと組み合わされる。それは優れ た加工性を得ることを可能にする。加工性をいっそう向上させようとするならば、その 含有率を0.1%の最大値まで上げることができるが、冷間変形への優れた適性を保証 したければそれを越えてはならない。     Occasionally 0.001-0.1% sulfur. This sulfur is combined with manganese to form plastic and extensible manganese sulfide in combination with manganese. It makes it possible to obtain excellent processability. If the workability is to be further improved, its content can be increased to a maximum value of 0.1%, but it must not be exceeded if the excellent suitability for cold deformation is to be guaranteed.

この鋼は、その精製に由来する、リンをはじめとする不可避的不純物と残留元素も含んでおり、冷間成形の間およびその後の優れた伸長性を保証するために、リンはその含有率を好適には0.02%未満に抑えなければならず、さらに銅とニッケルはその含有率を好適には0.30%未満としなければならない。   This steel also contains phosphorus and other inevitable impurities and residual elements derived from its refining. Phosphorus has a low content to ensure excellent extensibility during and after cold forming. Preferably it should be kept below 0.02%, and the content of copper and nickel should preferably be below 0.30%.

最適化されたこの組成は、鋼が塑性加工へのきわめて優れた適性と同時に優れた加工性を有することを可能にする。なぜなら、この鋼種別は、ベイナイト組織の獲得を助長するだけでなく、その良好な加工作業に深刻な障害となることがあるマルテンサイトの獲得のおそれを減じる。   This optimized composition allows the steel to have excellent workability as well as very good suitability for plastic working. This steel type not only promotes the acquisition of bainite structure, but also reduces the risk of acquiring martensite, which can be a serious obstacle to its good working operations.

たいていの場合、ときには局所的な条件を考慮に入れて、マルテンサイト型の焼き入れ組織が出現するおそれを回避するために、モリブデン含有率を0.30%に、マンガン含有率を1.80%に制限することができるものである。   In most cases, taking into account local conditions, in order to avoid the possibility of the appearance of a martensitic quenching structure, the molybdenum content is 0.30% and the manganese content is 1.80%. Can be limited to.

本発明の一つの重要な態様は機械部材が、熱間鍛造部材、または約1℃/秒まで下げることができる、冷間スタンピングによって得られた線材または棒材の低速の芯冷却での塊の中に均質のベイナイト組織を有することである。   One important aspect of the present invention is that the mechanical member is a hot forged member, or a mass of the wire or bar obtained by cold stamping at low core cooling, which can be lowered to about 1 ° C / second. It has a homogeneous bainite structure inside.

本発明の実施に従って、機械部材が冷間スタンピング(または冷間鍛造)されたとき、ベイナイト組織は成形前に得られる。鋼は、変形後に、50%を大幅に越える断面収縮によって測定した、優れた伸長性と、650MPaを越える牽引強度と、800MPaを越える機械的強度をこのとき示す。   In accordance with the practice of the present invention, when the mechanical member is cold stamped (or cold forged), a bainite structure is obtained prior to forming. The steel now exhibits excellent extensibility, traction strength exceeding 650 MPa and mechanical strength exceeding 800 MPa, as measured by a cross-sectional shrinkage significantly exceeding 50% after deformation.

この第一の実施態様において、機械部材は既に鋼の冷間塑性加工によって得られ、実際にはベイナイト組織を有するものである。本発明に合致した分析の鋼で構成された長尺半製品を供給し、例えば、直径10mmの圧延線材が得られるまで熱間圧延の通常の慣行に従って、必要ならば1100℃を超える再加熱の後に、熱間圧延する。線材を取り外す温度は1000℃未満である。得られた圧延線材は、次にそれ自身が均質のベイナイト組織を得るために、約1℃/秒まで下げることができる芯の低速で、通常の仕方で(例えば、“stelmor”法)圧延熱間加工において空気冷却される。   In this first embodiment, the mechanical member is already obtained by cold plastic working of steel and actually has a bainite structure. Supply a semi-finished product composed of analytical steel consistent with the present invention, for example, reheating above 1100 ° C. if necessary according to the normal practice of hot rolling until a rolled wire with a diameter of 10 mm is obtained Later, hot rolling. The temperature which removes a wire is less than 1000 degreeC. The resulting rolled wire is then rolled in the usual manner (eg, “stelmor” method) at a low core speed which can be lowered to about 1 ° C./second to obtain a homogeneous bainite structure itself. Air cooling is performed during inter-processing.

このとき圧延線材は、クラウンの形で加工装置に引き渡される(あるいは引き渡し可能になる)。クラウンを受け入れた加工装置は線材を巻き出し、所望の長さの片に裁断される前に必要に応じてそれを整形する。次に、それぞれの鋼片は、すぐに使うことができる最終的な機械部材(スイベルジョイント、シャフト、リンク、ピン・・・)を獲得するために、必要に応じた定格寸法合わせの後に、冷間塑性加工の通常の作業にかけられる。最終機械的特性は、成形加工の結果としての加工によって当然得られるものである。   At this time, the rolled wire is delivered (or can be delivered) to the processing apparatus in the form of a crown. The processing device that receives the crown unwinds the wire and shapes it as necessary before it is cut into pieces of the desired length. Each billet is then cooled after the rated dimensions as required to obtain the final ready-to-use mechanical components (swivel joints, shafts, links, pins ...). It is subjected to the usual work of interplastic working. The final mechanical properties are naturally obtained by processing as a result of the forming process.

第二の実施態様において、機械部材は熱間変形され、ベイナイト組織はこの塑性加工作業の後に得られる:本発明に合致した分析の鋼で構成される長尺半製品を供給し、それを例えば、直径30mmの圧延棒材が得られるまで熱間圧延する。必要に応じて冷却した後、裁断によりある長さにした棒材は、当然熱間圧延の際に得られた、その通常の金属組織をもって、直線状で鍛造工に供給可能となる。   In a second embodiment, the mechanical member is hot deformed and a bainite structure is obtained after this plastic working operation: supplying an elongated semi-finished product composed of analytical steel consistent with the present invention, for example Then, hot rolling is performed until a rolled bar having a diameter of 30 mm is obtained. After cooling as necessary, the bar having a certain length by cutting can naturally be supplied to the forge with its normal metal structure obtained at the time of hot rolling.

それを受け入れた鍛造工はそれをブルームに切り分け、そしてそれぞれの鋼片の温度を鍛造で熱間塑性加工作業にかけられる前に、次に約1200℃にする。機械部材は次に、通常の仕方で二段階で冷却されるものであり、それは、1000℃未満の温度までの制御された第一の冷却と、約1℃/秒まで下げることができる芯冷却の低速での第二の冷却である。この実施態様において、圧延の最終条件は冶金組織の取得に対してとくに重要性を持たないが、それは機械部材にその使用特性の大部分を付与するベイナイト組織は、熱間成形と制御された冷却の後、最後に達せられるからである。   The forge who accepted it cuts it into bloom and then brings the temperature of each billet to about 1200 ° C. before being subjected to hot plastic working operations for forging. The mechanical member is then cooled in two steps in the normal manner, which is controlled first cooling to a temperature below 1000 ° C. and core cooling that can be reduced to about 1 ° C./sec. Second cooling at low speed. In this embodiment, the final rolling conditions are not particularly important for the acquisition of the metallurgical structure, but the bainite structure, which imparts most of its use properties to the machine parts, is hot forming and controlled cooling. It is because the last is reached after.

なお、本発明による機械部材は、焼き入れと焼き戻しの追加熱処理なしに圧延製品の塑性加工によって得られる。   The mechanical member according to the present invention can be obtained by plastic working of a rolled product without additional heat treatment of quenching and tempering.

実験室の試験は、下記の組成の鋳造に対して実施された:   Laboratory tests were performed on castings of the following composition:

Figure 2006508248
Figure 2006508248

鋳造から得られたビレットは、直径12mmの線材を形成するために1100℃を超える温度で再加熱後に熱間圧延された。圧延後の線材取り外し温度は820℃であった。圧延の終わりの加工(“stelmor”型の吹き込み冷却)での線材冷却速度はおよそ5℃/秒であった。周囲でも芯でも、線材の全体にわたって均質なベイナイト組織が得られる。   The billet obtained from the casting was hot rolled after reheating at a temperature exceeding 1100 ° C. to form a wire with a diameter of 12 mm. The wire removal temperature after rolling was 820 ° C. The wire cooling rate at the end of rolling ("stemor" type blow cooling) was approximately 5 ° C / sec. A homogeneous bainite structure can be obtained throughout the wire, whether at the periphery or at the core.

線材の機械的特性値は下記のとおりである:   The mechanical properties of the wire are as follows:

Figure 2006508248
Figure 2006508248

ここで:
・Rmは、線材の初期断面に対する破断前の最大力に対応する破断強度を表す。
・Rp0.2は、0.2%の塑性伸長を引き起こす線材の初期断面に対する力に対応する通常の弾性限界を表す。
・Aは、破断伸びを表す。
・Zは、破断後の線材の断面減少に対応する断面収縮を表す。
here:
Rm represents the breaking strength corresponding to the maximum force before breaking with respect to the initial cross section of the wire.
Rp 0.2 represents the normal elastic limit corresponding to the force on the initial cross section of the wire causing 0.2% plastic elongation.
-A represents elongation at break.
-Z represents the cross-sectional shrinkage corresponding to the cross-sectional reduction of the wire after a fracture.

線材が受ける変形率に応じた機械的特性値の変化は次のとおりである:   The change in the mechanical property value according to the deformation rate that the wire undergoes is as follows:

Figure 2006508248
Figure 2006508248

本発明による高特性値の機械部材は、スタンピングまたは冷間鍛造または熱間鍛造作業の際に、現在実施されている焼き入れと焼き戻し処理の節約をとくに可能にする点において注目に値する。   The high-characteristic mechanical parts according to the invention are notable in that they make it possible in particular to save the quenching and tempering processes currently carried out during stamping or cold forging or hot forging operations.

他方で、それほど厳しくはない冷却条件を課すことで、それらは冷却作業の際に変形するおそれが少なくなる、あるいは同等の冷却液で、直径または厚みを増すことができる。   On the other hand, by imposing cooling conditions that are not so severe, they are less likely to be deformed during the cooling operation or can be increased in diameter or thickness with an equivalent coolant.

それらが極めて優れた加工特性値を有するという点で注目に値するということは、冷間での用途の分野において、硫黄含有率を減少させることを可能にするものであり、したがって、変形適性におけるこの元素の悪影響を押さえることができる。   It is noteworthy that they have very good processing property values, which makes it possible to reduce the sulfur content in the field of cold applications and thus this in deformability. The adverse effects of elements can be suppressed.

自明のごとく、本発明は上述の実例に限定されるものではなく、付属の各請求項に示した定義を逸脱しない限り、多数の変型例や等価物にまで及ぶ。   Obviously, the invention is not limited to the examples described above, but extends to numerous variants and equivalents without departing from the definitions given in the appended claims.

したがって、例えば、熱間鍛造の用途分野において当業者は、硫黄含有率を変更して、あるいはテルル、鉛、セレニウムなどの加工を促進する他の元素を添加することで、加工性を向上させることを選択することができるものである。同様に、スタンピングまたは冷間鍛造または熱間鍛造の用途分野にとくに向けられているとはいえ、本発明は伸線、延伸、スタンピング、などのその他の塑性加工の用途分野にも適用できる。

Thus, for example, in the field of hot forging applications, those skilled in the art can improve workability by changing the sulfur content or adding other elements that promote processing such as tellurium, lead, selenium, etc. Can be selected. Similarly, although particularly directed to stamping or cold forging or hot forging application areas, the present invention is also applicable to other plastic working application areas such as wire drawing, drawing, stamping, and the like.

Claims (8)

圧延長尺製鉄製品の塑性加工から得られる、すぐに使うことができる高特性値の低炭素の鋼製機械部材であり、該製品は以下のことを特徴とするものである:
・鉄と鋼の製錬の結果として生じた不可避の残留不純物を除く前記鋼の組成は、鉄に対して重量パーセントで表した、下記の分析に少なくとも対応し:
C≦0.15%
0.04%≦Nb≦0.10%
0.001%≦B≦0.005%
0.10%≦Mo≦0.35%
1.3%≦Mn≦2.0%
0.15%≦Si≦1.30%
0.01%≦Al≦0.08%
N≦0.015%かつTi≧3.5×%N;
・前記長尺製品は、連続鋳造に由来し、オーステナイト領域で熱間圧延され、ついでベイナイト組織、または大部分がベイナイト組織を得るために熱処理され、800MPaを超える破断強度で、それ自身にその最終形状を与えるために冷間または熱間塑性加工によって成形された半製品から得られることを特徴とする機械部材。
A ready-to-use, high-characteristic, low-carbon steel mechanical member obtained from the plastic working of rolled steel products, characterized by the following:
The composition of the steel, excluding inevitable residual impurities resulting from the smelting of iron and steel, corresponds at least to the following analysis, expressed in weight percent with respect to iron:
C ≦ 0.15%
0.04% ≦ Nb ≦ 0.10%
0.001% ≦ B ≦ 0.005%
0.10% ≦ Mo ≦ 0.35%
1.3% ≦ Mn ≦ 2.0%
0.15% ≦ Si ≦ 1.30%
0.01% ≦ Al ≦ 0.08%
N ≦ 0.015% and Ti ≧ 3.5 ×% N;
The long product originates from continuous casting and is hot-rolled in the austenite region and then heat-treated to obtain a bainite structure, or most of the bainite structure, and has a final strength of more than 800 MPa. Mechanical member obtained from a semi-finished product formed by cold or hot plastic working to give shape.
塑性加工に由来する長尺製品は、それ自身にベイナイト組織または大部分がベイナイト組織を付与するために、十分な冷却速度で圧延熱間加工における冷却によって熱処理された、圧延された線材または棒材であることを特徴とする、請求項1に記載の冷間変形された低炭素鋼製の機械部材。   A long product derived from plastic working is a rolled wire or rod that has been heat treated by cooling in rolling hot working at a sufficient cooling rate to impart a bainite structure or mostly a bainite structure to itself. The machine member made of cold-deformed low carbon steel according to claim 1, characterized in that 鋼片が抽出された熱間塑性加工に由来する長尺製品は、それ自身に芯までベイナイト組織または大部分がベイナイト組織を付与するために、十分な冷却速度で焼き入れによって熱処理された圧延された棒材または線材であり、鋼片がその所望の最終形態へと導く鍛造による塑性加工を受ける、およそ1200℃から、さらにはそれ以上の焼き入れ温度で行われることを特徴とする、請求項1に記載の鍛造された鋼製の機械部材。   Long products derived from hot plastic working from which the slabs have been extracted are rolled by heat treatment by quenching at a sufficient cooling rate to impart bainite structure to the core or mostly bainite structure to itself. A bar or wire rod, wherein the slab is subjected to a plastic working by forging that leads to its desired final form, being performed at a quenching temperature of approximately 1200 ° C. or higher. The forged steel mechanical member according to 1. その製錬に関与する熱処理が、芯において1℃/秒まで下がることができる、低速冷却の最終段階を含んでいることを特徴とする、請求項2または請求項3に記載の鋼製の機械部材。   A steel machine according to claim 2 or claim 3, characterized in that the heat treatment involved in the smelting includes a final stage of slow cooling, which can be reduced to 1 ° C / second in the core. Element. 鋼の炭素含有率が0.06%と0.10%の間に含まれることを特徴とする、請求項1〜4のいずれか一つに記載の機械部材。   The mechanical member according to any one of claims 1 to 4, characterized in that the carbon content of the steel is comprised between 0.06% and 0.10%. それが構成される鋼のモリブデン含有率は0.30%を超えず、マンガン含有率が1.80%未満であることを特徴とする、請求項1〜5のいずれか一つに記載の機械部材。   The machine according to any one of the preceding claims, characterized in that the molybdenum content of the steel in which it is composed does not exceed 0.30% and the manganese content is less than 1.80%. Element. 800MPaを越える破断強度を呈する、すぐに使うことができる高特性値の低炭素鋼製の機械部材の製造方法であり、該製造方法は以下の手順を有するものである:
・鉄と鋼の製錬の結果として生じた不可避の残留不純物を除く組成は、鉄に対して重量パーセントで表した、下記の分析に少なくとも対応する長尺製品から:
C≦0.15%
0.04%≦Nb≦0.10%
0.001%≦B≦0.005%
0.10%≦Mo≦0.35%
1.3%≦Mn≦2.0%
0.15%≦Si≦1.30%
0.01%≦Al≦0.08%
N≦0.015%かつTi≧3.5×%N、
圧延後の線材取り出し温度が1000℃未満である、長尺製品(線材または棒材)を熱間圧延する過程と、
・つづいて、得られた前記圧延長尺製品を熱処理し、前記熱処理は、ベイナイト組織または大部分がベイナイト組織を得るために、芯において約1℃/秒まで下がることができる、低速冷却の最終段階を含むものであり、そして、塑性加工の操作が前記熱処理の後または間に達成することができる、所望の最終形状にするために前記長尺製品を塑性加工する過程。
A method for producing a ready-to-use, high-characteristic, low-carbon steel mechanical member exhibiting a breaking strength of more than 800 MPa, which has the following procedure:
The composition, excluding inevitable residual impurities resulting from the smelting of iron and steel, from long products corresponding to at least the following analysis, expressed in weight percent with respect to iron:
C ≦ 0.15%
0.04% ≦ Nb ≦ 0.10%
0.001% ≦ B ≦ 0.005%
0.10% ≦ Mo ≦ 0.35%
1.3% ≦ Mn ≦ 2.0%
0.15% ≦ Si ≦ 1.30%
0.01% ≦ Al ≦ 0.08%
N ≦ 0.015% and Ti ≧ 3.5 ×% N,
The process of hot-rolling a long product (wire or bar) having a wire take-out temperature after rolling of less than 1000 ° C;
-Subsequently, the obtained rolled long product is heat treated, and the heat treatment can be reduced to about 1 ° C / second in the core to obtain a bainite structure or mostly a bainite structure. The process of plastic working the elongate product to the desired final shape, comprising steps and plastic working operations can be achieved after or during the heat treatment.
熱間圧延された線材または棒材の形を呈し、また、それを構成する鋼が、鉄に対して重量パーセントで表した、下記の分析に少なくとも対応することを特徴とする、請求項1に記載のすぐに使うことができる高特性値の機械部材に加工されるための低炭素の長尺製鉄製品:
C≦0.15%
1.3%≦Mn≦2.0%
0.04%≦Nb≦0.10%
0.10%≦Mo≦0.35%
0.001%≦B≦0.005%
0.15%≦Si≦1.30%
0.01%≦Al≦0.08%
N≦0.015%かつTi≧3.5×%N。

The steel according to claim 1, characterized in that it is in the form of a hot-rolled wire or bar and the steel constituting it corresponds at least to the following analysis, expressed in weight percent with respect to iron. Low carbon long steel products to be processed into ready-to-use high-performance mechanical parts as described:
C ≦ 0.15%
1.3% ≦ Mn ≦ 2.0%
0.04% ≦ Nb ≦ 0.10%
0.10% ≦ Mo ≦ 0.35%
0.001% ≦ B ≦ 0.005%
0.15% ≦ Si ≦ 1.30%
0.01% ≦ Al ≦ 0.08%
N ≦ 0.015% and Ti ≧ 3.5 ×% N.

JP2004556435A 2002-11-27 2003-11-27 Ready-to-use machine parts made of low-carbon steel for plastic working and their manufacturing methods Expired - Lifetime JP5036967B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0214838A FR2847592B1 (en) 2002-11-27 2002-11-27 STEEL FOR COLD OR HOT DEFORMATION, MECHANICAL PIECE READY FOR USE WITH THIS STEEL AND METHOD FOR MANUFACTURING THE SAME
FR02/14838 2002-11-27
PCT/FR2003/003516 WO2004050935A1 (en) 2002-11-27 2003-11-27 Ready-use low-carbon steel mechanical component for plastic deformation and method for making same

Publications (2)

Publication Number Publication Date
JP2006508248A true JP2006508248A (en) 2006-03-09
JP5036967B2 JP5036967B2 (en) 2012-09-26

Family

ID=32241638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556435A Expired - Lifetime JP5036967B2 (en) 2002-11-27 2003-11-27 Ready-to-use machine parts made of low-carbon steel for plastic working and their manufacturing methods

Country Status (9)

Country Link
US (1) US20070051434A1 (en)
EP (1) EP1565587B1 (en)
JP (1) JP5036967B2 (en)
AT (1) ATE456685T1 (en)
AU (1) AU2003298375A1 (en)
DE (1) DE60331163D1 (en)
ES (1) ES2338227T3 (en)
FR (1) FR2847592B1 (en)
WO (1) WO2004050935A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200940723A (en) 2004-07-21 2009-10-01 Nippon Steel Corp A weldable structural steel excellent in low temperature toughness at heat affected zone
FR2931166B1 (en) * 2008-05-15 2010-12-31 Arcelormittal Gandrange STEEL FOR HOT FORGE WITH HIGH MECHANICAL CHARACTERISTICS OF PRODUCTS
EP2199422A1 (en) * 2008-12-15 2010-06-23 Swiss Steel AG Low-carbon precipitation-strengthened steel for cold heading applications
DE102009016079B4 (en) * 2009-04-03 2018-09-06 Zf Friedrichshafen Ag Ball stud made of a steel with a bainitic structure and method for producing such ball studs
DE102019106937A1 (en) * 2019-03-19 2020-09-24 Benteler Automobiltechnik Gmbh Multi-leg handlebar for a wheel suspension in a vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592633A (en) * 1968-01-22 1971-07-13 Nippon Kokan Kk High strength low alloy steel possessing sufficient weldability containing small amounts of nb,ti,and b
JPS5877528A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile steel with superior toughness at low temperature
GB8603500D0 (en) * 1986-02-13 1986-03-19 Hunting Oilfield Services Ltd Steel alloys
CA2135255C (en) * 1994-05-26 2000-05-16 William E. Heitmann Cold deformable, high strength, hot rolled bar and method for producing same
KR100206151B1 (en) * 1995-01-26 1999-07-01 다나카 미노루 Weldable high tensile steel excellent in low-temperatur toughness
AU736078B2 (en) * 1997-07-28 2001-07-26 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6315946B1 (en) * 1999-10-21 2001-11-13 The United States Of America As Represented By The Secretary Of The Navy Ultra low carbon bainitic weathering steel

Also Published As

Publication number Publication date
WO2004050935A1 (en) 2004-06-17
DE60331163D1 (en) 2010-03-18
ES2338227T3 (en) 2010-05-05
EP1565587A1 (en) 2005-08-24
EP1565587B1 (en) 2010-01-27
US20070051434A1 (en) 2007-03-08
JP5036967B2 (en) 2012-09-26
ATE456685T1 (en) 2010-02-15
AU2003298375A1 (en) 2004-06-23
FR2847592A1 (en) 2004-05-28
FR2847592B1 (en) 2007-05-25

Similar Documents

Publication Publication Date Title
JP3988095B2 (en) Steel for producing steel products by cold plastic deformation and its production method
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP6819198B2 (en) Rolled bar for cold forged tempered products
CN111511936A (en) Wire rod for cold heading, worked product using the same, and method for manufacturing the same
CN105518175A (en) Method for producing steel component
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
EP2883974A1 (en) Wire rod having good strength and ductility and method for producing same
US20070227634A1 (en) Forged or Stamped Average or Small Size Mechanical Part
JP5036967B2 (en) Ready-to-use machine parts made of low-carbon steel for plastic working and their manufacturing methods
JP3002392B2 (en) Method for manufacturing centrifugally cast composite roll
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JPH0762204B2 (en) Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts
JPH11131187A (en) Rapidly graphitizable steel and its production
CA2400286A1 (en) Bar product, cylinder rods, hydraulic cylinders, and method for manufacturing
RU2262539C1 (en) Round merchant shapes made from alloyed steel for cold die forging of intricate-shape profiles for high-strength fastening parts
JP3680764B2 (en) Method for producing martensitic stainless steel pipe
JP6108924B2 (en) Manufacturing method of steel for cold forging
JPH10330836A (en) Production of hot forged parts excellent in machinability and fatigue characteristic
JPH09202921A (en) Production of wire for cold forging
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JPH0673502A (en) High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
CN108690935A (en) High-quality alloy tool steel plate and production method thereof
JP2014201813A (en) Method for manufacturing cold forging steel material
JPH0229725B2 (en) KOJINSEINETSUKANTANZOYOHICHOSHITSUBOKONOSEIZOHOHO
JP3806602B2 (en) Bolt wire or steel wire with excellent cold / warm forgeability and delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110607

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term