JP2006352321A - Receiver - Google Patents

Receiver Download PDF

Info

Publication number
JP2006352321A
JP2006352321A JP2005173632A JP2005173632A JP2006352321A JP 2006352321 A JP2006352321 A JP 2006352321A JP 2005173632 A JP2005173632 A JP 2005173632A JP 2005173632 A JP2005173632 A JP 2005173632A JP 2006352321 A JP2006352321 A JP 2006352321A
Authority
JP
Japan
Prior art keywords
signal
main carrier
power
sideband
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005173632A
Other languages
Japanese (ja)
Other versions
JP4551281B2 (en
Inventor
Takeshi Nakatogawa
剛 中戸川
Mikio Maeda
幹夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2005173632A priority Critical patent/JP4551281B2/en
Publication of JP2006352321A publication Critical patent/JP2006352321A/en
Application granted granted Critical
Publication of JP4551281B2 publication Critical patent/JP4551281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a receiver capable of enhancing the reception sensitivity by reducing a noise component generated by down-conversion. <P>SOLUTION: The receiver includes: a reception antenna 101 for receiving a high frequency signal at a millimeter wave band including a main carrier signal component and a side band signal component; a signal input section 110 for inputting the received millimeter wave reception signal A; an input power adjustment section 120 for adjusting the power of the input signal; a 2-branch unit 102 for branching a signal C output from the input power adjustment section 120 into two paths; a main carrier signal power adjustment section 130 that adjusts the power of the main carrier signal; a side band signal power adjustment section 140 that adjusts the power of the side wave band signal; a 2-branch unit 103 that branches an output signal D of the section 130 into two, i.e. a control circuit 104 and a signal output section 150; the control circuit 104 that outputs a control signal for adjusting the power of the signal C to the input power adjustment section 120; and the signal output section 150 that outputs a signal F with a base band frequency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばミリ波帯の無線信号を受信する受信装置に関する。   The present invention relates to a receiving apparatus that receives, for example, a millimeter-wave band radio signal.

近年、例えばミリ波帯の高周波信号を光ファイバで伝送し、光ファイバの伝送路の中継点で光電変換を行って無線伝送する光・無線融合技術の研究開発が盛んに行われている。この手法は、例えば放送波の共同受信用光ファイバケーブルの引き込みが困難な既設の集合住宅や、光ファイバ敷設経路に河川が横切る場合に、光ファイバ伝送を補完する手段として大変有用である。   2. Description of the Related Art In recent years, research and development have been actively conducted on optical / wireless fusion technology in which, for example, millimeter-wave band high-frequency signals are transmitted through optical fibers, and photoelectric conversion is performed at a relay point of the optical fiber transmission path for wireless transmission. This technique is very useful as a means for supplementing optical fiber transmission when, for example, an existing apartment house where it is difficult to pull in an optical fiber cable for joint reception of broadcast waves or when a river crosses an optical fiber installation route.

光・無線融合技術を地上波デジタル放送の放送波信号の受信に適用したものとして、放送波信号とミリ波帯の無変調信号とによって同一の光源から得た搬送波光を変調した後、両者を波長多重して光伝送し、中継点の光電変換でミリ波帯に周波数変換して放送波信号を得る手法が提案されている(例えば、非特許文献1参照。)。   Assuming that optical and wireless fusion technology is applied to the reception of broadcast wave signals for terrestrial digital broadcasting, after modulating the carrier light obtained from the same light source with the broadcast wave signal and the unmodulated signal in the millimeter wave band, A method has been proposed in which wavelength-division multiplexing is used for optical transmission, and a broadcast wave signal is obtained by frequency conversion to a millimeter wave band by photoelectric conversion at a relay point (for example, see Non-Patent Document 1).

しかしながら、ミリ波帯信号は、一般の無線伝送、例えば無線LAN(Local Area Network)で用いられる無線信号よりも伝送損失が極めて大きいので、ミリ波帯信号の受信感度をさらに向上させた受信装置を構成する手法が求められている。受信装置の構成は、受信する無線信号の主搬送波信号の型式によって異なるものであり、以下、主搬送波信号について詳細に説明する。   However, since the millimeter wave band signal has an extremely large transmission loss as compared with a radio signal used in general wireless transmission, for example, a wireless LAN (Local Area Network), a receiving apparatus that further improves the reception sensitivity of the millimeter wave band signal is provided. There is a need for a method to configure. The configuration of the receiving device differs depending on the type of the main carrier signal of the received radio signal, and the main carrier signal will be described in detail below.

無線伝送における主搬送波信号の振幅変調方式としては、両側波帯変調方式、単側波帯変調方式、残留側波帯変調方式が一般的である。中でも単側波帯変調方式は、占有帯域幅が両側波帯変調方式の1/2以下であるため、特に広帯域信号の無線伝送において望ましい変調方式である。   As an amplitude modulation method of a main carrier signal in wireless transmission, a double sideband modulation method, a single sideband modulation method, and a residual sideband modulation method are generally used. Among them, the single sideband modulation method is a desirable modulation method particularly for wireless transmission of wideband signals because the occupied bandwidth is ½ or less of the double sideband modulation method.

単側波帯変調方式は、さらに、主搬送波信号の伝送方式により、次の3通りの変調方式に分類できる。すなわち、単側波帯変調方式は、主搬送波信号をそのまま伝送する全搬送波方式と、主搬送波信号を伝送しない抑圧搬送波方式と、主搬送波信号の電力を低減して伝送する低減搬送波方式とに分類でき、以下具体的に説明する。   The single sideband modulation method can be further classified into the following three modulation methods according to the transmission method of the main carrier signal. That is, the single sideband modulation method is classified into an all-carrier method that transmits the main carrier signal as it is, a suppressed carrier method that does not transmit the main carrier signal, and a reduced carrier method that transmits the main carrier signal with reduced power. This will be described in detail below.

まず、全搬送波方式は、受信側で局部発振信号が不要であり、例えば非線形素子の2乗検波によって、受信した高周波信号をベースバンド周波数の信号に周波数変換(以下「ダウンコンバージョン」という。)できるため、受信装置を簡素な構成にできるという優位性を持ち、一般に、自己ヘテロダイン方式といわれる。加えて、全搬送波方式では、主搬送波信号と側波帯の周波数変動及び位相雑音とがダウンコンバージョンの際に相殺されるため、安定な信号を得ることができる。   First, the local carrier signal does not require a local oscillation signal on the receiving side, and the received high-frequency signal can be converted to a baseband frequency signal (hereinafter referred to as “down-conversion”) by square detection of a non-linear element, for example. Therefore, it has an advantage that the receiving apparatus can be configured simply, and is generally called a self-heterodyne system. In addition, in the all-carrier system, a stable signal can be obtained because the main carrier signal and the frequency fluctuations and phase noise of the sidebands are canceled during the down-conversion.

しかしながら、全搬送波方式は、側波帯信号と比較して十分に大きな主搬送波信号を伝送する必要があるため、全送信電力に占める側波帯信号の電力の割合が制限される。側波帯信号電力の割合が小さいと、受信装置において発生する熱雑音により、受信感度が低下し、受信可能範囲が狭くなるという問題がある。この全搬送波方式を用いた受信装置としては、例えば特許文献1に示されたものが知られている。   However, since the full carrier scheme needs to transmit a sufficiently large main carrier signal as compared with the sideband signal, the ratio of the power of the sideband signal to the total transmission power is limited. If the ratio of the sideband signal power is small, there is a problem that the reception sensitivity is lowered due to thermal noise generated in the receiving apparatus, and the receivable range is narrowed. As a receiving apparatus using this all-carrier wave system, for example, the one disclosed in Patent Document 1 is known.

次に、抑圧搬送波方式は、主搬送波信号を伝送しないため、全送信電力が一定の条件下では、全搬送波方式に比べ、受信可能範囲の点では有利である。しかしながら、送信側と受信側とで別々の局部発振信号を用いることになるため、周波数変動や位相雑音の影響が受信装置のダウンコンバージョン出力の信号に残留してしまう。この問題を解決するために、送信装置で送信側の局部発振信号のスペクトラムと同じスペクトラムのパイロット信号を、側波帯信号近傍の周波数に電力を下げて多重して伝送し、受信側でこの信号を基に受信側の局部発振信号を制御して周波数変動の影響を低減する手法が提案されている(例えば、特許文献2参照。)。しかしながら、ミリ波帯のように非常に周波数の高い領域において、周波数変動や位相雑音を完全に抑圧することは容易でなく、受信装置に複雑な処理回路が必要となり、製造コストが極めて増大するという問題がある。   Next, since the suppressed carrier scheme does not transmit the main carrier signal, it is advantageous in terms of the receivable range as compared with the all carrier scheme under the condition that the total transmission power is constant. However, since separate local oscillation signals are used on the transmission side and the reception side, the influence of frequency fluctuation and phase noise remains on the signal of the down-conversion output of the reception device. In order to solve this problem, the transmitter transmits a pilot signal having the same spectrum as that of the local oscillation signal on the transmission side to the frequency near the sideband signal and transmits the multiplexed signal. Based on the above, there has been proposed a technique for controlling the local oscillation signal on the receiving side to reduce the influence of frequency fluctuation (see, for example, Patent Document 2). However, in a very high frequency region such as the millimeter wave band, it is not easy to completely suppress frequency fluctuations and phase noise, and a complicated processing circuit is required for the receiving device, which greatly increases manufacturing costs. There's a problem.

また、予め送信側で側波帯信号と主搬送波信号とを分離し、両者を直交した二つの偏波で送信し、受信側で直交配置した直線偏波アンテナで受信する方式が提案されている(例えば、非特許文献2参照。)。この方式は、全搬送波方式と同様に周波数変動や位相雑音の点で有利であるが、受信アンテナの交差偏波識別特性の劣化がダウンコンバージョン出力の信号の品質低下につながるため、交差偏波識別特性に優れた受信アンテナが必要となり、製造コストが増大するという問題がある。   In addition, a method has been proposed in which a sideband signal and a main carrier signal are separated in advance on the transmitting side, both are transmitted with two orthogonal polarized waves, and received with a linearly polarized antenna arranged orthogonally on the receiving side. (For example, refer nonpatent literature 2.). This method is advantageous in terms of frequency fluctuations and phase noise, like the all-carrier method. However, since the deterioration of the cross-polarization identification characteristics of the receiving antenna leads to the deterioration of the signal quality of the down-conversion output, cross-polarization identification is possible. There is a problem that a receiving antenna having excellent characteristics is required and the manufacturing cost increases.

次に、低減搬送波方式は、全搬送波方式及び抑圧搬送波方式の欠点を補う手法である。主搬送波信号の電力を低減することで、全送信電力に占める側波帯信号の割合を全搬送波方式によるものよりも増加させて、受信感度を向上させることができる。また、低減搬送波方式は、伝送された主搬送波信号をダウンコンバージョンに用いることにより、周波数変動や位相雑音の影響を受けない安定した信号を得ることができる。   Next, the reduced carrier scheme is a method that compensates for the shortcomings of the all-carrier scheme and the suppressed carrier scheme. By reducing the power of the main carrier signal, the ratio of the sideband signal to the total transmission power can be increased as compared with the case of the full carrier system, and the reception sensitivity can be improved. In the reduced carrier scheme, a stable signal that is not affected by frequency fluctuations or phase noise can be obtained by using the transmitted main carrier signal for down conversion.

以上のように、無線伝送における主搬送波信号の振幅変調方式において、単側波帯変調方式には、全搬送波方式、抑圧搬送波方式及び低減搬送波方式の3通りの変調方式があり、その中でも低減搬送波方式を用いることは、伝送損失が極めて大きなミリ波帯信号を受信する受信装置にとって好ましいと言える。   As described above, in the amplitude modulation method of the main carrier signal in wireless transmission, the single sideband modulation method includes three types of modulation methods, an all-carrier method, a suppressed carrier method, and a reduced carrier method. It can be said that the use of the method is preferable for a receiving apparatus that receives a millimeter-wave band signal with extremely large transmission loss.

鈴木健児、他著「地上波デジタル放送のミリ波光ファイバ伝送実験」、社団法人映像情報メディア学会技術報告、Vol.27、No.45、PP.1〜6、BCT2003−13(Jul.2003)Kenji Suzuki, et al. “Millimeter-wave optical fiber transmission experiment of digital terrestrial broadcasting”, Technical Report of the Institute of Image Information and Television Engineers, Vol. 27, no. 45, PP. 1-6, BCT2003-13 (Jul. 2003) 荘司洋三、他著「自己ヘテロダイン検波を用いたミリ波通信システムに関する一検討」、1999年電子情報通信学会ソサイエティ大会、PP.370、B−5−135(Sept.1999)Yozo Soji, et al., "A Study on Millimeter-wave Communication System Using Self-Heterodyne Detection", 1999 IEICE Society Conference, PP. 370, B-5-135 (Sept. 1999) 特開2003−198259号公報JP 2003-198259 A 特開2004−235758号公報JP 2004-235758 A

しかしながら、低減搬送波方式を用いた従来の受信装置では、受信感度を向上させるために主搬送波信号を側波帯信号に比べて十分低くしようとすると、一般的な自己ヘテロダイン方式のダウンコンバージョンでは雑音成分が発生し、信号品質が低下するという問題があった。   However, in the conventional receiver using the reduced carrier scheme, if the main carrier signal is made sufficiently lower than the sideband signal in order to improve the reception sensitivity, the noise component in the general self-heterodyne downconversion Occurs, and the signal quality is degraded.

本発明は、従来の問題を解決するためになされたものであり、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる受信装置を提供するものである。   The present invention has been made to solve the conventional problems, and provides a receiving apparatus capable of reducing the noise component generated by down-conversion and improving the receiving sensitivity.

本発明の受信装置は、主搬送波信号成分及び側波帯信号成分を含む無線信号を受信する無線信号受信手段と、前記無線信号から前記主搬送波信号成分を抽出する主搬送波信号抽出手段と、前記無線信号から前記側波帯信号成分を抽出する側波帯信号抽出手段とを備えた構成を有している。   The receiving apparatus of the present invention includes a radio signal receiving unit that receives a radio signal including a main carrier signal component and a sideband signal component, a main carrier signal extraction unit that extracts the main carrier signal component from the radio signal, And a sideband signal extracting means for extracting the sideband signal component from the radio signal.

この構成により、本発明の受信装置は、主搬送波信号成分及び側波帯信号成分の電力をそれぞれ別個に調整することができるので、ダウンコンバージョンを行う前に、側波帯信号成分と主搬送波成分との電力比を十分大きくし、主搬送波成分に含まれる雑音成分を低減することができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   With this configuration, the receiving device of the present invention can separately adjust the powers of the main carrier signal component and the sideband signal component, so that the sideband signal component and the main carrier component are before the down conversion. And the noise component included in the main carrier component can be reduced, and the noise component generated by the down-conversion can be reduced to improve the reception sensitivity.

また、本発明の受信装置は、前記主搬送波信号抽出手段によって抽出された前記主搬送波信号成分に基づいて前記側波帯信号抽出手段によって抽出された前記側波帯信号成分の周波数をベースバンド周波数に変換する周波数変換手段を備えた構成を有している。   Further, the receiving device of the present invention uses the frequency of the sideband signal component extracted by the sideband signal extraction unit based on the main carrier signal component extracted by the main carrier signal extraction unit as a baseband frequency. It has the structure provided with the frequency conversion means to convert into.

この構成により、本発明の受信装置は、ダウンコンバージョンを行うための局部発振信号を生成する局部発振器を必要としないので、従来のものよりも製造コストを低減することができる。   With this configuration, the receiving apparatus of the present invention does not require a local oscillator that generates a local oscillation signal for performing down conversion, so that the manufacturing cost can be reduced as compared with the conventional one.

さらに、本発明の受信装置は、前記主搬送波信号抽出手段によって抽出された前記主搬送波信号成分は、雑音成分を含み、前記雑音成分を抑圧する雑音成分抑圧手段を備えた構成を有している。   Furthermore, the receiving apparatus of the present invention has a configuration including a noise component suppressing unit that suppresses the noise component, wherein the main carrier signal component extracted by the main carrier signal extracting unit includes a noise component. .

この構成により、本発明の受信装置は、雑音成分抑圧手段が、主搬送波信号成分に含まれる雑音成分を抑圧するので、雑音成分が抑圧された主搬送波信号成分を用いてダウンコンバージョンを行うことができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   With this configuration, since the noise component suppressing unit suppresses the noise component included in the main carrier signal component, the receiving apparatus of the present invention can perform down conversion using the main carrier signal component in which the noise component is suppressed. In addition, it is possible to improve the reception sensitivity by reducing the noise component generated by the down conversion.

さらに、本発明の受信装置は、前記無線信号の周波数と前記ベースバンド周波数との間の周波数に前記無線信号の周波数を変換する中間周波数変換手段を備えた構成を有している。   Furthermore, the receiving apparatus of the present invention has a configuration including intermediate frequency conversion means for converting the frequency of the radio signal to a frequency between the frequency of the radio signal and the baseband frequency.

この構成により、本発明の受信装置は、雑音成分抑圧手段が、無線周波数よりも小さい周波数帯域において主搬送波信号成分に含まれる雑音成分を抑圧することができるので、無線周波数帯域において雑音成分を抑圧するものよりも、雑音成分抑圧手段の構造を簡易化して製造コストの低減化を図ることができる。   With this configuration, in the receiving apparatus of the present invention, the noise component suppressing unit can suppress the noise component included in the main carrier signal component in the frequency band smaller than the radio frequency, and thus suppress the noise component in the radio frequency band. Therefore, the structure of the noise component suppressing means can be simplified and the manufacturing cost can be reduced.

さらに、本発明の受信装置は、前記主搬送波信号抽出手段によって抽出された前記主搬送波信号成分の電力を調整する主搬送波信号電力調整手段と、前記側波帯信号抽出手段によって抽出された前記側波帯信号成分の電力を調整する側波帯信号電力調整手段とを備えた構成を有している。   Furthermore, the receiving apparatus of the present invention includes a main carrier signal power adjusting unit that adjusts the power of the main carrier signal component extracted by the main carrier signal extracting unit, and the side extracted by the sideband signal extracting unit. And a sideband signal power adjusting means for adjusting the power of the waveband signal component.

この構成により、本発明の受信装置は、主搬送波信号電力調整手段及び側波帯信号電力調整手段が、それぞれ、主搬送波信号成分及び側波帯信号成分の電力を別個に調整するので、ダウンコンバージョンを行う前に、側波帯信号成分と主搬送波成分との電力比を十分大きくし、主搬送波成分に含まれる雑音成分を低減することができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   With this configuration, the main carrier signal power adjusting unit and the sideband signal power adjusting unit separately adjust the power of the main carrier signal component and the sideband signal component, respectively. Before performing the transmission, the power ratio between the sideband signal component and the main carrier component can be made sufficiently large to reduce the noise component contained in the main carrier component, and the noise component generated by downconversion can be reduced and received. The sensitivity can be improved.

また、この構成により、本発明の受信装置は、主搬送波信号成分及び側波帯信号成分の電力をそれぞれ別個に調整できるので、受信信号のダイナミックレンジの拡大化を図ることができる。   Also, with this configuration, the receiving apparatus of the present invention can separately adjust the power of the main carrier signal component and the sideband signal component, so that the dynamic range of the received signal can be expanded.

さらに、本発明の受信装置は、前記主搬送波信号電力調整手段から出力される信号の電力を所定の範囲内に設定する主搬送波信号電力設定手段を備えた構成を有している。   Furthermore, the receiving apparatus of the present invention has a configuration including main carrier signal power setting means for setting the power of the signal output from the main carrier signal power adjustment means within a predetermined range.

この構成により、本発明の受信装置は、電力の安定化が図り難いミリ波等の高周波信号を受信する場合でも、主搬送波信号電力調整手段から出力される信号の電力を安定化させることができ、電力が安定化された主搬送波信号成分を用いて側波帯信号成分のダウンコンバージョンを行うことができる。   With this configuration, the receiving device of the present invention can stabilize the power of the signal output from the main carrier signal power adjusting means even when receiving a high-frequency signal such as a millimeter wave whose power is difficult to stabilize. The sideband signal component can be down-converted using the main carrier signal component whose power is stabilized.

さらに、本発明の受信装置は、前記側波帯信号電力調整手段から出力される信号の電力を所定の範囲内に設定する側波帯信号電力設定手段を備えた構成を有している。   Furthermore, the receiving apparatus of the present invention has a configuration provided with sideband signal power setting means for setting the power of the signal output from the sideband signal power adjustment means within a predetermined range.

この構成により、本発明の受信装置は、側波帯信号電力調整手段から出力される信号の電力を安定化させることができるので、側波帯信号成分と主搬送波信号成分との電力比の変動を所定範囲内に収めることができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   With this configuration, the receiving apparatus of the present invention can stabilize the power of the signal output from the sideband signal power adjusting means, so that the fluctuation of the power ratio between the sideband signal component and the main carrier signal component Can be kept within a predetermined range, and noise components generated by down-conversion can be reduced to improve reception sensitivity.

本発明は、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができるという効果を有する受信装置を提供することができるものである。   The present invention can provide a receiving apparatus having an effect of reducing the noise component generated by down conversion and improving the receiving sensitivity.

以下、本発明の実施の形態について図面を用いて説明する。なお、本発明の受信装置がミリ波帯の高周波信号を受信する例を挙げて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. An example in which the receiving apparatus of the present invention receives a millimeter-wave band high-frequency signal will be described.

(第1の実施の形態)
まず、本発明の第1の実施の形態の受信装置の構成について説明する。
(First embodiment)
First, the configuration of the receiving apparatus according to the first embodiment of the present invention will be described.

図1に示すように、本実施の形態の受信装置100は、主搬送波信号成分及び側波帯信号成分を含むミリ波帯の高周波信号を受信する受信アンテナ101と、受信アンテナ101が受信したミリ波受信信号Aを入力する信号入力部110と、入力信号の電力を調整する入力電力調整部120と、入力電力調整部120から出力される信号Cを2つの経路に分岐する2分岐器102と、主搬送波信号の電力を調整する主搬送波信号電力調整部130と、側波帯信号の電力を調整する側波帯信号電力調整部140とを備えている。なお、受信アンテナ101は、本発明の無線信号受信手段を構成している。   As shown in FIG. 1, a receiving apparatus 100 according to the present embodiment includes a receiving antenna 101 that receives a millimeter-wave band high-frequency signal including a main carrier signal component and a sideband signal component, and a millimeter that is received by the receiving antenna 101. A signal input unit 110 that inputs the received wave signal A, an input power adjustment unit 120 that adjusts the power of the input signal, a two-branch unit 102 that branches the signal C output from the input power adjustment unit 120 into two paths, , A main carrier signal power adjusting unit 130 for adjusting the power of the main carrier signal, and a sideband signal power adjusting unit 140 for adjusting the power of the sideband signal. The receiving antenna 101 constitutes a radio signal receiving means of the present invention.

また、本実施の形態の受信装置100は、主搬送波信号電力調整部130から出力される信号Dを制御回路104と信号出力部150との2つに分岐する2分岐器103と、信号Cの電力を調整するための制御信号を入力電力調整部120に出力する制御回路104と、主搬送波信号電力調整部130及び側波帯信号電力調整部140からそれぞれ出力される信号D及びEを入力してベースバンド周波数の信号Fを出力する信号出力部150とを備えている。   The receiving apparatus 100 according to the present embodiment also includes a two-branch unit 103 that branches the signal D output from the main carrier signal power adjustment unit 130 into a control circuit 104 and a signal output unit 150, and a signal C A control circuit 104 that outputs a control signal for adjusting power to the input power adjustment unit 120, and signals D and E output from the main carrier signal power adjustment unit 130 and the sideband signal power adjustment unit 140, respectively, are input. And a signal output unit 150 that outputs a signal F having a baseband frequency.

信号入力部110は、受信アンテナ101が受信したミリ波受信信号Aを増幅するミリ波増幅器111と、所定の周波数帯域の信号をろ波する帯域通過フィルタ112と、局部発振信号としてミリ波正弦波信号Bを生成するミリ波局部発振器113と、ミリ波正弦波信号Bを増幅するミリ波増幅器114と、帯域通過フィルタ112がろ波したミリ波受信信号Aとミリ波増幅器114が増幅したミリ波正弦波信号Bとを乗算し、異なる2つの周波数の信号を生成するミキサ115と、ミキサ115が生成する信号のうち低い周波数の信号をろ波する低域通過フィルタ116とを備えている。なお、ミリ波局部発振器113は、本発明の中間周波数変換手段を構成している。   The signal input unit 110 includes a millimeter wave amplifier 111 that amplifies the millimeter wave reception signal A received by the receiving antenna 101, a band pass filter 112 that filters a signal in a predetermined frequency band, and a millimeter wave sine wave as a local oscillation signal. Millimeter-wave local oscillator 113 that generates signal B, millimeter-wave amplifier 114 that amplifies millimeter-wave sine wave signal B, millimeter-wave reception signal A that is filtered by bandpass filter 112, and millimeter-wave that is amplified by millimeter-wave amplifier 114 A mixer 115 that multiplies the sine wave signal B to generate signals of two different frequencies, and a low-pass filter 116 that filters a low-frequency signal among the signals generated by the mixer 115 are provided. The millimeter wave local oscillator 113 constitutes the intermediate frequency conversion means of the present invention.

入力電力調整部120は、低域通過フィルタ116の出力信号を増幅する増幅器121と、フィードバック制御機能を有する可変減衰器122とを備え、信号Cを2分岐器102に出力するようになっている。なお、可変減衰器122は、制御回路104からの制御信号に基づいて動作するようになっている。   The input power adjustment unit 120 includes an amplifier 121 that amplifies the output signal of the low-pass filter 116 and a variable attenuator 122 having a feedback control function, and outputs the signal C to the two-branch unit 102. . Note that the variable attenuator 122 operates based on a control signal from the control circuit 104.

主搬送波信号電力調整部130は、2分岐器102によって分岐された一方の信号を入力し、この信号をろ波して主搬送波信号である無変調正弦波信号を抽出する帯域通過フィルタ131と、帯域通過フィルタ131によって抽出された無変調正弦波信号を増幅する増幅器132と、帯域通過フィルタ131の帯域よりも狭い帯域で無変調正弦波信号に含まれる雑音成分をさらに抑圧する狭帯域通過フィルタ133と、狭帯域通過フィルタ133によって抽出された無変調正弦波信号を増幅する増幅器134とを備え、信号Dを2分岐器103に出力するようになっている。   The main carrier signal power adjustment unit 130 receives one of the signals branched by the two-branch unit 102, filters this signal, and extracts an unmodulated sine wave signal that is the main carrier signal; An amplifier 132 that amplifies the unmodulated sine wave signal extracted by the band pass filter 131, and a narrow band pass filter 133 that further suppresses noise components included in the unmodulated sine wave signal in a band narrower than the band of the band pass filter 131. And an amplifier 134 that amplifies the unmodulated sine wave signal extracted by the narrow band pass filter 133, and outputs the signal D to the two-branch unit 103.

なお、主搬送波信号電力調整部130は、本発明の主搬送波信号電力調整手段を構成している。また、帯域通過フィルタ131は、本発明の主搬送波信号抽出手段を構成している。また、狭帯域通過フィルタ133は、本発明の雑音成分抑圧手段を構成している。   The main carrier signal power adjustment unit 130 constitutes a main carrier signal power adjustment unit of the present invention. Further, the band pass filter 131 constitutes a main carrier signal extraction means of the present invention. The narrow band pass filter 133 constitutes a noise component suppressing unit of the present invention.

制御回路104は、主搬送波信号電力調整部130から出力される信号Dの電力レベルを監視し、信号Dの電力レベルが予め設定された範囲内に収まるよう可変減衰器122の減衰量を制御するための制御信号を可変減衰器122に出力するようになっている。なお、制御回路104及び可変減衰器122は、本発明の主搬送波信号電力設定手段を構成している。   The control circuit 104 monitors the power level of the signal D output from the main carrier signal power adjustment unit 130 and controls the attenuation amount of the variable attenuator 122 so that the power level of the signal D is within a preset range. The control signal for output is output to the variable attenuator 122. The control circuit 104 and the variable attenuator 122 constitute main carrier signal power setting means of the present invention.

側波帯信号電力調整部140は、2分岐器102によって分岐された他方の信号を入力し、この信号をろ波して側波帯信号を抽出する帯域通過フィルタ141と、帯域通過フィルタ141によって抽出された側波帯信号を増幅する増幅器142とを備え、信号Eを信号出力部150に出力するようになっている。   The sideband signal power adjustment unit 140 receives the other signal branched by the two-branch unit 102, filters the signal, and extracts a sideband signal, and a bandpass filter 141. And an amplifier 142 that amplifies the extracted sideband signal, and outputs a signal E to the signal output unit 150.

なお、側波帯信号電力調整部140は、本発明の側波帯信号電力調整手段を構成している。また、帯域通過フィルタ141は、本発明の側波帯信号抽出手段を構成している。   The sideband signal power adjustment unit 140 constitutes a sideband signal power adjustment unit of the present invention. The band pass filter 141 constitutes the sideband signal extraction means of the present invention.

信号出力部150は、信号Dと信号Eとを乗算し、異なる2つの周波数の信号を生成するミキサ151と、ミキサ151が生成する信号のうち低い周波数の信号をろ波する低域通過フィルタ152と、低域通過フィルタ152によってろ波された信号を増幅する増幅器153とを備え、信号Dを用いて信号Eのダウンコンバージョンを行ってベースバンド周波数帯の信号Fを出力するようになっている。なお、ミキサ151に入力される信号Dの電力レベルは、増幅器132及び増幅器134によって、ミキサ151が適切に動作する電力レベルまで増幅されるようになっている。なお、ミキサ151は、本発明の周波数変換手段を構成している。   The signal output unit 150 multiplies the signal D and the signal E, generates a signal having two different frequencies, and a low-pass filter 152 that filters a low-frequency signal among the signals generated by the mixer 151. And an amplifier 153 that amplifies the signal filtered by the low-pass filter 152, downconverts the signal E using the signal D, and outputs a signal F in the baseband frequency band. . The power level of the signal D input to the mixer 151 is amplified by the amplifier 132 and the amplifier 134 to a power level at which the mixer 151 operates properly. The mixer 151 constitutes the frequency conversion means of the present invention.

次に、本実施の形態の受信装置100の動作について説明する。   Next, the operation of receiving apparatus 100 of the present embodiment will be described.

まず、受信アンテナ101によって、ミリ波帯の高周波信号が受信され、受信したミリ波受信信号Aが信号入力部110に出力される。ここで、ベースバンド周波数をfsigと表し、受信アンテナ101が受信したミリ波受信信号Aの主搬送波信号の周波数をfcarと表すと、ミリ波受信信号Aに含まれる側波帯信号の周波数はfcar+fsigと表される。 First, a high frequency signal in the millimeter wave band is received by the receiving antenna 101, and the received millimeter wave received signal A is output to the signal input unit 110. Here, when the baseband frequency is expressed as f sig and the frequency of the main carrier signal of the millimeter wave reception signal A received by the receiving antenna 101 is expressed as f car , the frequency of the sideband signal included in the millimeter wave reception signal A Is represented as f car + f sig .

次いで、信号入力部110に入力されたミリ波受信信号Aは、ミリ波増幅器111によって増幅された後、帯域通過フィルタ112によって帯域外信号が抑圧される。一方、ミリ波局部発振器113からは、発振周波数flocである無変調のミリ波正弦波信号Bが出力され、ミリ波増幅器114によって増幅される。 Next, the millimeter wave reception signal A input to the signal input unit 110 is amplified by the millimeter wave amplifier 111, and then the out-of-band signal is suppressed by the band pass filter 112. On the other hand, an unmodulated millimeter wave sine wave signal B having an oscillation frequency f loc is output from the millimeter wave local oscillator 113 and amplified by the millimeter wave amplifier 114.

さらに、ミキサ115によって、ミリ波受信信号Aとミリ波正弦波信号Bとが、それぞれの和と差の周波数の信号に変換される。そして、低域通過フィルタ116によって、低域側の信号のみがろ波され、入力電力調整部120に出力される。   Further, the millimeter wave reception signal A and the millimeter wave sine wave signal B are converted by the mixer 115 into signals of the frequency of the sum and difference. Then, only the low-frequency signal is filtered by the low-pass filter 116 and output to the input power adjusting unit 120.

引き続き、入力電力調整部120に入力された信号は、増幅器121とフィードバック制御機能を有する可変減衰器122とにより、信号電力が所定値に調整されて2分岐器102に出力される。ここで、入力電力調整部120から出力される信号を信号Cとすると、信号Cは中間周波数fcar−flocの無変調信号と、同じく中間周波数fcar+fsig−flocの側波帯信号とで構成される。 Subsequently, the signal input to the input power adjustment unit 120 is adjusted to a predetermined value by the amplifier 121 and the variable attenuator 122 having a feedback control function, and is output to the two-branch unit 102. Here, when the signal outputted from the input power adjusting unit 120 and the signal C, signal C is an intermediate frequency f car and unmodulated signal -f loc, likewise intermediate frequency f car + f sig -f loc sideband signal It consists of.

次いで、2分岐器102によって、信号Cが2つの経路に分岐され、一方は主搬送波信号電力調整部130に、他方は側波帯信号電力調整部140にそれぞれ出力される。   Next, the signal C is branched into two paths by the two-branch unit 102, and one is output to the main carrier signal power adjustment unit 130 and the other is output to the sideband signal power adjustment unit 140.

2分岐器102によって分岐された一方の信号Cは、主搬送波信号電力調整部130において以下のように処理される。   One signal C branched by the two-branch unit 102 is processed in the main carrier signal power adjustment unit 130 as follows.

まず、帯域通過フィルタ131によって、主搬送波信号である無変調正弦波信号のみが選択され、増幅器132によって増幅される。   First, only the unmodulated sine wave signal, which is the main carrier signal, is selected by the band pass filter 131 and amplified by the amplifier 132.

次いで、狭帯域通過フィルタ133によって、無変調正弦波信号に含まれる帯域外熱雑音成分がさらに抑圧された後、増幅器134によって増幅される。増幅器132及び増幅器134は、ミキサ151が適切に動作する電力レベルまで無変調正弦波信号の電力レベルを増幅し、増幅器134から信号Dが2分岐器103に出力される。   Next, the out-of-band thermal noise component included in the unmodulated sine wave signal is further suppressed by the narrow band pass filter 133 and then amplified by the amplifier 134. The amplifier 132 and the amplifier 134 amplify the power level of the unmodulated sine wave signal to a power level at which the mixer 151 operates appropriately, and the signal D is output from the amplifier 134 to the bifurcater 103.

ここで、信号Dは周波数fcar−flocの無変調正弦波信号である。この無変調正弦波信号は、後述するように信号出力部150のミキサ151において周波数変換用信号に用いるが、狭帯域通過フィルタ133を用いることにより熱雑音成分を抑圧することができるので、本実施の形態に係る受信装置100は、熱雑音成分による信号品質の低下を防止することができる。 Here, the signal D is an unmodulated sine wave signal having a frequency f car -f loc . This unmodulated sine wave signal is used as a frequency conversion signal in the mixer 151 of the signal output unit 150 as will be described later. However, since the thermal noise component can be suppressed by using the narrow band pass filter 133, the present embodiment The receiving apparatus 100 according to the embodiment can prevent signal quality from being deteriorated due to a thermal noise component.

続いて、2分岐器103によって、無変調正弦波信号を含む信号Dが2経路に分岐され、一方は制御回路104に、他方はミキサ151に出力される。   Subsequently, a signal D including an unmodulated sine wave signal is branched into two paths by the two-branch unit 103, and one is output to the control circuit 104 and the other is output to the mixer 151.

次いで、制御回路104によって、信号Dの電力レベルが監視され、信号Dの電力レベルが予め設定された範囲内に収まるよう可変減衰器122の減衰量が制御される。   Next, the control circuit 104 monitors the power level of the signal D, and controls the amount of attenuation of the variable attenuator 122 so that the power level of the signal D is within a preset range.

2分岐器102によって分岐された他方の信号Cは、側波帯信号電力調整部140において、まず、帯域通過フィルタ141によってろ波され、信号Cから側波帯信号が抽出される。この側波帯信号の周波数はfcar+fsig−flocである。 The other signal C branched by the two-branch unit 102 is first filtered by the band-pass filter 141 in the sideband signal power adjustment unit 140, and a sideband signal is extracted from the signal C. The frequency of this sideband signal is f car + f sig −f loc .

次いで、増幅器142によって、側波帯信号が増幅された後、信号Eとしてミキサ151に出力される。   Next, after the sideband signal is amplified by the amplifier 142, it is output to the mixer 151 as the signal E.

引き続き、ミキサ151によって、信号Dと信号Eとが、それぞれの和と差の周波数の信号に変換される。そして、低域通過フィルタ152によって、低域側の信号のみがろ波された後、増幅器153によって増幅され、ベースバンド周波数の信号Fが出力される。   Subsequently, the mixer 151 converts the signal D and the signal E into signals having the frequency of the sum and difference. Then, only the low-frequency side signal is filtered by the low-pass filter 152, then amplified by the amplifier 153, and the baseband frequency signal F is output.

前述の説明において、ミリ波局部発振器113は理想的な発振をし、出力されるミリ波正弦波信号Bの周波数flocは安定しているものと仮定した。しかしながら、実際の発振器には周波数変動や位相雑音成分等の影響による変動周波数Δfを含む。このとき、ミリ波局部発振器113の発振周波数はfloc+Δfとなる。本実施の形態に係る受信装置100では、ミキサ151においてfloc+Δfが原理的に相殺されるため、変動周波数Δfの影響を受けず、安定したfsigの周波数を有する信号Fを得ることができる。また、送信側において主搬送波信号の周波数fcarが変動周波数Δfを有する場合にも、前述と同様にミキサ151で相殺される。 In the above description, it is assumed that the millimeter wave local oscillator 113 oscillates ideally and the frequency f loc of the output millimeter wave sine wave signal B is stable. However, the actual oscillator comprises a fluctuation frequency Delta] f l according to influence of frequency variation and phase noise component. At this time, the oscillation frequency of the millimeter wave local oscillator 113 becomes f loc + Δf l. In receiving apparatus 100 according to the present embodiment, since f loc + Δf 1 is canceled in principle in mixer 151, signal F having a stable f sig frequency is obtained without being affected by fluctuation frequency Δf l. Can do. Further, when the frequency f car of the main carrier signal has a fluctuation frequency Delta] f c in the transmission side, it is offset by the mixer 151 in the same manner as described above.

したがって、本実施の形態に係る受信装置100は、送信装置を含めたミリ波帯の周波数の信号を生成する発振器によって発生する周波数変動や位相雑音成分等を全て相殺することができるので、周波数変動や位相雑音成分等の影響を受けず、周波数が安定した高品質の信号を得ることができる。   Therefore, receiving apparatus 100 according to the present embodiment can cancel all frequency fluctuations and phase noise components generated by an oscillator that generates a signal having a frequency in the millimeter wave band including the transmission apparatus. It is possible to obtain a high-quality signal having a stable frequency without being affected by the phase noise component or the like.

さらに、本実施の形態に係る受信装置100は、主搬送波信号電力調整部130と側波帯信号電力調整部140とが分離されており、それぞれ独立して電力を調整する構成としたので、ミリ波受信信号Aの周波数fcarである主搬送波信号が側波帯信号に対して小さい場合においても、ミキサ151で歪みを発生させることなくダウンコンバージョンを行うことができる。 Furthermore, in receiving apparatus 100 according to the present embodiment, main carrier signal power adjustment section 130 and sideband signal power adjustment section 140 are separated, and are configured to independently adjust power. Even when the main carrier signal having the frequency f car of the wave reception signal A is smaller than the sideband signal, downconversion can be performed without causing distortion in the mixer 151.

次に、側波帯信号と主搬送波信号との電力比と、狭帯域通過フィルタ133の通過帯域幅とが、搬送波対雑音電力比(Carrier to Noise ratio、以下「CNR」という。)に与える影響を示すことにより、本実施の形態に係る受信装置100における狭帯域通過フィルタ133の有効性を示す。   Next, the influence of the power ratio between the sideband signal and the main carrier signal and the passband width of the narrow band pass filter 133 on the carrier to noise ratio (hereinafter referred to as “CNR”). The effectiveness of the narrow band pass filter 133 in the receiving apparatus 100 according to the present embodiment is shown.

一般に、雑音指数Fであるデバイスに対する入力信号のCNRをCNRINとし、出力信号のCNRをCNROUTとすると、CNROUTは式(1)で表される。

Figure 2006352321
In general, when the CNR of an input signal for a device having a noise figure F i is CNR IN and the CNR of the output signal is CNR OUT , CNR OUT is expressed by Expression (1).
Figure 2006352321

ここで、kはボルツマン定数、Tは絶対温度、Bは信号帯域幅、PINは入力信号電力を示している。 Here, k is the Boltzmann constant, T is the absolute temperature, B i is the signal bandwidth, and PIN is the input signal power.

次に、狭帯域通過フィルタ133の通過帯域幅を2Bとし、信号Dの主搬送波信号の電力をP、CNRをCNR、主搬送波信号近傍の1Hzあたりの雑音電力をnとする。一方、信号Eの側波帯信号の電力をP、CNRをCNR、1Hzあたりの雑音電力をnとする。ただし、CNR及びCNRの雑音帯域幅の定義を側波帯信号帯域幅Bとする。このとき、ミキサ151で周波数変換された出力信号のCNRをCNRIFとすると、CNRIFは式(2)で表される。

Figure 2006352321
Next, the pass band width of the narrow band pass filter 133 is 2B g , the power of the main carrier signal of the signal D is P L , the CNR is CNR L , and the noise power per 1 Hz near the main carrier signal is n L. On the other hand, the power of the sideband signal of the signal E is P S , the CNR is CNR S , and the noise power per 1 Hz is n S. However, the definition of the noise bandwidth of CNR L and CNR S is the sideband signal bandwidth B 0 . At this time, if the CNR of the output signal frequency-converted by the mixer 151 is CNR IF , the CNR IF is expressed by Expression (2).
Figure 2006352321

はBに比べて小さいため、CNRIF −1は式(3)のように近似できる。

Figure 2006352321
Since B g is smaller than B 0 , CNR IF −1 can be approximated as shown in Equation (3).
Figure 2006352321

図1に示された主搬送波信号電力調整部130及び側波帯信号電力調整部140において、それぞれ、入力電力をPin,L及びPin,S、入力CNRをCNRin,L及びCNRin,S、雑音指数をF及びFとする。CNR及びCNRは、それぞれ、主搬送波信号電力調整部130及び側波帯信号電力調整部140の出力CNRであるため、式(1)を使って式(4)のように記述できる。

Figure 2006352321
In the main carrier signal power adjustment unit 130 and the sideband signal power adjustment unit 140 shown in FIG. 1, the input power is P in, L and P in, S , and the input CNR is CNR in, L and CNR in, respectively. S, the noise figure and F L and F S. Since CNR L and CNR S are output CNRs of the main carrier signal power adjustment unit 130 and the sideband signal power adjustment unit 140, respectively, they can be expressed as Equation (4) using Equation (1).
Figure 2006352321

ここで、信号Cに含まれる側波帯信号成分と主搬送波信号成分との電力比Pin,S/Pin,Lをγとすると、側波帯信号成分及び主搬送波信号成分の雑音電力は同一であるため、次式が得られる。

Figure 2006352321
Here, when the power ratios P in, S / P in, L between the sideband signal component and the main carrier signal component included in the signal C are γ, the noise power of the sideband signal component and the main carrier signal component is Since they are the same, the following equation is obtained.
Figure 2006352321

=F=Fとすると、式(6)を得る。

Figure 2006352321
When F S = F L = F, Expression (6) is obtained.
Figure 2006352321

式(6)において、入力電力が十分大きく[ ]内の第2項を無視したときに、CNRin,Lが例えば30dBである主搬送波信号を受信装置に入力した場合のγ対CNRIFの計算値を2B/Bをパラメータとして図2に示す。 In Expression (6), when the input power is sufficiently large and the second term in [] is ignored, calculation of γ vs. CNR IF when a main carrier signal having a CNR in, L of, for example, 30 dB is input to the receiving apparatus. The values are shown in FIG. 2 with 2B g / B 0 as a parameter.

図2に示すように、側波帯信号の電力が主搬送波信号の電力よりも大きな領域、つまり低減搬送波方式の場合には、狭帯域通過フィルタ133のフィルタ幅Bを狭くするほど、出力信号のCNRが改善できることがわかる。 As shown in FIG. 2, an area larger than the power of the power of the sideband signal is a main carrier signal, that is, if the reduction carrier scheme, the more narrow the filter width B g of the narrow band pass filter 133, the output signal It can be seen that the CNR of can be improved.

なお、ミリ波局部発振器113で周波数を変換するのは、受信アンテナ101が受信したミリ波受信信号Aの周波数を、ミリ波受信信号Aの周波数と信号Fのベースバンド周波数との間の周波数に下げることにより、通過帯域幅の狭い狭帯域通過フィルタ133のフィルタ製作を容易にするためである。   The frequency is converted by the millimeter wave local oscillator 113 because the frequency of the millimeter wave reception signal A received by the receiving antenna 101 is changed to a frequency between the frequency of the millimeter wave reception signal A and the baseband frequency of the signal F. This is because the narrow bandpass filter 133 having a narrow passband width can be easily manufactured by lowering the value.

以上のように、本実施の形態の受信装置100によれば、主搬送波信号電力調整部130及び側波帯信号電力調整部140は、主搬送波信号及び側波帯信号の電力をそれぞれ別個に調整することができる構成としたので、ダウンコンバージョンを行う前に、側波帯信号と主搬送波信号との電力比を十分大きくし、主搬送波信号に含まれる雑音成分を低減することができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   As described above, according to receiving apparatus 100 of the present embodiment, main carrier signal power adjustment section 130 and sideband signal power adjustment section 140 separately adjust the power of the main carrier signal and the sideband signal. Therefore, before down-conversion, the power ratio between the sideband signal and the main carrier signal can be increased sufficiently to reduce the noise component contained in the main carrier signal. Therefore, it is possible to improve the reception sensitivity by reducing the noise component generated by.

また、本実施の形態の受信装置100によれば、ミキサ151は、主搬送波信号である無変調正弦波信号を用いて側波帯信号をダウンコンバージョンする構成としたので、ダウンコンバージョンを行うための局部発振信号を生成する局部発振器が不要となり、従来のものよりも製造コストを低減することができる。   Further, according to receiving apparatus 100 of the present embodiment, mixer 151 is configured to down-convert the sideband signal using the unmodulated sine wave signal that is the main carrier signal, so that the down-conversion is performed. A local oscillator for generating a local oscillation signal is not required, and the manufacturing cost can be reduced as compared with the conventional one.

さらに、本実施の形態の受信装置100によれば、狭帯域通過フィルタ133は、主搬送波信号に含まれる雑音成分を抑圧する構成としたので、雑音成分が抑圧された主搬送波信号を用いてダウンコンバージョンを行うことができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   Furthermore, according to receiving apparatus 100 of the present embodiment, narrowband pass filter 133 is configured to suppress the noise component contained in the main carrier signal, and therefore down-converted using the main carrier signal in which the noise component is suppressed. Conversion can be performed, and noise components generated by down conversion can be reduced to improve reception sensitivity.

さらに、本実施の形態の受信装置100によれば、ミリ波局部発振器113は、無線信号の周波数とベースバンド周波数との間の周波数に無線信号の周波数を変換するための中間周波数の信号を生成する構成としたので、無線周波数帯域において雑音成分を抑圧するものよりも、狭帯域通過フィルタ133の構造を簡易化して製造コストの低減化を図ることができる。   Furthermore, according to receiving apparatus 100 of the present embodiment, millimeter wave local oscillator 113 generates an intermediate frequency signal for converting the frequency of the radio signal to a frequency between the frequency of the radio signal and the baseband frequency. Therefore, the structure of the narrow band pass filter 133 can be simplified and the manufacturing cost can be reduced as compared with the case of suppressing the noise component in the radio frequency band.

さらに、本実施の形態の受信装置100によれば、ミリ波局部発振器113は、前述の中間周波数の信号を生成する構成としたので、無線周波数帯域において雑音成分を抑圧するものよりも、狭帯域通過フィルタ133の通過帯域幅を狭めて雑音成分を高精度で抑圧することができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   Furthermore, according to the receiving apparatus 100 of the present embodiment, the millimeter wave local oscillator 113 is configured to generate the above-described intermediate frequency signal, and therefore has a narrower band than that which suppresses noise components in the radio frequency band. The noise bandwidth can be suppressed with high accuracy by narrowing the pass bandwidth of the pass filter 133, and the reception sensitivity can be improved by reducing the noise component generated by the down conversion.

さらに、本実施の形態の受信装置100によれば、主搬送波信号及び側波帯信号の電力をそれぞれ別個に調整できる構成としたので、受信信号のダイナミックレンジの拡大化を図ることができる。   Furthermore, according to receiving apparatus 100 of the present embodiment, the power of the main carrier signal and the sideband signal can be adjusted separately, so that the dynamic range of the received signal can be expanded.

さらに、本実施の形態の受信装置100によれば、制御回路104及び可変減衰器122は、主搬送波信号電力調整部130から出力される信号Dの電力をフィードバック制御により所定の範囲内に設定する構成としたので、電力の安定化が図り難いミリ波等の高周波信号を受信する場合でも、主搬送波信号電力調整部130から出力される信号Dの電力を安定化させることができ、電力が安定化された主搬送波信号を用いて側波帯信号のダウンコンバージョンを行うことができる。   Furthermore, according to receiving apparatus 100 of the present embodiment, control circuit 104 and variable attenuator 122 set the power of signal D output from main carrier signal power adjustment section 130 within a predetermined range by feedback control. Since it is configured, even when receiving a high-frequency signal such as a millimeter wave whose power is difficult to stabilize, the power of the signal D output from the main carrier signal power adjustment unit 130 can be stabilized, and the power is stable. The sideband signal can be down-converted using the converted main carrier signal.

なお、前述の実施の形態において、ミリ波帯の高周波信号を受信する構成を例に挙げて説明したが、本発明はこれに限定されるものではなく、周波数が変動しやすい高周波信号を受信するものであれば同様の効果が得られる。   In the above-described embodiment, the configuration for receiving a millimeter-wave band high-frequency signal has been described as an example. However, the present invention is not limited to this, and a high-frequency signal whose frequency is likely to fluctuate is received. If it is a thing, the same effect is acquired.

また、前述の実施の形態において、主搬送波信号電力調整部130が、帯域通過フィルタ131及び狭帯域通過フィルタ133の2つのフィルタを有する構成を例に挙げて説明したが、本発明はこれに限定されるものではなく、所望の雑音レベルが得られるものであれば1つのフィルタで構成しても同様の効果が得られる。   In the above-described embodiment, the main carrier signal power adjustment unit 130 has been described by taking as an example a configuration having two filters, the band pass filter 131 and the narrow band pass filter 133, but the present invention is not limited thereto. If the desired noise level can be obtained, the same effect can be obtained even if it is composed of one filter.

(第2の実施の形態)
まず、本発明の第2の実施の形態の受信装置の構成について説明する。
(Second Embodiment)
First, the configuration of the receiving apparatus according to the second embodiment of the present invention will be described.

図3に示すように、本実施の形態の受信装置200は、主搬送波信号成分及び側波帯信号成分を含むミリ波帯の高周波信号を受信する受信アンテナ201と、受信アンテナ201が受信したミリ波受信信号Aを入力する信号入力部210と、入力信号の電力を調整する入力電力調整部220と、入力電力調整部220から出力される信号Cを2つの経路に分岐する2分岐器202と、主搬送波信号の電力を調整する主搬送波信号電力調整部230と、側波帯信号の電力を調整する側波帯信号電力調整部240とを備えている。なお、受信アンテナ201は、本発明の無線信号受信手段を構成している。   As shown in FIG. 3, the receiving apparatus 200 of the present embodiment includes a receiving antenna 201 that receives a millimeter-wave band high-frequency signal including a main carrier signal component and a sideband signal component, and a millimeter that is received by the receiving antenna 201. A signal input unit 210 that receives the received wave signal A, an input power adjustment unit 220 that adjusts the power of the input signal, and a two-branch unit 202 that branches the signal C output from the input power adjustment unit 220 into two paths. A main carrier signal power adjusting unit 230 that adjusts the power of the main carrier signal, and a sideband signal power adjusting unit 240 that adjusts the power of the sideband signal. The receiving antenna 201 constitutes a radio signal receiving means of the present invention.

また、本実施の形態の受信装置200は、主搬送波信号電力調整部230から出力される信号Dを制御回路204と信号出力部250との2つに分岐する2分岐器203と、信号Cの電力を調整するための制御信号を入力電力調整部220に出力する制御回路204と、主搬送波信号電力調整部230及び側波帯信号電力調整部240からそれぞれ出力される信号D及びEを入力してベースバンド周波数の信号Fを出力する信号出力部250と、信号Fの電力を監視して信号Eの電力レベルを調整するための制御信号を入力電力調整部240に出力する制御回路206とを備えている。   The receiving apparatus 200 according to the present embodiment also includes a two-branch unit 203 that branches the signal D output from the main carrier signal power adjustment unit 230 into a control circuit 204 and a signal output unit 250, and a signal C A control circuit 204 that outputs a control signal for adjusting power to the input power adjustment unit 220, and signals D and E output from the main carrier signal power adjustment unit 230 and the sideband signal power adjustment unit 240, respectively, are input. A signal output unit 250 that outputs a signal F of a baseband frequency, and a control circuit 206 that outputs a control signal for monitoring the power of the signal F and adjusting the power level of the signal E to the input power adjustment unit 240. I have.

なお、本実施の形態の受信装置200の構成は、本発明の第1の実施の形態に係る受信装置100の構成の一部を変更したものであるので、受信装置100の構成と異なる構成についてのみ説明し、受信装置100の構成と同様な構成の説明は省略する。   Note that the configuration of receiving apparatus 200 according to the present embodiment is obtained by changing a part of the configuration of receiving apparatus 100 according to the first embodiment of the present invention. Only the description of the configuration similar to that of the receiving apparatus 100 will be omitted.

側波帯信号電力調整部240は、2分岐器202によって分岐された信号を入力し、この信号をろ波して側波帯信号を抽出する帯域通過フィルタ241と、帯域通過フィルタ241によってろ波された側波帯信号を増幅する増幅器242と、フィードバック制御機能を有する可変減衰器243と、可変減衰器243によって減衰された信号を増幅する増幅器244とを備え、信号Eを信号出力部250に出力するようになっている。   The sideband signal power adjustment unit 240 receives the signal branched by the bifurcater 202, filters the signal to extract a sideband signal, and filters the bandpass filter 241. And a variable attenuator 243 having a feedback control function, and an amplifier 244 that amplifies the signal attenuated by the variable attenuator 243, and the signal E is sent to the signal output unit 250. It is designed to output.

なお、側波帯信号電力調整部240は、本発明の側波帯信号電力調整手段を構成している。また、帯域通過フィルタ241は、本発明の側波帯信号抽出手段を構成している。   The sideband signal power adjustment unit 240 constitutes sideband signal power adjustment means of the present invention. Further, the band pass filter 241 constitutes a sideband signal extracting means of the present invention.

制御回路206は、2分岐器205を介し、信号出力部250から出力される信号Fの電力レベルを監視し、信号Fの電力レベルが予め設定された範囲内に収まるよう可変減衰器243の減衰量を制御するための制御信号を可変減衰器243に出力するようになっている。換言すれば、制御回路206は、信号Fの電力レベルに基づいて、信号Eの電力レベルが予め設定された範囲内に収まるよう可変減衰器243の減衰量を制御するようになっている。なお、制御回路206及び可変減衰器243は、本発明の側波帯信号電力設定手段を構成している。   The control circuit 206 monitors the power level of the signal F output from the signal output unit 250 via the two-branch unit 205, and attenuates the variable attenuator 243 so that the power level of the signal F is within a preset range. A control signal for controlling the amount is output to the variable attenuator 243. In other words, the control circuit 206 controls the amount of attenuation of the variable attenuator 243 based on the power level of the signal F so that the power level of the signal E is within a preset range. The control circuit 206 and the variable attenuator 243 constitute sideband signal power setting means of the present invention.

したがって、何らかの原因により、例えば信号Fに含まれる側波帯信号成分と主搬送波信号成分との電力比γが増えた場合でも、制御回路206及び可変減衰器243によって、信号Fの増加分が可変減衰器243に負帰還されてミキサ251での歪み発生を抑えるように動作するようになっている。なお、制御回路206及び可変減衰器243は、本発明の側波帯信号電力設定手段を構成している。   Therefore, even if the power ratio γ between the sideband signal component and the main carrier signal component included in the signal F increases for some reason, for example, the increase amount of the signal F is variable by the control circuit 206 and the variable attenuator 243. The attenuator 243 is negatively fed back and operates so as to suppress the occurrence of distortion in the mixer 251. The control circuit 206 and the variable attenuator 243 constitute sideband signal power setting means of the present invention.

次に、本実施の形態の受信装置200の動作について説明する。なお、本発明の第1の実施の形態に係る受信装置100の動作と異なる動作についてのみ以下説明する。   Next, the operation of receiving apparatus 200 according to the present embodiment will be described. Only operations different from those of the receiving apparatus 100 according to the first embodiment of the present invention will be described below.

信号出力部250によって出力された信号Fは、2分岐器205によって2つの経路に分岐され、一方は制御回路206に、他方は受信装置200の出力信号としてそれぞれ出力される。   The signal F output by the signal output unit 250 is branched into two paths by the two-branch unit 205, one being output to the control circuit 206 and the other being output as the output signal of the receiving device 200.

次いで、制御回路206によって、信号Fの電力レベルが監視され、信号Fの電力レベルが予め設定された範囲内に収まるよう可変減衰器243の減衰量が制御される。   Next, the control circuit 206 monitors the power level of the signal F, and controls the amount of attenuation of the variable attenuator 243 so that the power level of the signal F falls within a preset range.

そして、増幅器244によって、側波帯信号が増幅された後、信号Eとしてミキサ251に出力される。   Then, after the sideband signal is amplified by the amplifier 244, the signal E is output to the mixer 251.

なお、本発明の第1の実施の形態に係る受信装置100(図1参照)においては、ミリ波受信信号Aにおける側波帯信号成分と主搬送波信号成分との電力比γが常に一定であることを前提としているが、本実施の形態に係る受信装置200においては、前述のように、制御回路206が可変減衰器243の減衰量を制御する構成としたので、側波帯信号成分と主搬送波信号成分との電力比γが例えば増大した場合でも、信号Fの増加分が可変減衰器243に負帰還されてミキサ251での歪み発生を抑えることができる。   In the receiving apparatus 100 (see FIG. 1) according to the first embodiment of the present invention, the power ratio γ between the sideband signal component and the main carrier signal component in the millimeter wave received signal A is always constant. However, in the receiving apparatus 200 according to the present embodiment, the control circuit 206 is configured to control the attenuation amount of the variable attenuator 243 as described above. Even when the power ratio γ with the carrier signal component increases, for example, the increase in the signal F is negatively fed back to the variable attenuator 243, so that the occurrence of distortion in the mixer 251 can be suppressed.

以上のように、本実施の形態の受信装置200によれば、制御回路206は、信号Fの電力レベルを監視し、信号Fの電力レベルが予め設定された範囲内に収まるよう可変減衰器243の減衰量を制御するための制御信号を可変減衰器243に出力し、可変減衰器243は、制御信号に応じて側波帯信号電力調整部240から出力される信号Eの電力をフィードバック制御により所定の範囲内に設定する構成としたので、電力の安定化が図り難いミリ波等の高周波信号を受信する場合でも、側波帯信号成分と主搬送波信号成分との電力比γの変動を所定範囲内に収めることができ、ダウンコンバージョンにより発生する雑音成分を低減して受信感度の向上を図ることができる。   As described above, according to the receiving apparatus 200 of the present embodiment, the control circuit 206 monitors the power level of the signal F, and the variable attenuator 243 so that the power level of the signal F falls within a preset range. A control signal for controlling the amount of attenuation is output to the variable attenuator 243, and the variable attenuator 243 performs feedback control on the power of the signal E output from the sideband signal power adjustment unit 240 in accordance with the control signal. Because the configuration is set within a predetermined range, even when receiving high-frequency signals such as millimeter waves where it is difficult to stabilize power, fluctuations in the power ratio γ between the sideband signal component and the main carrier signal component are predetermined. It is possible to reduce the noise component generated by down-conversion and improve the reception sensitivity.

本発明の第1の実施の形態に係る受信装置のブロック図The block diagram of the receiver which concerns on the 1st Embodiment of this invention 本発明の第1の実施の形態に係る受信装置において、狭帯域通過フィルタの通過帯域幅を変化させた場合のγ対CNRIFの特性を示す図The figure which shows the characteristic of (gamma) versus CNR IF at the time of changing the pass-band width of a narrow-band pass filter in the receiver which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る受信装置のブロック図The block diagram of the receiver which concerns on the 2nd Embodiment of this invention

符号の説明Explanation of symbols

100、200 受信装置
101、201 受信アンテナ(無線信号受信手段)
102、103、202、203、205 2分岐器
104、204 制御回路(主搬送波信号電力設定手段)
206 制御回路(側波帯信号電力設定手段)
110、210 信号入力部
111、114 ミリ波増幅器
112 帯域通過フィルタ
131 帯域通過フィルタ(主搬送波信号抽出手段)
141、241 帯域通過フィルタ(側波帯信号抽出手段)
113 ミリ波局部発振器(中間周波数変換手段)
115 ミキサ
116、152 低域通過フィルタ
120、220 入力電力調整部
121、132、134、142、153、242、244 増幅器
122 可変減衰器(主搬送波信号電力設定手段)
243 可変減衰器(側波帯信号電力設定手段)
130、230 主搬送波信号電力調整部(主搬送波信号電力調整手段)
133 狭帯域通過フィルタ(雑音成分抑圧手段)
140、240 側波帯信号電力調整部(側波帯信号電力調整手段)
150、250 信号出力部
151、251 ミキサ(周波数変換手段)
100, 200 Receiving device 101, 201 Receiving antenna (radio signal receiving means)
102, 103, 202, 203, 205 Two-branch unit 104, 204 Control circuit (main carrier signal power setting means)
206 Control circuit (sideband signal power setting means)
110, 210 Signal input unit 111, 114 Millimeter wave amplifier 112 Band pass filter 131 Band pass filter (main carrier signal extraction means)
141, 241 Band-pass filter (sideband signal extraction means)
113 millimeter wave local oscillator (intermediate frequency conversion means)
115 Mixer 116, 152 Low-pass filter 120, 220 Input power adjustment unit 121, 132, 134, 142, 153, 242, 244 Amplifier 122 Variable attenuator (main carrier signal power setting means)
243 Variable attenuator (sideband signal power setting means)
130, 230 Main carrier signal power adjustment unit (main carrier signal power adjustment means)
133 Narrow band pass filter (noise component suppression means)
140, 240 Sideband signal power adjustment section (sideband signal power adjustment means)
150, 250 Signal output unit 151, 251 Mixer (frequency conversion means)

Claims (7)

主搬送波信号成分及び側波帯信号成分を含む無線信号を受信する無線信号受信手段と、前記無線信号から前記主搬送波信号成分を抽出する主搬送波信号抽出手段と、前記無線信号から前記側波帯信号成分を抽出する側波帯信号抽出手段とを備えたことを特徴とする受信装置。 Radio signal receiving means for receiving a radio signal including a main carrier signal component and a sideband signal component, main carrier signal extraction means for extracting the main carrier signal component from the radio signal, and the sideband from the radio signal A receiving apparatus comprising a sideband signal extracting means for extracting a signal component. 前記主搬送波信号抽出手段によって抽出された前記主搬送波信号成分に基づいて前記側波帯信号抽出手段によって抽出された前記側波帯信号成分の周波数をベースバンド周波数に変換する周波数変換手段を備えたことを特徴とする請求項1に記載の受信装置。 Frequency conversion means for converting the frequency of the sideband signal component extracted by the sideband signal extraction means to a baseband frequency based on the main carrier signal component extracted by the main carrier signal extraction means The receiving apparatus according to claim 1. 前記主搬送波信号抽出手段によって抽出された前記主搬送波信号成分は、雑音成分を含み、前記雑音成分を抑圧する雑音成分抑圧手段を備えたことを特徴とする請求項1又は請求項2に記載の受信装置。 3. The main carrier signal component extracted by the main carrier signal extraction unit includes a noise component, and noise component suppression unit that suppresses the noise component is provided. Receiver device. 前記無線信号の周波数と前記ベースバンド周波数との間の周波数に前記無線信号の周波数を変換する中間周波数変換手段を備えたことを特徴とする請求項2又は請求項3に記載の受信装置。 4. The receiving apparatus according to claim 2, further comprising intermediate frequency conversion means for converting the frequency of the radio signal to a frequency between the frequency of the radio signal and the baseband frequency. 前記主搬送波信号抽出手段によって抽出された前記主搬送波信号成分の電力を調整する主搬送波信号電力調整手段と、前記側波帯信号抽出手段によって抽出された前記側波帯信号成分の電力を調整する側波帯信号電力調整手段とを備えたことを特徴とする請求項1から請求項4までのいずれか1項に記載の受信装置。 A main carrier signal power adjusting unit for adjusting the power of the main carrier signal component extracted by the main carrier signal extracting unit, and a power of the sideband signal component extracted by the sideband signal extracting unit. 5. The receiving apparatus according to claim 1, further comprising a sideband signal power adjusting unit. 前記主搬送波信号電力調整手段から出力される信号の電力を所定の範囲内に設定する主搬送波信号電力設定手段を備えたことを特徴とする請求項5に記載の受信装置。 6. The receiving apparatus according to claim 5, further comprising main carrier signal power setting means for setting the power of the signal output from the main carrier signal power adjusting means within a predetermined range. 前記側波帯信号電力調整手段から出力される信号の電力を所定の範囲内に設定する側波帯信号電力設定手段を備えたことを特徴とする請求項5又は請求項6に記載の受信装置。 The receiving apparatus according to claim 5 or 6, further comprising sideband signal power setting means for setting the power of the signal output from the sideband signal power adjustment means within a predetermined range. .
JP2005173632A 2005-06-14 2005-06-14 Receiver Expired - Fee Related JP4551281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173632A JP4551281B2 (en) 2005-06-14 2005-06-14 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173632A JP4551281B2 (en) 2005-06-14 2005-06-14 Receiver

Publications (2)

Publication Number Publication Date
JP2006352321A true JP2006352321A (en) 2006-12-28
JP4551281B2 JP4551281B2 (en) 2010-09-22

Family

ID=37647714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173632A Expired - Fee Related JP4551281B2 (en) 2005-06-14 2005-06-14 Receiver

Country Status (1)

Country Link
JP (1) JP4551281B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073628A1 (en) * 2002-02-28 2003-09-04 Sharp Kabushiki Kaisha Microwave band radio transmission device, microwave band radio reception device, and microwave band radio communication system
JP2003258655A (en) * 2002-02-27 2003-09-12 Communication Research Laboratory Transmitter and transmission method, receiver and reception method, and radio communication apparatus and radio communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258655A (en) * 2002-02-27 2003-09-12 Communication Research Laboratory Transmitter and transmission method, receiver and reception method, and radio communication apparatus and radio communication method
WO2003073628A1 (en) * 2002-02-28 2003-09-04 Sharp Kabushiki Kaisha Microwave band radio transmission device, microwave band radio reception device, and microwave band radio communication system

Also Published As

Publication number Publication date
JP4551281B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US5457811A (en) System for controlling signal level at both ends of a transmission sink based on a detected value
US6868254B2 (en) Repeater with diversity transmission
US6032031A (en) Receiver for suppressing intermodulation
EP2961082B1 (en) Relay control station, repeat er, and method for repressing interference
JPWO2006009197A1 (en) Apparatus, system and method for optical signal transmission
KR100890634B1 (en) Rf repeater of time division duplexing and method thereof
JPH04372234A (en) Transmission power control system
KR100896172B1 (en) Method and apparatus for transforming and relaying radio frequency
JP4568287B2 (en) Optical transmission apparatus, optical transmission system, optical transmission method, and optical transmission method
KR101691420B1 (en) Apparatus for trnasmitting/receiving in wireless communication system
JP4551281B2 (en) Receiver
US11705960B2 (en) Millimeter-wave repeater for intermediate frequency band transmission
EP1605613A1 (en) Optical signal transmission system and signal transmission method
JP4695955B2 (en) Transmission / reception system and reception apparatus
JP2009296025A (en) Relay device
JP5026350B2 (en) Optical transmission joint reception system
US11916656B2 (en) Wireless communication system
JP4250125B2 (en) Wireless transmission device
JPH05268117A (en) Transmission power control system
JPH0818616A (en) Multifrequency signal reception circuit
JP2803436B2 (en) Radio base station device for mobile communication system
JP5215082B2 (en) Millimeter wave transmitter and millimeter wave transceiver system
JP2006020203A (en) Transmitter, receiver, and device and method for signal transmission
JP2006339983A (en) Device and method for controlling transmission power
JP3913509B2 (en) Satellite-mounted repeater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Ref document number: 4551281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees