JP2006351456A - Temperature control device - Google Patents

Temperature control device Download PDF

Info

Publication number
JP2006351456A
JP2006351456A JP2005178777A JP2005178777A JP2006351456A JP 2006351456 A JP2006351456 A JP 2006351456A JP 2005178777 A JP2005178777 A JP 2005178777A JP 2005178777 A JP2005178777 A JP 2005178777A JP 2006351456 A JP2006351456 A JP 2006351456A
Authority
JP
Japan
Prior art keywords
temperature
heating element
energization
sensitive layer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005178777A
Other languages
Japanese (ja)
Other versions
JP4631556B2 (en
Inventor
Masayuki Nanba
政之 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005178777A priority Critical patent/JP4631556B2/en
Publication of JP2006351456A publication Critical patent/JP2006351456A/en
Application granted granted Critical
Publication of JP4631556B2 publication Critical patent/JP4631556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Central Heating Systems (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature control device safely controlling a heating element from high temperature to low temperature with good accuracy even if a heat sensing layer absorbs moisture. <P>SOLUTION: The temperature control device has a first temperature detection part 9a detecting temperature from a temperature sensing layer signal and a second temperature detection part 9b detecting temperature from a heat generating resistant wire signal of the heating element 6. The temperature of the first temperature detection means 9a and the second temperature detection means 9b is compared, and when it is judged so that the temperature of the first temperature detection means 9a is higher than that of the second temperature detection means 9b, it is corrected so as to lower the temperature of the first temperature detection member 9a. As a result, it is eliminated to control the heating element 6 by a bit lower temperature even if a temperature a bit higher than normal temperature is detected by moisture absorption of the temperature sensing layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、電気採暖器具に用いる可撓性線状発熱体の温度制御装置に関するものである。   The present invention relates to a temperature control device for a flexible linear heating element used in, for example, an electric warming instrument.

従来、電気採暖器具などに用いられる発熱手段としては、一般的に可撓性線状発熱体が採用されている。   Conventionally, a flexible linear heating element is generally employed as a heating means used for an electric warming instrument or the like.

その可撓性線状発熱体の構成は、芯糸に第一の導体線をスパイラル状に巻き、その上に感温層を設け、さらにその上から第二の導体線を第一の導体線の逆にスパイラルに巻き、外被絶縁層で被覆したものであった(例えば、特許文献1参照)。   The flexible linear heating element has a configuration in which a core conductor is wound with a first conductor wire in a spiral shape, a temperature-sensitive layer is provided thereon, and a second conductor wire is formed thereon from the first conductor wire. On the contrary, it was wound in a spiral and covered with a jacket insulating layer (for example, see Patent Document 1).

この可撓性線状発熱体の温度信号は、感温層の感温特性に主体的に依存するが、この感温層と第一の導体線、および第二の導体線との接触状態にも大きく関係する。特に、第二の導体線を発熱体の発熱抵抗線として使用する構成では、この第二の導体線は低い抵抗値を得るために太くする必要がある。   The temperature signal of the flexible linear heating element mainly depends on the temperature-sensitive characteristics of the temperature-sensitive layer, but the contact state between the temperature-sensitive layer, the first conductor wire, and the second conductor wire. Is also greatly related. In particular, in the configuration in which the second conductor wire is used as the heating resistance wire of the heating element, the second conductor wire needs to be thickened to obtain a low resistance value.

したがって、感温層にスパイラル状に巻いた後に、スプリングバック現象でこの第二の導体線と感温層との密着性が悪くなる現象を生起していた。この密着性の悪化は、発熱体が低温域では感温層インピーダンスの温度依存性(以降B定数と言う)が小さいため、低温域での制御温度バラツキが大きくなってしまうという課題があった。   Therefore, after the temperature-sensitive layer is spirally wound, a phenomenon occurs in which the adhesion between the second conductor wire and the temperature-sensitive layer deteriorates due to a springback phenomenon. This deterioration in adhesion has a problem in that the temperature dependency of the temperature-sensitive layer impedance (hereinafter referred to as B constant) is small when the heating element is in a low temperature range, so that the control temperature variation in the low temperature range becomes large.

かかる課題に対して、バラツキの影響が少ない高温度域では感温層信号により発熱体への通電制御を行い、逆に、バラツキの影響が大きくなる低温度域では感温層信号とは関係のないタイマ制御を行うようにしていた(例えば、特許文献2参照)。
特開平2−54885号公報 特開平6−13159号公報
In response to this problem, the heating element is controlled by the temperature-sensitive layer signal in the high-temperature range where the variation is less affected, and conversely, it is not related to the temperature-sensitive layer signal in the low-temperature range where the variation is significant. No timer control was performed (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 2-54885 JP-A-6-13159

しかしながら、前記従来の構成では、発熱体への通電が長期間なかった場合、感温層に用いられる材料(特にナイロン樹脂)が吸湿して、感温特性が温度を高く検出する側(感温層インピーダンスが低くなる側)にずれてしまう。この現象は数日間使用している間に感温層の湿気がなくなった時点で正常なインピーダンス−温度特性になるが、暖房シーズンなどの使い始めは発熱体が吸湿している場合があり、電気カーペットのような暖房機器がまだ暖まっていないにもかかわらず発熱体をオフさせてしまうという課題があった。   However, in the conventional configuration, when the heating element is not energized for a long period of time, the material used for the temperature sensitive layer (especially nylon resin) absorbs moisture, and the temperature sensing characteristic detects the temperature higher (temperature sensing). It shifts to the side where the layer impedance becomes lower. This phenomenon becomes normal impedance-temperature characteristics when the moisture in the temperature sensitive layer disappears during use for several days, but the heating element may absorb moisture at the beginning of use in the heating season, etc. There is a problem that the heating element is turned off even though the heating device such as the carpet is not yet heated.

また、低温域では単なるタイマー制御なので、設定に対してカーペット表面温度が何度になるのかわからないという課題も有していた。   In addition, since the timer control is simple in the low temperature range, there is a problem that it is not known how many times the carpet surface temperature becomes with respect to the setting.

本発明は、前記従来の課題を解決するもので、高温から低温まで精度よく安全に発熱体の制御が可能な温度制御装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a temperature control device capable of controlling a heating element accurately and safely from a high temperature to a low temperature.

本発明は前記従来の課題を解決するために、感温層信号より算出された発熱体の温度と、抵抗線信号より算出された発熱体の温度とを比較し、感温層信号より算出された発熱体の温度が抵抗線信号より算出された発熱体の温度より高いと判断した場合、感温層信号よ
り算出された発熱体の温度検出が低くなる側に補正を掛けるので、感温層が吸湿などによって、高く温度検知をすることがあっても発熱体の温度を低めに制御することをなくすことができる。
In order to solve the above-described conventional problems, the present invention compares the temperature of the heating element calculated from the temperature-sensitive layer signal with the temperature of the heating element calculated from the resistance wire signal, and is calculated from the temperature-sensitive layer signal. If the temperature of the heating element is determined to be higher than the temperature of the heating element calculated from the resistance wire signal, a correction is applied to the side where the temperature detection of the heating element calculated from the temperature sensing layer signal is low. However, even if the temperature is detected high due to moisture absorption or the like, the temperature of the heating element can be prevented from being controlled to be low.

また、感熱層のB定数が大きく温度変化信号が大きい領域では少なくとも感温層信号より算出された発熱体の温度に基づいて発熱体への通電を停止するとともに、感温層のB定数が小さく温度変化信号が小さい領域では発熱抵抗線の信号より算出された温度に基づいて発熱体をオンするようになり、低温側についても制御目標温度の設定が可能となる。   Further, in the region where the B constant of the heat sensitive layer is large and the temperature change signal is large, energization to the heat generating element is stopped based on at least the temperature of the heat generating element calculated from the temperature sensitive layer signal, and the B constant of the temperature sensitive layer is small. In the region where the temperature change signal is small, the heating element is turned on based on the temperature calculated from the signal of the heating resistance line, and the control target temperature can be set also on the low temperature side.

本発明の温度制御装置は、感温層の内部、外部からの特性バラツキ要因があっても高温から低温まで安全かつ効率的で、精度の良い温度制御をすることができる。   The temperature control device of the present invention can perform safe and efficient temperature control from high temperature to low temperature with high accuracy even if there is a characteristic variation factor from inside and outside the temperature sensitive layer.

第1の発明は、芯糸の外周に温度信号線をスパイラル状に巻き、その外周を感温層で被覆し、前記感温層の外周に、発熱抵抗線をスパイラル状に巻き、その外周に外被絶縁層を形成してなる発熱体と、前記感温層信号から温度を検出する第一温度検出手段と、前記発熱抵抗線の抵抗線信号から温度を検出する第二温度検出手段と、前記第一温度検出手段及び第二温度検出手段の温度に応じて前記発熱体への通電を制御する通電制御部とを備え、前記通電制御部は、前記第一温度検出手段の温度と、前記第二温度検出手段の温度とを比較し、前期第一温度検出手段の温度が前記第二温度検出手段の温度より高いと判断した場合、前記第一温度検出手段の温度が低くなる側に補正を掛ける補正手段を有する構成とすることにより、感温層が吸湿などによって、発熱体の温度を高く温度検知することがあっても発熱体の温度を低めに制御することがなくなる。   In the first invention, a temperature signal line is spirally wound around the outer periphery of the core yarn, the outer periphery thereof is covered with a temperature-sensitive layer, and a heating resistance wire is spirally wound around the outer periphery of the temperature-sensitive layer. A heating element formed with an outer insulating layer; first temperature detecting means for detecting temperature from the temperature sensitive layer signal; and second temperature detecting means for detecting temperature from a resistance line signal of the heating resistance line; An energization control unit that controls energization to the heating element according to the temperatures of the first temperature detection unit and the second temperature detection unit, and the energization control unit includes the temperature of the first temperature detection unit, When the temperature of the first temperature detection means is compared with the temperature of the second temperature detection means and it is determined that the temperature of the first temperature detection means is higher than the temperature of the second temperature detection means, the temperature of the first temperature detection means is corrected. The temperature sensitive layer is hygroscopic by having a correction means for applying Accordingly, even if the high temperature detection temperature of the heating element no longer possible to control the temperature of the heating element low.

第2の発明は、特に、第1の発明の第一温度検出手段の温度に上限温度を設定し、前記第一温度検出手段の温度が上限温度を超えた場合は発熱体への通電を強制的に停止するので、発熱体が部分的に加熱されたり、保温されたりしても異常温度になるのを防ぐことができる。   In the second invention, in particular, an upper limit temperature is set for the temperature of the first temperature detecting means of the first invention, and when the temperature of the first temperature detecting means exceeds the upper limit temperature, energization to the heating element is forced. Therefore, even if the heating element is partially heated or kept warm, it can be prevented from becoming an abnormal temperature.

第3の発明は、特に、第1または第2の発明の発熱体への通電をオフする場合は、少なくとも第一温度検出手段の温度を用いるとともに、発熱体をオンさせる場合は第二温度検出手段の温度を用いるようにしている。これにより、温度が比的高い側の発熱体をオフする側と、温度が比較的低い側の発熱体をオンさせる側とで温度検出手段を切り替えるので、高温から低温までバラツキの少ない温度制御が可能となるとともに、低温側についても制御目標温度の設定が可能となる。   The third invention uses at least the temperature of the first temperature detecting means when turning off the power to the heating element of the first or second invention, and detects the second temperature when turning on the heating element. The temperature of the means is used. As a result, the temperature detection means is switched between the side where the relatively high temperature heating element is turned off and the side where the relatively low temperature heating element is turned on, so temperature control with little variation from high temperature to low temperature is possible. In addition to this, the control target temperature can also be set for the low temperature side.

第4の発明は、特に、第1または第3の発明の発熱体への通電がオフする場合は少なくとも第一温度検出手段の温度を用いるとともに、発熱体をオンさせる場合は、発熱対がオフすると同時に起動されたタイマー手段がタイムアップした時点で第二温度検出手段の温度が発熱体をオンさせる温度より低い場合にのみ発熱体をオンするようにしたものである。これにより、発熱体への通電をオフする期間を一定時間以上に設定することができるともに、不必要に発熱体への通電をすることがなくなる。   The fourth invention uses at least the temperature of the first temperature detecting means when the energization to the heating element of the first or third invention is turned off, and when the heating element is turned on, the heat generating pair is turned off. At the same time, the heating element is turned on only when the temperature of the second temperature detection means is lower than the temperature at which the heating element is turned on when the timer means activated at the same time expires. As a result, it is possible to set a period for turning off the energization of the heating element to a certain time or longer, and it is possible to prevent the energization of the heating element unnecessarily.

第5の発明は、特に、第1〜4の温度制御装置を電気採暖器具に搭載したもので、的確な採暖を可能としたものである。   In the fifth aspect of the invention, in particular, the first to fourth temperature control devices are mounted on an electric warming instrument, and accurate warming is possible.

以下に本発明の実施の形態を図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1において、芯糸1に温度信号線2をスパイラル状に巻装し、その上に感温層3を被覆し、また、この感温層3には発熱抵抗線4をスパイラル状に巻装して、さらに外被絶縁層5を被せて可撓性線状発熱体6が構成してある。
(Embodiment 1)
In FIG. 1, a temperature signal line 2 is wound spirally around a core yarn 1 and a temperature sensitive layer 3 is coated thereon, and a heating resistance wire 4 is wound spirally around the temperature sensitive layer 3. Further, the flexible linear heating element 6 is configured by covering the outer insulating layer 5.

上記芯糸1はポリエステル系や、ポリアミド系の繊維からなり、温度信号線2は銅または銅合金線で、感温層3はナイロンで、発熱抵抗線4は銅または銅合金線で、さらに外被絶縁層5は塩化ビニール樹脂(PVC)でそれぞれ形成してある。   The core yarn 1 is made of polyester or polyamide fiber, the temperature signal wire 2 is copper or copper alloy wire, the temperature sensitive layer 3 is nylon, the heating resistance wire 4 is copper or copper alloy wire, The insulating layers 5 are each formed of vinyl chloride resin (PVC).

そして、芯糸1のスパイラル方向と、発熱抵抗線4のスパイラル方向とは逆の関係に設定してある。   The spiral direction of the core yarn 1 and the spiral direction of the heating resistance wire 4 are set to be opposite to each other.

ここで、温度信号線2は、感温層3のインピーダンス変化から温度信号を導出するための導線で、比較的細い線材が用いられ、発熱抵抗線4は発熱体として機能するため比較的太い線材が用いられる。また、感温層3はナイロン系の樹脂材料に添加材を加えたもので、図2に示すインピーダンス−温度特性を有するものである。なお、図2は対数目盛で表している。   Here, the temperature signal line 2 is a conducting wire for deriving a temperature signal from the impedance change of the temperature sensitive layer 3, and a relatively thin wire is used, and the heating resistance wire 4 functions as a heating element, so that it is a relatively thick wire. Is used. The temperature sensitive layer 3 is obtained by adding an additive to a nylon-based resin material and has impedance-temperature characteristics shown in FIG. Note that FIG. 2 shows a logarithmic scale.

図2で明らかなように80℃以下の温度域でのB定数は比較的小さいのに比べ、80℃以上の温度域でのB定数は大きい値を示している。これは、感温層3の材料がナイロンをベースとしているため低温度域では静電容量の温度変化特性が主として現れるのに対し、高温度域では抵抗成分の温度変化特性が強く現れるためである。   As apparent from FIG. 2, the B constant in the temperature range of 80 ° C. or lower is relatively small, whereas the B constant in the temperature range of 80 ° C. or higher shows a large value. This is because the temperature change characteristic of the capacitance mainly appears in the low temperature range because the material of the temperature sensitive layer 3 is based on nylon, whereas the temperature change characteristic of the resistance component appears strongly in the high temperature range. .

さらに、図3に発熱抵抗線4の抵抗温度特性を示す。発熱抵抗線4は温度に対して比例して抵抗値が大きくなり、この抵抗値の値を検出することで、発熱抵抗線4の温度を検出することができる。   Further, FIG. 3 shows a resistance temperature characteristic of the heating resistance wire 4. The resistance value of the heating resistance wire 4 increases in proportion to the temperature, and the temperature of the heating resistance wire 4 can be detected by detecting the value of this resistance value.

次に、温度制御装置に用いる制御回路を図4に示す。発熱抵抗線4はリレー7の接点7aを介して電源に直列接続されている。また、感温層3の温度信号線2は半導体素子8を介して通電制御部9内に設けられた第一温度検出手段9aに接続され、その信号が温度に変換されるようにしてある。   Next, a control circuit used in the temperature control device is shown in FIG. The heating resistance wire 4 is connected in series to the power source via the contact 7a of the relay 7. Further, the temperature signal line 2 of the temperature sensitive layer 3 is connected to the first temperature detecting means 9a provided in the energization control unit 9 through the semiconductor element 8, and the signal is converted into temperature.

さらに、発熱抵抗線4からの温度信号はリレー接点7aの接続部分よりダイオード10を通じて抵抗11でプルアップされ、先の通電制御部9内に設けられた第二温度検出手段9bにて温度に変換される。   Further, the temperature signal from the heating resistor wire 4 is pulled up by the resistor 11 through the diode 10 from the connection portion of the relay contact 7a, and converted into temperature by the second temperature detecting means 9b provided in the previous energization control section 9. Is done.

そして、リレー7の駆動回路はリレーコイルを具備し、通電制御部9の出力信号によってオン−オフする制御素子12で制御されるように構成されている。   The drive circuit of the relay 7 includes a relay coil, and is configured to be controlled by a control element 12 that is turned on and off by an output signal of the energization control unit 9.

なお、通電制御部9はメモリ、信号比較、演算機能等を有するワンチップマイクロコンピュータなどで構成されている。   The energization control unit 9 is composed of a memory, a signal comparison, a one-chip microcomputer having a calculation function, and the like.

上記構成に於いて、今、発熱体6が吸湿した場合、例えば80℃以下の温度域ではインピーダンスが高くて吸湿の影響を受けやすく、発熱体のもつ温度特性(インピーダンスの温度変化特性)は図5の破線ようになる。上記特性変化が生じると、単純に感温層3からの信号を温度に変換し80℃相当のインピーダンスになったとしても、実際の温度は70℃程度となり、発熱体を低めに制御してしまう。   In the above configuration, when the heating element 6 absorbs moisture now, for example, in a temperature range of 80 ° C. or lower, the impedance is high and is easily affected by moisture absorption, and the temperature characteristic of the heating element (temperature change characteristic of impedance) is shown in FIG. As shown by the broken line in FIG. When the above characteristic change occurs, even if the signal from the temperature sensitive layer 3 is simply converted into temperature and the impedance is equivalent to 80 ° C., the actual temperature becomes about 70 ° C., and the heating element is controlled to be low. .

また、温度が低い状態での発熱体制御となるので、吸湿された湿気も蒸発しにくくなり長時間低めの制御を継続してしまう。これに対して、発熱抵抗線4の抵抗値は湿度には全
く影響されず、その抵抗温度特性は図3のままとなるため、この発熱抵抗線4からの信号により算出した温度で、感温層3の信号より算出された温度を補正することで、吸湿して温度を高い側に検出しても正常温度で発熱体を制御することができるようになる。この時の動作を図6のフローチャートで説明する。
In addition, since the heating element control is performed in a state where the temperature is low, the absorbed moisture is difficult to evaporate, and the lower control is continued for a long time. On the other hand, the resistance value of the heating resistor line 4 is not affected at all by the humidity, and its resistance temperature characteristic remains as shown in FIG. By correcting the temperature calculated from the signal of the layer 3, the heating element can be controlled at a normal temperature even if moisture is absorbed and the temperature is detected on the higher side. The operation at this time will be described with reference to the flowchart of FIG.

まず、ステップS1で温度補正aを初期化しておく、ステップS2で発熱体をオンし、ステップS3で感温層信号からの温度STを第一温度検出手段9aにより検出する。   First, the temperature correction a is initialized in step S1, the heating element is turned on in step S2, and the temperature ST from the temperature sensitive layer signal is detected by the first temperature detection means 9a in step S3.

次にステップS4で予め設けてある異常温度ST1(例えば120℃)と比較し、ST1以上の温度であれば、ステップS5で高温異常としてステップS6で発熱体への通電を停止する。ST1未満であればステップS7で感温層信号からの温度STから温度補正aを減じた温度と予め設定してある通常温度域での発熱体オフ温度(例えば85℃)とを比較し、発熱体オフ温度より低ければステップS2に戻る。   Next, compared with an abnormal temperature ST1 (for example, 120 ° C.) provided in advance in step S4, if the temperature is equal to or higher than ST1, energization of the heating element is stopped in step S6 as a high temperature abnormality in step S5. If it is less than ST1, in step S7, the temperature obtained by subtracting the temperature correction a from the temperature ST from the temperature-sensitive layer signal is compared with the heating element off temperature (for example, 85 ° C.) in the preset normal temperature range to generate heat. If it is lower than the body off temperature, the process returns to step S2.

発熱体オフ温度より高ければステップS8で発熱体をオフする。次にステップS9で発熱体の抵抗線信号からの温度HTを第二温度検出手段9bにより検出する。ステップS10ではステップS3で第一温度検出手段9aの温度STとステップS9で検出した第二温度検出手段9bからの温度HTの差△T(ST―HT)を計算する。   If it is higher than the heating element off temperature, the heating element is turned off in step S8. Next, in step S9, the temperature HT from the resistance wire signal of the heating element is detected by the second temperature detecting means 9b. In step S10, a difference ΔT (ST−HT) between the temperature ST of the first temperature detecting means 9a in step S3 and the temperature HT from the second temperature detecting means 9b detected in step S9 is calculated.

ステップS11では前記計算した△Tが予め定めた温度T0(例えば5℃)より大きければ感温層の温度が高く出すぎていると判断し、ステップS12で補正値aに△Tを入れる。T0よりも小さければステップS13で補正値aにゼロを入れる。ステップS14ではステップS9の第二温度検出手段9bで検出した温度HTが、予め定めた発熱体オン温度(例えば75℃)と比較し、ステップS9の第二温度検出手段9bで検出した温度HTが予め定めた発熱体オン温度より低くなるまで待ち、低くなった時点でステップS2に戻る。   In step S11, if the calculated ΔT is larger than a predetermined temperature T0 (for example, 5 ° C.), it is determined that the temperature of the temperature sensitive layer is too high, and ΔT is added to the correction value a in step S12. If it is smaller than T0, zero is entered in the correction value a in step S13. In step S14, the temperature HT detected by the second temperature detecting means 9b in step S9 is compared with a predetermined heating element ON temperature (for example, 75 ° C.), and the temperature HT detected by the second temperature detecting means 9b in step S9 is It waits until it becomes lower than the predetermined heating element ON temperature, and when it becomes lower, it returns to step S2.

以上のように、本実施の形態においては感温層信号より算出された発熱体の温度STと、抵抗線信号より算出された発熱体の温度HTとを比較し、STの温度がHTの温度よりも高い場合、STの温度検出が低くなる側に補正を掛けたSHT温度により発熱体への通電制御を行うので、感温層が吸湿などによって、実際よりも高めの温度検知をするときのみ、低い側に温度を補正することができる。   As described above, in the present embodiment, the temperature ST of the heating element calculated from the temperature-sensitive layer signal is compared with the temperature HT of the heating element calculated from the resistance wire signal, and the temperature of ST is the temperature of HT. If the temperature is higher than the actual temperature, the heating element is controlled by the SHT temperature, which is corrected on the lower temperature detection side of the ST, so only when the temperature sensing layer detects a temperature higher than the actual temperature due to moisture absorption or the like. The temperature can be corrected on the lower side.

なお、本実施の形態では、補正温度を感温層信号より算出された温度と、発熱体の抵抗線信号より算出された温度との差△Tを補正温度aとしたが、インピーダンス−温度特性が吸湿によりずれる量に見合った量となるように影響度合いに応じてウェート付けをすることも考えられる。例えば80℃付近は△Tそのまま補正するが、90℃付近は△T×0.9、逆に70℃付近は△T×1.1とすれば、より正確な補正をすることができる。   In this embodiment, the difference ΔT between the temperature calculated from the temperature-sensitive layer signal as the correction temperature and the temperature calculated from the resistance wire signal of the heating element is defined as the correction temperature a. It is also conceivable that weighting is applied according to the degree of influence so that the amount of the water becomes an amount commensurate with the amount displaced due to moisture absorption. For example, ΔT is corrected as it is near 80 ° C., but ΔT × 0.9 near 90 ° C., and ΔT × 1.1 near 70 ° C. can be corrected more accurately.

また、感温層信号より算出された温度と、発熱体の抵抗線信号より算出された温度との差を5℃以上のとき補正が作動するという不感帯領域を持つ例としたが、5℃に限定されるものではない。   In addition, although an example has a dead zone region in which the correction is activated when the difference between the temperature calculated from the temperature-sensitive layer signal and the temperature calculated from the resistance wire signal of the heating element is 5 ° C. or more, It is not limited.

さらに、本実施の形態の発熱体オン温度及びオフ温度は一つの値に固定されなくても良く、温度調節機能がついたものであれば複数設定しても同様の効果が得られる。   Furthermore, the heating element on-temperature and off-temperature of this embodiment do not have to be fixed to one value, and the same effect can be obtained even if a plurality of temperature-adjusting functions are provided.

(実施の形態2)
図7,8は、本発明の実施の形態2を示すもので、実施の形態1と同一作用を発揮する構成については同一符号を付し、詳細な説明は実施の形態1のものを援用する。
(Embodiment 2)
7 and 8 show the second embodiment of the present invention, and the same reference numerals are given to the configurations that exhibit the same action as the first embodiment, and the detailed description of the first embodiment is used. .

図7において、通電制御部9内には発熱体6がオフした時に起動され、発熱体6がオンした時点で停止するタイマー9cが付加されている。   In FIG. 7, a timer 9c that is activated when the heating element 6 is turned off and stopped when the heating element 6 is turned on is added to the energization control unit 9.

上記構成に於いて、その動作を図8のフローチャートで説明する。   The operation of the above configuration will be described with reference to the flowchart of FIG.

ステップS8で発熱体をオフすると、ステップS20でタイマー9cを起動する。ステップS11、12、13で補正値aの値を決定した後、ステップS21でタイマー6cのオーバーフローを確認し、オーバーフローしていなければ、そのままオーバーフローするのを待つ、オーバーフローしていればステップS14に進み、ステップS9での抵抗線信号で検出した温度HTに応じて発熱体をオンまたはオフ継続するようにする。   When the heating element is turned off in step S8, the timer 9c is started in step S20. After the correction value a is determined in steps S11, S12, and S13, the timer 6c is checked for an overflow in step S21. The heating element is continuously turned on or off in accordance with the temperature HT detected by the resistance line signal in step S9.

以上のように、本実施の形態においては発熱体が一度オフした後は最低タイマー9cの時間を確保した後、抵抗線信号より算出された発熱体の温度HTに応じて発熱体を制御するので発熱体に無駄な通電することがなくなるとともにリレー開閉頻度を抑えることができる。   As described above, in this embodiment, after the heating element is turned off, the heating element is controlled according to the temperature HT of the heating element calculated from the resistance wire signal after securing the minimum timer 9c. It is possible to eliminate unnecessary energization of the heating element and reduce the frequency of relay opening and closing.

以上のように、本発明にかかる温度制御装置は、感温層が吸湿などによって、高く温度検知をしたと判断したときのみ、低い側に温度補正をすることができ、感温層の内部、外部からの特性バラツキ要因があっても高温から低温まで安全かつ効率的で、精度の良い温度制御をすることが可能となるので、電気カーペットや電気毛布等の採暖用途にも適用できる。   As described above, the temperature control device according to the present invention can correct the temperature to the lower side only when it is determined that the temperature-sensitive layer has detected a high temperature due to moisture absorption or the like. Even if there is a characteristic variation factor from the outside, it is safe and efficient from high temperature to low temperature, and accurate temperature control can be performed. Therefore, it can be applied to heating purposes such as electric carpets and electric blankets.

本発明の実施の形態1における発熱体の一部切欠側面図Partially cutaway side view of a heating element in Embodiment 1 of the present invention 同発熱体のインピーダンスの温度特性図Temperature characteristics of impedance of the same heating element 同発熱体の抵抗―温度特性図Resistance-temperature characteristics of the same heating element 同制御回路図Control circuit diagram 同インピーダンスの温度特性を示す図Diagram showing temperature characteristics of the same impedance 同制御装置の動作フローチャートOperation flowchart of the control device 本発明の実施の形態2を示す回路図Circuit diagram showing Embodiment 2 of the present invention 同動作フローチャートSame operation flowchart

符号の説明Explanation of symbols

1 芯糸
2 温度信号線
3 感温層
4 発熱抵抗線
5 外皮絶縁層
6 発熱体
9 通電制御部
9a 第一温度検出手段
9b 第二温度検出手段
6c タイマー手段
DESCRIPTION OF SYMBOLS 1 Core thread 2 Temperature signal line 3 Temperature sensitive layer 4 Heating resistance wire 5 Outer insulation layer 6 Heat generating body 9 Current supply control part 9a First temperature detection means 9b Second temperature detection means 6c Timer means

Claims (5)

芯糸の外周に温度信号線をスパイラル状に巻いて感温層で被覆し、さらにこの感温層の外周に発熱抵抗線をスパイラル状に巻いてその外周に外被絶縁層を被せることで構成した可撓性発熱体と、前記感温層の信号から温度を検出する第一温度検出手段と、前記発熱抵抗線の抵抗線信号から温度を検出する第二温度検出手段と、前記第一温度検出手段及び第二温度検出手段の温度に応じて前記発熱体への通電を制御する通電制御部とを備え、前記通電制御部は、前記第一温度検出手段の温度と、前記第二温度検出手段の温度との差を演算し前記第一温度検出手段の温度が、前記第二温度検出手段の温度よりも高いと判断した場合、前記第一温度検出手段の温度が低くなるように補正をかけるようにした温度制御装置。 Constructed by spirally winding a temperature signal wire around the outer periphery of the core yarn and covering it with a temperature-sensitive layer, and further winding a heat-generating resistance wire spirally around the outer periphery of this temperature-sensitive layer and covering the outer periphery with an outer insulation layer A flexible heating element, a first temperature detecting means for detecting a temperature from a signal of the temperature sensitive layer, a second temperature detecting means for detecting a temperature from a resistance wire signal of the heating resistance wire, and the first temperature An energization control unit that controls energization to the heating element according to the temperature of the detection unit and the second temperature detection unit, and the energization control unit includes the temperature of the first temperature detection unit and the second temperature detection unit If the temperature of the first temperature detecting means is determined to be higher than the temperature of the second temperature detecting means by calculating the difference from the temperature of the means, the correction is made so that the temperature of the first temperature detecting means is lowered. A temperature control device designed to be applied. 通電制御部は、感温層信号の上限温度を有し、第一温度検出手段の温度が上限温度を超えた場合は発熱体への通電を強制的に停止する請求項1に記載の温度制御装置。 The temperature control according to claim 1, wherein the energization control unit has an upper limit temperature of the temperature sensitive layer signal, and forcibly stops energization to the heating element when the temperature of the first temperature detection means exceeds the upper limit temperature. apparatus. 通電制御部は、発熱体への通電をオフする場合は少なくとも第一温度検出手段の温度を用いるとともに、発熱体をオンさせる場合は第二温度検出手段の温度を用いるようにした請求項1または2に記載の温度制御装置。 The energization control unit uses at least the temperature of the first temperature detecting means when turning off the energization to the heating element, and uses the temperature of the second temperature detecting means when turning on the heating element. 2. The temperature control apparatus according to 2. 通電制御部は、発熱体がオフになったときに起動されるタイマー手段を有し、発熱体への通電をオフする場合は少なくとも第一温度検出手段の温度を用いるとともに、発熱体をオンさせる場合は、前記タイマー手段がタイムアップした時点で第二温度検出手段の温度が発熱体オン温度より低い場合にのみ発熱体をオンするようにした請求項1または2に記載の温度制御装置。 The energization control unit has a timer unit that is activated when the heating element is turned off. When the energization to the heating element is turned off, at least the temperature of the first temperature detection unit is used and the heating element is turned on. 3. The temperature control device according to claim 1, wherein the heating element is turned on only when the temperature of the second temperature detection means is lower than the heating element on temperature when the timer means expires. 請求項1〜4のいずれか1項記載の温度制御装置を搭載した電気採暖器具。 An electric warming instrument equipped with the temperature control device according to any one of claims 1 to 4.
JP2005178777A 2005-06-20 2005-06-20 TEMPERATURE CONTROL DEVICE AND ELECTRIC HEATING APPARATUS HAVING THE SAME Expired - Fee Related JP4631556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178777A JP4631556B2 (en) 2005-06-20 2005-06-20 TEMPERATURE CONTROL DEVICE AND ELECTRIC HEATING APPARATUS HAVING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178777A JP4631556B2 (en) 2005-06-20 2005-06-20 TEMPERATURE CONTROL DEVICE AND ELECTRIC HEATING APPARATUS HAVING THE SAME

Publications (2)

Publication Number Publication Date
JP2006351456A true JP2006351456A (en) 2006-12-28
JP4631556B2 JP4631556B2 (en) 2011-02-16

Family

ID=37647073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178777A Expired - Fee Related JP4631556B2 (en) 2005-06-20 2005-06-20 TEMPERATURE CONTROL DEVICE AND ELECTRIC HEATING APPARATUS HAVING THE SAME

Country Status (1)

Country Link
JP (1) JP4631556B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158584A (en) * 1984-01-04 1985-08-19 セブ ソシエテ アノニム Device and method for controlling and regulating temperatureof electric heating resistor
JPH0254885A (en) * 1988-08-17 1990-02-23 Matsushita Electric Ind Co Ltd Temperature control device
JPH0926149A (en) * 1995-07-11 1997-01-28 Hitachi Home Tec Ltd Control circuit for electrical heater device
JP2001135459A (en) * 1999-11-09 2001-05-18 Hitachi Hometec Ltd Temperature control device of electric heater
JP2004214000A (en) * 2002-12-27 2004-07-29 Kurabe Ind Co Ltd Vehicle-mounted temperature control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158584A (en) * 1984-01-04 1985-08-19 セブ ソシエテ アノニム Device and method for controlling and regulating temperatureof electric heating resistor
JPH0254885A (en) * 1988-08-17 1990-02-23 Matsushita Electric Ind Co Ltd Temperature control device
JPH0926149A (en) * 1995-07-11 1997-01-28 Hitachi Home Tec Ltd Control circuit for electrical heater device
JP2001135459A (en) * 1999-11-09 2001-05-18 Hitachi Hometec Ltd Temperature control device of electric heater
JP2004214000A (en) * 2002-12-27 2004-07-29 Kurabe Ind Co Ltd Vehicle-mounted temperature control device

Also Published As

Publication number Publication date
JP4631556B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US5861610A (en) Heater wire with integral sensor wire and improved controller for same
US8383992B2 (en) NTC/PTC heating pad
US10583712B2 (en) Perceivable steam suppressing heater system
US8173938B2 (en) Controller for a heating cable
JP4631556B2 (en) TEMPERATURE CONTROL DEVICE AND ELECTRIC HEATING APPARATUS HAVING THE SAME
JP4923515B2 (en) Heating toilet seat
JP2662322B2 (en) Temperature control device for electric carpet
JP3124783B2 (en) Temperature control device for planar heater
JPS60213977A (en) Temperature control device
JP2016200049A (en) Submerged pump control device and submerged pump control method
JPH025386A (en) Temperature controller for heater
JP3098788B2 (en) Electric carpet
JPH0613159A (en) Temperature controlling apparatus
JP3170342B2 (en) Surface heating device
JPH07101106B2 (en) Electric heater temperature monitoring device
JP2583942B2 (en) Temperature control device
JPH0810622B2 (en) Electric carpet
JPH10288351A (en) Electric carpet
JPS61267107A (en) Temperature detector for heat sensitive heating unit
JP2517004B2 (en) Temperature control device
JP2016065686A (en) Planar warmer
JP2004077100A (en) Controller for heating element for floor heating
KR101309387B1 (en) System for controlling temperature of heating-wire
KR200315769Y1 (en) Temperature controller for electric heating mat
JP2876827B2 (en) Electric water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees