JP2006351280A - Fuel cell starter and starting method of fuel cell - Google Patents

Fuel cell starter and starting method of fuel cell Download PDF

Info

Publication number
JP2006351280A
JP2006351280A JP2005173838A JP2005173838A JP2006351280A JP 2006351280 A JP2006351280 A JP 2006351280A JP 2005173838 A JP2005173838 A JP 2005173838A JP 2005173838 A JP2005173838 A JP 2005173838A JP 2006351280 A JP2006351280 A JP 2006351280A
Authority
JP
Japan
Prior art keywords
fuel cell
amount
current value
water retention
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005173838A
Other languages
Japanese (ja)
Inventor
Shinichi Miyazaki
真一 宮崎
Yukihiro Yoshizawa
幸大 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005173838A priority Critical patent/JP2006351280A/en
Publication of JP2006351280A publication Critical patent/JP2006351280A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell starter capable of starting a fuel cell in the shortest starting time without generating flooding even at low temperature. <P>SOLUTION: The fuel cell starter 3 is equipped with a produced water retention amount prediction part 31 predicting the temperature variation of a fuel cell stack 2 based on a taking out current value taken out of the fuel cell stack 2, predicting the variation of the produced water retention amount capable of retaining in the fuel cell stack, based on the temperature variation, an integrated produced water retention amount prediction part 32 predicting the variation of the integrated produced water retention amount capable of retaining in the fuel cell stack based on the taking out current value, and a current calculation part 33 calculating the maximum taking out current value out of taking out current values in which the predicted integrated produced water amount does not exceed the predicted produced water retention amount. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池の起動を制御するための燃料電池起動装置に係り、特に低温時でもフラッディングを発生させることなく、最短の起動時間で燃料電池を起動させる燃料電池起動装置及びその方法に関する。   The present invention relates to a fuel cell starting device for controlling the starting of a fuel cell, and more particularly to a fuel cell starting device and a method for starting a fuel cell in a shortest starting time without causing flooding even at low temperatures.

燃料電池システムは、燃料が有する化学エネルギーを直接電気エネルギーに変換するための装置であり、 電解質膜を挟んで設けられた一対の電極のうち陽極に水素を含有する燃料ガスを供給するとともに、 他方の陰極に酸素を含有する酸素剤ガスを供給し、これら一対の電極の電解質膜側表面で生じる下記の電気化学反応を利用して電極から電気エネルギーを取り出すものである。   A fuel cell system is a device for directly converting chemical energy of a fuel into electrical energy, and supplies a fuel gas containing hydrogen to an anode of a pair of electrodes provided with an electrolyte membrane interposed therebetween. The oxygen agent gas containing oxygen is supplied to the cathode, and electric energy is extracted from the electrodes using the following electrochemical reaction that occurs on the electrolyte membrane side surface of the pair of electrodes.

陽極反応:H→ 2H+ 2e (1)
陰極反応:2H+ 2e+ (1/2)O → HO (2)
このような燃料電池システムの従来例として、例えば特開平8−106914号公報(特許文献1)が開示されている。
Anode reaction: H 2 → 2H + + 2e (1)
Cathode reaction: 2H + + 2e + (1/2) O 2 → H 2 O (2)
As a conventional example of such a fuel cell system, for example, JP-A-8-106914 (Patent Document 1) is disclosed.

ここで、陽極に供給される燃料ガスは、水素貯蔵装置から直接供給する方法、 水素を含有する燃料を改質した水素含有ガスを供給する方法が知られている。 水素貯蔵装置としては、高圧ガスタンク、液化水素タンク、水素吸蔵合金タンク等がある。水素を含有する燃料としては、天然ガス、メタノール、ガソリン等が考えられる。一方、陰極に供給される酸素剤ガスとしては、一般的に空気が利用されている。   Here, there are known a method in which the fuel gas supplied to the anode is directly supplied from a hydrogen storage device, and a method in which a hydrogen-containing gas obtained by reforming a fuel containing hydrogen is supplied. Examples of the hydrogen storage device include a high-pressure gas tank, a liquefied hydrogen tank, and a hydrogen storage alloy tank. As the fuel containing hydrogen, natural gas, methanol, gasoline or the like can be considered. On the other hand, air is generally used as the oxygen agent gas supplied to the cathode.

上述した燃料電池において、氷点下で発電を行うと電気化学反応によって生じた生成水が、触媒へ酸化ガスが供給されることを妨げてしまうため、発電が可能なのは生成水がガス供給を遮断するまでの間だけである。   In the fuel cell described above, when power generation is performed below freezing point, the generated water generated by the electrochemical reaction prevents the oxidizing gas from being supplied to the catalyst, so power generation is possible until the generated water shuts off the gas supply. Only during.

そこで、燃料電池スタックを昇温させるために燃料電池スタックを外部回路、主に電気抵抗体に接続して電力を供給することで、発電による発熱によって燃料電池スタックを昇温させる方法が知られている。このような燃料電池スタックの従来例としてUS特許5798186号公報(特許文献2)が開示されている。この従来例では、発電による水の生成熱を燃料電池スタックの昇温に利用して熱容量の大きな燃料電池スタックを均一に素早く昇温している。
特開平8−106914号公報 米国特許5798186号公報
In order to raise the temperature of the fuel cell stack, a method of raising the temperature of the fuel cell stack by heat generated by power generation by connecting the fuel cell stack to an external circuit, mainly an electric resistor, and supplying electric power is known. Yes. As a conventional example of such a fuel cell stack, US Pat. No. 5,798,186 (Patent Document 2) is disclosed. In this conventional example, the heat generated by water generated by power generation is used to raise the temperature of the fuel cell stack, and the temperature of the fuel cell stack having a large heat capacity is increased uniformly and quickly.
JP-A-8-106914 US Pat. No. 5,798,186

しかしながら、上述した従来の燃料電池スタックでは、外気温が氷点下のように低くなると、飽和水蒸気圧が極めて低くなることに加えて水の凍結が起きてしまうので、生成された水が燃料電池内部から適切に除去されずに反応ガス流路やガス拡散層に残留して反応ガスの拡散を阻害してしまう。この現象は一般にフラッディングと呼ばれ、反応ガスが触媒に到達することを妨げてしまうために発電性能の低下を引き起こし、最終的には触媒に反応ガスが供給されなくなって全く発電できなくなってしまうという問題点があった。   However, in the conventional fuel cell stack described above, when the outside air temperature becomes low, such as below freezing point, the saturated water vapor pressure becomes extremely low and the water freezes. If it is not removed properly, it will remain in the reaction gas flow path and the gas diffusion layer, thereby inhibiting the diffusion of the reaction gas. This phenomenon is generally called flooding, and it prevents the reaction gas from reaching the catalyst, causing a decrease in power generation performance. Eventually, the reaction gas is not supplied to the catalyst and power generation is impossible. There was a problem.

上述した課題を解決するために、本発明の燃料電池起動装置は、燃料電池の起動を制御する燃料電池起動装置であって、前記燃料電池から取り出される取り出し電流値に基づいて前記燃料電池の温度変化を予測し、この温度変化に基づいて前記燃料電池に保持することのできる生成水保持量の変化を予測する生成水保持量予測手段と、前記燃料電池の取り出し電流値に基づいて前記燃料電池で生成される積算生成水量の変化を予測する積算生成水量予測手段と、前記積算生成水量が前記生成水保持量を超えることのない最大の取り出し電流値を算出する電流算出手段とを備えていることを特徴とする。   In order to solve the above-described problem, a fuel cell activation device according to the present invention is a fuel cell activation device that controls the activation of a fuel cell, and the temperature of the fuel cell is determined based on a current value taken out from the fuel cell. A generated water retention amount predicting means for predicting a change and predicting a change in the generated water retention amount that can be retained in the fuel cell based on the temperature change; and the fuel cell based on the extraction current value of the fuel cell. An integrated generated water amount predicting unit that predicts a change in the integrated generated water amount generated in step (a), and a current calculating unit that calculates a maximum extraction current value that does not exceed the generated water retained amount. It is characterized by that.

また、本発明の燃料電池の起動方法は、燃料電池の起動を制御するための燃料電池の起動方法であって、前記燃料電池から取り出される取り出し電流値に基づいて前記燃料電池の温度変化を予測し、この温度変化に基づいて前記燃料電池に保持することのできる生成水保持量の変化を予測する生成水保持量予測ステージと、前記燃料電池の取り出し電流値に基づいて前記燃料電池で生成される積算生成水量の変化を予測する積算生成水量予測ステージと、前記積算生成水量が前記生成水保持量を超えることのない最大の取り出し電流値を算出する電流算出ステージとを含むことを特徴とする。   The fuel cell activation method of the present invention is a fuel cell activation method for controlling the activation of the fuel cell, and predicts a change in temperature of the fuel cell based on a current value taken out from the fuel cell. And a generated water holding amount prediction stage for predicting a change in the generated water holding amount that can be held in the fuel cell based on the temperature change, and the fuel cell generated based on the extraction current value of the fuel cell. An integrated generated water amount prediction stage for predicting a change in the integrated generated water amount, and a current calculation stage for calculating a maximum extraction current value in which the integrated generated water amount does not exceed the generated water retention amount. .

本発明に係る燃料電池起動装置及び燃料電池の起動方法では、燃料電池で生成される積算生成水量が燃料電池で保持できる生成水保持量を超えることがない取り出し電流値のうち最大となる取り出し電流値を算出し、この最大の取り出し電流値によって燃料電池を起動するので、氷点下であってもフラッディングを発生させることなく、最短の起動時間で燃料電池を起動することができる。   In the fuel cell starting device and the fuel cell starting method according to the present invention, the maximum extracted current value among the extracted current values that does not exceed the generated water retention amount that can be retained by the fuel cell. Since the value is calculated and the fuel cell is started with this maximum extracted current value, the fuel cell can be started with the shortest start-up time without causing flooding even under the freezing point.

以下、本発明の実施形態を図面に基づいて説明する。図1は本実施形態に係る燃料電池起動装置を備えた燃料電池システムの構成を示すブロック図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a fuel cell system including a fuel cell activation device according to the present embodiment.

図1に示すように、本実施形態の燃料電池システム1は、燃料ガスと酸化剤ガスとが供給されて電気化学反応により発電する燃料電池スタック2と、燃料電池スタック2の起動を制御する燃料電池起動装置3と、燃料電池スタック2の温度を検出する温度センサ4と、燃料電池スタック2から取り出される取り出し電流値を検出する電流センサ5と、低温時に燃料電池スタック2を加熱する加熱装置6とを備えている。   As shown in FIG. 1, the fuel cell system 1 of the present embodiment includes a fuel cell stack 2 that is supplied with fuel gas and an oxidant gas and generates power through an electrochemical reaction, and a fuel that controls the start-up of the fuel cell stack 2. Battery starter 3, temperature sensor 4 for detecting the temperature of fuel cell stack 2, current sensor 5 for detecting a current value taken out from fuel cell stack 2, and heating device 6 for heating fuel cell stack 2 at low temperatures And.

このように構成された燃料電池システム1において、燃料電池スタック2ではアノードに燃料ガスである水素ガスが供給され、カソードに酸化剤ガスである空気が供給されて電気化学反応によって発電が行われている。   In the fuel cell system 1 configured as described above, in the fuel cell stack 2, hydrogen gas as a fuel gas is supplied to the anode, and air as an oxidant gas is supplied to the cathode to generate power by an electrochemical reaction. Yes.

ここで、燃料電池スタック2を構成する燃料電池セルの構造を図2に基づいて説明する。図2に示すように、燃料電池セル21は、固体高分子電解質膜22の両面に一対の電極触媒層23が配置され、さらにその外側に一対のガス拡散層24がそれぞれ配置されている。そして、その外側には燃料極側に燃料ガス供給用のガス流路が表面に設けられたアノードセパレータ25が取り付けられ、酸化剤極側には酸化剤ガス供給用のガス流路が表面に設けられたカソードセパレータ26が取り付けられている。どちらのガス流路ともにガス供給口からガス排出口にかけて流路がほぼ直線状となるストレート流路と一般に呼ばれている形状をしている。このような形状にすることにより、生成水をガスの流れによって液相のまま燃料電池外部に排出することができる。なお、本実施形態では燃料ガスとして水素ガス、酸化剤ガスとして空気を使用した場合について説明する。また、固体高分子電解質膜22としてはパーフルオロスルホン酸膜を使用しているので、接合性を考慮してパーフルオロスルホン酸ポリマーを使用している。   Here, the structure of the fuel cells constituting the fuel cell stack 2 will be described with reference to FIG. As shown in FIG. 2, the fuel cell 21 has a pair of electrode catalyst layers 23 disposed on both sides of a solid polymer electrolyte membrane 22, and a pair of gas diffusion layers 24 disposed on the outside thereof. An anode separator 25 having a gas flow path for supplying a fuel gas on the surface thereof is attached to the outside of the fuel cell, and a gas flow path for supplying an oxidant gas is provided on the surface of the oxidizer electrode. A cathode separator 26 is attached. Both of the gas channels have a shape generally called a straight channel in which the channel is almost linear from the gas supply port to the gas discharge port. With such a shape, the generated water can be discharged out of the fuel cell in the liquid phase by the gas flow. In the present embodiment, a case where hydrogen gas is used as the fuel gas and air is used as the oxidant gas will be described. Further, since a perfluorosulfonic acid film is used as the solid polymer electrolyte membrane 22, a perfluorosulfonic acid polymer is used in consideration of bonding properties.

燃料電池起動装置3は、燃料電池スタック2の起動を制御しており、燃料電池スタック2に保持することのできる生成水保持量の変化を予測する生成水保持量予測部(生成水保持量予測手段)31と、燃料電池スタック2で生成される積算生成水量の変化を予測する積算生成水量予測部(積算生成水量予測手段)32と、積算生成水量が生成水保持量を超えることのない取り出し電流値のうちで最大となる取り出し電流値を算出する電流算出部(電流算出手段)33とを備えている。   The fuel cell activation device 3 controls the activation of the fuel cell stack 2, and a generated water retention amount prediction unit (predicted generated water retention amount prediction) that predicts a change in the generated water retention amount that can be retained in the fuel cell stack 2. Means) 31, an integrated generated water amount prediction unit (integrated generated water amount predicting means) 32 for predicting a change in the integrated generated water amount generated in the fuel cell stack 2, and an extraction in which the integrated generated water amount does not exceed the generated water retention amount A current calculation unit (current calculation means) 33 for calculating a maximum extraction current value among the current values is provided.

温度センサ4は、燃料電池スタック2の温度を検出し、検出値を燃料電池起動装置3に出力している。   The temperature sensor 4 detects the temperature of the fuel cell stack 2 and outputs the detected value to the fuel cell activation device 3.

電流センサ5は、燃料電池スタック2から取り出される取り出し電流値を検出し、検出値を燃料電池起動装置3に出力している。   The current sensor 5 detects the extracted current value extracted from the fuel cell stack 2 and outputs the detected value to the fuel cell activation device 3.

加熱装置6は、ヒータなどの燃料電池スタック2を加熱するための装置であって、低温時に燃料電池起動装置3からの指令に基づいて加熱を行なう。   The heating device 6 is a device for heating the fuel cell stack 2 such as a heater, and performs heating based on a command from the fuel cell starting device 3 at a low temperature.

次に、上述した燃料電池スタック2の低温起動時における性質を図3〜図6に基づいて説明する。   Next, the properties of the above-described fuel cell stack 2 during low temperature startup will be described with reference to FIGS.

まず、燃料電池スタック2の起動時におけるスタック温度と積算生成水量の時間変化を図3に基づいて説明する。図3は、燃料電池スタック2を氷点下(例えば−20℃)から0℃まで発電による発熱によって昇温させた場合を示す図である。図3に示すように、燃料電池スタック2が起動を開始して取り出し電流i0を出力する発電を行なうと、スタック温度は上昇していく。一方、この発電によって燃料電池スタック2では一定の生成水が生成されていき、この生成水を積算した積算生成水量は増加していく。   First, the time change of the stack temperature and the accumulated amount of water generated when the fuel cell stack 2 is started will be described with reference to FIG. FIG. 3 is a diagram showing a case where the fuel cell stack 2 is heated from below freezing point (for example, −20 ° C.) to 0 ° C. by heat generation by power generation. As shown in FIG. 3, when the fuel cell stack 2 starts to generate electricity and outputs a current i0 that is taken out, the stack temperature rises. On the other hand, a certain amount of generated water is generated in the fuel cell stack 2 by this power generation, and the integrated generated water amount obtained by integrating the generated water increases.

しかしながら、スタック温度が0℃以上になるまではガス温度が低いため、発電によって生じた生成水のうち水蒸気として燃料電池スタック2の外に排出される量は極めて少なく、また氷点下雰囲気なので液水として排出することもできない。   However, since the gas temperature is low until the stack temperature reaches 0 ° C. or higher, the amount of generated water generated by power generation is very little discharged out of the fuel cell stack 2 as water vapor, and since it is a freezing point atmosphere, it is used as liquid water. It cannot be discharged.

ところが、電解質膜や電極触媒層、ガス拡散層、ガス流路に生成水を保持するための生成水保持機構を設けることによって、一定の発電を継続して実施できることが分かっている。生成水保持機構は、生成した水をトラップする機構であって、具体的には、1.触媒部, ガス拡散層部の空孔部分、2.高分子材料(アイオノマー)、3.ゼオライト, シリカゲル, 活性アルミナ, 活性炭などの水吸着材が含まれる。   However, it has been found that by providing a generated water holding mechanism for holding generated water in the electrolyte membrane, the electrode catalyst layer, the gas diffusion layer, and the gas flow path, constant power generation can be continuously performed. The generated water retention mechanism is a mechanism for trapping generated water. 1. pore part of catalyst part and gas diffusion layer part; 2. polymer material (ionomer); Includes water adsorbents such as zeolite, silica gel, activated alumina, and activated carbon.

図4は、ある仕様の生成水保持機構における生成水保持量のスタック温度に対する感度を示した図である。図4に示すように、生成水保持量は同一の仕様においてスタック温度に感度があり、スタック温度が高くなるにしたがって生成水保持量は増加する傾向を示していることが分かる。   FIG. 4 is a diagram showing the sensitivity of the generated water retention amount with respect to the stack temperature in the generated water retention mechanism of a certain specification. As shown in FIG. 4, it can be seen that the generated water retention amount is sensitive to the stack temperature in the same specification, and the generated water retention amount tends to increase as the stack temperature increases.

次に、生成水保持量予測部31及び積算生成水量予測部32による燃料電池スタック2の起動後に行われる予測を図5に基づいて説明する。   Next, prediction performed after the fuel cell stack 2 is activated by the generated water retention amount prediction unit 31 and the integrated generation water amount prediction unit 32 will be described with reference to FIG.

図5は燃料電池スタック2を低温(例えば−20℃)から0℃まで発電による発熱で昇温させる場合を予測した図である。図5に示すように、燃料電池スタック2の起動後、時刻t1までの間は取り出し電流iが上昇していき、これに伴って積算生成水量、生成水保持量、スタック温度がそれぞれ上昇を始める。そして、時刻t1以後、取り出し電流iが一定の場合について生成水保持量予測部31及び積算生成水量予測部32がそれぞれ予測を行なう。まず、生成水保持量予測部31が取り出し電流値iに基づいてスタック温度の変化を予測し、このスタック温度の変化に基づいて生成水保持量の変化を予測する。次に、積算生成水量予測部32が取り出し電流値iに基づいて積算生成水量の変化を予測する。こうして図5の破線で示すような生成水保持量及び積算生成水量の予測が算出される。   FIG. 5 is a diagram in which the fuel cell stack 2 is predicted to be heated from a low temperature (for example, −20 ° C.) to 0 ° C. by heat generation by power generation. As shown in FIG. 5, after the fuel cell stack 2 is started, the take-out current i increases until time t1, and accordingly, the total amount of generated water, the amount of generated water retained, and the stack temperature start increasing. . Then, after time t1, the generated water retention amount prediction unit 31 and the integrated generation water amount prediction unit 32 make predictions when the extraction current i is constant. First, the generated water retention amount prediction unit 31 predicts a change in the stack temperature based on the extracted current value i, and predicts a change in the generated water retention amount based on the change in the stack temperature. Next, the integrated water generation amount prediction unit 32 predicts a change in the integrated water generation amount based on the extracted current value i. Thus, the prediction of the generated water retention amount and the accumulated generated water amount as shown by the broken line in FIG. 5 is calculated.

図5の場合では、積算生成水量が生成水保持量を上回ることがないので、この取り出し電流値iで発電を継続していけば、発電によって生じた生成水は保水機構に保持されてフラッディングを発生させることなく発電を継続していくことが可能であることを示している。   In the case of FIG. 5, since the accumulated amount of generated water does not exceed the amount of retained water, if the power generation is continued at this extraction current value i, the generated water generated by the power generation is retained in the water retention mechanism and flooded. It shows that it is possible to continue power generation without generating it.

一方、図6は図5に示した場合よりも低いスタック温度で燃料電池スタック2の起動を開始した場合を示す図である。図6に示すように、この場合では時刻t2において積算生成水量が生成水保持量を超えてしまっているので、実際に時刻t1以後このまま発電を継続していくと時刻t2に近づくにつれてガスの拡散性などが低下して出力が落ちて発電ができなくなってしまう。そこで、積算生成水量が生成水保持量を超えることがない取り出し電流値のうちで最大となる取り出し電流値を算出するために、燃料電池スタック2の起動制御処理が実施される。   On the other hand, FIG. 6 is a diagram showing a case where the start of the fuel cell stack 2 is started at a lower stack temperature than the case shown in FIG. As shown in FIG. 6, in this case, since the accumulated amount of generated water exceeds the amount of retained water at time t2, when the power generation is actually continued after time t1, the diffusion of gas as it approaches time t2. As a result, the output drops and power generation becomes impossible. Therefore, in order to calculate the maximum extraction current value among the extraction current values in which the accumulated generation water amount does not exceed the generation water retention amount, the start-up control process of the fuel cell stack 2 is performed.

ここで、本実施形態の燃料電池起動装置3による燃料電池スタック2の起動制御処理を図7のフローチャートに基づいて説明する。図7に示すように、まず燃料電池スタック2が起動されて処理が開始されると(S701)、取り出し電流値iが設定される(S702)。起動初期の取り出し電流値はi0とする。   Here, the startup control processing of the fuel cell stack 2 by the fuel cell startup device 3 of the present embodiment will be described based on the flowchart of FIG. As shown in FIG. 7, first, when the fuel cell stack 2 is activated and the process is started (S701), the extraction current value i is set (S702). The extraction current value at the beginning of startup is i0.

そして、設定された取り出し電流値iで定電流発電を継続して行なった場合の発熱量からスタック温度の変化を予測し(S703)、このスタック温度の変化から生成水保持量の変化を予測して生成水保持量の予測線を算出する(S704)。この生成水保持量の予測では図4で示したスタック温度と生成水保持量との関係をマップ化して保存しておいてもよいし、実験整理式などを用意しておいてもよい。   Then, a change in the stack temperature is predicted from the amount of heat generated when constant current power generation is continuously performed with the set extraction current value i (S703), and a change in the generated water retention amount is predicted from the change in the stack temperature. Then, a prediction line of the generated water retention amount is calculated (S704). In the prediction of the generated water retention amount, the relationship between the stack temperature and the generated water retention amount shown in FIG. 4 may be mapped and stored, or an experimental arrangement formula or the like may be prepared.

次に、直前までの処理によって算出され、記憶されている生成水積算量を取得し(S705)、取得した生成水積算量と、取り出し電流iで発電した場合の生成水量との和を求めて積算生成水量の変化を予測し、積算生成水量の予測線を算出する(S706)。   Next, the accumulated amount of generated water calculated and stored by the processing up to immediately before is acquired (S705), and the sum of the acquired accumulated water amount and the amount of generated water when power is generated with the extraction current i is obtained. A change in the accumulated water volume is predicted, and a prediction line for the accumulated water volume is calculated (S706).

こうして積算生成水量の予測線と生成水保持量の予測線とが算出されると、これらの予測線が解をもつか否か、すなわち交点を持つか否かを計算する(S707)。   When the prediction line for the accumulated product water amount and the prediction line for the product water retention amount are calculated in this way, it is calculated whether or not these prediction lines have solutions, that is, whether they have intersections (S707).

例えば、図8は、起動初期の取り出し電流値をi0とし、この電流値で発電を継続した場合のスタック温度、積算生成水量、生成水保持量の変化を示した図である。図8に示すように、時刻t0以後生成水保持量に対して、積算生成水量が上昇して接線になっている。そして、時刻t1以後の予測では、取り出し電流i0で発電を継続した場合には生成水保持量の予測線L1と積算生成水量の予測線L’1は交わることはない。したがって、生成水保持量の予測線L1と積算生成水量の予測線L’1とは解を持たない。   For example, FIG. 8 is a diagram illustrating changes in the stack temperature, the accumulated amount of generated water, and the amount of retained water when the current value at the initial stage of startup is i0 and power generation is continued at this current value. As shown in FIG. 8, the accumulated amount of generated water rises and becomes tangent to the amount of retained water after time t0. In the prediction after time t1, when the power generation is continued with the extraction current i0, the prediction line L1 for the generated water retention amount and the prediction line L′ 1 for the integrated generation water amount do not intersect. Therefore, the prediction line L1 of the generated water retention amount and the prediction line L′ 1 of the integrated generation water amount have no solution.

そこで、ステージS707で解を持たないと判断されたときには、時刻t1以後では取り出し電流iを上昇させても積算生成水量が生成水保持量を超えて発電できなくなることはないと判断して、取り出し電流iを所定の微小電流Δiだけ増やしてi1=i0+Δiとして(S708)ステージS702に戻って上述した処理を繰り返し行う。   Therefore, when it is determined that there is no solution in stage S707, it is determined that the accumulated generated water amount does not exceed the generated water holding amount and power generation cannot be stopped even if the extraction current i is increased after time t1. The current i is increased by a predetermined minute current Δi, i1 = i0 + Δi is set (S708), the process returns to the stage S702, and the above-described processing is repeated.

そして、再び生成水保持量の予測線と積算生成水量の予測線とを算出すると、図9に示すように生成水保持量の予測線L2と積算生成水量の予測線L’2は少し近づいたもののまだ解を持たないので、再びステージS708において微小電流Δiだけ電流を増やして上述した処理を繰り返し行う。   When the prediction line for the generated water retention amount and the prediction line for the integrated generation water amount are calculated again, the prediction line L2 for the generation water retention amount and the prediction line L′ 2 for the integration water generation amount are slightly closer as shown in FIG. However, since there is no solution yet, in step S708, the current is increased by the minute current Δi again and the above-described processing is repeated.

このような処理を繰り返し行っていくことによって、取り出し電流はin+1=in+Δiとなり、積算生成水量の予測線は生成水保持量の予測線に対して近づいていき、最終的に図10に示しように積算生成水量の予測線は生成水保持量の予測線の接線となる。   By repeatedly performing such processing, the extraction current becomes in + 1 = in + Δi, and the prediction line of the integrated water generation amount approaches the prediction line of the generation water retention amount, and finally, as shown in FIG. The prediction line of the accumulated water generation amount is a tangent to the prediction line of the generation water retention amount.

こうしてステージ707において積算生成水量と生成水保持量とが解を持つと判断されたら、次に解の数、すなわち交点の数が1つであるか2つであるかを判断する(S709)。   In this way, if it is determined in stage 707 that the integrated water generation amount and the generated water retention amount have solutions, it is next determined whether the number of solutions, that is, the number of intersections is one or two (S709).

そして、交点の数が1つであれば、積算生成水量が生成水保持量を超えることのない最大の取り出し電流値を算出することができたと判断して処理を終了する(S710)。ここで算出された最大の取り出し電流値によって燃料電池スタック2を起動すれば、積算生成水量が生成水保持量を超えることがないのでフラッディングを発生させることはなく、さらに最大の電流値で起動するので最短時間で燃料電池スタック2を起動することができる。   If the number of intersections is one, it is determined that the maximum extraction current value in which the integrated water generation amount does not exceed the generated water retention amount has been calculated, and the process ends (S710). If the fuel cell stack 2 is started up with the maximum extracted current value calculated here, the accumulated amount of generated water does not exceed the amount of generated water retained, so flooding does not occur, and the maximum current value is started. Therefore, the fuel cell stack 2 can be started up in the shortest time.

一方、交点の数が2つある場合には、積算生成水量が生成水保持量を超えてしまい、燃料電池スタック2を起動することができなくなるので、取り出し電流iを所定の微小電流Δiだけ減らしてi=i−Δiとする(S711)。   On the other hand, when the number of intersections is two, the accumulated amount of generated water exceeds the amount of generated water retained and the fuel cell stack 2 cannot be started, so that the extraction current i is reduced by a predetermined minute current Δi. I = i−Δi (S711).

そして、この取り出し電流iが所定の取り出し電流値imin以下であるか否かを判断してiminより大きいときには再びステージS702に戻って上述の処理を繰り返し行う。   Then, it is determined whether or not the extraction current i is equal to or less than a predetermined extraction current value imin. When the extraction current i is larger than imin, the process returns to the stage S702 and the above-described process is repeated.

一方、減らされた取り出し電流iが所定の取り出し電流値imin以下のときには燃料電池スタック2の起動に要する時間が長くなり過ぎて自立起動が困難であると判断し、加熱装置6などによる昇温アシストを要求するフラグをONにして(S713)本実施形態の燃料電池起動装置3による燃料電池スタック2の起動制御処理を終了し(S714)、加熱装置6などの出力を制御する処理に移行する。   On the other hand, when the reduced extraction current i is equal to or less than the predetermined extraction current value imin, it is determined that the time required for starting the fuel cell stack 2 is too long and it is difficult to start the self-sustained operation. Is turned on (S713), the start control process of the fuel cell stack 2 by the fuel cell starter 3 of the present embodiment is ended (S714), and the process proceeds to a process for controlling the output of the heating device 6 and the like.

また、上述の処理は任意の間隔で再計算及び電流値の再設定が行われ、その間隔は小さくすれば、積算生成水量と生成水保持量とが漸近する理想的な起動を行うことが可能であるが、計算処理が増えるので適度な間隔で行うことが望ましい。   In addition, the above-described processing is recalculated and resetting the current value at an arbitrary interval, and if the interval is reduced, it is possible to perform an ideal startup in which the integrated water generation amount and the generated water retention amount are asymptotic. However, since calculation processing increases, it is desirable to carry out at an appropriate interval.

このように、本実施形態の燃料電池起動装置3では、燃料電池スタック2で生成される積算生成水量が燃料電池スタック2で保持できる生成水保持量を超えることがない取り出し電流のうち最大となる取り出し電流値を算出し、この取り出し電流で燃料電池スタック2を起動するので、氷点下であってもフラッディングを発生させることなく、最短の起動時間で燃料電池を起動することができる(請求項1、3の効果)。   As described above, in the fuel cell activation device 3 of the present embodiment, the integrated amount of generated water generated by the fuel cell stack 2 is the maximum of the extracted current that does not exceed the amount of generated water retained that can be retained by the fuel cell stack 2. Since the extraction current value is calculated and the fuel cell stack 2 is activated with this extraction current, the fuel cell can be activated in the shortest activation time without causing flooding even when the temperature is below freezing. 3 effect).

また、本実施形態の燃料電池起動装置3では、算出された最大の取り出し電流値が所定値imin以下のときには、加熱装置6によって燃料電池スタック2を加熱させるので、燃料電池スタック2の温度が低すぎるために起動に要する時間が長くなり過ぎて自立起動が困難な場合であっても、加熱装置6による加熱で燃料電池スタック2を起動することが可能になる(請求項2、4の効果)。   Further, in the fuel cell starting device 3 of the present embodiment, when the calculated maximum extraction current value is equal to or less than the predetermined value imin, the fuel cell stack 2 is heated by the heating device 6, so that the temperature of the fuel cell stack 2 is low. Therefore, even when the time required for starting becomes too long and it is difficult to start independently, it is possible to start the fuel cell stack 2 by heating with the heating device 6 (effects of claims 2 and 4). .

以上、本発明の燃料電池システムについて、図示した実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は同様の機能を有する任意の構成のものに置き換えることができる。   Although the fuel cell system of the present invention has been described based on the illustrated embodiment, the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. Can do.

燃料電池の起動を制御するための燃料電池起動装置に係り、特に低温時でもフラッディングを発生させることなく、最短の起動時間で燃料電池を起動させるための技術として極めて有用である。   The present invention relates to a fuel cell activation device for controlling the activation of a fuel cell, and is extremely useful as a technique for activating a fuel cell in the shortest activation time without causing flooding even at a low temperature.

本発明の実施形態に係る燃料電池起動装置を備えた燃料電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell system provided with the fuel cell starting device which concerns on embodiment of this invention. 燃料電池セルの構造を説明するための断面図である。It is sectional drawing for demonstrating the structure of a fuel battery cell. 燃料電池スタックの起動時におけるスタック温度と積算生成水量の時間変化を示す図である。It is a figure which shows the time change of stack temperature at the time of starting of a fuel cell stack, and the amount of integrated production water. 燃料電池スタックの温度と生成水保持量との関係を示す図である。It is a figure which shows the relationship between the temperature of a fuel cell stack, and the amount of produced water retention. 燃料電池スタックの起動時におけるスタック温度と積算生成水量、生成水保持量の時間変化を示す図である。It is a figure which shows the time change of the stack temperature at the time of starting of a fuel cell stack, an integrated production | generation water amount, and a production | generation water retention amount. 燃料電池スタックの起動時におけるスタック温度と積算生成水量、生成水保持量の時間変化を示す図である。It is a figure which shows the time change of the stack temperature at the time of starting of a fuel cell stack, an integrated production | generation water amount, and a production | generation water retention amount. 本発明の実施形態に係る燃料電池起動装置による燃料電池スタックの起動制御処理を示すフローチャートである。It is a flowchart which shows the starting control process of the fuel cell stack by the fuel cell starting apparatus which concerns on embodiment of this invention. 燃料電池スタックの起動時におけるスタック温度と積算生成水量、生成水保持量の時間変化を示す図である。It is a figure which shows the time change of the stack temperature at the time of starting of a fuel cell stack, an integrated production | generation water amount, and a production | generation water retention amount. 燃料電池スタックの起動時におけるスタック温度と積算生成水量、生成水保持量の時間変化を示す図である。It is a figure which shows the time change of the stack temperature at the time of starting of a fuel cell stack, an integrated production | generation water amount, and a production | generation water retention amount. 燃料電池スタックの起動時におけるスタック温度と積算生成水量、生成水保持量の時間変化を示す図である。It is a figure which shows the time change of the stack temperature at the time of starting of a fuel cell stack, an integrated production | generation water amount, and a production | generation water retention amount.

符号の説明Explanation of symbols

1 燃料電池システム
2 燃料電池スタック
3 燃料電池起動装置
4 温度センサ
5 電流センサ
6 加熱装置
31 生成水保持量予測部(生成水保持量予測手段)
32 積算生成水量予測部(積算生成水量予測手段)
33 電流算出部(電流算出手段)
DESCRIPTION OF SYMBOLS 1 Fuel cell system 2 Fuel cell stack 3 Fuel cell starting device 4 Temperature sensor 5 Current sensor 6 Heating device 31 Generated water retention amount prediction unit (generated water retention amount prediction means)
32 Accumulated water generation prediction unit (integrated water generation prediction means)
33 Current calculation unit (current calculation means)

Claims (4)

燃料電池の起動を制御する燃料電池起動装置であって、
前記燃料電池から取り出される取り出し電流値に基づいて前記燃料電池の温度変化を予測し、この温度変化に基づいて前記燃料電池に保持することのできる生成水保持量の変化を予測する生成水保持量予測手段と、
前記燃料電池の取り出し電流値に基づいて前記燃料電池で生成される積算生成水量の変化を予測する積算生成水量予測手段と、
前記積算生成水量が前記生成水保持量を超えることのない最大の取り出し電流値を算出する電流算出手段と
を備えていることを特徴とする燃料電池起動装置。
A fuel cell activation device for controlling the activation of a fuel cell,
A generated water retention amount that predicts a change in the temperature of the fuel cell based on a current value extracted from the fuel cell and predicts a change in the retained water amount that can be retained in the fuel cell based on the temperature change. Prediction means,
Integrated production water amount prediction means for predicting a change in the amount of integrated production water generated in the fuel cell based on a current value taken out of the fuel cell;
A fuel cell starting device, comprising: a current calculating unit that calculates a maximum extraction current value in which the integrated generated water amount does not exceed the generated water retention amount.
前記電流算出手段で算出された最大の取り出し電流値が所定値以下のときには、加熱手段によって前記燃料電池を加熱させることを特徴とする請求項1に記載の燃料電池起動装置。   2. The fuel cell starting device according to claim 1, wherein when the maximum extraction current value calculated by the current calculation unit is equal to or less than a predetermined value, the fuel cell is heated by the heating unit. 燃料電池の起動を制御するための燃料電池の起動方法であって、
前記燃料電池から取り出される取り出し電流値に基づいて前記燃料電池の温度変化を予測し、この温度変化に基づいて前記燃料電池に保持することのできる生成水保持量の変化を予測する生成水保持量予測ステージと、
前記燃料電池の取り出し電流値に基づいて前記燃料電池で生成される積算生成水量の変化を予測する積算生成水量予測ステージと、
前記積算生成水量が前記生成水保持量を超えることのない最大の取り出し電流値を算出する電流算出ステージと
を含むことを特徴とする燃料電池の起動方法。
A fuel cell activation method for controlling the fuel cell activation,
A generated water retention amount that predicts a change in the temperature of the fuel cell based on a current value extracted from the fuel cell and predicts a change in the retained water amount that can be retained in the fuel cell based on the temperature change. The prediction stage;
An integrated water generation prediction stage for predicting a change in the integrated water generation amount generated in the fuel cell based on a current value taken out of the fuel cell;
And a current calculation stage for calculating a maximum extraction current value in which the integrated water generation amount does not exceed the generated water retention amount.
前記電流算出ステージで算出された最大の取り出し電流値が所定値以下のときには、加熱手段によって前記燃料電池を加熱させる加熱ステージをさらに含むことを特徴とする請求項3に記載の燃料電池の起動方法。   4. The method of starting a fuel cell according to claim 3, further comprising a heating stage for heating the fuel cell by a heating means when a maximum extraction current value calculated by the current calculation stage is equal to or less than a predetermined value. .
JP2005173838A 2005-06-14 2005-06-14 Fuel cell starter and starting method of fuel cell Pending JP2006351280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173838A JP2006351280A (en) 2005-06-14 2005-06-14 Fuel cell starter and starting method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173838A JP2006351280A (en) 2005-06-14 2005-06-14 Fuel cell starter and starting method of fuel cell

Publications (1)

Publication Number Publication Date
JP2006351280A true JP2006351280A (en) 2006-12-28

Family

ID=37646921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173838A Pending JP2006351280A (en) 2005-06-14 2005-06-14 Fuel cell starter and starting method of fuel cell

Country Status (1)

Country Link
JP (1) JP2006351280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155628A2 (en) * 2007-06-20 2008-12-24 Nissan Motor Co., Ltd Fuel cell system and operation method thereof
WO2008155627A3 (en) * 2007-06-20 2009-03-12 Nissan Motor Fuel cell system and operating method therefor
WO2014109239A1 (en) * 2013-01-09 2014-07-17 日産自動車株式会社 Fuel cell system and method for controlling same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155628A2 (en) * 2007-06-20 2008-12-24 Nissan Motor Co., Ltd Fuel cell system and operation method thereof
WO2008155627A3 (en) * 2007-06-20 2009-03-12 Nissan Motor Fuel cell system and operating method therefor
WO2008155628A3 (en) * 2007-06-20 2009-03-12 Nissan Motor Fuel cell system and operation method thereof
US8790836B2 (en) 2007-06-20 2014-07-29 Nissan Motor Co., Ltd. Fuel cell system and operating method therefor
US8900770B2 (en) 2007-06-20 2014-12-02 Nissan Motor Co., Ltd. Fuel cell system and operation method thereof
US10193177B2 (en) 2007-06-20 2019-01-29 Nissan Motor Co., Ltd. Fuel cell system and operating method therefor
WO2014109239A1 (en) * 2013-01-09 2014-07-17 日産自動車株式会社 Fuel cell system and method for controlling same
CN104871356A (en) * 2013-01-09 2015-08-26 日产自动车株式会社 Fuel cell system and method for controlling same
JP5939312B2 (en) * 2013-01-09 2016-06-22 日産自動車株式会社 Fuel cell system and control method thereof
US10608264B2 (en) 2013-01-09 2020-03-31 Nissan Motor Co., Ltd. Fuel cell system and control method therefor

Similar Documents

Publication Publication Date Title
JP3999498B2 (en) Fuel cell system and method for stopping the same
CN101901926B (en) Solid electrolyte type fuel cell
JP4873952B2 (en) Fuel cell system
CN101901923B (en) Solid oxide fuel cell device
JP4996814B2 (en) Low temperature startup method for fuel cells
JP2005228637A (en) Fuel cell system
JP2012003850A (en) Solid electrolyte fuel battery
JP4973138B2 (en) Fuel cell system
EP2416422B1 (en) Solid electrolyte fuel cell
EP2416426B1 (en) Solid electrolyte fuel cell
JP2006351280A (en) Fuel cell starter and starting method of fuel cell
JP2005149902A (en) Fuel cell power generating device and fuel cell power generating method
EP2645462B1 (en) Solid oxide fuel cell system
JP2005150020A (en) Fuel cell system
JP5025389B2 (en) Control method for fuel cell power generation system and fuel cell power generation system
JP2012142145A (en) Fuel cell system
JP4711157B1 (en) Solid oxide fuel cell
JP5683031B2 (en) Fuel cell system and operation method thereof
JP2006351279A (en) Fuel cell starter and starting method of fuel cell
JP5007496B2 (en) Fuel cell system
JP6087079B2 (en) Fuel cell power generation system and control method thereof
JP5800273B2 (en) Solid oxide fuel cell
JP2006147336A (en) Fuel cell system
JP5783370B2 (en) Solid oxide fuel cell
JP2009081112A (en) Operation method of fuel cell power generation device and fuel cell power generation device