JP2006350065A - Scanning optical system, optical scanning device, and image forming apparatus - Google Patents

Scanning optical system, optical scanning device, and image forming apparatus Download PDF

Info

Publication number
JP2006350065A
JP2006350065A JP2005177443A JP2005177443A JP2006350065A JP 2006350065 A JP2006350065 A JP 2006350065A JP 2005177443 A JP2005177443 A JP 2005177443A JP 2005177443 A JP2005177443 A JP 2005177443A JP 2006350065 A JP2006350065 A JP 2006350065A
Authority
JP
Japan
Prior art keywords
scanning
optical system
lens
optical
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177443A
Other languages
Japanese (ja)
Inventor
Hiromichi Atsumi
広道 厚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005177443A priority Critical patent/JP2006350065A/en
Publication of JP2006350065A publication Critical patent/JP2006350065A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning optical system, an optical scanning device and, an image forming apparatus, which adjust a curved scanning line like a quadratic curved line or a curve scanning line like a three-dimensional function in a small number of adjusting steps. <P>SOLUTION: The scanning optical system condenses a beam deflected by a deflector to the proximity of a scanning surface, and the optical system is characterized in that: the scanning optical system comprises at least one scanning lens 4; the lens 4 includes a means 10 to correct a quadratic component in a curved scanning line, and a means 11 to correct a component of a curved scanning line like an odd-number function of three or more dimensions; the means 10 to correct a quadratic component in a curved scanning line presses an almost center of at least one scanning line, in a direction almost perpendicular to the scanning plane; and the correcting means 11 presses at an end in the longitudinal direction of the scanning lens 4, in a deflector side or a scanning plane side of the scanning lens 4, in a direction perpendicular to the scanning plane to twist the lens 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザプリンタ、デジタル複写機、ファクシミリ等に用いられる走査光学系、光走査装置および光走査装置を有する上記レーザプリンタ、デジタル複写などの画像形成装置に関するものである。   The present invention relates to a scanning optical system used in a laser printer, a digital copying machine, a facsimile, and the like, an optical scanning device, and an image forming apparatus such as the laser printer having the optical scanning device and digital copying.

近年、カラーレーザプリンタ、デジタルカラー複写装置の高画質化、高密度化に伴い光走査装置に要求される色ずれの問題が解決すべき課題になっている。この課題を解決するために、走査レンズとしての長尺レンズの長手方向中央部を副走査方向に押圧することで走査線曲がりを調整する技術手段が提案されている(例えば、特許文献1参照)。しかしながら、この従来の技術手段では、2次曲線的な走査線曲がりの調整は可能であるが、より高次成分の走査線曲がりは調整することができない。   In recent years, with the increase in image quality and density of color laser printers and digital color copying apparatuses, the problem of color misregistration required for optical scanning apparatuses has become an issue to be solved. In order to solve this problem, there has been proposed a technical means for adjusting the scanning line curve by pressing the central portion in the longitudinal direction of a long lens as a scanning lens in the sub-scanning direction (see, for example, Patent Document 1). . However, with this conventional technical means, it is possible to adjust the scan line curve of a quadratic curve, but it is not possible to adjust the scan line curve of a higher order component.

また、長尺レンズの主走査方向に沿って調整手段、例えばイモネジを3カ所に設けることにより、走査線曲がりの高次成分も調整可能とした技術手段も提案されている(例えば、特許文献2参照)。しかしながら、特許文献2記載の発明によれば、量産する画像形成装置において、長尺レンズの3カ所につきそれぞれ調整工程を設けることは調整工程が煩雑になり、コストが高くなるという問題がある。   In addition, technical means has also been proposed that can adjust higher-order components of scanning line bending by providing adjusting means, for example, three screws, along the main scanning direction of the long lens (for example, Patent Document 2). reference). However, according to the invention described in Patent Document 2, in the mass-produced image forming apparatus, providing the adjustment process at each of the three long lenses has a problem that the adjustment process becomes complicated and the cost increases.

なお、本発明者は、2つのイモネジなどの調整手段により、4次関数的な走査線曲がり、例えば、M字型やW字型の走査線曲がりについて調整可能な調整装置を発明した。しかし、この発明によれば、3次関数的(奇数関数的)な走査線曲がり、例えば、S字型の走査線曲がりについては調整できないという問題があることがわかった。   The inventor of the present invention has invented an adjusting device that can adjust a scanning line curve such as a quartic function, for example, an M-shaped or W-shaped scanning line, by adjusting means such as two male screws. However, according to the present invention, it has been found that there is a problem that it is not possible to adjust a scanning line curve of a cubic function (odd function), for example, an S-shaped scanning line curve.

特開平9−33846号公報JP 9-33846 A 特開2002−182145号公報JP 2002-182145 A

本発明は、上記従来技術の課題に鑑みてなされたもので、より少ない調整工程で、2次曲線的な走査線曲がりだけではなく、3次関数的(奇数関数的)な走査線曲がりも調整可能な走査光学系、光走査装置および画像形成装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and adjusts not only a quadratic scanning line curve but also a cubic (odd function) scanning line curve with fewer adjustment steps. An object of the present invention is to provide a scanning optical system, an optical scanning device, and an image forming apparatus.

本発明は、請求項1記載の発明のように、光偏向器により偏向される光束を被走査面近傍に集光させる走査光学系において、上記走査光学系は少なくとも1枚の走査レンズからなり、少なくとも1枚の走査レンズは、走査線曲がりの2次関数的な成分を補正する手段を有し、かつ3次関数以上の奇数関数的な走査線曲がりの成分を補正する手段を有することを最も主要な特徴とする。   According to the present invention, as in the first aspect of the invention, in the scanning optical system for condensing the light beam deflected by the optical deflector in the vicinity of the surface to be scanned, the scanning optical system comprises at least one scanning lens, It is most preferable that at least one scanning lens has a means for correcting a quadratic function component of the scanning line curve and a means for correcting an odd function line curve component of a cubic function or higher. Main features.

走査線曲がりの2次関数的な成分を補正する手段は、請求項2記載の発明のように、少なくとも1枚の走査レンズのほぼ中央を走査面内にほぼ垂直な方向に押圧する手段にするとよい。
また、補正する手段は、請求項3記載の発明のように、走査レンズの長手方向の端部で、走査レンズの光偏向器側または被走査面側を走査面内にほぼ垂直な方向に押圧することで走査レンズをよじらせるようにするとよい。
少なくとも1枚の走査レンズは、請求項4記載の発明のように、ほぼ中央の下面または上面を支点として回転可能に設けられることにより走査線の傾き調整が可能な構成にするとよい。
The means for correcting the quadratic function component of the scanning line bending is a means for pressing the substantially center of at least one scanning lens in a direction substantially perpendicular to the scanning plane as in the invention of claim 2. Good.
Further, the correcting means presses the optical deflector side or the scanned surface side of the scanning lens in a direction substantially perpendicular to the scanning surface at the end in the longitudinal direction of the scanning lens as in the invention described in claim 3. By doing so, it is preferable to twist the scanning lens.
The at least one scanning lens may be configured to be capable of adjusting the inclination of the scanning line by being rotatably provided with the lower surface or the upper surface at the center as a fulcrum, as in the fourth aspect of the invention.

請求項5記載の発明は、光源からの光束を偏向する光偏向器と、光偏向器で偏向された光束を被走査面上に収束させて被走査面上を走査させる走査光学系を有する光走査装置において、上記走査光学系として請求項1乃至4のいずれかに記載の走査光学系を有することを特徴とする。
請求項6記載の発明のように、上記光走査装置は、複数の走査光学系を有しているとよい。
According to a fifth aspect of the present invention, there is provided an optical deflector that deflects a light beam from a light source, and a scanning optical system that causes the light beam deflected by the optical deflector to converge on the surface to be scanned and scan the surface to be scanned. A scanning apparatus includes the scanning optical system according to any one of claims 1 to 4 as the scanning optical system.
According to a sixth aspect of the present invention, the optical scanning device may include a plurality of scanning optical systems.

請求項7記載の発明は、電子写真プロセスを実行することによって画像を形成する画像形成装置であって、電子写真プロセス中の露光プロセスを実行する装置として請求項5または6記載の光走査装置を用いたことを特徴とする。   According to a seventh aspect of the present invention, there is provided an image forming apparatus for forming an image by executing an electrophotographic process, wherein the optical scanning device according to the fifth or sixth aspect is used as an apparatus for performing an exposure process in the electrophotographic process. It is used.

請求項1乃至4記載の発明によれば、より少ない調整工程で、2次曲線的な走査線曲がりだけではなく、3次関数的(奇数関数的)な走査線曲がりも調整することができるので、調整工程時間の短縮化に寄与することでコストダウンを図りつつ、走査線曲がりの低減を図ることができる。また、部品点数の低減を図ることができることと、走査レンズの受け部の精度を緩くすることができることによるコストダウンも図ることができる。   According to the first to fourth aspects of the invention, it is possible to adjust not only the scanning curve of a quadratic curve but also the scanning curve of a cubic function (odd function) with fewer adjustment steps. By reducing the adjustment process time, it is possible to reduce the scanning line bending while reducing the cost. In addition, the cost can be reduced by reducing the number of parts and reducing the accuracy of the receiving portion of the scanning lens.

請求項5記載の発明によれば、走査線曲がりを低減することで、画像の歪みの小さい光走査装置を提供することができる。   According to the fifth aspect of the present invention, it is possible to provide an optical scanning device with a small image distortion by reducing the scanning line bending.

請求項6記載の発明によれば、複数の走査光学系からなるタンデム型走査光学系において、各走査光学系の走査線曲がりを低減することができるので、タンデム型走査光学系をカラー画像形成装置適用した場合に、色ずれの小さいカラー画像を得ることができる光走査装置を提供することができる。   According to the sixth aspect of the invention, in the tandem scanning optical system composed of a plurality of scanning optical systems, the scanning line bending of each scanning optical system can be reduced, so that the tandem scanning optical system is used as a color image forming apparatus. When applied, it is possible to provide an optical scanning device capable of obtaining a color image with small color misregistration.

請求項7記載の発明によれば、請求項5または6記載の光走査装置を用いることで、高品位な画像出力が可能な画像形成装置を提供することができ、カラーレーザプリンタ等に用いれば、色ずれのない画像形成装置を提供することができる。   According to the seventh aspect of the invention, an image forming apparatus capable of outputting a high-quality image can be provided by using the optical scanning device according to the fifth or sixth aspect, and if used in a color laser printer or the like. An image forming apparatus free from color misregistration can be provided.

以下、本発明にかかる走査光学系、光走査装置および画像形成装置の実施例を、図を用いて説明する。
図1は本発明にかかる走査光学系および光走査装置の構成例を示す。図1に示す走査光学系および光走査装置の構成例は、複数の走査光学系、より具体的には4個の走査光学系を有するいわゆるタンデム型の走査光学系として構成されている。符号1−1〜1−4は光源部を示しており、これらの光源部は例えば半導体レーザからなる光源と、光源から放射されるレーザ光を絞り込むカップリングレンズを有してなる。符号1a−1〜1a−4はシリンドリカルレンズを、2はポリゴンミラーからなる光偏向器を、3−1〜3−4は走査光学系を構成する第1走査レンズを、4−1〜4−4は走査光学系を構成する第2走査レンズを、5−1〜5−4はドラム状感光体の表面である被走査面を示している。各走査光学系の構成および作用は同じであるから、以下、一つの走査光学系に代表させ、「−」以下の符号を省略した符号を用いて説明する。すなわち符号1は光源部、1aはシリンドリカルレンズ、3は第1走査レンズ、4は第2走査レンズ、5は被走査面を表すものとして説明する。
Embodiments of a scanning optical system, an optical scanning device, and an image forming apparatus according to the present invention will be described below with reference to the drawings.
FIG. 1 shows a configuration example of a scanning optical system and an optical scanning device according to the present invention. The configuration example of the scanning optical system and the optical scanning device shown in FIG. 1 is configured as a so-called tandem scanning optical system having a plurality of scanning optical systems, more specifically, four scanning optical systems. Reference numerals 1-1 to 1-4 denote light source units. These light source units include, for example, a light source composed of a semiconductor laser and a coupling lens that narrows down the laser light emitted from the light source. Reference numerals 1a-1 to 1a-4 denote cylindrical lenses, 2 denotes an optical deflector composed of a polygon mirror, 3-1 to 3-4 denote first scanning lenses constituting a scanning optical system, and 4-1 to 4- Reference numeral 4 denotes a second scanning lens constituting the scanning optical system, and reference numerals 5-1 to 5-4 denote a surface to be scanned which is the surface of the drum-shaped photosensitive member. Since the configuration and operation of each scanning optical system are the same, the following description will be made using a symbol in which one scanning optical system is represented by omitting the symbol “−”. In other words, reference numeral 1 denotes a light source unit, 1a denotes a cylindrical lens, 3 denotes a first scanning lens, 4 denotes a second scanning lens, and 5 denotes a surface to be scanned.

光源部1の光源から射出された光束は、光源部1が有するカップリングレンズにより略平行光束にカップリングされ、シリンドリカルレンズ1aに入射する。光束はシリンドリカルレンズ1aによって副走査対応方向にのみ収束されて主走査対応方向に長く略線状に集光しつつ、光偏向器2の偏向反射面に入射する。光偏向器2を構成するポリゴンミラーは一定速度で高速回転駆動されることにより、各偏向反射面で光束を偏向反射する。偏向された光束は、第1走査レンズ3、第2走査レンズ4を透過し、適宜のミラーで反射されて被走査面5に導かれ、被反射面5に光スポットとして結像される。上記ポリゴンミラーの回転駆動により等角速度的に偏向される光束のスポットが、被走査面5上で等速度的に走査されるように、第1走査レンズ3と第2走査レンズ4からなる走査光学系の特性が定められている。上記等角速度的な光走査方向が主走査方向であり、ドラム形感光体からなる被走査面5の回転中心軸線方向に沿った方向が主走査方向である。この光スポットによる主走査方向の走査線が曲がらないように、走査レンズの調整によって調整される。   The light beam emitted from the light source of the light source unit 1 is coupled into a substantially parallel light beam by the coupling lens included in the light source unit 1 and enters the cylindrical lens 1a. The light beam is converged only in the sub-scanning corresponding direction by the cylindrical lens 1a, and is converged in a substantially linear shape in the main scanning corresponding direction, and is incident on the deflecting / reflecting surface of the optical deflector 2. The polygon mirror constituting the optical deflector 2 is rotationally driven at a high speed at a constant speed, thereby deflecting and reflecting the light beam at each deflection reflection surface. The deflected light beam passes through the first scanning lens 3 and the second scanning lens 4, is reflected by an appropriate mirror, is guided to the scanned surface 5, and forms an image as a light spot on the reflected surface 5. Scanning optics composed of the first scanning lens 3 and the second scanning lens 4 so that the spot of the light beam deflected at a constant angular velocity by the rotational driving of the polygon mirror is scanned on the surface to be scanned 5 at a constant speed. System characteristics are defined. The equiangular velocity optical scanning direction is the main scanning direction, and the direction along the rotation center axis direction of the surface to be scanned 5 made of the drum-type photosensitive member is the main scanning direction. Adjustment is made by adjusting the scanning lens so that the scanning line in the main scanning direction due to the light spot is not bent.

ここで、従来の走査線曲がり調整について説明する。図2に従来技術を示す。例えば図1の構成からなる走査光学系の場合、長尺レンズである第2走査レンズ4の長手方向のほぼ中央を副走査方向に押圧することで走査線曲がりを調整している。より具体的には、第2走査レンズ4の外周部41の長手方向両端部下面を支持台42の上に載せ、第2走査レンズ4の長手方向のほぼ中央を上から押圧することにより第2走査レンズ4を副走査方向に撓ませて調整するようにしている。しかしながらこの従来の方法では、図4(a)に示すような3次関数的なS字型の走査線曲がりが生じている場合、この走査線曲がりを調整することはできない。   Here, the conventional scanning line curve adjustment will be described. FIG. 2 shows the prior art. For example, in the case of the scanning optical system having the configuration shown in FIG. 1, the scanning line bending is adjusted by pressing substantially the center in the longitudinal direction of the second scanning lens 4 which is a long lens in the sub-scanning direction. More specifically, the lower surfaces of both end portions in the longitudinal direction of the outer peripheral portion 41 of the second scanning lens 4 are placed on the support base 42, and the second scanning lens 4 is pressed from above by pressing substantially the center in the longitudinal direction. The scanning lens 4 is adjusted by bending in the sub-scanning direction. However, in this conventional method, when a S-shaped scanning line curve having a cubic function as shown in FIG. 4A is generated, the scanning line curve cannot be adjusted.

また、前記特許文献2記載の発明では、長尺レンズの主走査方向に沿って、イモネジからなる調整手段を3カ所に設けることにより、走査線曲がりの高次成分も調整可能としている。しかしながら、走査光学系の量産工程において3カ所の調整工程を設けることはコスト高になるという問題がある。
本発明にかかる走査光学系の実施例では、かかる従来の問題点を解決することができる。
Further, in the invention described in Patent Document 2, the higher-order component of the scanning line curve can be adjusted by providing three adjusting means made of a female screw along the main scanning direction of the long lens. However, the provision of three adjustment steps in the mass production process of the scanning optical system has a problem of high cost.
In the embodiment of the scanning optical system according to the present invention, such a conventional problem can be solved.

図3に本発明にかかる走査光学系の実施例1を示す。この例は、図1に示す光走査装置の第2走査レンズ4に走査線曲がり調整機構を組み込んだ例となっている。図3(a)は光軸方向から見た図、図3(b)は走査レンズ4の長手方向のほぼ中央の副走査断面図である。走査レンズ4の長手方向両端部下面は、ハウジング50に形成された突出部に載せられ、走査レンズ4の長手方向両端部上面には、鉄等の素材からなる板金20の両端折曲部が載せられ、走査レンズ4がハウジング50の上記突出部と板金20の上記両端折曲部とによって挟み込まれている。板金20の長手方向両端部上面には、ハウジング50に固着された板バネ30,31の折曲上端部が被さり、板バネ30,31が板金20の両端部を上から下に向かって押さえつけ、板金20とともに走査レンズ4をハウジング50に固定している。   FIG. 3 shows Example 1 of the scanning optical system according to the present invention. In this example, a scanning line bending adjustment mechanism is incorporated in the second scanning lens 4 of the optical scanning device shown in FIG. FIG. 3A is a view as seen from the optical axis direction, and FIG. 3B is a sub-scan sectional view at the substantially center in the longitudinal direction of the scanning lens 4. The lower surfaces of both ends of the scanning lens 4 in the longitudinal direction are placed on protrusions formed on the housing 50, and the bent portions of both ends of the sheet metal 20 made of a material such as iron are placed on the upper surfaces of both ends of the scanning lens 4 in the longitudinal direction. The scanning lens 4 is sandwiched between the protruding portion of the housing 50 and the bent portions of the metal plate 20. The upper ends of the longitudinal ends of the sheet metal 20 are covered with the bent upper ends of the leaf springs 30 and 31 fixed to the housing 50, and the leaf springs 30 and 31 press the both ends of the sheet metal 20 from the top to the bottom. The scanning lens 4 is fixed to the housing 50 together with the sheet metal 20.

板金20の長手方向中央部には上から下に向かって補正手段としての1本の第1調整ネジ10がねじ込まれ、この第1調整ネジ10の先端が走査レンズ4の長手方向中央部上面に当接している。走査レンズ4の下面とハウジング50との間には、ハウジング50の上記突出部を除いてこの突出部の突出高さに見合う間隙が生じていて、この間隙に板ばね40が配置され、走査レンズ4の長手方向中央部を上記板ばね40がその弾力で上に向かって押し上げている。図3(b)に示すように、上記第1調整ネジ10は走査レンズ4の光軸方向長さの中心部に当たっていて、調整ネジ10のねじ込み量を調整すると走査レンズ4の上下方向すなわち走査面に対し略垂直な方向の弓なりの撓み量が調整され、走査線曲がりを調整することができるようになっている。また、上記板ばね31の折曲上端部を上側から貫通して板金20に補正手段としての第2調整ネジ11がねじ込まれ、第2調整ネジ11の先端が走査レンズ4の上面に当接している。図3(c)に示すように、第2調整ネジ11の走査レンズ4への当接位置は、走査レンズ4の光軸方向長さの一方側、たとえば前側に偏っていて、第2調整ネジ11のねじ込み量を調整することによって、走査レンズ4の光軸方向前後方向の傾き量、したがって走査レンズ4のねじり量を調整することができるようになっている。第1調整ネジ10は、走査線曲がりの2次関数的な成分を補正する手段である。第2調整ネジ11は3次関数以上の奇数関数的な走査線曲がりの成分を補正する手段であって、上記のように、走査レンズ4への当接位置を、走査レンズ4の光軸方向長さの一方側、すなわち走査レンズ4の光偏向器側または被走査面側に偏らせ、光偏向器側または被走査面側を走査面内にほぼ垂直な方向に押圧することで、走査レンズ4をよじらせるようになっている。   One first adjusting screw 10 as a correcting means is screwed into the longitudinal center portion of the sheet metal 20 from the top to the bottom, and the tip of the first adjusting screw 10 is on the upper surface of the longitudinal center portion of the scanning lens 4. It is in contact. Between the lower surface of the scanning lens 4 and the housing 50, there is a gap corresponding to the protruding height of the protruding portion except for the protruding portion of the housing 50, and a plate spring 40 is disposed in the gap, and the scanning lens. The leaf spring 40 is pushed upward by the elasticity of the central portion in the longitudinal direction 4. As shown in FIG. 3B, the first adjusting screw 10 is in contact with the center of the length of the scanning lens 4 in the optical axis direction. When the screwing amount of the adjusting screw 10 is adjusted, the scanning lens 4 is moved in the vertical direction, that is, the scanning plane. On the other hand, the amount of bow-like bending in a direction substantially perpendicular to the vertical direction is adjusted, and the scanning line bending can be adjusted. Further, the second adjustment screw 11 as a correction means is screwed into the metal plate 20 through the bent upper end portion of the plate spring 31 from above, and the tip of the second adjustment screw 11 comes into contact with the upper surface of the scanning lens 4. Yes. As shown in FIG. 3C, the contact position of the second adjustment screw 11 with the scanning lens 4 is biased to one side, for example, the front side of the length of the scanning lens 4 in the optical axis direction. 11 is adjusted, the amount of inclination of the scanning lens 4 in the front-rear direction of the optical axis, and hence the amount of twist of the scanning lens 4 can be adjusted. The first adjustment screw 10 is a means for correcting a quadratic function component of scanning line bending. The second adjusting screw 11 is a means for correcting an odd-numbered scanning line curve component that is a cubic function or higher, and as described above, the position of contact with the scanning lens 4 is set in the optical axis direction of the scanning lens 4. The scanning lens is biased to one side of the length, that is, the optical deflector side or the surface to be scanned of the scanning lens 4 and the optical deflector side or the surface to be scanned is pressed in a direction substantially perpendicular to the scanning surface. 4 is twisted.

次に、上記第1、第2調整ネジ10,11による走査線曲がりの調整方法を説明する。まず、第1調整ネジ10のねじ込み量を調整することで走査レンズ4の長手方向中央部を副走査方向に移動させ、被走査面における2次曲線的な走査線曲がりを調整する。次に、第1調整ネジ10は固定し,第2調整ネジ11の締め付け具合を微調整する。第2調整ネジ11の調整によって、上記のとおり走査レンズ4のねじれ量が調整され、被走査面における3次関数的な走査線曲がり量がより小さくなるように調整することができる。図4(a)に示すような3次関数的なS字型の走査線曲がりが生じている場合、第2調整ネジ11の調整によって、上記3次関数的なS字型の走査線曲がりを調整し、図4(b)に示すように走査線曲がりを小さくすることができる。   Next, a method for adjusting the scanning line bending by the first and second adjusting screws 10 and 11 will be described. First, by adjusting the screwing amount of the first adjusting screw 10, the central portion in the longitudinal direction of the scanning lens 4 is moved in the sub-scanning direction, and the second-order curve scanning line bending on the surface to be scanned is adjusted. Next, the first adjustment screw 10 is fixed, and the tightening degree of the second adjustment screw 11 is finely adjusted. By adjusting the second adjusting screw 11, the amount of twist of the scanning lens 4 is adjusted as described above, and the amount of cubic line-like scanning line bending on the surface to be scanned can be adjusted to be smaller. When the S-shaped scanning line curve having a cubic function as shown in FIG. 4A is generated, the S-shaped scanning line curve having the cubic function is adjusted by adjusting the second adjusting screw 11. By adjusting, the scanning line bending can be reduced as shown in FIG.

このように、走査線曲がり補正手段としての2本のネジ10,11の締め付け具合を調整し、走査レンズ4によじれを発生させることで走査線曲がりの3次関数的な成分を調整している。これは、例えば、走査レンズ4を支持している板金20の両端の受け部や、ハウジング50の両端の受け部の平面度がずれている場合に走査レンズ4がよじれてしまい、S字型の走査線曲がりが発生するので、この走査線曲がりを調整するものである。上記板金20の両端の受け部や、ハウジング50の両端の受け部の平面度を厳しく管理すれば走査線曲がりを小さくすることができるが、そうすると製造コストが大幅に増大する。その点、上記実施例によれば、上記板金20の両端の受け部や、ハウジング50の両端の受け部の精度を緩めることができるため、製造効率を高めながら所定の性能を得ることができ、製造コストを安くすることができる。   In this way, the degree of tightening of the two screws 10 and 11 as the scanning line bending correction means is adjusted, and the scanning lens 4 is kinked to adjust the cubic function component of the scanning line bending. . This is because, for example, when the flatness of the receiving portions at both ends of the metal plate 20 supporting the scanning lens 4 or the receiving portions at both ends of the housing 50 is shifted, the scanning lens 4 is kinked, and the S-shaped. Since scanning line bending occurs, this scanning line bending is adjusted. Strict management of the flatness of the receiving portions at both ends of the sheet metal 20 and the receiving portions at both ends of the housing 50 can reduce the bending of the scanning line, but this greatly increases the manufacturing cost. In that respect, according to the above embodiment, the accuracy of the receiving portions at both ends of the sheet metal 20 and the receiving portions at both ends of the housing 50 can be relaxed, so that a predetermined performance can be obtained while increasing manufacturing efficiency. Manufacturing cost can be reduced.

次に、図6に示す第2の実施例について説明する。図6において、走査レンズ4は、その長手方向両端部上面に板金21の突出部が当接した状態で、コの字状に折り曲げられた板ばね22,23で挟み込まれ、板金21と一体化されている。ハウジング51は走査レンズ4の長手方向中央部に対応する位置に突起があり、この突起に走査レンズ4の下面が接している。板金21は、板バネ24,25を介してハウジング51の天井部に固定されている。符号32はステッピングモータを示している。例えば、ステッピングモータ32の出力軸に設けられたリードネジが板金21のネジ孔に螺入されている、というような構成になっていて、ステッピングモータ32の回転制御により、図6(a)において板金21の左端部を副走査方向に上下動させ、ハウジング51の上記突起を支点にして走査レンズ4の傾き調整をする機構になっている。つまり、走査線曲がりだけでなく、走査線傾きも調整することができる構成になっている。   Next, a second embodiment shown in FIG. 6 will be described. In FIG. 6, the scanning lens 4 is sandwiched between leaf springs 22, 23 bent in a U-shape with the projections of the sheet metal 21 in contact with the upper surfaces of both longitudinal ends, and integrated with the sheet metal 21. Has been. The housing 51 has a protrusion at a position corresponding to the longitudinal center of the scanning lens 4, and the lower surface of the scanning lens 4 is in contact with the protrusion. The sheet metal 21 is fixed to the ceiling portion of the housing 51 via the leaf springs 24 and 25. Reference numeral 32 denotes a stepping motor. For example, the lead screw provided on the output shaft of the stepping motor 32 is screwed into the screw hole of the sheet metal 21. By controlling the rotation of the stepping motor 32, the sheet metal in FIG. The left end portion of 21 is moved up and down in the sub-scanning direction, and the inclination of the scanning lens 4 is adjusted with the projection of the housing 51 as a fulcrum. In other words, not only the scanning line bending but also the scanning line inclination can be adjusted.

この実施例も、第1の実施例と同様に、第1調整ネジ10と第2調整ネジ11を備えていて、これらの調整ネジ10,11は、第1の実施例における第1調整ネジ10と第2調整ネジ11と同じ機能を備えている。ただし、第2の実施例の場合、図6(b)に示すように、走査レンズ4の長手方向中央部は光軸方向前後からコの字形の板バネ26,27で板金21とともに挟み込まれて互いに固定された形になっている。図6(a)において走査レンズ4の右端部が図6(c)に示す第2調整ネジ11で押圧されて走査レンズ4がよじれており、このよじれ量を第2調整ネジ11で調整することにより走査線曲がりの微調整をする形式になっている。   Similarly to the first embodiment, this embodiment also includes a first adjusting screw 10 and a second adjusting screw 11, and these adjusting screws 10 and 11 are the first adjusting screw 10 in the first embodiment. And the same function as the second adjustment screw 11. However, in the case of the second embodiment, as shown in FIG. 6B, the central portion in the longitudinal direction of the scanning lens 4 is sandwiched with the sheet metal 21 by U-shaped plate springs 26 and 27 from the front and rear in the optical axis direction. They are fixed to each other. 6A, the right end portion of the scanning lens 4 is pressed by the second adjustment screw 11 shown in FIG. 6C, and the scanning lens 4 is kinked. The amount of kinking is adjusted by the second adjustment screw 11. Thus, the scanning line curve is finely adjusted.

図6に示す第2の実施例の場合も、走査レンズ4に比べて、板金21の方が剛性の高いものであることが前提である。調整方法は図3に示す第1の実施例の調整方法と同様であり、第1調整ネジ10で2次曲線的な走査線曲がりを調整し、第2調整ネジ11で走査レンズ4によじれを発生させ3次関数的(奇数関数的)な走査線曲がり成分をも調整することができる。加えて、ステッピングモータ32の回転制御により、走査線の傾き調整も可能になっている。   In the case of the second embodiment shown in FIG. 6 as well, it is a premise that the sheet metal 21 is higher in rigidity than the scanning lens 4. The adjustment method is the same as the adjustment method of the first embodiment shown in FIG. 3, wherein the first adjustment screw 10 adjusts the scanning curve of the quadratic curve, and the second adjustment screw 11 distorts the scan lens 4. It is possible to adjust the scanning line bending component generated by a cubic function (odd function). In addition, the inclination of the scanning line can be adjusted by controlling the rotation of the stepping motor 32.

図5に、本発明にかかる走査光学系のシミュレーション結果を示す。このシミュレーションにおいて、調整前の曲線Aは、故意に走査レンズ4に外形形状の曲がりを発生させた状態でシミュレーションした結果である。次に、第1調整ネジ10及びステッピングモータ32により、傾き成分及び2次曲線的な走査線曲がりを調整した結果を曲線Bで表す。次に、第2調整ネジ11の締め具合により走査レンズ4をよじらせることで3次関数的な走査線曲がりを調整している。このシミュレーション結果から明らかなように、調整前に比べて傾き成分及び2次曲線的な走査線曲がりを調整することによって、走査線曲がりが大幅に改善され、第2調整ネジ11の締め具合により走査レンズ4をよじらせることで3次関数的な走査線曲がりを調整することにより、さらに良好に走査線曲がりが改善されていることがわかる。   FIG. 5 shows a simulation result of the scanning optical system according to the present invention. In this simulation, the curve A before adjustment is a result of simulation in a state in which the scanning lens 4 is intentionally bent. Next, a curve B represents the result of adjusting the tilt component and the scanning curve curve like a quadratic curve by the first adjusting screw 10 and the stepping motor 32. Next, the scanning line curve is adjusted by twisting the scanning lens 4 by tightening the second adjusting screw 11. As is apparent from the simulation results, the scan line bend is greatly improved by adjusting the tilt component and the scan line bend in the form of a quadratic curve as compared with those before the adjustment, and scanning is performed by tightening the second adjustment screw 11. It can be seen that the scan line curve is improved more satisfactorily by adjusting the scan line curve like a cubic function by twisting the lens 4.

なお、図6(c)に示すように、第2の調整ネジ11がねじ込まれている板金21の片側の走査レンズ受け部は、あらかじめ走査レンズ4をよじらせるように若干光軸方向に角度をつけている。こうすることで、走査レンズ4のよじれの調整範囲を大きくすることができる。板金21は、走査レンズ4に比べて十分剛性が高いことが前提である。走査レンズ4は例えば樹脂製である。
図1、図3、図6に示す実施例では、走査光学系が第1走査レンズと第2走査レンズから構成され、走査線曲がり補正手段としての調整ネジが第2走査レンズに設けられているが、上記補正手段は第1走査レンズに設けられていてもよい。また、走査光学系が1個の走査レンズで構成される場合は、この1個の走査レンズに上記補正手段が設けられることになる。要するに、少なくとも1枚の走査レンズが、走査線曲がりの2次関数的な成分を補正する手段を有し、かつ3次関数以上の奇数関数的な走査線曲がりの成分を補正する手段を有していればよい。
As shown in FIG. 6C, the scanning lens receiving portion on one side of the sheet metal 21 into which the second adjustment screw 11 is screwed is slightly inclined in the optical axis direction so that the scanning lens 4 is twisted in advance. Is attached. In this way, the kinking adjustment range of the scanning lens 4 can be increased. It is assumed that the sheet metal 21 has sufficiently high rigidity compared to the scanning lens 4. The scanning lens 4 is made of resin, for example.
In the embodiments shown in FIGS. 1, 3, and 6, the scanning optical system is composed of a first scanning lens and a second scanning lens, and an adjustment screw as scanning line bending correction means is provided in the second scanning lens. However, the correction means may be provided in the first scanning lens. When the scanning optical system is composed of one scanning lens, the correction means is provided for the one scanning lens. In short, at least one scanning lens has means for correcting the quadratic function component of the scanning line curve, and means for correcting the odd line function component of the cubic function or higher. It only has to be.

図1に示す光走査装置の例において、図3または図6に示すような調整機構を備えた走査光学系を採用することにより、走査線曲がりの少ない光走査装置を得ることができる。
また、図3または図6に示すような調整機構を備えた走査光学系を採用した光走査装置を画像形成装置に採用することにより、精細度の高い高品質の画像を形成することができる。特に、複数の色ごとの画像信号で画像を形成し、これらの画像を重ね合わせてカラー画像を得るようにしたカラー対応の画像形成装置に上記実施例にかかる走査光学系を備えた光走査装置を採用することにより、色ずれに少ない高品質のカラー画像を得ることができる。
In the example of the optical scanning device shown in FIG. 1, by employing a scanning optical system having an adjustment mechanism as shown in FIG. 3 or FIG. 6, an optical scanning device with less scanning line bending can be obtained.
In addition, by using an optical scanning apparatus that employs a scanning optical system having an adjustment mechanism as shown in FIG. 3 or 6 in the image forming apparatus, a high-definition and high-quality image can be formed. In particular, an optical scanning device provided with a scanning optical system according to the above embodiment in a color-compatible image forming apparatus that forms an image with image signals for a plurality of colors and superimposes these images to obtain a color image. By adopting, it is possible to obtain a high-quality color image with little color misregistration.

ここでいう画像形成装置とは、例えば、電子写真プロセスを実行することによって画像を形成する画像形成装置である。電子写真プロセスは、前述の被走査面である感光体を中心にして、これを均一に帯電する帯電装置、画像信号に従い露光して静電潜像を形成する露光装置、静電潜像をトナーで現像する現像装置、トナー像を転写紙などの転写媒体に転写する転写装置、転写媒体上のトナー像を定着する定着装置、転写後の残留トナーなどを除去するクリーニング装置を有してなる。上記露光装置として、図3または図6に示すような調整機構を備えた走査光学系を採用した光走査装置を採用することによって、上記のような効果を得ることができる画像形成装置を得ることができる。電子写真プロセスを実行することによって画像を形成する画像形成装置は周知であるから、図示は省略する。   The image forming apparatus referred to here is, for example, an image forming apparatus that forms an image by executing an electrophotographic process. The electrophotographic process consists of a charging device that uniformly charges the photosensitive member that is the surface to be scanned as described above, an exposure device that forms an electrostatic latent image by exposing in accordance with an image signal, and the electrostatic latent image is converted into toner. A developing device for developing the toner image, a transfer device for transferring the toner image onto a transfer medium such as transfer paper, a fixing device for fixing the toner image on the transfer medium, and a cleaning device for removing residual toner after transfer. By employing an optical scanning device employing a scanning optical system having an adjustment mechanism as shown in FIG. 3 or FIG. 6 as the exposure device, an image forming apparatus capable of obtaining the above-described effects can be obtained. Can do. Since an image forming apparatus that forms an image by executing an electrophotographic process is well known, illustration is omitted.

本発明にかかる光走査装置の実施例を示すもので、(a)は主走査対応方向から見た平面図、(b)は副走査対応方向から見た側面図である。1 shows an embodiment of an optical scanning device according to the present invention, where (a) is a plan view seen from a main scanning correspondence direction, and (b) is a side view seen from a sub-scanning correspondence direction. 走査光学系における走査レンズの一般的な調整方法を示す正面図である。It is a front view which shows the general adjustment method of the scanning lens in a scanning optical system. 本発明にかかる走査光学系の第1実施例を示すもので、(a)は正面図、(b)は(a)中の線a−a´に沿う断面図、(c)は(a)中の線b−b´に沿う断面図である。1 shows a first embodiment of a scanning optical system according to the present invention, where (a) is a front view, (b) is a cross-sectional view taken along line aa ′ in (a), and (c) is (a). It is sectional drawing in alignment with line bb 'in the inside. 走査線曲がりの例を示す特性線図で、(a)は3次関数的なS字型の走査線曲がりを、(b)は上記(a)の走査線曲がりを調整したあとの走査線曲がりを示す。FIG. 4 is a characteristic diagram showing an example of scanning line bending, where (a) shows a cubic function-like S-shaped scanning line bending, and (b) shows a scanning line bending after adjusting the scanning line bending in (a) above. Indicates. 走査線曲がり調整前と傾き及び2次曲線成分調整後とよじれ調整後における走査線曲がりの様子を比較して示す特性線図である。It is a characteristic diagram which compares and shows the state of a scanning line bend before a scan line bend adjustment, after a tilt and a quadratic curve component adjustment, and after a twist adjustment. 本発明にかかる走査光学系の第2実施例を示すもので、(a)は正面図、(b)は(a)中の線a−a´に沿う断面図、(c)は(a)中の線b−b´に沿う断面図である。2 shows a second embodiment of the scanning optical system according to the present invention, in which (a) is a front view, (b) is a sectional view taken along line aa ′ in (a), and (c) is (a). It is sectional drawing in alignment with line bb 'in the inside.

符号の説明Explanation of symbols

2 光偏向器
4 走査レンズ
10 第1調整ネジ
11 第2調整ネジ
2 Optical deflector 4 Scan lens 10 First adjustment screw 11 Second adjustment screw

Claims (7)

光偏向器により偏向される光束を被走査面近傍に集光させる走査光学系において、
上記走査光学系は少なくとも1枚の走査レンズからなり、少なくとも1枚の走査レンズは、走査線曲がりの2次関数的な成分を補正する手段を有し、かつ3次関数以上の奇数関数的な走査線曲がりの成分を補正する手段を有することを特徴とする走査光学系。
In the scanning optical system that focuses the light beam deflected by the optical deflector in the vicinity of the surface to be scanned,
The scanning optical system comprises at least one scanning lens, and at least one scanning lens has means for correcting a quadratic function component of scanning line bending, and is an odd function having a cubic function or higher. A scanning optical system comprising means for correcting a scanning line bending component.
請求項1記載の走査光学系において、走査線曲がりの2次関数的な成分を補正する手段は、少なくとも1枚の走査レンズのほぼ中央を走査面内にほぼ垂直な方向に押圧する手段であることを特徴とする走査光学系。 2. The scanning optical system according to claim 1, wherein means for correcting a quadratic function component of scanning line bending is means for pressing substantially the center of at least one scanning lens in a direction substantially perpendicular to the scanning plane. A scanning optical system. 請求項1または2記載の走査光学系において、補正する手段は、走査レンズの長手方向の端部で、走査レンズの光偏向器側または被走査面側を走査面内にほぼ垂直な方向に押圧することで走査レンズをよじらせることを特徴とする走査光学系。 3. The scanning optical system according to claim 1, wherein the correcting means presses the optical deflector side or the scanned surface side of the scanning lens in a direction substantially perpendicular to the scanning surface at an end portion in the longitudinal direction of the scanning lens. A scanning optical system characterized in that the scanning lens is twisted. 請求項1乃至3のいずれかに記載の走査光学系において、少なくとも1枚の走査レンズは、ほぼ中央の下面または上面を支点として回転可能に設けられることにより走査線の傾き調整が可能であることを特徴とする走査光学系。 4. The scanning optical system according to claim 1, wherein at least one scanning lens is provided so as to be rotatable about a central lower surface or upper surface as a fulcrum, so that the inclination of the scanning line can be adjusted. A scanning optical system. 光源からの光束を偏向する光偏向器と、光偏向器で偏向された光束を被走査面上に収束させて被走査面上を走査させる走査光学系を有する光走査装置において、上記走査光学系として請求項1乃至4のいずれかに記載の走査光学系を有することを特徴とする光走査装置。 An optical scanning device comprising: an optical deflector that deflects a light beam from a light source; and a scanning optical system that causes the light beam deflected by the optical deflector to converge on the scanned surface and scan the scanned surface. An optical scanning apparatus comprising the scanning optical system according to claim 1. 請求項5記載の光走査装置において、この光走査装置は、複数の走査光学系を有することを特徴とする光走査装置。 6. The optical scanning device according to claim 5, wherein the optical scanning device includes a plurality of scanning optical systems. 電子写真プロセスを実行することによって画像を形成する画像形成装置であって、電子写真プロセス中の露光プロセスを実行する装置として請求項5または6記載の光走査装置を用いたことを特徴とする画像形成装置。
7. An image forming apparatus for forming an image by executing an electrophotographic process, wherein the optical scanning device according to claim 5 or 6 is used as an apparatus for performing an exposure process in the electrophotographic process. Forming equipment.
JP2005177443A 2005-06-17 2005-06-17 Scanning optical system, optical scanning device, and image forming apparatus Pending JP2006350065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177443A JP2006350065A (en) 2005-06-17 2005-06-17 Scanning optical system, optical scanning device, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177443A JP2006350065A (en) 2005-06-17 2005-06-17 Scanning optical system, optical scanning device, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2006350065A true JP2006350065A (en) 2006-12-28

Family

ID=37645981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177443A Pending JP2006350065A (en) 2005-06-17 2005-06-17 Scanning optical system, optical scanning device, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2006350065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242447A (en) * 2010-05-14 2011-12-01 Sharp Corp Optical scanning device and image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090618A (en) * 1996-09-18 1998-04-10 Ricoh Co Ltd Optical write-in device
JP2000180773A (en) * 1998-12-15 2000-06-30 Fuji Xerox Co Ltd Optical scanner
JP2004012596A (en) * 2002-06-04 2004-01-15 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2004264396A (en) * 2003-02-28 2004-09-24 Ricoh Co Ltd Scanning lens for optical scanner, optical scanner, and image forming device
JP2004333803A (en) * 2003-05-07 2004-11-25 Ricoh Co Ltd Optical scanner and image formation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090618A (en) * 1996-09-18 1998-04-10 Ricoh Co Ltd Optical write-in device
JP2000180773A (en) * 1998-12-15 2000-06-30 Fuji Xerox Co Ltd Optical scanner
JP2004012596A (en) * 2002-06-04 2004-01-15 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2004264396A (en) * 2003-02-28 2004-09-24 Ricoh Co Ltd Scanning lens for optical scanner, optical scanner, and image forming device
JP2004333803A (en) * 2003-05-07 2004-11-25 Ricoh Co Ltd Optical scanner and image formation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242447A (en) * 2010-05-14 2011-12-01 Sharp Corp Optical scanning device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4885573B2 (en) Optical scanning apparatus and image forming apparatus
US8229323B2 (en) Scanning optical apparatus and image forming apparatus using the same, which are capable of reducing a change of an irradiation position of a light flux on a deflection unit
JP4378081B2 (en) Optical scanning device and image forming apparatus using the same
JP2007171626A (en) Optical scanner and image forming apparatus
JP2007065500A (en) Holding mechanism of optical element, optical scanner with same, and image forming apparatus
JP4434547B2 (en) Scanning optical device and image forming apparatus using the same
JP4878158B2 (en) Optical scanning device and image forming apparatus using the same
JP3343465B2 (en) Image forming device
JP2005134624A (en) Optical scanner and image forming apparatus using same
JP2006350094A (en) Optical scanner and image forming apparatus
US20030063359A1 (en) Optical scanner and image forming apparatus using the same
JP2006350065A (en) Scanning optical system, optical scanning device, and image forming apparatus
JP2006215267A (en) Optical scanner and image forming apparatus
JP2007219083A (en) Optical scanner and image forming apparatus using the same
JP2011081277A (en) Scanning optical device
JP4534577B2 (en) Optical scanning apparatus and image forming apparatus
JP2003156704A (en) Optical scanner and image forming device using the same
JP2012133325A (en) Optical scanner and image forming apparatus
JP2008257194A (en) Optical scanner and image forming apparatus provided with optical scanner
JP4340558B2 (en) Optical scanning apparatus and image forming apparatus
JP5094221B2 (en) Optical scanning device and image forming apparatus using the same
JP4515842B2 (en) Color image forming apparatus
JP5041668B2 (en) Optical scanning apparatus and image forming apparatus
JP5240036B2 (en) Optical scanning apparatus and image forming apparatus
JP2004317790A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A131 Notification of reasons for refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD13 Notification of appointment of power of sub attorney

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A7433

A521 Written amendment

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A02