JP2006349472A - Radar system and its signal processing method - Google Patents

Radar system and its signal processing method Download PDF

Info

Publication number
JP2006349472A
JP2006349472A JP2005175265A JP2005175265A JP2006349472A JP 2006349472 A JP2006349472 A JP 2006349472A JP 2005175265 A JP2005175265 A JP 2005175265A JP 2005175265 A JP2005175265 A JP 2005175265A JP 2006349472 A JP2006349472 A JP 2006349472A
Authority
JP
Japan
Prior art keywords
power
velocity
vector
doppler
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005175265A
Other languages
Japanese (ja)
Other versions
JP4836497B2 (en
Inventor
Junichi Horigome
淳一 堀込
Masakazu Wada
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005175265A priority Critical patent/JP4836497B2/en
Publication of JP2006349472A publication Critical patent/JP2006349472A/en
Application granted granted Critical
Publication of JP4836497B2 publication Critical patent/JP4836497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate the Doppler velocity of high reliability even at the time, the deviation of velocity distribution is large or folding of the velocity is occurred. <P>SOLUTION: The Doppler velocity calculation process is constituted such that: the velocity spectrum representing the power intensity distribution of the Doppler velocity value of each power intensity is transformed into the power vector of the polar coordinate system (step S3a); the resultant power vector of the polar coordinate is composited then the power resultant vector is obtained (step S3b); the angle of deviation of the above obtained power resultant vector is calculated (step S3c); and the Doppler velocity is calculated based on the deviation angle of the power resultant vector (step S3d). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば、雨や雲の動的な状況をとらえるドップラ気象レーダに用いられるレーダ装置とその信号処理方法に関する。   The present invention relates to a radar apparatus used in a Doppler weather radar that captures dynamic conditions of rain and clouds, for example, and a signal processing method thereof.

従来、ドップラレーダでターゲットの速度を求める方式の一つとして、FFT(Fast Fourier Transform)が用いられている。FFT方式は、高速のDSP(Digital Signal Processor)が登場し、信号処理がソフトウェア的にリアルタイムで処理できるようになったことから実用化された。FFT方式は、受信される位相信号を周波数領域(速度領域)に変換し、速度スペクトルの最大値を読み取ることによりドップラ速度を検出する方式である(例えば、非特許文献1を参照。)。
東芝レビュー 55巻5号、2000年5月1日発行、「ドップラ気象レーダ」、p.28−30
Conventionally, FFT (Fast Fourier Transform) is used as one of the methods for obtaining the target velocity by Doppler radar. The FFT method has been put to practical use because a high-speed DSP (Digital Signal Processor) has appeared and signal processing can be performed in real time by software. The FFT method is a method of detecting a Doppler velocity by converting a received phase signal into a frequency domain (speed domain) and reading a maximum value of a velocity spectrum (see, for example, Non-Patent Document 1).
Toshiba Review, Volume 55, Issue 5, May 1, 2000, “Doppler Weather Radar”, p. 28-30

ところが、気象エコーのような受信波のばらつきが大きいターゲットからドップラ速度を求める際、従来のFFT方式による信号処理方式では、ばらつきの大きさが速度精度に大きく影響してきた。気象エコーのようにターゲットの速度が乱れている場合、得られる速度スペクトルも乱れているため、例えば、ピーク検出や電力平均のような通常の速度算出方法では、ばらつきが大きいことやナイキスト速度付近の速度の折り返しにより、得られる速度精度が悪くなるという問題があった。   However, when obtaining the Doppler velocity from a target having a large variation in received waves such as weather echoes, in the signal processing method using the conventional FFT method, the size of the variation greatly affects the velocity accuracy. When the target speed is disturbed, such as weather echo, the obtained speed spectrum is also disturbed.For example, normal speed calculation methods such as peak detection and power average have large variations and are near the Nyquist speed. There is a problem that the obtained speed accuracy is deteriorated due to the return of the speed.

この発明は上記事情に着目してなされたもので、その目的とするところは、観測対象の速度分布のばらつきが大きい場合や速度の折返しが発生した場合でも、信頼性の高いドップラ速度を算出できるレーダ装置とその信号処理方法を提供することができる。   The present invention has been made by paying attention to the above circumstances, and the object of the present invention is to calculate a highly reliable Doppler velocity even when there is a large variation in the velocity distribution of the observation target or when a turnback of the velocity occurs. A radar apparatus and a signal processing method thereof can be provided.

上記目的を達成するためにこの発明に係わるレーダ装置は、レーダパルスを送信しレーダエコーを受信する送受信部と、上記レーダエコーの受信信号から複数のドップラ速度値それぞれの電力強度分布を示す速度スペクトルを求め、この速度スペクトルに基づいてターゲットのドップラ速度を算出する信号処理部とを備える。そして、上記信号処理部は、上記速度スペクトルのドップラ速度値それぞれの電力強度を極座標系の電力ベクトルに変換し、変換された電力ベクトルを合成することにより電力合成ベクトルを求め、この電力合成ベクトルをもとにターゲットのドップラ速度を算出するものである。   To achieve the above object, a radar apparatus according to the present invention includes a transmission / reception unit for transmitting radar pulses and receiving radar echoes, and a velocity spectrum indicating power intensity distributions of a plurality of Doppler velocity values from the received signals of the radar echoes. And a signal processing unit that calculates the Doppler velocity of the target based on the velocity spectrum. The signal processing unit converts the power intensity of each of the Doppler velocity values of the velocity spectrum into a power vector of a polar coordinate system, obtains a power synthesis vector by synthesizing the converted power vector, and obtains the power synthesis vector. Based on this, the Doppler speed of the target is calculated.

また、この発明に係わる信号処理方法は、レーダパルスを送信しレーダエコーを受信するレーダ装置に用いられる信号処理方法において、上記レーダエコーの受信信号から複数のドップラ速度値それぞれの電力強度分布を示す速度スペクトルを求め、この速度スペクトルに基づいてターゲットのドップラ速度を算出する信号処理ステップを備える。そして、上記信号処理ステップは、上記速度スペクトルのドップラ速度値それぞれの電力強度を極座標系の電力ベクトルに変換して、変換された電力ベクトルを合成することにより電力合成ベクトルを求め、この電力合成ベクトルをもとにターゲットのドップラ速度を算出するものである。   The signal processing method according to the present invention is a signal processing method used in a radar apparatus that transmits radar pulses and receives radar echoes, and shows power intensity distributions of a plurality of Doppler velocity values from the received signals of the radar echoes. A signal processing step is provided for obtaining a velocity spectrum and calculating a Doppler velocity of the target based on the velocity spectrum. Then, the signal processing step converts the power intensity of each of the Doppler velocity values of the velocity spectrum into a power vector of a polar coordinate system, obtains a power synthesized vector by synthesizing the converted power vector, and this power synthesized vector Based on the above, the Doppler speed of the target is calculated.

上記構成によるレーダ装置及び信号処理方法では、速度スペクトルを極座標系の電力強度分布に変換して、各電力ベクトルの加重平均を算出することにより、ターゲットのドップラ速度を算出している。これにより、従来行われていた速度スペクトルの単なるピーク検出や電力平均と比較すると、速度分布のばらつきが大きい場合や速度の折返しがある場合にも信頼性の高いドップラ速度を算出することが可能となる。   In the radar apparatus and the signal processing method configured as described above, the Doppler velocity of the target is calculated by converting the velocity spectrum into the power intensity distribution of the polar coordinate system and calculating the weighted average of each power vector. This makes it possible to calculate a highly reliable Doppler velocity even when there is a large variation in velocity distribution or when there is a turnback, compared to conventional peak detection or average power in the velocity spectrum. Become.

したがって、この発明によれば、観測対象の速度分布のばらつきが大きい場合や速度の折返しが発生した場合でも、信頼性の高いドップラ速度を算出できるレーダ装置とその信号処理方法を提供することができる。   Therefore, according to the present invention, it is possible to provide a radar device and a signal processing method thereof that can calculate a Doppler velocity with high reliability even when the variation in the velocity distribution of the observation target is large or when a return of velocity occurs. .

図1は、この発明に係わるレーダ装置の一実施形態を示す機能ブロック図である。
変調部12は、信号処理部11からインタフェース(I/F)を介して与えられる制御のもと、指定された変調方式の中間周波信号のディジタル値を生成する。このディジタル値は、D/A変換部13においてアナログ値に変換され、送信中間周波数信号(fi)が生成される。生成された送信中間周波数信号は、送受信部14においてレーダパルスの送信周波数にまでアップコンバートされ、電力増幅されたのち空中線15から空間に送出される。
FIG. 1 is a functional block diagram showing an embodiment of a radar apparatus according to the present invention.
The modulation unit 12 generates a digital value of an intermediate frequency signal of a designated modulation system under the control given from the signal processing unit 11 via the interface (I / F). This digital value is converted into an analog value by the D / A converter 13 to generate a transmission intermediate frequency signal (fi). The generated transmission intermediate frequency signal is up-converted to the transmission frequency of the radar pulse in the transmission / reception unit 14, and after power amplification, is transmitted from the antenna 15 to the space.

空中線15から送出された周波数f0のレーダパルスは、雨粒などのターゲットにより反射され、レーダエコーが戻ってくる。このレーダエコーはターゲットの移動速度を反映するドップラ周波数(fd)を伴い、その受信周波数は(f0+fd)と表される。レーダエコーは、空中線15を介して送受信部14に到来し、増幅されたのちダウンコンバートされて(fi+fd)の受信中間周波数信号が生成される。この受信中間周波数信号はA/D変換部16によりディジタル値に変換されたのち復調部17により直交検波される。   The radar pulse with the frequency f0 transmitted from the antenna 15 is reflected by a target such as raindrops, and the radar echo returns. This radar echo is accompanied by a Doppler frequency (fd) reflecting the moving speed of the target, and the reception frequency is represented as (f0 + fd). The radar echo arrives at the transmitter / receiver 14 via the antenna 15 and is amplified and then down-converted to generate a reception intermediate frequency signal of (fi + fd). This received intermediate frequency signal is converted into a digital value by the A / D converter 16 and then subjected to quadrature detection by the demodulator 17.

さらに、直交検波された信号は、復調部17において複数の変調方式により復調される。これにより得られたI成分(同相成分)およびQ成分(直交位相成分)の受信データは、インタフェース(I/F)を介して信号処理部11に与えられる。信号処理部11は受信データからエコーの反射強度、ターゲットの速度および速度幅などの観測データを算出する。特に、受信データに対してFFT処理を行うことにより得られる速度スペクトルから、ターゲットのドップラ速度を算出することができる。   Further, the quadrature-detected signal is demodulated by the demodulation unit 17 by a plurality of modulation methods. The received data of the I component (in-phase component) and Q component (quadrature phase component) obtained in this way is given to the signal processing unit 11 via the interface (I / F). The signal processing unit 11 calculates observation data such as echo reflection intensity, target velocity and velocity width from the received data. In particular, the target Doppler velocity can be calculated from the velocity spectrum obtained by performing the FFT process on the received data.

図2は、図1のレーダ装置の処理手順を示す流れ図である。受信信号は、A/D変換されたのち、直交検波され、I成分(同相成分)、Q成分(直交位相成分)の信号がそれぞれ出力される。さらに、信号処理部11では、出力されたI/Q信号に対して、FFT処理を行う。このFFT処理では、上記I/Q信号を周波数領域に変換し、速度スペクトルを得ることができる。このようにして得られる速度スペクトルをもとにターゲットのドップラ速度を検出する。   FIG. 2 is a flowchart showing a processing procedure of the radar apparatus of FIG. The received signal is A / D converted and then subjected to quadrature detection, and I component (in-phase component) and Q component (quadrature phase component) signals are output. Further, the signal processing unit 11 performs FFT processing on the output I / Q signal. In this FFT processing, the I / Q signal can be converted into the frequency domain to obtain a velocity spectrum. Based on the velocity spectrum thus obtained, the Doppler velocity of the target is detected.

次に、図3及び図4を参照して信号処理部11が行うドップラ速度の算出処理について説明する。図3は、ドップラ速度算出処理の手順とその内容を示すフローチャートである。また、図4には、ドップラ速度算出処理の概念図を示す。
はじめに、ステップS3aにおいて、上述したFFT処理により得られる速度スペクトルのドップラ速度値それぞれの電力強度を極座標系の電力ベクトルに変換する。この様子を図4のP1〜P8で示す。次に、ステップS3bにおいて、上記変換された極座標系の電力ベクトル(P1〜P8)を合成し、電力合成ベクトル(P)を求める。そして、ステップS3cにおいて、上記求められた電力合成ベクトルの偏角を求め、この偏角をもとにステップS3dによりドップラ速度を算出する。このような手順で、図4に示すようにドップラ速度が求められる。
Next, the Doppler speed calculation process performed by the signal processing unit 11 will be described with reference to FIGS. 3 and 4. FIG. 3 is a flowchart showing the procedure and contents of the Doppler velocity calculation process. FIG. 4 is a conceptual diagram of the Doppler speed calculation process.
First, in step S3a, the power intensity of each of the Doppler velocity values of the velocity spectrum obtained by the FFT process described above is converted into a power vector in the polar coordinate system. This is indicated by P1 to P8 in FIG. Next, in step S3b, the converted polar coordinate system power vectors (P1 to P8) are synthesized to obtain a power synthesis vector (P). In step S3c, the deviation angle of the obtained power combined vector is obtained, and the Doppler velocity is calculated in step S3d based on this deviation angle. With such a procedure, the Doppler speed is obtained as shown in FIG.

以下に数式を用いて具体的な処理方法について述べる。
−Vmax≦Vi≦Vmaxのドップラ速度を、次式により−π≦θi≦πの角度に置き換えて、極座標系での電力分布に変換する。
θi=πVi/Vmax …(1)
式(1)において、θiは電力ベクトルの偏角[rad]、Viはドップラ速度、Vmaxはナイキスト速度を表す。
A specific processing method will be described below using mathematical expressions.
The Doppler velocity of −Vmax ≦ Vi ≦ Vmax is replaced with an angle of −π ≦ θi ≦ π by the following equation to convert it into a power distribution in the polar coordinate system.
θi = πVi / Vmax (1)
In Equation (1), θi represents the deflection angle [rad] of the power vector, Vi represents the Doppler velocity, and Vmax represents the Nyquist velocity.

次に、上記置き換えられた電力ベクトルの分布を次式によりベクトル合成する。   Next, the replaced power vector distribution is vector synthesized by the following equation.

Pv=Preal+jPimage …(2)
Preal=Σ(Pi・cosθi) …(3)
Pimage=Σ(Pi・sinθi) …(4)
ここで、Pvはドップラ速度の強度合成ベクトル、Prealは電力合成ベクトルの実数部、Pimageは電力合成ベクトルの虚数部である。また、Piは各速度毎の電力値、θiは各電力ベクトルの偏角[rad]である。
Pv = Preal + jPimage (2)
Preal = Σ (Pi · cosθi) (3)
Pimage = Σ (Pi · sinθi) (4)
Here, Pv is an intensity composite vector of Doppler velocity, Preal is a real part of the power composite vector, and Pimage is an imaginary part of the power composite vector. Pi is the power value for each speed, and θi is the deflection angle [rad] of each power vector.

そうすると、電力合成ベクトルの偏角θavgは、次式により算出できる。
θavg=arc tan(Pimage/Preal) …(5)
式(5)により求められた電力合成ベクトルの偏角θavgをもとに、次式によりドップラ速度vを算出する。
v=Vmax・θavg/π …(6)
以上述べたように、この発明の上記実施形態では、電力強度分布を示す速度スペクトルのドップラ速度値それぞれの電力強度を極座標系の電力ベクトルに変換する。次に、上記変換された極座標系の電力ベクトルを合成し、電力合成ベクトルを求める。そして、求められた電力合成ベクトルの偏角を求め、この電力合成ベクトルの偏角をもとにドップラ速度を算出するものである。
Then, the deflection angle θavg of the power combined vector can be calculated by the following equation.
θavg = arc tan (Pimage / Preal) (5)
Based on the deviation angle θavg of the power combined vector obtained by the equation (5), the Doppler velocity v is calculated by the following equation.
v = Vmax · θavg / π (6)
As described above, in the above-described embodiment of the present invention, the power intensity of each Doppler velocity value of the velocity spectrum indicating the power intensity distribution is converted into a power vector of the polar coordinate system. Next, the power vector of the converted polar coordinate system is synthesized to obtain a power synthesis vector. Then, the deviation angle of the obtained power combination vector is obtained, and the Doppler velocity is calculated based on the deviation angle of the power combination vector.

この発明は、特に次のような場合に効果を発揮する。例えば、速度スペクトルに大きなばらつきがある場合に、単なるピーク検出によりドップラ速度を求めると、速度分布にかかわらず読み取った最大値によりドップラ速度が検出されてしまう。これに対し本発明では、速度分布の広い範囲の電力強度を用いてドップラ速度を算出するため、信頼性の高いドップラ速度値を求めることができる。   The present invention is particularly effective in the following cases. For example, when the Doppler velocity is obtained by simple peak detection when there is a large variation in the velocity spectrum, the Doppler velocity is detected by the maximum value read regardless of the velocity distribution. On the other hand, in the present invention, since the Doppler velocity is calculated using the power intensity in a wide range of velocity distribution, a highly reliable Doppler velocity value can be obtained.

また、速度スペクトルに速度の折返しが発生した場合にも有効である。図5に速度の折返しが発生した場合における本発明のドップラ速度算出処理の概念図を示す。従来のように速度スペクトルの電力分布を単純に平均して速度を求めると、ターゲットのドップラ速度が大きくなった場合、ナイキスト速度を超える領域が折り返してしまい正しいドップラ速度値が得られない。しかしながら、図5に示すように、速度スペクトルを一旦極座標系の電力ベクトル分布に変換することにより、折返し付近の速度を正確に求めることができる。   It is also effective when speed wrapping occurs in the speed spectrum. FIG. 5 shows a conceptual diagram of the Doppler speed calculation processing of the present invention when the return of speed occurs. When the speed is obtained by simply averaging the power distribution of the speed spectrum as in the prior art, when the Doppler speed of the target increases, the region exceeding the Nyquist speed is folded back, and a correct Doppler speed value cannot be obtained. However, as shown in FIG. 5, the velocity near the turn-back can be accurately obtained by once converting the velocity spectrum into the power vector distribution of the polar coordinate system.

したがってこの発明によれば、従来行われていた速度スペクトルの単なるピーク検出や電力平均と比較すると、速度分布のばらつきが大きい場合や速度の折返しがある場合にも信頼性の高いドップラ速度を算出することが可能となる。   Therefore, according to the present invention, when compared with the conventional simple peak detection and power average of the speed spectrum, a highly reliable Doppler speed is calculated even when there is a large variation in speed distribution or when there is a return of speed. It becomes possible.

なお、この発明は上記実施の形態に限定されるものではない。例えば図1においてD/A変換部13、およびA/Dの変換部16の機能は、他の機能ブロックに併せ持たせることもできる。また本発明は、気象レーダに限定されることなく他のドップラレーダにも適用することができる。   The present invention is not limited to the above embodiment. For example, in FIG. 1, the functions of the D / A conversion unit 13 and the A / D conversion unit 16 can be combined with other functional blocks. The present invention is not limited to a weather radar but can be applied to other Doppler radars.

要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

この発明に係わるレーダ装置の一実施形態を示す機能ブロック図。The functional block diagram which shows one Embodiment of the radar apparatus concerning this invention. 図1に示すレーダ装置の信号処理手順を示す図。The figure which shows the signal processing procedure of the radar apparatus shown in FIG. 図1に示すレーダ装置のドップラ速度算出処理の手順とその内容を示すフローチャート。The flowchart which shows the procedure of the Doppler speed calculation process of the radar apparatus shown in FIG. 1, and its content. 図1に示すレーダ装置のドップラ速度算出処理を示す概念図。The conceptual diagram which shows the Doppler speed calculation process of the radar apparatus shown in FIG. 図1に示すレーダ装置のドップラ速度算出処理を示す概念図。The conceptual diagram which shows the Doppler speed calculation process of the radar apparatus shown in FIG.

符号の説明Explanation of symbols

11…信号処理部、12…変調部、13…D/A変換部、14…送受信部、15…空中線、16…A/D変換部、17…復調部。   DESCRIPTION OF SYMBOLS 11 ... Signal processing part, 12 ... Modulation part, 13 ... D / A conversion part, 14 ... Transmission / reception part, 15 ... Antenna, 16 ... A / D conversion part, 17 ... Demodulation part

Claims (2)

レーダパルスを送信しレーダエコーを受信する送受信部と、
前記レーダエコーの受信信号から複数のドップラ速度値それぞれの電力強度分布を示す速度スペクトルを求め、この速度スペクトルに基づいてターゲットのドップラ速度を算出する信号処理部と
を具備し、
前記信号処理部は、
前記速度スペクトルのドップラ速度値それぞれの電力強度を極座標系の電力ベクトルに変換する変換手段と、
前記電力ベクトルを合成することにより電力合成ベクトルを求める合成手段と、
前記電力合成ベクトルをもとにターゲットのドップラ速度を算出する算出手段と
を備えることを特徴とするレーダ装置。
A transmission / reception unit for transmitting radar pulses and receiving radar echoes;
A signal processing unit that obtains a velocity spectrum indicating a power intensity distribution of each of a plurality of Doppler velocity values from the received signal of the radar echo, and calculates a Doppler velocity of a target based on the velocity spectrum;
The signal processing unit
Conversion means for converting the power intensity of each of the Doppler velocity values of the velocity spectrum into a power vector of a polar coordinate system;
Combining means for determining a power combined vector by combining the power vector;
A radar apparatus comprising: a calculating unit that calculates a Doppler velocity of a target based on the power combined vector.
レーダパルスを送信しレーダエコーを受信するレーダ装置に用いられる信号処理方法において、
前記レーダエコーの受信信号から複数のドップラ速度値それぞれの電力強度分布を示す速度スペクトルを求め、この速度スペクトルに基づいてターゲットのドップラ速度を算出する信号処理ステップを備え、
前記信号処理ステップは、
前記速度スペクトルのドップラ速度値それぞれの電力強度を極座標系の電力ベクトルに変換する変換ステップと、
前記電力ベクトルを合成することにより電力合成ベクトルを求める合成ステップと、
前記電力合成ベクトルをもとにターゲットのドップラ速度を算出する算出ステップと
を備えることを特徴とする信号処理方法。
In a signal processing method used in a radar apparatus that transmits radar pulses and receives radar echoes,
A signal processing step of obtaining a velocity spectrum indicating a power intensity distribution of each of a plurality of Doppler velocity values from the received signal of the radar echo, and calculating a Doppler velocity of the target based on the velocity spectrum;
The signal processing step includes
Converting the power intensity of each of the Doppler velocity values of the velocity spectrum into a power vector of a polar coordinate system;
A combining step of determining a power combined vector by combining the power vector;
And a calculation step of calculating a target Doppler velocity based on the power combined vector.
JP2005175265A 2005-06-15 2005-06-15 Radar apparatus and signal processing method thereof Active JP4836497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175265A JP4836497B2 (en) 2005-06-15 2005-06-15 Radar apparatus and signal processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175265A JP4836497B2 (en) 2005-06-15 2005-06-15 Radar apparatus and signal processing method thereof

Publications (2)

Publication Number Publication Date
JP2006349472A true JP2006349472A (en) 2006-12-28
JP4836497B2 JP4836497B2 (en) 2011-12-14

Family

ID=37645491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175265A Active JP4836497B2 (en) 2005-06-15 2005-06-15 Radar apparatus and signal processing method thereof

Country Status (1)

Country Link
JP (1) JP4836497B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349471A (en) * 2005-06-15 2006-12-28 Toshiba Corp Radar system and its signal processing method
JP2007298406A (en) * 2006-04-28 2007-11-15 Toshiba Corp Radar apparatus and signal processing method therefor
JP2013192048A (en) * 2012-03-14 2013-09-26 Oki Electric Ind Co Ltd Amplitude correction device, radio communication device, and amplitude correction method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2593457C1 (en) * 2015-08-21 2016-08-10 Георгий Галиуллович Валеев Method of measuring relative velocity of object
RU2592259C1 (en) * 2015-08-21 2016-07-20 Ирина Викторовна Гагарина Method of measuring relative speed of object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152465A (en) * 1994-11-30 1996-06-11 Tech Res & Dev Inst Of Japan Def Agency Method and apparatus for detection of signal
JPH1152038A (en) * 1997-08-05 1999-02-26 Nec Corp System for detecting signal
JP2002131421A (en) * 2000-10-24 2002-05-09 Mitsubishi Electric Corp Radar signal processing device and method thereof
JP2006234580A (en) * 2005-02-24 2006-09-07 Toshiba Corp Weather radar system, and signal processing method used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152465A (en) * 1994-11-30 1996-06-11 Tech Res & Dev Inst Of Japan Def Agency Method and apparatus for detection of signal
JPH1152038A (en) * 1997-08-05 1999-02-26 Nec Corp System for detecting signal
JP2002131421A (en) * 2000-10-24 2002-05-09 Mitsubishi Electric Corp Radar signal processing device and method thereof
JP2006234580A (en) * 2005-02-24 2006-09-07 Toshiba Corp Weather radar system, and signal processing method used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349471A (en) * 2005-06-15 2006-12-28 Toshiba Corp Radar system and its signal processing method
JP2007298406A (en) * 2006-04-28 2007-11-15 Toshiba Corp Radar apparatus and signal processing method therefor
JP2013192048A (en) * 2012-03-14 2013-09-26 Oki Electric Ind Co Ltd Amplitude correction device, radio communication device, and amplitude correction method

Also Published As

Publication number Publication date
JP4836497B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP2008014837A (en) Radar system and its signal processing method
JP5847423B2 (en) Range sidelobe removal apparatus, signal processing apparatus, radar apparatus equipped with the signal processing apparatus, range sidelobe removal method, and program
JP5111778B2 (en) Radar apparatus and signal processing method thereof
JP5980587B2 (en) Radar apparatus and reflected signal processing method
JP5628590B2 (en) Interference canceling apparatus, signal processing apparatus, radar apparatus, interference canceling method and program
JP4836497B2 (en) Radar apparatus and signal processing method thereof
JP2007322331A (en) Radar device
US9513369B2 (en) Radar device and velocity calculation method
JP6192151B2 (en) Signal sorting apparatus, signal sorting method, and radar apparatus.
JP6279193B2 (en) Object detection device and sensor device
JP2016138787A (en) Passive radar device
JP4836496B2 (en) Radar apparatus and signal processing method thereof
JPH1078481A (en) Aircraft loaded radar
JP5355321B2 (en) Interference wave detection apparatus and interference wave detection method
JP6413264B2 (en) Radar apparatus and control method thereof
JP2010175457A (en) Radar apparatus
JP2013167580A (en) Target speed measuring device, signal processing apparatus, radar device, target speed measuring method, and program
JP6043083B2 (en) Target motion estimation device, target motion estimation method, and radar device
JP3799337B2 (en) FM-CW radar apparatus and interference wave removing method in the apparatus
JP4746436B2 (en) Radar apparatus and signal processing method thereof
JP5196959B2 (en) Radar equipment
JP2011133406A (en) Observation signal processing apparatus
JP2007313322A (en) Ultrasonic diagnostic system and method for generating iq data without quadrature demodulator
EP3835822B1 (en) Signal processing device and signal processing method
JP2005017143A (en) Meteorological radar signal processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4836497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3