JP2006348873A - Egr cooler - Google Patents

Egr cooler Download PDF

Info

Publication number
JP2006348873A
JP2006348873A JP2005177378A JP2005177378A JP2006348873A JP 2006348873 A JP2006348873 A JP 2006348873A JP 2005177378 A JP2005177378 A JP 2005177378A JP 2005177378 A JP2005177378 A JP 2005177378A JP 2006348873 A JP2006348873 A JP 2006348873A
Authority
JP
Japan
Prior art keywords
egr
oil
passage
egr gas
egr cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177378A
Other languages
Japanese (ja)
Inventor
Haruyuki Katayama
晴之 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005177378A priority Critical patent/JP2006348873A/en
Publication of JP2006348873A publication Critical patent/JP2006348873A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR cooler having improved collecting efficiency while preventing the deposition of unburnt components without the need for special facilities. <P>SOLUTION: The EGR cooler 26 cools part of exhaust gas from an internal combustion engine 100 and recirculates it as EGR gas into intake air I for cooling operation in an EGR device. It comprises a solvent coat T coating a wall face S of a passage 38 for the EGR gas G. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関のためのEGR装置に用いるEGRクーラに関する。   The present invention relates to an EGR cooler used in an EGR device for an internal combustion engine.

EGR装置は、内燃機関からの排気の一部を適温まで冷却して吸気系へ再循環させる装置であり、EGRクーラは上記の冷却を行なうための熱交換器である。再循環される排気(EGRガス)は燃焼済のガスであり大部分が不活性ガス(HO、N、CO等)なので、これを冷却して燃焼混合気中に入れると、不活性ガスの熱容量により最高燃焼温度が低下するため、NOxが低減される。 The EGR device is a device that cools a part of the exhaust gas from the internal combustion engine to an appropriate temperature and recirculates it to the intake system, and the EGR cooler is a heat exchanger for performing the above cooling. The recirculated exhaust gas (EGR gas) is a burned gas, and most of it is an inert gas (H 2 O, N 2 , CO 2, etc.). Since the maximum combustion temperature is lowered by the heat capacity of the active gas, NOx is reduced.

しかし、EGRガス中には微量の未燃焼の燃料分が含まれていて、EGRクーラ内で凝縮・液化してEGRクーラのEGRガス通路壁面に連続した液膜として付着し、更にそこに煤等が付着・堆積する。その結果、EGRガスとの伝熱面である通路壁面が付着・堆積層に覆われてしまい、EGRクーラの冷却性能が低下する。同時に、EGRクーラの下流側にある吸気系入口のEGRバルブに同様の付着・堆積が発生し、バルブの作動不良を引き起こす。   However, the EGR gas contains a small amount of unburned fuel, which is condensed and liquefied in the EGR cooler and adheres as a continuous liquid film to the wall of the EGR gas passage of the EGR cooler. Adheres and accumulates. As a result, the passage wall surface, which is a heat transfer surface with the EGR gas, is covered with the adhesion / deposition layer, and the cooling performance of the EGR cooler is deteriorated. At the same time, similar adhesion / deposition occurs on the EGR valve at the inlet of the intake system on the downstream side of the EGR cooler, causing malfunction of the valve.

その対策として、特許文献1には、排気ガス中に放電によりプラズマを発生させて未燃焼成分を酸化分解することが提案されている。しかし、これには大掛かりなプラズマ発生装置が必要であるため実用性に欠ける。   As a countermeasure, Patent Document 1 proposes that plasma is generated by discharge in exhaust gas to oxidatively decompose unburned components. However, this requires a large-scale plasma generator and lacks practicality.

また特許文献2には、EGRクーラ内に付着する煤を酸化除去することが提案されている。しかし、この方法も特別な付帯設備を必要とする点でやはり実用上不利である。   Patent Document 2 proposes oxidizing and removing the soot adhering in the EGR cooler. However, this method is also disadvantageous in practice because it requires special incidental equipment.

特開2004−340048JP 2004-340048 A 特開2003−336549JP 2003-336549 A

本発明は、上記従来技術の欠点を解消し、特別な設備を必要とせずに、未燃焼成分の付着を防止し回収効率を高めたEGRクーラを提供することを目的とする。   An object of the present invention is to provide an EGR cooler that eliminates the above-mentioned drawbacks of the prior art and prevents the adhesion of unburned components and improves the recovery efficiency without requiring special equipment.

上記の目的を達成するために、本発明のEGRクーラは、内燃機関の排気の一部を冷却してEGRガスとして吸気側へ再循環させるEGR装置内で上記冷却を行なうEGRクーラにおいて、
上記EGRガスの通路の壁面に撥油被膜を被覆したことを特徴とする。
In order to achieve the above object, an EGR cooler according to the present invention is an EGR cooler that performs the above cooling in an EGR device that cools a part of exhaust gas of an internal combustion engine and recirculates it as EGR gas to the intake side.
An oil repellent film is coated on the wall surface of the EGR gas passage.

EGRガス通路の壁面に撥油被膜を被覆してあるので、壁面に接触して凝縮し液化した油分は液膜状には広がらずに液滴となり、重力によって壁面から直ちに落下し離脱する。そのため、従来のように壁面が液膜で覆われることが無く常に露出していて、EGRガスに対する伝熱面として実効作用が維持される。このように、EGRガス通路壁面でEGRガス中の未燃焼成分→液滴生成→落下離脱の機構が安定して持続するため、液膜や煤の付着・堆積が発生することがなく、EGRクーラの冷却性能が良好に維持される。   Since the oil repellent coating is coated on the wall surface of the EGR gas passage, the oil component condensed and liquefied by contact with the wall surface becomes droplets without spreading in the form of a liquid film, and immediately falls from the wall surface by gravity and leaves. Therefore, the wall surface is not always covered with a liquid film as in the prior art, and is always exposed, and the effective action is maintained as a heat transfer surface for EGR gas. In this way, the mechanism of unburned components in EGR gas → droplet generation → falling / leaving is stably maintained on the wall surface of the EGR gas passage, so that no adhesion or deposition of liquid film or soot occurs, and the EGR cooler The cooling performance is maintained well.

また、液化した高温の油分がEGRガスから分離されるので、EGRガス温度の低下が促進される。   Moreover, since the liquefied high temperature oil component is isolate | separated from EGR gas, the fall of EGR gas temperature is accelerated | stimulated.

本発明のEGRクーラにおいては、撥油被膜を被覆した通路より下流側に未燃焼燃料を含む油分の捕集手段を設けることが望ましい。   In the EGR cooler of the present invention, it is desirable to provide oil collecting means including unburned fuel downstream from the passage coated with the oil repellent coating.

これにより、未燃焼成分が液化した油分がそのまま吸気系に還流することを容易に防止できる。   Thereby, it is possible to easily prevent the oil component in which the unburned component has been liquefied from returning to the intake system.

本発明のEGRクーラの典型的な実施形態の一つにおいては、
ターボチャージャより上流側の排気流路から分岐した取入流路の先端に接続されたEGRガス流入口、
冷却され未燃焼燃料含有油分を分離されたEGRガスを吸気へ導く供給流路の始端部に接続されたEGRガス流出口、および
上記捕集手段により捕集された未燃焼燃料含有油分を上記ターボチャージャより下流側の排気流路に合流させるための油分通路、
を備えている。
In one exemplary embodiment of the EGR cooler of the present invention,
An EGR gas inlet connected to the tip of the intake passage branched from the exhaust passage upstream of the turbocharger,
The EGR gas outlet connected to the start end of the supply flow path that guides the cooled EGR gas separated from the unburned fuel-containing oil, and the unburned fuel-containing oil collected by the collecting means to the turbo An oil passage for joining the exhaust passage downstream of the charger;
It has.

EGRクーラへのEGRガス取り入れ部位であるターボチャージャの上流側は、EGRクーラで液化した油分を捕集する部位であるターボチャージャの下流側に比べてガス圧が高いので、この圧力差を利用してターボチャージャ下流側にあるDPNRへリッチスパイク用添加燃料の一部として捕集油分を供給できる。   The upstream side of the turbocharger that is the EGR gas intake part to the EGR cooler has a higher gas pressure than the downstream side of the turbocharger that is the part that collects oil liquefied by the EGR cooler. Thus, the collected oil can be supplied to the DPNR downstream of the turbocharger as part of the rich spike additive fuel.

図1および図2を参照して、本発明のEGRクーラの一実施形態を説明する。   An embodiment of the EGR cooler of the present invention will be described with reference to FIGS. 1 and 2.

図1には、コモンレール式直噴ディーゼルエンジンに、本発明のEGRクーラを含むEGR系統とDPNR触媒を組み合わせたシステムを模式的に示し、図2には、本発明のEGRクーラの望ましい一実施形態を示す。   FIG. 1 schematically shows a system in which an EGR system including an EGR cooler of the present invention and a DPNR catalyst are combined with a common rail direct injection diesel engine, and FIG. 2 shows a preferred embodiment of the EGR cooler of the present invention. Indicates.

図1に示したディーゼルエンジン100は、図の左端に示した流入空気量センサ10を介して取り入れられた流入空気Iが矢印のようにインタークーラ12、吸気制御バルブ14を経た後、燃料ライン16からの燃料と混合されて各燃焼室18に噴射され、発生した排気Eはターボチャージャ20、DPNR22を通って排出される。   In the diesel engine 100 shown in FIG. 1, after the inflow air I taken in via the inflow air amount sensor 10 shown at the left end of the figure passes through the intercooler 12 and the intake control valve 14 as shown by the arrow, the fuel line 16 Is mixed with the fuel from the fuel and injected into each combustion chamber 18, and the generated exhaust E is discharged through the turbocharger 20 and the DPNR 22.

排気の一部はターボチャージャ20より上流側で分岐してEGRガスGとしてEGRガス流入口24からEGRクーラ26に流入し、冷却された後にEGRガス流出口28から流出し、上方のEGRバルブ30から吸気Iに還流される。   A part of the exhaust gas is branched upstream of the turbocharger 20 and flows as EGR gas G from the EGR gas inlet 24 to the EGR cooler 26, and after cooling, flows out from the EGR gas outlet 28, and the upper EGR valve 30. To the intake air I.

EGRクーラ26内でEGRガスGから分離捕集された未燃焼燃料含有油分は、EGRクーラ26のEGRガス流出口28の手前から分岐している油分通路32を介して、ターボチャージャ20の下流の排気流へ合流する。   The unburned fuel-containing oil component separated and collected from the EGR gas G in the EGR cooler 26 passes downstream of the turbocharger 20 via an oil passage 32 branched from before the EGR gas outlet 28 of the EGR cooler 26. Merge into the exhaust stream.

添加剤インジェクタ34からは、DPNR22に対するリッチスパイク用の添加燃料が排気中へ噴射され、上記の油分通路32を介して排気中へ合流した未燃焼燃料がこれに付加される。   From the additive injector 34, rich spike additive fuel for the DPNR 22 is injected into the exhaust, and unburned fuel joined into the exhaust through the oil passage 32 is added thereto.

上記において、ターボチャージャ20の上流の排気からEGRガスGを取り込み、ターボチャージャ20の下流で排気に未燃焼燃料(軽油)分を供給するのは、ターボチャージャ20の上流側の高いガス圧を引き継いで比較的高圧のEGRクーラ26と、ターボチャージャ20の下流の排気の低いガス圧との圧力差を利用して、軽油の供給を促進できるからである。   In the above description, the EGR gas G is taken in from the exhaust upstream of the turbocharger 20 and the unburned fuel (light oil) is supplied to the exhaust downstream of the turbocharger 20 because the high gas pressure upstream of the turbocharger 20 is taken over. This is because the supply of light oil can be promoted by utilizing the pressure difference between the relatively high pressure EGR cooler 26 and the low gas pressure of the exhaust gas downstream of the turbocharger 20.

図2(1)に長手方向断面図で示した本発明の望ましい実施形態によるEGRクーラ26は、全体として管体36から成り、右端の流入口24からEGRガスGが流入して、左端の流出口28から流出する。管体36の内部には多数のEGRガス通路38が並列しており、各通路38は水冷ジャケット40により水冷されている。EGRガス通路38はパイプ部材38Pにより形成されている。   The EGR cooler 26 according to a preferred embodiment of the present invention shown in the longitudinal cross-sectional view of FIG. 2A is composed of a tube 36 as a whole, and the EGR gas G flows from the right end inlet 24 and flows to the left end. It flows out from the outlet 28. A large number of EGR gas passages 38 are arranged in parallel inside the tube body 36, and each passage 38 is water cooled by a water cooling jacket 40. The EGR gas passage 38 is formed by a pipe member 38P.

本発明の特徴として、図2(2)に部分拡大断面図で示したように、EGRガス通路38の壁面Sに撥油被膜Tを被覆してある。図示の便宜上、撥油被膜Tは極端に厚く描いてあるが、実際には図中の外形線の太さよりも薄いほどなので、通路壁面SとEGRガスGとの伝熱の妨げにはならない。   As a feature of the present invention, the oil repellent coating T is coated on the wall surface S of the EGR gas passage 38 as shown in the partially enlarged sectional view of FIG. For convenience of illustration, the oil-repellent coating T is drawn extremely thick, but since it is actually thinner than the thickness of the outline in the figure, it does not hinder heat transfer between the passage wall surface S and the EGR gas G.

流入口24からEGRクーラ26に流入したEGRガスGは通路38を通過する際に、伝熱面としての水冷壁面Sによって冷却され、EGRガスG中の未燃焼燃料である軽油分が凝縮により液化され通路壁面S上に析出する。通路壁面Sには本発明により撥油被膜Tが被覆されているので、析出した油液は壁面S上に油膜として広がらずに油滴となり、重力によって壁面Sから直ちに滑落して離脱する。そのため、伝熱面としての通路壁面Sは油膜に覆われることなく常に露出状態に維持されており、EGRクーラ26の高い冷却性能が常に確保される。   When the EGR gas G flowing into the EGR cooler 26 from the inlet 24 passes through the passage 38, it is cooled by the water-cooled wall surface S as the heat transfer surface, and the light oil component that is unburned fuel in the EGR gas G is liquefied by condensation. And deposited on the passage wall surface S. Since the oil repellent coating T is coated on the passage wall surface S according to the present invention, the deposited oil liquid does not spread as an oil film on the wall surface S but becomes oil droplets, and immediately slides off from the wall surface S due to gravity. Therefore, the passage wall surface S as the heat transfer surface is always kept in an exposed state without being covered with the oil film, and the high cooling performance of the EGR cooler 26 is always ensured.

更に付加的な冷却効果として、ガスに比べて圧倒的に熱容量の大きい油液が高温で大きな熱量を持った状態で効率的に離脱するので、それによってもEGRガスGの冷却が促進される。   Further, as an additional cooling effect, the oil liquid having an overwhelmingly large heat capacity as compared with the gas is efficiently separated at a high temperature and with a large amount of heat, thereby promoting the cooling of the EGR gas G.

また、通路壁面Sが油液で濡れないため、煤の付着・堆積が起きず、それによる壁面Sの劣化が防止される。   Further, since the passage wall surface S does not get wet with the oil solution, soot does not adhere and accumulate, and the deterioration of the wall surface S due to this does not occur.

EGRガス通路38の壁面Sから滑落した油滴は、通路38の下流にある油ピット42内に収集されて、油分通路32へ流入し、ターボチャージャ20の下流側排気へと案内される。   The oil droplets that have slid down from the wall surface S of the EGR gas passage 38 are collected in the oil pit 42 downstream of the passage 38, flow into the oil passage 32, and are guided to the downstream exhaust of the turbocharger 20.

上記のように油滴の滑落とピット42への進行を容易にするために、EGRクーラ26は水平面Hに対して適度な角度θだけ傾斜させてある。   As described above, the EGR cooler 26 is inclined with respect to the horizontal plane H by an appropriate angle θ in order to facilitate the sliding of the oil droplets and the progress to the pit 42.

EGRガスGの進行方向に対して油ピット42を挟んで直ぐ上流側と直ぐ下流側には、多数の貫通孔が開口している多孔板44をEGRガスGの進行を遮るように複数枚配置して未燃焼燃料等の油分の捕集手段を構成してある。これは通路38内で析出した油滴の一部が飛沫となってEGRガスGの流れに乗って吸気系へ進行することを防止し、効率良く収集するためである。   A plurality of perforated plates 44 having a large number of through holes are arranged on the upstream side and immediately downstream side of the oil pit 42 with respect to the traveling direction of the EGR gas G so as to block the progress of the EGR gas G. Thus, oil collecting means such as unburned fuel is constituted. This is to prevent the oil droplets deposited in the passage 38 from splashing and riding on the flow of the EGR gas G to advance to the intake system, and to collect efficiently.

多孔板44の表面にも撥油被膜が被覆されていることが望ましい。これにより、多孔板44にトラップされた油液飛沫が多孔板44の表面に油膜として広がらずに油滴となって直ちにピット42へ滑落し、回収効率が高まる。また、油膜として多孔板44の表面に付着していると、再びEGRガスGの流れに乗って吸気系へ進行してしまう虞もある。   It is desirable that the surface of the porous plate 44 is also coated with an oil repellent coating. As a result, the droplets of the oil trapped on the porous plate 44 do not spread as an oil film on the surface of the porous plate 44 but are immediately slid to the pits 42 as oil droplets, thereby increasing the recovery efficiency. Further, if the oil film adheres to the surface of the perforated plate 44, there is a possibility that the EGR gas G flows again and proceeds to the intake system.

隣接する多孔板44は互いに孔Pの位置がずれるように作製および/または配置することが望ましい。これにより、複数枚の多孔板44からなる油分捕集手段を油の飛沫が素通りすることが防止され、燃料回収効率が高まる。   Adjacent perforated plates 44 are preferably produced and / or arranged so that the positions of the holes P are shifted from each other. This prevents the oil droplets from passing through the oil collecting means composed of a plurality of perforated plates 44 and increases the fuel recovery efficiency.

図3に多孔板44の望ましい実施形態の一例を示す。図3(1)は平面図であり、図3(2)は図3(1)の線II−IIに沿った断面図である。   FIG. 3 shows an example of a preferred embodiment of the porous plate 44. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line II-II in FIG.

図3に示した望ましい多孔板44は、貫通孔Pの周囲がBで示したようにバーリング加工されている。多孔板44にトラップされた油滴Qは、多孔板44の板面上を滑落する際にバーリングBに遮られて貫通孔Pの周囲を迂回するので、貫通孔P内に落ち込むことがない。これにより、多孔板44に一旦トラップされた油飛沫が再度貫通孔Pを通って吸気系へ進行することが防止され、回収効率が高まる。   The desirable perforated plate 44 shown in FIG. 3 is burred as indicated by B around the through hole P. The oil droplet Q trapped in the perforated plate 44 is blocked by the burring B when it slides down on the plate surface of the perforated plate 44 and bypasses the periphery of the through hole P, so that it does not fall into the through hole P. As a result, the oil splash once trapped in the perforated plate 44 is prevented from traveling again to the intake system through the through hole P, and the recovery efficiency is increased.

図4に、本発明の別の望ましい実施形態によるEGRクーラの長手方向断面図を示す。図2の実施形態と対応する部位には同じ参照符号を付した。   FIG. 4 shows a longitudinal cross-sectional view of an EGR cooler according to another preferred embodiment of the present invention. The parts corresponding to those in the embodiment of FIG.

図4に示したEGRクーラ26’は通路38より下流部分に、油ピット42の位置を挟んで上流側および下流側に水冷フィン46を備えており、この点のみが、多孔板44を備えた図2のEGRクーラ26と異なる。他の構成については、図4の実施形態と図2の実施形態とは共通である。水冷フィン46は水冷ジャケット48により内部水冷されている。2枚の水冷フィン46同士はEGRガスGの進行方向に対して逆向きに延在してジグザグのガス進路を形成している。これにより、EGRガスGの流れはフィン46に衝突して冷却され、通路38で析出しなかった未燃焼燃料の残留分がここで凝縮して油液として析出し、油ピット42へ落下する。   The EGR cooler 26 ′ shown in FIG. 4 is provided with water cooling fins 46 on the upstream side and downstream side of the passage 38, with the position of the oil pit 42 interposed therebetween. Different from the EGR cooler 26 of FIG. Regarding other configurations, the embodiment of FIG. 4 and the embodiment of FIG. 2 are common. The water cooling fins 46 are internally water cooled by a water cooling jacket 48. The two water-cooled fins 46 extend in the direction opposite to the traveling direction of the EGR gas G to form a zigzag gas path. As a result, the flow of the EGR gas G collides with the fins 46 and is cooled, and the residual unburnt fuel that has not deposited in the passage 38 is condensed here and deposited as an oil liquid, and falls into the oil pit 42.

この場合も、フィン46の表面には撥油被膜が被覆されていることが望ましい。これにより、フィン46の表面に析出した油液は油膜として広がらずに油滴を形成して直ちに滑落する。それにより、残留油分が吸気系へ進行することが防止され、回収効率が高まる。   Also in this case, it is desirable that the surface of the fin 46 is covered with an oil repellent coating. Thereby, the oil liquid deposited on the surface of the fin 46 does not spread as an oil film but forms oil droplets and immediately slides down. As a result, the residual oil is prevented from proceeding to the intake system, and the recovery efficiency is increased.

図5に、水冷フィン46の望ましい実施形態の一例を示す。2枚の水冷フィン46A、46Bのうち、下流側の水冷フィン46Bは、延在する先端部に折り返し50が形成されていて、EGRガスGから析出した油滴Qがガス流に連れ去られ難くしてある。これにより更に、残留油分が吸気系へ進行することが防止され、回収効率が高まる。   FIG. 5 shows an example of a preferred embodiment of the water cooling fin 46. Of the two water-cooled fins 46A and 46B, the downstream water-cooled fin 46B has a folded back 50 formed at the extending tip, making it difficult for oil droplets Q deposited from the EGR gas G to be taken away by the gas flow. It is. This further prevents the residual oil from proceeding to the intake system and increases the recovery efficiency.

本発明によれば、特別な設備を必要とせずに、未燃焼成分の付着を防止し回収効率を高めたEGRクーラが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the EGR cooler which prevented adhesion of an unburned component and improved collection | recovery efficiency is provided, without requiring special equipment.

図1は、本発明のEGRクーラを備えたディーゼルエンジンの典型的な構成例を示す配置図である。FIG. 1 is a layout diagram showing a typical configuration example of a diesel engine equipped with an EGR cooler of the present invention. 図2は、本発明の望ましい実施形態によるEGRクーラの一例を示す(1)断面図および(2)部分拡大断面図である。FIG. 2 is (1) a sectional view and (2) a partially enlarged sectional view showing an example of an EGR cooler according to a preferred embodiment of the present invention. 図3は、図2のEGRクーラにおいて油分収集手段としての多孔板の望ましい実施形態を示す(1)平面図および(2)断面図である。3 is a (1) plan view and (2) a cross-sectional view showing a preferred embodiment of a porous plate as an oil collecting means in the EGR cooler of FIG. 図4は、本発明の別の望ましい実施形態によるEGRクーラの一例を示す断面図である。FIG. 4 is a cross-sectional view illustrating an example of an EGR cooler according to another preferred embodiment of the present invention. 図5は、図4のEGRクーラにおいて油分収集手段としての水冷フィンの望ましい実施形態を示す断面図である。FIG. 5 is a cross-sectional view showing a preferred embodiment of water-cooled fins as oil collecting means in the EGR cooler of FIG.

符号の説明Explanation of symbols

100 ディーゼルエンジン
I 流入空気、吸気
G EGRガス
S EGRガス通路の壁面
T 撥油被膜
10 流入空気量センサ
12 インタークーラ
14 吸気制御バルブ
16 燃料ライン
18 燃焼室
20 ターボチャージャ
22 DPNR
24 EGRガス流入口
26 EGRクーラ
28 EGRガス流出口
30 EGRバルブ
32 油分通路
34 添加剤インジェクタ
36 管体
38 EGRガス通路
38P パイプ部材
40 水冷ジャケット
42 油ピット
44 多孔板
46、46A、46B 水冷フィン
48 水冷ジャケット
50 折り返し
DESCRIPTION OF SYMBOLS 100 Diesel engine I Inflow air, intake air G EGR gas S Wall surface of EGR gas passage T Oil-repellent coating 10 Inflow air amount sensor 12 Intercooler 14 Intake control valve 16 Fuel line 18 Combustion chamber 20 Turbocharger 22 DPNR
24 EGR gas inlet 26 EGR cooler 28 EGR gas outlet 30 EGR valve 32 Oil passage 34 Additive injector 36 Tubing body 38 EGR gas passage 38P Pipe member 40 Water cooling jacket 42 Oil pit 44 Perforated plate 46, 46A, 46B Water cooling fin 48 Water cooling jacket 50 folded

Claims (3)

内燃機関の排気の一部を冷却してEGRガスとして吸気側へ再循環させるEGR装置内で上記冷却を行なうEGRクーラにおいて、
上記EGRガスの通路の壁面に撥油被膜を被覆したことを特徴とするEGRクーラ。
In an EGR cooler that performs the above cooling in an EGR device that cools a part of the exhaust gas of the internal combustion engine and recirculates it as EGR gas to the intake side.
An EGR cooler characterized in that an oil repellent film is coated on the wall surface of the EGR gas passage.
請求項1において、上記撥油被膜を被覆した通路より下流側に未燃焼燃料を含む油分の捕集手段を設けたことを特徴とするEGRクーラ。   2. The EGR cooler according to claim 1, wherein means for collecting oil containing unburned fuel is provided downstream of the passage coated with the oil repellent coating. 請求項2において、
ターボチャージャより上流側の排気流路から分岐した取入流路の先端に接続されたEGRガス流入口、
冷却され未燃焼燃料含有油分を分離されたEGRガスを吸気へ導く供給流路の始端部に接続されたEGRガス流出口、および
上記捕集手段により捕集された未燃焼燃料含有油分を上記ターボチャージャより下流側の排気流路に合流させるための油分通路、
を備えていることを特徴とするEGRクーラ。
In claim 2,
An EGR gas inlet connected to the tip of the intake passage branched from the exhaust passage upstream of the turbocharger,
The EGR gas outlet connected to the start end of the supply flow path that guides the cooled EGR gas separated from the unburned fuel-containing oil, and the unburned fuel-containing oil collected by the collecting means to the turbo An oil passage for joining the exhaust passage downstream of the charger;
An EGR cooler characterized by comprising:
JP2005177378A 2005-06-17 2005-06-17 Egr cooler Pending JP2006348873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177378A JP2006348873A (en) 2005-06-17 2005-06-17 Egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177378A JP2006348873A (en) 2005-06-17 2005-06-17 Egr cooler

Publications (1)

Publication Number Publication Date
JP2006348873A true JP2006348873A (en) 2006-12-28

Family

ID=37644974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177378A Pending JP2006348873A (en) 2005-06-17 2005-06-17 Egr cooler

Country Status (1)

Country Link
JP (1) JP2006348873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036077A (en) * 2007-08-01 2009-02-19 Denso Corp Exhaust gas change-over valve
JP2010185413A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Foreign matter collecting device with cooler
DE102019215104A1 (en) 2018-11-21 2020-05-28 Toyota Jidosha Kabushiki Kaisha HEAT EXCHANGER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200720A (en) * 2000-01-19 2001-07-27 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004324457A (en) * 2003-04-22 2004-11-18 Toyota Motor Corp Compression ignition type internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200720A (en) * 2000-01-19 2001-07-27 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004324457A (en) * 2003-04-22 2004-11-18 Toyota Motor Corp Compression ignition type internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036077A (en) * 2007-08-01 2009-02-19 Denso Corp Exhaust gas change-over valve
JP2010185413A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Foreign matter collecting device with cooler
DE102019215104A1 (en) 2018-11-21 2020-05-28 Toyota Jidosha Kabushiki Kaisha HEAT EXCHANGER
US11300024B2 (en) 2018-11-21 2022-04-12 Toyota Jidosha Kabushiki Kaisha Heat exchanger

Similar Documents

Publication Publication Date Title
JP4997336B2 (en) Large two-cycle diesel engine with exhaust gas recirculation system
US20070089717A1 (en) Oxidation catalyst coating in a heat exchanger
BR102013026078A2 (en) exhaust gas recirculation system, engine and exhaust gas recirculation method
KR102047914B1 (en) Exhaust gas cooler
JP2009270513A (en) Exhaust gas recirculation device for internal combustion engine
JP2007064075A (en) Exhaust heat exchanger and exhaust gas recirculation system having the same
KR101660006B1 (en) Internal Combustion Engine
JP2012237242A (en) Wet exhaust gas purification device
JP2009150281A (en) Exhaust recirculation device of internal combustion engine
JP2003097361A (en) Egr device
JP2006348873A (en) Egr cooler
JP2008285997A (en) Exhaust gas treatment device of engine
JP5141585B2 (en) Foreign matter collecting device with cooler
JP6749150B2 (en) EGR gas cooler and engine system
JP2015068285A (en) Condensed water separating device
JP2015068287A (en) Condensed water separating device
JP2008088817A (en) Egr device
SE525197C2 (en) Apparatus for controlling the temperature of exhaust gases from an exhaust system equipped with an active regenerable filter
JP2010156272A (en) Egr device and egr filter of internal combustion engine
JP2015004293A (en) Condensed water treatment mechanism
JP2008019797A (en) Intercooler and internal combustion engine with intercooler
CN109844295B (en) EGR device for ship
KR101982127B1 (en) Internal combustion engine system
JP6579973B2 (en) Method and apparatus for recovering cooling efficiency of EGR cooler
JP6241265B2 (en) Drainage device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005