JP2006347949A - Drug substance for magnetic particle-containing medicine - Google Patents

Drug substance for magnetic particle-containing medicine Download PDF

Info

Publication number
JP2006347949A
JP2006347949A JP2005175801A JP2005175801A JP2006347949A JP 2006347949 A JP2006347949 A JP 2006347949A JP 2005175801 A JP2005175801 A JP 2005175801A JP 2005175801 A JP2005175801 A JP 2005175801A JP 2006347949 A JP2006347949 A JP 2006347949A
Authority
JP
Japan
Prior art keywords
magnetic
iron oxide
drug substance
particles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005175801A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hakata
俊之 博多
Hiroshi Kawasaki
浩史 川崎
Nanao Horiishi
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2005175801A priority Critical patent/JP2006347949A/en
Priority to US11/451,597 priority patent/US7670676B2/en
Publication of JP2006347949A publication Critical patent/JP2006347949A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drug substance for magnetic particle-containing medicine which can produce with good reproducibility a magnetic particle-containing medicine for diagnosis and medical treatment capable of exhibiting homogenous functional property. <P>SOLUTION: The drug substance for magnetic particle-containing medicine is a frozen body or a dried powder body consisting of a magnetic iron oxide fine particle of which the average particle size is 5-30 nm, the saturation magnetization is 35-90 Am<SP>2</SP>/kg, the coercive force is 0-6.0 kA/m and the coefficient of variation of particle size is 10% or lower; and it can be obtained by producing fine magnetic iron oxide particles, then purifying a colloidal water solution of the magnetic iron oxide fine particles by washing and removing water-soluble salts by-produced from the reaction solution at the time of reaction, with water by the usual method, and freezing it. Furthermore, a dried drug substance for the magnetic particle-containing medicine can be obtained by drying under reduced pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、医療技術分野において、薬物の送達法であるドラッグデリバリー システム(以降、DDSと記す)、レントゲンやMRI(磁気共鳴)等で用いられるCT(計算断層像法)診断及び温熱治療法などの治療用の磁性粒子含有医薬に用いる原薬に関するものである。
さらに、当該磁性酸化鉄粒子と多糖類、蛋白質あるいはデキストラン類との複合体からなる磁性粒子含有医薬に関するものである。
The present invention relates to a drug delivery system (hereinafter referred to as DDS) which is a drug delivery method in the medical technical field, CT (computed tomography) diagnosis and thermotherapy used in X-rays, MRI (magnetic resonance), etc. The present invention relates to a drug substance for use in a magnetic particle-containing medicine for the treatment of.
Furthermore, the present invention relates to a magnetic particle-containing pharmaceutical comprising a complex of the magnetic iron oxide particles and a polysaccharide, protein or dextran.

詳述すれば、本発明は、上記磁性粒子含有医薬の病変組織や細胞への送達指向性、CTによる診断時の造影感度及び温熱治療時の発熱性等の性能を向上させることを目的とする磁性粒子含有医薬用原薬および磁性粒子含有医薬である。   More specifically, an object of the present invention is to improve performance such as directivity of delivery of the magnetic particle-containing drug to a diseased tissue or cell, contrast sensitivity at the time of diagnosis by CT, and heat generation at the time of thermotherapy. Magnetic drug substance containing magnetic particles and drug containing magnetic particles.

近年、磁性体として磁性酸化鉄微粒子を用い、リン脂質、タンパク質及び水溶性ポリマー等の生体適応性物質と複合化した磁性粒子含有医薬が検討されている(特許文献1〜5等)。   In recent years, magnetic particle-containing pharmaceuticals in which magnetic iron oxide fine particles are used as a magnetic substance and complexed with biocompatible substances such as phospholipids, proteins, and water-soluble polymers have been studied (Patent Documents 1 to 5 and the like).

また、磁性酸化鉄微粒子の単分散水溶液を調整するために、界面活性剤等の表面処理剤で粒子表面を被覆する方法(特許文献6)、Al、Si等の無機物を被覆する方法(特許文献7)、または有機金属ポリマーで被覆する方法(特許文献4)等が知られている。   Further, in order to prepare a monodispersed aqueous solution of magnetic iron oxide fine particles, a method of coating the particle surface with a surface treatment agent such as a surfactant (Patent Document 6), a method of coating an inorganic substance such as Al and Si (Patent Document) 7) or a method of coating with an organometallic polymer (Patent Document 4) is known.

しかし、これらは磁性酸化鉄粒子を利用するものではあるが、磁性粒子に付加する修飾機能を主体とするものであり、磁性酸化鉄粒子の粒度や磁気特性等の粉体特性と磁性粒子含有医薬特性との特性要因の関係が十分に解明されているとは言い難いものである。   However, although these utilize magnetic iron oxide particles, they mainly have a modification function added to the magnetic particles, and the powder properties such as the particle size and magnetic properties of the magnetic iron oxide particles and the magnetic particle-containing pharmaceuticals. It is hard to say that the relationship between the characteristics and the characteristic factors has been fully elucidated.

特に、微細な磁性酸化鉄粒子を生体適応性物質に均一に分散・担持させることは、酸化鉄粒子の磁気凝集に起因して容易なことではなく、これまでは大きな粒度の磁性酸化鉄粒子が用いられてきた。   In particular, it is not easy to uniformly disperse and carry fine magnetic iron oxide particles in a biocompatible substance due to the magnetic aggregation of iron oxide particles. Has been used.

また、粒子サイズが大きな磁性酸化鉄粒子は、治療後に酸化鉄粒子が体内に残留する可能性が高く、使用上の安全性が十分に確保できるとは言い難いものであった。   In addition, magnetic iron oxide particles having a large particle size have a high possibility of iron oxide particles remaining in the body after treatment, and it is difficult to say that safety in use can be sufficiently secured.

そこで、均質な機能性、例えば試薬送達性、造影感度、発熱性能等を有するとともに、機能を十分に発揮できる診断用及び治療用の磁性粒子含有医薬を再現性良く生成できる磁性粒子含有医薬用原薬の開発が求められている。   Therefore, magnetic particle-containing pharmaceutical raw materials that have homogeneous functionality, such as reagent delivery properties, contrast sensitivity, heat generation performance, etc., and that can generate magnetic particle-containing pharmaceuticals for diagnosis and treatment that can fully perform their functions with high reproducibility. There is a need for drug development.

特開平3−128331号公報Japanese Patent Laid-Open No. 3-128331 特開平4−52202号公報JP-A-4-52202 特開平7−122410号公報JP 7-122410 A 特表平8−500700号公報JP-T 8-500700 Publication 特開平11−106391号公報JP-A-11-106391 特開平1−4002号公報JP-A-1-4002 特開平5−310429号公報JP-A-5-310429

上述したように、均質な特性を有した磁性体含有医薬を再現性良く得るためには、磁性粒子含有医薬の製薬時において、生体適応性物質と磁性酸化鉄微粒子とを均一に分散混合させることが不可欠な条件であり、そのためには原薬中の磁性微粒子は粒度が微細で均一な磁性酸化鉄微粒子であることが必要である。   As described above, in order to obtain a magnetic substance-containing drug having homogeneous characteristics with good reproducibility, the biocompatible substance and the magnetic iron oxide fine particles are uniformly dispersed and mixed at the time of pharmaceutical preparation of the magnetic particle-containing drug. Therefore, the magnetic fine particles in the drug substance must be fine and uniform magnetic iron oxide fine particles.

しかし、界面活性剤などの表面処理剤を使用して磁性酸化鉄微粒子を分散させた場合、使用した表面処理剤が残留し、得られる磁性体含有医薬にもこれらの表面処理剤が混入して生体への安全性に影響を及ぼし、また生体適応性物質との混合を阻害する等の問題がある。さらに、表面処理剤を除去するためには複雑な処理が必要であった。   However, when a surface treatment agent such as a surfactant is used to disperse the magnetic iron oxide fine particles, the used surface treatment agent remains, and these surface treatment agents are mixed in the obtained magnetic substance-containing medicine. There are problems such as affecting the safety to the living body and inhibiting mixing with the biocompatible substance. Furthermore, complicated treatment is required to remove the surface treatment agent.

通常、磁性酸化鉄微粒子を原薬として一旦取り出すことはせずに、磁性酸化鉄微粒子の製造に引き続き、リン脂質、多糖類、蛋白質又はデキストラン類との複合体を調整することが行われるものであるが、製造工程上、やむを得ず磁性酸化鉄微粒子を含有する水分散体の状態で保持する場合がある。しかしながら、磁性酸化鉄微粒子を含有する水分散体(コロイド水溶液)の状態では菌の増殖が問題となり、無菌状態を維持管理することは非常に難しい。さらに、水分散体の状態で搬送する場合に、搬送途中の無菌状態を保証することは非常に難しい。   Usually, magnetic iron oxide fine particles are not once taken out as a drug substance, but following the production of magnetic iron oxide fine particles, a complex with phospholipid, polysaccharide, protein or dextran is prepared. However, in the manufacturing process, it may be unavoidably held in the state of an aqueous dispersion containing magnetic iron oxide fine particles. However, in the state of an aqueous dispersion (colloid aqueous solution) containing magnetic iron oxide fine particles, the growth of bacteria becomes a problem, and it is very difficult to maintain and maintain a sterile state. Furthermore, when transporting in the state of an aqueous dispersion, it is very difficult to guarantee a sterile condition during transport.

本発明は、上記従来の問題点に鑑みてなされたものであり、表面処理剤を使用しないで、均一な粒度からなる磁性酸化鉄微粒子を提供することを技術的課題とする。   This invention is made | formed in view of the said conventional problem, and makes it a technical subject to provide the magnetic iron oxide microparticles | fine-particles which have a uniform particle size, without using a surface treating agent.

本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、磁性粒子として微細な磁性酸化鉄微粒子からなり、その形態が凍結体である磁性粒子含有医薬用原薬の調整条件を見出した。   As a result of intensive studies to solve the above problems, the present inventor has found a condition for adjusting a drug substance containing a magnetic particle that is composed of fine magnetic iron oxide fine particles as a magnetic particle and whose form is a frozen body. .

即ち、本発明は、平均粒径が5〜30nmの磁性酸化鉄微粒子からなり、その形態が凍結体であることを特徴とする磁性粒子含有医薬用原薬である(本発明1)。   That is, the present invention is an active pharmaceutical ingredient containing magnetic particles comprising magnetic iron oxide fine particles having an average particle diameter of 5 to 30 nm and having a frozen form (Invention 1).

また、本発明は、磁性酸化鉄微粒子の飽和磁化が35〜90Am/kg、保磁力が0〜6.0kA/mであることを特徴とする前記磁性粒子含有医薬用原薬である(本発明2)。 The present invention is also the above-mentioned medicinal drug substance containing magnetic particles, wherein the magnetic iron oxide fine particles have a saturation magnetization of 35 to 90 Am 2 / kg and a coercive force of 0 to 6.0 kA / m (this book) Invention 2).

また、本発明は、磁性酸化鉄微粒子の粒度分布の変動係数が10%以下であることを特徴とする前記磁性粒子含有医薬用原薬である(本発明3)。   The present invention is also the above-mentioned medicinal drug substance containing magnetic particles, wherein the coefficient of variation of the particle size distribution of the magnetic iron oxide fine particles is 10% or less (Invention 3).

また、本発明は、磁性酸化鉄微粒子がスピネル構造の組成物MOFe(Mは2価金属)であることを特徴とする前記磁性粒子含有医薬用原薬である(本発明4)。 The present invention is also the above-mentioned drug substance containing magnetic particles, wherein the magnetic iron oxide fine particles are a composition MOFe 2 O 3 (M is a divalent metal) having a spinel structure (Invention 4).

また、本発明は、組成物MOFe(Mは2価金属)のMが、Fe及び/又はMg(但し、FeとMgの総和がFe1モルに対して1モル以下)であることを特徴とする前記磁性粒子含有医薬用原薬である(本発明5)。 Further, in the present invention, M of the composition MOFe 2 O 3 (M is a divalent metal) is Fe and / or Mg (provided that the sum of Fe and Mg is 1 mol or less relative to 1 mol of Fe 2 O 3 ). The magnetic drug substance containing the magnetic particles according to the present invention (Invention 5).

また、本発明は、平均粒径が5〜30nmの磁性酸化鉄微粒子からなり、その形態が乾燥粉末であることを特徴とする前記いずれかに記載の磁性粒子含有医薬用原薬である(本発明6)。   Further, the present invention is the above-mentioned medicinal drug substance containing magnetic particles comprising the magnetic iron oxide fine particles having an average particle diameter of 5 to 30 nm, the form of which is a dry powder (this book) Invention 6).

また、本発明は、前記いずれかに記載の磁性酸化鉄粒子とリン脂質、多糖類、蛋白質あるいはデキストラン類との複合体であることを特徴とする磁性粒子含有医薬原薬である(本発明7)。   In addition, the present invention is a drug substance containing magnetic particles characterized by being a complex of the magnetic iron oxide particles described above and a phospholipid, polysaccharide, protein or dextran (Invention 7). ).

本発明に係る磁性粒子含有医薬用原薬は、水に再分散可能な微細な磁性酸化鉄粒子の凍結体あるいは凍結乾燥体であるから、磁性体粒子を生体適合性物質に均質に分散させた複合物からなる医薬を容易に合成することができる。さらに、界面活性剤などを含有しない原薬であるので、生体への安全性に与える影響は極めて少ないものである。
また、微細な磁性粒子は製薬造粒工程において、微粒子の集合状態を調整することにより造粒粒子に強磁性体の機能を付与することができる。
また、超微粒子であることで投与後は体内からの排泄を容易にすることができる。
Since the medicinal drug substance containing magnetic particles according to the present invention is a frozen or lyophilized body of fine magnetic iron oxide particles that can be redispersed in water, the magnetic particles are homogeneously dispersed in a biocompatible substance. A pharmaceutical comprising a composite can be easily synthesized. Furthermore, since the drug substance does not contain a surfactant or the like, its influence on the safety to the living body is extremely small.
In addition, fine magnetic particles can impart a ferromagnetic function to the granulated particles by adjusting the aggregate state of the fine particles in the pharmaceutical granulation step.
In addition, the ultrafine particles can facilitate excretion from the body after administration.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明における磁性酸化鉄微粒子の平均粒径は5〜30nmである。5nm未満では非晶質であり、30nmを超えると磁気的凝集が生じやすくなる。好ましくは5〜20nmである。なお、粒子の大きさが10nm以下になると超常磁性となり保磁力を有するものではなくより好ましい。   The average particle diameter of the magnetic iron oxide fine particles in the present invention is 5 to 30 nm. If it is less than 5 nm, it is amorphous, and if it exceeds 30 nm, magnetic aggregation tends to occur. Preferably it is 5-20 nm. In addition, when the particle size is 10 nm or less, superparamagnetism is obtained and the coercive force is not preferable.

本発明における磁性酸化鉄微粒子は、スピネル型強磁性体MOFe(Mは2価金属)であり、MがFeの場合の組成はxFeO・Feであり、この組成式のxは2価鉄の含有量を表し、x=1はFeO・Feでマグネタイト、x=0はγ−Feでマグヘマイト、その中間(x=0〜1)のスピネル型酸化鉄も磁性酸化鉄であり、これらの超常磁性酸化鉄粒子が用いられる。 The magnetic iron oxide fine particles in the present invention are spinel-type ferromagnets MOFe 2 O 3 (M is a divalent metal), and the composition when M is Fe is xFeO · Fe 2 O 3. Represents the content of divalent iron, x = 1 is magnetite with FeO.Fe 2 O 3 , x = 0 is maghemite with γ-Fe 2 O 3 , and intermediate (x = 0 to 1) spinel iron oxide Is also magnetic iron oxide, and these superparamagnetic iron oxide particles are used.

本発明における磁性酸化鉄微粒子の粒度分布は、標準偏差値を平均粒径で割って得られる変動係数の値が10%以下であることが好ましく、より好ましくは8%以下である。10%を超える場合には、水への分散性に問題を生じ、経時的に磁性粒子が沈降してくるという問題が生じる。   In the particle size distribution of the magnetic iron oxide fine particles in the present invention, the value of the coefficient of variation obtained by dividing the standard deviation value by the average particle size is preferably 10% or less, more preferably 8% or less. When it exceeds 10%, a problem occurs in the dispersibility in water, and the problem that the magnetic particles settle over time occurs.

本発明における磁性酸化鉄微粒子の組成MOFe(Mは2価金属)のMとして、Fe以外にMgを選んだのは、Mgには生体適応性があるためであるが、他の2価金属でも目的に応じて選択して用いることができる。 The reason why Mg other than Fe was selected as M in the composition MOFe 2 O 3 (M is a divalent metal) of the magnetic iron oxide fine particles in the present invention is that Mg has biocompatibility. A valent metal can be selected and used according to the purpose.

本発明における磁性酸化鉄微粒子は超常磁性体であることが好ましいが、保磁力は0〜6.0kA/mであることが好ましい。6.0kA/mを超える大きな保磁力の場合は残留磁化を生じて磁気凝集し易くなる。好ましくは0.05〜4.0kA/mである。飽和磁化は35〜90Am/kgが好ましい。35Am/kg未満の飽和磁化では磁性が不足しており、スピネル酸化鉄粒子では90Am/kgを超える磁化値は得難い。より好ましくは50〜85Am/kgである。 The magnetic iron oxide fine particles in the present invention are preferably a superparamagnetic material, but the coercive force is preferably 0 to 6.0 kA / m. In the case of a large coercive force exceeding 6.0 kA / m, remanent magnetization occurs and magnetic aggregation is likely to occur. Preferably it is 0.05-4.0 kA / m. The saturation magnetization is preferably 35 to 90 Am 2 / kg. When the saturation magnetization is less than 35 Am 2 / kg, the magnetism is insufficient, and with spinel iron oxide particles, it is difficult to obtain a magnetization value exceeding 90 Am 2 / kg. More preferably, it is 50-85 Am < 2 > / kg.

本発明における無菌状態とは、毒性検査及びエンドトキシン検査において共に陰性である原薬である。具体的には、生菌数が1×10−6/UNIT未満であり、エンドトキシンが5.0EU/kg以下である。 The aseptic condition in the present invention is a drug substance that is negative in both a toxicity test and an endotoxin test. Specifically, the viable cell count is less than 1 × 10 −6 / UNIT, and the endotoxin is 5.0 EU / kg or less.

次に、本発明に係る磁性粒子含有医薬用原薬の製造方法について述べる。   Next, a method for producing a drug substance containing magnetic particles according to the present invention will be described.

磁性酸化鉄微粒子の凍結体は下記3工程により生成することができる。   A frozen body of magnetic iron oxide fine particles can be produced by the following three steps.

即ち、(1)磁性酸化鉄微粒子を生成した後、(2)反応母液から反応時に副生した水可溶性副生塩類を常法により水洗除去して磁性酸化鉄微粒子のコロイド水溶液を精製し、(3)精製したコロイド水溶液の分散媒を凍結することで得ることができる。   That is, (1) after producing magnetic iron oxide fine particles, (2) purifying a colloidal aqueous solution of magnetic iron oxide fine particles by removing water-soluble by-product salts by-produced during the reaction from the reaction mother liquor by washing with a conventional method. 3) It can be obtained by freezing the dispersion medium of the purified aqueous colloidal solution.

本発明における磁性酸化鉄微粒子は、鉄塩水溶液とアルカリを用いる水溶液反応(湿式法という。)、または、酸化鉄粉を水素等の還元性ガス中で加熱還元する方法(乾式法という)で合成することができる。   The magnetic iron oxide fine particles in the present invention are synthesized by an aqueous solution reaction using an iron salt aqueous solution and an alkali (referred to as a wet method) or a method of heating and reducing iron oxide powder in a reducing gas such as hydrogen (referred to as a dry method). can do.

上記磁性酸化鉄微粒子の合成方法において、一般には共沈法や水酸化第一鉄コロイドの酸化反応などと呼ばれる湿式法で合成する。   In the method of synthesizing the magnetic iron oxide fine particles, synthesis is generally performed by a wet method called a coprecipitation method or an oxidation reaction of ferrous hydroxide colloid.

共沈法とは、第一鉄塩水溶液Fe(II)1モルと第二鉄塩水溶液Fe(III)2モルとの混合水溶液にアルカリ水溶液を攪拌しながら加えると、Fe(II)と2Fe(III)の共沈反応が生起して黒色スピネル型磁性酸化鉄であるマグネタイト粒子が生成する反応である。この反応においてFe以外の2価金属、例えばMgを添加した場合にはMgを含有したスピネル型磁性酸化鉄粒子が得られる。また、鉄塩濃度や混合温度などの反応条件により生成粒子の大きさが制御できるので、これらの反応条件を組み合わせることにより磁性酸化鉄微粒子を合成することができる。   In the coprecipitation method, when an alkaline aqueous solution is added to a mixed aqueous solution of 1 mol of ferrous salt aqueous solution Fe (II) and 2 mol of ferric salt aqueous solution Fe (III) while stirring, Fe (II) and 2Fe ( This is a reaction in which the coprecipitation reaction of III) occurs and magnetite particles, which are black spinel type magnetic iron oxide, are generated. When a divalent metal other than Fe, for example, Mg is added in this reaction, spinel-type magnetic iron oxide particles containing Mg are obtained. In addition, since the size of the generated particles can be controlled by reaction conditions such as iron salt concentration and mixing temperature, magnetic iron oxide fine particles can be synthesized by combining these reaction conditions.

水酸化第一鉄コロイドの酸化反応法とは、第一鉄塩水溶液にアルカリ水溶液を添加すると水酸化第一鉄コロイドが生成し、該水酸化第一鉄コロイドを含有する水溶液を加熱攪拌しながら空気等の酸素含有ガスを通気すると水酸化第一鉄コロイドの酸化反応により黒色磁性酸化鉄であるマグネタイト粒子が生成する反応である。上記の共沈法と同様にFe以外の2価金属を添加した場合には添加金属を含有したスピネル酸化鉄粒子が得られる。また、この反応条件を組み合わせて制御することにより磁性酸化鉄微粒子を合成することができる。   The ferrous hydroxide colloid oxidation reaction method is that when an aqueous alkali solution is added to a ferrous salt aqueous solution, a ferrous hydroxide colloid is formed, and the aqueous solution containing the ferrous hydroxide colloid is heated and stirred. When oxygen-containing gas such as air is ventilated, magnetite particles, which are black magnetic iron oxide, are generated by oxidation reaction of ferrous hydroxide colloid. When a divalent metal other than Fe is added as in the coprecipitation method, spinel iron oxide particles containing the added metal are obtained. Moreover, magnetic iron oxide fine particles can be synthesized by controlling the reaction conditions in combination.

磁性酸化鉄微粒子を含有する水分散体の水洗は、常法に従って行えばよい。例えば、デカンテーション法により超純水で洗浄する方法や、遠心分離機により固液分離した後に超純水で洗浄する方法である。   The aqueous dispersion containing magnetic iron oxide fine particles may be washed according to a conventional method. For example, there are a method of washing with ultrapure water by a decantation method, and a method of washing with ultrapure water after solid-liquid separation with a centrifuge.

次に、磁性酸化鉄微粒子を含有する水分散体に超純水を加えて超音波分散機を用いて再分散させる。この際、水分散体のpHが9以上12未満となるように苛性ソーダあるいは緩衝剤を加えて調整することが重要である。
水分散体のpHが9未満の場合は、磁性酸化鉄微粒子の分散状態に問題を生じ、乾燥後の再分散性に問題を生じる。一方、pHが12以上の場合は、溶解する塩類が多くなりすぎるので好ましくない。
Next, ultrapure water is added to the aqueous dispersion containing the magnetic iron oxide fine particles and redispersed using an ultrasonic disperser. At this time, it is important to adjust by adding caustic soda or a buffer so that the pH of the aqueous dispersion is 9 or more and less than 12.
When the pH of the aqueous dispersion is less than 9, there is a problem in the dispersion state of the magnetic iron oxide fine particles, and there is a problem in the redispersibility after drying. On the other hand, a pH of 12 or more is not preferable because the amount of dissolved salts is excessive.

次に、磁性酸化鉄微粒子を含有する水分散体を凍結することで無菌状態の磁性粒子含有医薬用原薬を得ることができる。凍結前の水分散体の磁性酸化鉄微粒子の濃度は5〜50mg/ml程度に調整しておくことが好ましい。50mg/mlを越える場合には、粒子間に働くファンデアワールス力の影響が大きくなって凝集が生起し易くなり好ましくない。5mg/ml未満では濃度が希薄すぎて実用的でない。好ましい濃度は10〜40mg/mlである。
凍結させる条件としては、−20℃以下の冷凍庫内に5時間以上放置することが好ましい。
Next, the aqueous drug dispersion containing magnetic iron oxide fine particles can be frozen to obtain a sterile drug substance containing magnetic particles. The concentration of the magnetic iron oxide fine particles in the aqueous dispersion before freezing is preferably adjusted to about 5 to 50 mg / ml. When it exceeds 50 mg / ml, the effect of van der Waals force acting between the particles becomes large and aggregation tends to occur, which is not preferable. If it is less than 5 mg / ml, the concentration is too thin to be practical. A preferred concentration is 10-40 mg / ml.
The freezing condition is preferably left in a freezer at -20 ° C or lower for 5 hours or longer.

一方、凍結体をさらに乾燥させる方法としては、磁性粒子の酸化を防止すること、および乾燥粉末の水への再分散性を考慮すると減圧下での乾燥、言い換えると凍結乾燥が好ましい。   On the other hand, as a method for further drying the frozen body, drying under reduced pressure, in other words freeze drying, is preferable in view of preventing the oxidation of the magnetic particles and redispersibility of the dry powder in water.

本発明に係る医薬用原薬は、苛性ソーダあるいは緩衝剤でpHが9以上に調整された水に、磁性酸化鉄微粒子の凍結体を添加し、超音波分散機あるいはホモミキサー等で分散処理することで凍結前のコロイド状態(水分散体)に戻すことが可能である。得られる磁性酸化鉄微粒子を含有する水分散体は、pH値が9.0以上であることが好ましく、電気伝導度は50〜400μSであることが好ましい。   The medicinal drug substance according to the present invention is obtained by adding a frozen body of magnetic iron oxide fine particles to water whose pH is adjusted to 9 or more with caustic soda or a buffer, and dispersing the mixture with an ultrasonic disperser or a homomixer. It is possible to return to the colloidal state (aqueous dispersion) before freezing. The obtained aqueous dispersion containing magnetic iron oxide fine particles preferably has a pH value of 9.0 or more, and preferably has an electric conductivity of 50 to 400 μS.

本発明に係る医薬用原薬は、種々の用途に用いることができ、例えば、薬物の送達法であるDDS、レントゲンやMRI(磁気共鳴)等で用いられるCT診断及び温熱治療法などの治療用等である。   The medicinal drug substance according to the present invention can be used for various applications, for example, for therapeutics such as CT diagnosis and thermotherapy used in DDS, X-rays, MRI (magnetic resonance), etc., which are drug delivery methods. Etc.

本発明に係る医薬用原薬中の磁性酸化鉄微粒子を生体適応性物質に均一に分散・担持させて、前記各種用途に用いることができる。   The magnetic iron oxide fine particles in the medicinal drug substance according to the present invention can be uniformly dispersed and supported on a biocompatible substance and used for various applications.

本発明でいう生体適応性物質とは、例えば、リン脂質、多糖類、蛋白質あるいはデキストラン類等であり、通常の医薬に用いられている物質である。   The biocompatible substance referred to in the present invention is, for example, a phospholipid, polysaccharide, protein, dextran, or the like, which is a substance used in ordinary medicine.

<作用>
本発明者は、鋭意研究を重ねた結果、磁性粒子として微細な磁性酸化鉄粒子の超常磁性に着目し、超常磁性酸化鉄粒子からなる凍結体あるいは凍結乾燥体の調整条件を見出した。
<Action>
As a result of extensive research, the present inventor has focused on the superparamagnetism of fine magnetic iron oxide particles as magnetic particles, and found the adjustment conditions for a frozen or lyophilized body made of superparamagnetic iron oxide particles.

本発明に係る医薬用原薬は、水に容易に再分散することができ、無菌状態を維持したまま保存することができる。   The medicinal drug substance according to the present invention can be easily redispersed in water and can be stored while maintaining sterility.

超常磁性を発現するのは保磁力がゼロの強磁性体である。即ち、強磁性体の粒子が単磁区構造であっても大きな粒子の場合は、外部磁界を印加して磁化した後外部磁界から開放すると残留磁化を生じるが、粒子が極微細になると保磁力が減少して遂にはゼロとなり、外部磁界を印加すると磁化するが外部磁界から開放した後には残留磁化を生じない。この現象は熱擾乱作用によるものであり、このような強磁性微粒子を超常磁性であるという。   Superparamagnets are manifested by ferromagnets with zero coercivity. That is, even if the ferromagnetic particles have a single magnetic domain structure, if the particles are large and magnetized by applying an external magnetic field and then released from the external magnetic field, residual magnetization occurs. It decreases to zero and finally magnetizes when an external magnetic field is applied, but no residual magnetization occurs after release from the external magnetic field. This phenomenon is due to thermal disturbance, and such ferromagnetic fine particles are said to be superparamagnetic.

ところで、原薬である磁性酸化鉄微粒子を生体適応物質に均一に分散しただけでは磁性粒子含有医薬としての磁気特性は不足であるが、製薬工程において、生体適応性物質中に単分散した磁性酸化鉄微粒子は、薬剤として造粒する際に集合して複合粒子となるので強磁性を発現する。この現象は超常磁性粒子でも粒子同士を数珠繋ぎ状にすると形状磁気異方性が生じて保磁力が大きくなり強磁性体化するという周知の現象で説明できる。即ち、超常磁性酸化鉄粒子を生体適応性物質と均一に分散混合して複合体を生成した後に所望の大きさに造粒すると、造粒粒子中の磁性粒子の数や集合形態により造粒粒子の磁気特性が異なるのである、超常磁性粒子を用いても磁性粒子含有医薬として必要な磁気特性を調整することができる。   By the way, the magnetic properties as a drug containing magnetic particles are insufficient just by uniformly dispersing the magnetic iron oxide fine particles as the drug substance in the biocompatible substance. Since the iron fine particles are aggregated to form composite particles when granulated as a drug, they exhibit ferromagnetism. This phenomenon can be explained by the well-known phenomenon that even in superparamagnetic particles, when the particles are connected together in a rosary form, shape magnetic anisotropy occurs, the coercive force increases, and the material becomes ferromagnetic. That is, when superparamagnetic iron oxide particles are uniformly dispersed and mixed with a biocompatible substance to form a complex, and then granulated to a desired size, the granulated particles depend on the number and aggregate form of the magnetic particles in the granulated particles. Even if superparamagnetic particles are used, the magnetic properties necessary as a magnetic particle-containing drug can be adjusted.

また、磁性粒子として磁性酸化鉄粒子を用いるのは、酸化鉄には生体適応性があるからであり、微粒子ほど生体内からの排泄が容易となる。   The reason why magnetic iron oxide particles are used as the magnetic particles is that iron oxide has biocompatibility, and excretion from the living body becomes easier as fine particles.

以下、実施例により本発明を具体的に説明する。但し、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to these examples.

尚、生成物の構造解析にはX線回折装置を用い、平均粒子径はX線回折線(311)の半値幅からシェラーの式を用いて算出した。   For structural analysis of the product, an X-ray diffractometer was used, and the average particle size was calculated from the half width of the X-ray diffraction line (311) using the Scherrer equation.

粒度分布は透過型電子顕微鏡TEMで観測した。さらに、デジタイザー分析により、平均粒子径および標準偏差値を求め、これらの値から、下式により変動係数を求めた。
変動係数(%)=(標準偏差)×100/(平均粒子径)
The particle size distribution was observed with a transmission electron microscope TEM. Furthermore, the average particle diameter and the standard deviation value were obtained by digitizer analysis, and the coefficient of variation was obtained from these values using the following equation.
Coefficient of variation (%) = (standard deviation) × 100 / (average particle diameter)

比表面積値はBET法により測定した。   The specific surface area value was measured by the BET method.

Fe2+含有量はキレート滴定法により測定した。 The Fe 2+ content was measured by chelate titration method.

磁気特性の測定には振動試料型磁力計VSMを用い10k/4πkA/mの磁場で測定した。   The magnetic characteristics were measured using a vibrating sample magnetometer VSM in a magnetic field of 10 k / 4π kA / m.

磁性粒子含有医薬用原薬はメンブランフィルター法による無菌検査及び菌の残骸有無に関するエンドトキシン検査を行った。   The drug substance containing magnetic particles was subjected to sterility testing by membrane filter method and endotoxin testing for the presence of bacterial debris.

磁性粒子含有医薬用原薬の電気伝導度は、電気伝導度計を用いて測定した。   The electrical conductivity of the drug substance containing magnetic particles was measured using an electrical conductivity meter.

ゼータ電位はELS−6000(大塚電子製)により測定した。   The zeta potential was measured by ELS-6000 (manufactured by Otsuka Electronics).

磁性粒子含有医薬用原薬は表面磁束10mT(100ガウス)の永久磁石を用いて磁気凝集生起の有無を確認する。   The magnetic drug substance containing magnetic particles confirms the occurrence of magnetic aggregation using a permanent magnet having a surface magnetic flux of 10 mT (100 gauss).

実施例1
撹拌装置及び加熱装置を備えた500mlの反応容器を用い、原料鉄塩と苛性ソーダは試薬特級を用い、また水はイオン交換水を用いた。
Example 1
A 500-ml reaction vessel equipped with a stirrer and a heating device was used, the raw iron salt and caustic soda were special reagent grades, and the water was ion-exchanged water.

(1)磁性酸化鉄微粒子の合成工程
水溶液濃度1.5モルの塩化第一鉄水溶液75mlと、濃度1.0モルの塩化第二鉄水溶液225mlを反応容器に投入し、撹拌して第一鉄と第二鉄塩の混合水溶液を調整した後、加熱昇温した。この混合鉄塩水溶液が60℃に昇温した時、予め準備した濃度6.0モルの苛性ソーダ水溶液189mlおよび純水11mLの該混合水溶液に撹拌しながら添加した。添加が完了してから温度を60℃に保持して60分間撹拌をつづけた。生成物は磁石に感応する黒色を呈したコロイド水溶液であった。
ここに得たコロイド水溶液の一部を採取し、水洗ろ過したペーストを凍結乾燥して得られた粉末を分析した結果、BET比表面積が92.0m/g、平均粒子径が11nmのスピネル型結晶構造の粒子粉で、一次粒子の粒度分布の変動係数は7%であった。また、Fe2+含有量が13.8モル%の磁性酸化鉄微粒子であり、磁気特性は飽和磁化σsが64Am/kg、保磁力Hcが2.0kA/mの磁性酸化鉄微粒子であった。凝集粒子径は85nmであった。
(1) Step of synthesizing magnetic iron oxide fine particles 75 ml of an aqueous ferrous chloride solution having a concentration of 1.5 mol and 225 ml of an aqueous ferric chloride solution having a concentration of 1.0 mol are charged into a reaction vessel and stirred to ferrous iron. And a mixed aqueous solution of iron and ferric salt was prepared, and then the temperature was increased by heating. When this mixed iron salt aqueous solution was heated to 60 ° C., it was added to the prepared mixed aqueous solution of 189 ml of caustic soda solution having a concentration of 6.0 mol and 11 ml of pure water while stirring. After the addition was complete, the temperature was maintained at 60 ° C. and stirring was continued for 60 minutes. The product was a black colloidal solution that was sensitive to magnets.
A part of the aqueous colloid solution obtained here was collected, and the powder obtained by freeze-drying the paste obtained by washing and filtering was analyzed. As a result, a spinel type having a BET specific surface area of 92.0 m 2 / g and an average particle size of 11 nm The coefficient of variation of the particle size distribution of the primary particles was 7% with the particle powder having a crystal structure. The magnetic iron oxide fine particles had an Fe 2+ content of 13.8 mol%, and the magnetic properties were magnetic iron oxide fine particles having a saturation magnetization σs of 64 Am 2 / kg and a coercive force Hc of 2.0 kA / m. The aggregate particle diameter was 85 nm.

(2)コロイド粒子の精製工程
生成した黒色コロイド水溶液中には黒色コロイド粒子の合成反応で副生した可溶性塩が混在しているので、純水を用いてデカンテーション法により、副生塩を水洗除去し、さらに0.1規定の苛性ソーダ水溶液を添加してゼータ電位が−55mV、pH9.7、電気伝導度が210μSの黒色コロイド水溶液を精製した。
(2) Purification process of colloidal particles The resulting aqueous solution of black colloid contains soluble salts produced as a by-product of the synthesis reaction of the black colloidal particles, so the by-product salt is washed with pure water using a decantation method. Then, a 0.1 N aqueous sodium hydroxide solution was added to purify an aqueous black colloid solution having a zeta potential of −55 mV, pH 9.7, and electric conductivity of 210 μS.

(3)磁性体含有医薬用原薬の調整工程(凍結)
コロイド水溶液をヌッチェにて減圧濾過を行い、ペースト状の該磁性酸化鉄微粒子を分離した後、プリフリーザーPFM−1000(東京理化器械製)にて凍結体を得た。
得られた磁性酸化鉄微粒子の乾燥粉の磁気特性は、BET比表面積が92.0m/g、飽和磁化σsが64Am/kg,保磁力Hcが2.0kA/mであった。
(3) Preparation process for drug substance containing magnetic substance (freezing)
The colloidal aqueous solution was filtered under reduced pressure with Nutsche to separate the paste-like magnetic iron oxide fine particles, and then a frozen body was obtained with a prefreezer PFM-1000 (manufactured by Tokyo Rika Kikai Co., Ltd.).
The magnetic properties of the obtained dry powder of magnetic iron oxide fine particles were a BET specific surface area of 92.0 m 2 / g, a saturation magnetization σs of 64 Am 2 / kg, and a coercive force Hc of 2.0 kA / m.

実施例2
上記の工程(1)の磁性酸化鉄微粒子の合成工程において、水溶液濃度が1.5モルの塩化第一鉄水溶液100mlと0.5モルの硫酸マグネシウム水溶液200mlおよび水溶液濃度が1.0モルの塩化第二鉄水溶液225mLを用いた以外は、(2)及び(3)の各工程は共に実施例1と同じ条件で磁性酸化鉄微粒子からなる磁性粒子含有医薬用原薬を生成した。
Example 2
In the step of synthesizing magnetic iron oxide fine particles in the above step (1), 100 ml of an aqueous ferrous chloride solution having a concentration of 1.5 mol, 200 ml of an aqueous solution of 0.5 mol of magnesium sulfate, and a chloride of 1.0 mol Except for using 225 mL of ferric aqueous solution, each of the steps (2) and (3) produced a magnetic particle-containing pharmaceutical drug substance composed of magnetic iron oxide fine particles under the same conditions as in Example 1.

ここに得られた粉末を分析した結果、平均粒子径が10nmのスピネル型結晶構造の粒子粉末で、粒度分布の変動係数は7%であった。また、Fe2+含有量が8モル%,Mg2+含有量が5.5モル%の磁性酸化鉄粒子であり、BET比表面積が132m/g、磁気特性は飽和磁化σsが55Am/kg、保磁力Hcが0.8kA/mの磁性酸化鉄微粒子であった。 As a result of analyzing the powder thus obtained, it was a particle powder having a spinel crystal structure with an average particle diameter of 10 nm, and the variation coefficient of the particle size distribution was 7%. Further, it is a magnetic iron oxide particle having an Fe 2+ content of 8 mol% and an Mg 2+ content of 5.5 mol%, a BET specific surface area of 132 m 2 / g, and a magnetic property having a saturation magnetization σs of 55 Am 2 / kg, The magnetic iron oxide fine particles had a coercive force Hc of 0.8 kA / m.

使用例
前記実施例1で得られた磁性酸化鉄微粒子の凍結体を0.1規定の苛性ソーダ水溶液を添加したpH10.0の水に添加し、ホモミキサーで20分程度分散処理を施すことによって、磁性酸化鉄微粒子が水に分散したコロイド状態を得ることができる。
得られたコロイド水溶液のpHは9.7、電気伝導度は210μSであった。
さらに、メンブランフィルター法により無菌であることを確認した。具体的には、生菌数が1×10−6/UNIT未満であった。
Example of Use By adding the frozen body of magnetic iron oxide fine particles obtained in Example 1 to water with a pH of 10.0 to which 0.1 N sodium hydroxide aqueous solution is added, and performing a dispersion treatment for about 20 minutes with a homomixer, A colloidal state in which magnetic iron oxide fine particles are dispersed in water can be obtained.
The resulting aqueous colloidal solution had a pH of 9.7 and an electric conductivity of 210 μS.
Furthermore, it was confirmed to be sterile by a membrane filter method. Specifically, the viable cell count was less than 1 × 10 −6 / UNIT.

本発明に係る磁性体含有医薬用原薬は、磁性酸化鉄微粒子の単分散無菌凍結体あるいは乾燥粉末であるから、保存中の菌の増殖がなく、無菌状態を維持管理することが比較的容易になる。さらに、磁性体微粒子を生体適合性物質に均質に分散させた複合物からなる医薬を容易に合成することができ、しかも、製薬造粒工程においては微粒子の集合状態を調整することにより造粒粒子に強磁性体の機能を付与することができる。
また、該磁性粒子表面に界面活性剤などを含有しない原薬であり、しかも、超微粒子であることで投与後は体内からの排泄を容易にすることができるので、人体に投与後の安全性及び代謝・排泄に関して何ら問題を生じない原薬を提供することができる。
The magnetic substance-containing medicinal drug substance according to the present invention is a monodispersed sterile frozen body or dry powder of magnetic iron oxide fine particles, so that there is no growth of bacteria during storage and it is relatively easy to maintain and manage the sterile state. become. Furthermore, it is possible to easily synthesize a pharmaceutical comprising a composite in which magnetic fine particles are uniformly dispersed in a biocompatible substance, and in the pharmaceutical granulation step, the granulated particles are adjusted by adjusting the aggregate state of the fine particles. The function of a ferromagnet can be imparted to.
In addition, it is a drug substance that does not contain a surfactant or the like on the surface of the magnetic particle, and since it is an ultrafine particle, it can be easily excreted from the body after administration. In addition, it is possible to provide a drug substance that does not cause any problems regarding metabolism and excretion.

Claims (7)

平均粒径が5〜30nmの磁性酸化鉄微粒子からなり、その形態が凍結体であることを特徴とする磁性粒子含有医薬用原薬。 A magnetic particle-containing drug substance comprising magnetic iron oxide fine particles having an average particle diameter of 5 to 30 nm and having a frozen form. 磁性酸化鉄微粒子の飽和磁化が35〜90Am/kg、保磁力が0〜6.0kA/mであることを特徴とする請求項1記載の磁性粒子含有医薬用原薬。 Magnetic drug-containing drug substance according to claim 1, wherein the magnetic iron oxide fine particles have a saturation magnetization of 35 to 90 Am 2 / kg and a coercive force of 0 to 6.0 kA / m. 磁性酸化鉄微粒子の粒度分布の変動係数が10%以下であることを特徴とする請求項1又は2記載の磁性粒子含有医薬用原薬。 The magnetic particle-containing medicinal drug substance according to claim 1 or 2, wherein the coefficient of variation of the particle size distribution of the magnetic iron oxide fine particles is 10% or less. 磁性酸化鉄微粒子がスピネル構造の組成物MOFe(Mは2価金属)であることを特徴とする請求項1〜3のいずれかに記載の磁性粒子含有医薬用原薬。 Magnetic drug-containing drug substance according to any one of claims 1 to 3, wherein the magnetic iron oxide fine particles are a spinel-structured composition MOFe 2 O 3 (M is a divalent metal). 組成物MOFe(Mは2価金属)のMが、Fe及び/又はMg(但し、FeとMgの総和がFe1モルに対して1モル以下)であることを特徴とする請求項4記載の磁性粒子含有医薬用原薬。 M of the composition MOFe 2 O 3 (M is a divalent metal) is Fe and / or Mg (however, the sum of Fe and Mg is 1 mol or less with respect to 1 mol of Fe 2 O 3 ) The medicinal drug substance containing magnetic particles according to claim 4. 平均粒径が5〜30nmの磁性酸化鉄微粒子からなり、その形態が乾燥粉末であることを特徴とする請求項1〜5のいずれかに記載の磁性粒子含有医薬用原薬。 The magnetic drug substance containing the drug substance according to any one of claims 1 to 5, wherein the drug substance comprises magnetic iron oxide fine particles having an average particle diameter of 5 to 30 nm, and the form thereof is a dry powder. 請求項1〜6のいずれかに記載の磁性酸化鉄粒子とリン脂質、多糖類、蛋白質あるいはデキストラン類との複合体であることを特徴とする磁性粒子含有医薬用原薬。
A magnetic drug substance containing a magnetic particle, which is a complex of the magnetic iron oxide particle according to any one of claims 1 to 6 and a phospholipid, polysaccharide, protein, or dextran.
JP2005175801A 2005-06-15 2005-06-15 Drug substance for magnetic particle-containing medicine Pending JP2006347949A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005175801A JP2006347949A (en) 2005-06-15 2005-06-15 Drug substance for magnetic particle-containing medicine
US11/451,597 US7670676B2 (en) 2005-06-15 2006-06-13 Pharmaceutical raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175801A JP2006347949A (en) 2005-06-15 2005-06-15 Drug substance for magnetic particle-containing medicine

Publications (1)

Publication Number Publication Date
JP2006347949A true JP2006347949A (en) 2006-12-28

Family

ID=37644151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175801A Pending JP2006347949A (en) 2005-06-15 2005-06-15 Drug substance for magnetic particle-containing medicine

Country Status (1)

Country Link
JP (1) JP2006347949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030975A (en) * 2006-07-26 2008-02-14 Miyazaki Tlo:Kk Substance-adsorptive magnetite and its manufacturing method
JP2014156411A (en) * 2013-02-14 2014-08-28 Toda Kogyo Corp Composite magnetic particulate powder, and dispersion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134001A (en) * 1989-10-20 1991-06-07 Meito Sangyo Kk Organic magnetic composite material
JPH10120597A (en) * 1996-10-22 1998-05-12 Eiken Chem Co Ltd Highly accumulating colloidal particle of lymph node
JP2002517085A (en) * 1998-05-26 2002-06-11 バー−イラン ユニバーシティ Nucleation and growth of magnetic metal oxide nanoparticles and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134001A (en) * 1989-10-20 1991-06-07 Meito Sangyo Kk Organic magnetic composite material
JPH10120597A (en) * 1996-10-22 1998-05-12 Eiken Chem Co Ltd Highly accumulating colloidal particle of lymph node
JP2002517085A (en) * 1998-05-26 2002-06-11 バー−イラン ユニバーシティ Nucleation and growth of magnetic metal oxide nanoparticles and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030975A (en) * 2006-07-26 2008-02-14 Miyazaki Tlo:Kk Substance-adsorptive magnetite and its manufacturing method
JP2014156411A (en) * 2013-02-14 2014-08-28 Toda Kogyo Corp Composite magnetic particulate powder, and dispersion

Similar Documents

Publication Publication Date Title
JP5765520B2 (en) Method for producing aqueous dispersion containing magnetic particles
US7670676B2 (en) Pharmaceutical raw material
JP5321772B2 (en) Medicinal drug substance containing magnetic particles
Mandal et al. Magnetite nanoparticles with tunable gold or silver shell
JP5701408B2 (en) Method for preparing iron oxide nanoparticles coated with hydrophilic substance, and magnetic resonance imaging contrast agent containing iron oxide nanoparticles
Castelló et al. Chitosan (or alginate)-coated iron oxide nanoparticles: A comparative study
Sun et al. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications
Zhen et al. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles
Amiri et al. The role of cobalt ferrite magnetic nanoparticles in medical science
Petri-Fink et al. Superparamagnetic iron oxide nanoparticles (SPIONs): from synthesis to in vivo studies—a summary of the synthesis, characterization, in vitro, and in vivo investigations of SPIONs with particular focus on surface and colloidal properties
Dutz et al. Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles
Park et al. Transformation of hydrophobic iron oxide nanoparticles to hydrophilic and biocompatible maghemite nanocrystals for use as highly efficient MRI contrast agent
Mishra et al. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging
CN106913885B (en) Magnetic nano particle and preparation method and application thereof
Jamir et al. Effect of surface functionalization on the heating efficiency of magnetite nanoclusters for hyperthermia application
Periyathambi et al. Green biosynthesis and characterization of fibrin functionalized iron oxide nanoparticles with MRI sensitivity and increased cellular internalization
Yu et al. Size‐tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications
Stojanović et al. The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly (l-lactide)–polyethyleneimine magnetic particles
JP2015519302A (en) Magnetic nanoparticle dispersant, its preparation and diagnostic and therapeutic use
Kloster et al. Magnetic characterization of chitosan–magnetite nanocomposite films
JP5031979B2 (en) Medicinal drug substance containing magnetic particles
JP2006347949A (en) Drug substance for magnetic particle-containing medicine
JP2014156411A (en) Composite magnetic particulate powder, and dispersion
EP2942064B1 (en) Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
Shahri Magnetic materials and magnetic nanocomposites for biomedical application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120125