JP2006346734A - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP2006346734A
JP2006346734A JP2005179460A JP2005179460A JP2006346734A JP 2006346734 A JP2006346734 A JP 2006346734A JP 2005179460 A JP2005179460 A JP 2005179460A JP 2005179460 A JP2005179460 A JP 2005179460A JP 2006346734 A JP2006346734 A JP 2006346734A
Authority
JP
Japan
Prior art keywords
cooling plate
continuous casting
cooling
meniscus
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005179460A
Other languages
Japanese (ja)
Other versions
JP4355684B2 (en
Inventor
Yuichi Ogawa
勇一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2005179460A priority Critical patent/JP4355684B2/en
Publication of JP2006346734A publication Critical patent/JP2006346734A/en
Application granted granted Critical
Publication of JP4355684B2 publication Critical patent/JP4355684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting mold, which produces a cast slab of good quality by suppressing, further preventing, generation of cracks in a cooling plate and stably maintains quality for a period longer than those of conventional continuous casting molds. <P>SOLUTION: The casting mold comprises a cooling plate 11, which is provided with a large number of water guiding grooves 20 on its back surface, and a supporting member 19, which is fixed to the back surface side of the cooling plate 11 via O-rings 23 surrounding the water guiding grooves 20 by fitting means 13-18 provided at predetermined intervals in a vertical direction. The mold produces a cast slab by cooling the cooling plate and further cooling molten steel by allowing cooling water to flow into each of water guiding grooves 20 through water feeding parts 21 and water discharging parts 22 of the supporting member 19. The fitting means 13-18 are formed so as to avoid a meniscus part 12 of the cooling plate 11. The fitting interval D between fitting means 13, 14, which are positioned above and under the meniscus part 12, are made wider than the fitting intervals on the other part of the plate 11. Further, recessed parts corresponding to a thermal expansion amount of the meniscus part 12 at the time of producing the cast slab are formed on the surface side of the meniscus part 12 of the cooling plate 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶鋼を鋳造するための連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold for casting molten steel.

従来、連続鋳造設備に使用される連続鋳造用鋳型(以下、単に鋳型ともいう)は、一対の幅狭冷却部材である短辺部材(短片部材ともいう)と、この短辺部材を挟み込むように配置される一対の幅広冷却部材である長辺部材(長片部材ともいう)とを備え、この向かい合う長辺部材の両端部にそれぞれボルトを取付け、ばねを介してナットで短辺部材を固定した構造となっている。
長辺部材は、図5(A)、(B)に示すように、裏面に上下方向に多数の導水溝80が設けられた銅板(冷却板の一例)81と、銅板81の裏面側に所定の取付け間隔で設けられたボルトにより固定された支持部材の一例であるバックプレート(冷却箱ともいう)82とを有している。このバックプレート82の銅板81に接触する側の上端部及び下端部には、それぞれ排水部83及び給水部84が設けられ、給水部84から流入した冷却水を導水溝80を介して排水部83へ流すことで、銅板81の冷却を行っている。また、銅板81とバックプレート82の間には、導水溝80、排水部83、及び給水部84を囲むようにOリング85が配置され、長辺部材からの水漏れを防止している。なお、短辺部材も、その幅が異なること以外は、長辺部材と略同様の構成となっており、長辺部材及び短辺部材の各銅板で鋳型本体が構成されている(例えば、特許文献1参照)。
そして、このような構成の鋳型に溶湯を供給し、鋳型内で凝固して形成される鋳片を連続的に下方へ引き抜きながら、冷却水を吹き付けて鋳片を製造している。
Conventionally, a continuous casting mold (hereinafter also simply referred to as a mold) used in a continuous casting facility has a pair of narrow cooling members (also referred to as short piece members) sandwiched between the short side members. A long side member (also referred to as a long piece member) that is a pair of wide cooling members that are arranged, bolts are attached to both ends of the opposing long side member, and the short side member is fixed with a nut via a spring It has a structure.
As shown in FIGS. 5 (A) and 5 (B), the long side member has a copper plate (an example of a cooling plate) 81 in which a large number of water guide grooves 80 are provided in the vertical direction on the back surface, and a predetermined length on the back surface side of the copper plate 81. And a back plate (also referred to as a cooling box) 82 which is an example of a support member fixed by bolts provided at a mounting interval of. A drainage portion 83 and a water supply portion 84 are respectively provided at the upper end portion and the lower end portion of the back plate 82 on the side in contact with the copper plate 81, and the cooling water flowing in from the water supply portion 84 is passed through the water guide groove 80 to the drainage portion 83. To cool the copper plate 81. In addition, an O-ring 85 is disposed between the copper plate 81 and the back plate 82 so as to surround the water guide groove 80, the drainage part 83, and the water supply part 84, thereby preventing water leakage from the long side member. The short side member also has substantially the same configuration as the long side member except that its width is different, and the mold body is composed of the copper plates of the long side member and the short side member (for example, patents) Reference 1).
Then, the molten metal is supplied to the mold having such a configuration, and the slab is manufactured by blowing cooling water while continuously drawing the slab formed by solidification in the mold downward.

特開2003−136204号公報JP 2003-136204 A

しかしながら、前記した連続鋳造用鋳型には、以下の問題があった。
従来の鋳型の銅板、特に電磁撹拌用鋳型のように厚みが薄い薄肉銅板は、その熱変形防止を目的として、図5(A)に示すように、過密なピッチ(例えば、50mm以上150mm未満)でバックプレートとのボルト締結がなされている。このため、銅板に拘束歪みが発生してクラックが発生し易かった。
また、近年、鋳造速度の上昇又は電磁撹拌の影響により、銅板のメニスカス部への熱負荷が従来よりも増大しているため、前記過密なボルト締結構造では、銅板のメニスカス部により大きな拘束歪みが発生してクラックが発生し易かった。
このように、銅板にクラックが発生することで、例えば、鋳片品質及びモールド寿命を大きく低下させる恐れがあった。
However, the above-described continuous casting mold has the following problems.
As shown in FIG. 5A, a conventional copper plate of a mold, particularly a thin copper plate such as a magnetic stirring mold, has a dense pitch (for example, 50 mm or more and less than 150 mm) for the purpose of preventing thermal deformation. The bolt is fastened with the back plate. For this reason, restraint distortion generate | occur | produced in the copper plate and it was easy to generate | occur | produce a crack.
Further, in recent years, the heat load on the meniscus portion of the copper plate has increased more than before due to the increase in casting speed or the influence of electromagnetic stirring. Therefore, in the overtightened bolt fastening structure, a large restraint strain is applied to the meniscus portion of the copper plate. It was easy to generate a crack.
Thus, when a crack generate | occur | produces in a copper plate, there existed a possibility of reducing slab quality and a mold lifetime significantly, for example.

本発明はかかる事情に鑑みてなされたもので、冷却板へのクラックの発生を抑制、更には防止して、品質が良好な鋳片を製造でき、しかも従来より長い期間安定した品質を維持可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and can suppress the generation of cracks in the cooling plate, further prevent it, manufacture a slab of good quality, and maintain stable quality for a longer period of time than before. An object of the present invention is to provide a continuous casting mold.

前記目的に沿う本発明に係る連続鋳造用鋳型は、裏面に多数の導水溝が設けられた冷却板と、該冷却板の上下方向に所定の取付け間隔で設けられる複数の取付け手段により、前記冷却板の裏面側に前記導水溝を囲むOリングを介して固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記各導水溝に冷却水を流すことで、前記冷却板の冷却を行うと共に溶鋼の冷却を行って鋳片を製造する連続鋳造用鋳型において、
前記取付け手段は、前記冷却板のメニスカス部を避けて設けられ、該メニスカス部の上下に位置する前記取付け手段の取付け間隔を他の部分の取付け間隔よりも広くし、更に、前記冷却板のメニスカス部の表面側には、前記鋳片の製造時の前記メニスカス部の熱膨張量に対応した凹み加工がなされている。
The continuous casting mold according to the present invention that meets the above object includes a cooling plate provided with a plurality of water guide grooves on the back surface, and a plurality of mounting means provided at predetermined mounting intervals in the vertical direction of the cooling plate. A support member fixed on the back side of the plate via an O-ring surrounding the water guide groove, and flowing cooling water to each water guide groove through a water supply portion and a drainage portion provided on the support member. In the continuous casting mold for producing the slab by cooling the cooling plate and cooling the molten steel,
The attachment means is provided avoiding the meniscus portion of the cooling plate, the attachment interval of the attachment means positioned above and below the meniscus portion is wider than the attachment interval of other portions, and the meniscus of the cooling plate On the surface side of the part, dent processing corresponding to the thermal expansion amount of the meniscus part at the time of manufacture of the slab is made.

また、本発明に係る連続鋳造用鋳型において、前記メニスカス部は、前記冷却板の上端位置から下方へ50mm以上150mm以下の範囲内であることが好ましい。 In the continuous casting mold according to the present invention, it is preferable that the meniscus portion is in a range of 50 mm or more and 150 mm or less downward from an upper end position of the cooling plate.

そして、本発明に係る連続鋳造用鋳型において、前記メニスカス部の上方に位置する前記取付け手段の取付け位置は、前記冷却板の上端位置から下方へ60mmまでの範囲内であることが好ましい。 In the continuous casting mold according to the present invention, the attachment position of the attachment means located above the meniscus portion is preferably within a range of 60 mm downward from the upper end position of the cooling plate.

更に、本発明に係る連続鋳造用鋳型において、前記メニスカス部の上下に位置する前記取付け手段の取付け間隔は、150mm以上250mm以下であることが好ましい。 Furthermore, in the continuous casting mold according to the present invention, it is preferable that an attachment interval of the attachment means positioned above and below the meniscus portion is 150 mm or more and 250 mm or less.

請求項1〜4記載の連続鋳造用鋳型は、高熱負荷となるメニスカス部に取付け手段を設けることなく、このメニスカス部の上下に位置する取付け手段の取付け間隔を他の部分よりも広くすることで、冷却板のメニスカス部の支持部材による拘束力を緩め、冷却板の自由変形可能な量を従来よりも大きくできる。これにより、冷却板のメニスカス部での拘束歪みの発生を緩和し、メニスカス部のクラックの発生を抑制できる。
また、冷却板のメニスカス部の表面側に、鋳造の際のメニスカス部の熱膨張量に対応した凹み加工を行うことで、連続鋳造用鋳型の使用に際しても、目的とする形状に変形させることができ、良好な品質を備える鋳片を製造できる。
The continuous casting mold according to any one of claims 1 to 4 can be provided by providing a mounting interval between the mounting means positioned above and below the meniscus portion without providing the mounting means on the meniscus portion that becomes a high heat load. The restraining force by the support member of the meniscus portion of the cooling plate can be relaxed, and the amount of the cooling plate that can be freely deformed can be made larger than before. Thereby, generation | occurrence | production of the restraint distortion in the meniscus part of a cooling plate can be relieve | moderated, and generation | occurrence | production of the crack of a meniscus part can be suppressed.
In addition, by performing dent processing corresponding to the thermal expansion amount of the meniscus part at the time of casting on the surface side of the meniscus part of the cooling plate, it can be deformed to the target shape even when using a continuous casting mold. And a slab with good quality can be manufactured.

特に、請求項2記載の連続鋳造用鋳型は、メニスカス部の位置を規定するので、拘束歪みの影響を抑制可能である適切な位置に取付け手段を設けることができる。 In particular, since the continuous casting mold according to claim 2 defines the position of the meniscus portion, the attachment means can be provided at an appropriate position where the influence of restraint strain can be suppressed.

請求項3記載の連続鋳造用鋳型は、メニスカス部の上方に位置する取付け手段の取付け位置を規定するので、取付け手段による冷却板への拘束歪みの影響を抑制できる。 According to the third aspect of the present invention, the continuous casting mold prescribes the mounting position of the mounting means positioned above the meniscus portion, so that the influence of restraining strain on the cooling plate by the mounting means can be suppressed.

請求項4記載の連続鋳造用鋳型は、メニスカス部の上下に位置する取付け手段の取付け間隔を規定するので、取付け手段による冷却板への拘束歪みの影響を更に抑制できると共に、支持部材に対する冷却板の取付けも確実にできる。 The continuous casting mold according to claim 4 regulates the mounting interval of the mounting means positioned above and below the meniscus portion, so that the influence of restraining strain on the cooling plate by the mounting means can be further suppressed, and the cooling plate for the support member Can be installed securely.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)は本発明の一実施の形態に係る連続鋳造用鋳型の長辺部材の冷却板の背面図、(B)は図1(A)のa−a矢視断面図、図2は連続鋳造用鋳型を使用して鋳片を鋳造する際の冷却板形状を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1A is a rear view of the cooling plate of the long side member of the continuous casting mold according to the embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line aa in FIG. FIG. 2 is an explanatory view showing a cooling plate shape when casting a slab using a continuous casting mold.

図1(A)、(B)に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、一対の幅狭冷却部材である短辺部材(短片部材ともいう)と、一対の幅広冷却部材である長辺部材(長片部材ともいう)10とを組合せることで製造されるものであり、鋳片の製造に際して、長辺部材10を構成する冷却板11のメニスカス部12(溶鋼の湯面近傍)のクラックの発生を抑制するものである。なお、連続鋳造用鋳型の長辺部材10と短辺部材は略同様の構成であり、長辺部材10の冷却板11と短辺部材の冷却板とで鋳型本体が構成されている。このため、以下、長辺部材10について詳しく説明する。 As shown in FIGS. 1A and 1B, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention is a pair of narrow cooling members (short pieces). And a long side member (also referred to as a long piece member) 10 which is a pair of wide cooling members, and the long side member 10 is configured when the slab is manufactured. This suppresses the generation of cracks in the meniscus portion 12 (near the molten steel surface) of the cooling plate 11. The long side member 10 and the short side member of the continuous casting mold have substantially the same configuration, and the cooling plate 11 of the long side member 10 and the cooling plate of the short side member constitute a mold body. Therefore, the long side member 10 will be described in detail below.

長辺部材10は、冷却板11と、冷却板11の裏面側に複数の取付け手段13〜18によって固定された支持部材の一例であるバックプレート(冷却箱、水箱とも言う)19とを有している。
冷却板11(例えば、厚み10mm以上100mm以下程度)は、熱伝導性が良好な金属の一例である銅又は銅合金で構成され、その裏面側には上下方向に多数の導水溝20(ここでは11本)が設けられている。なお、各導水溝20は、冷却板11の幅方向に所定ピッチ(例えば、10mm以上40mm以下程度)で形成され、その深さは、例えば、冷却板11の厚みの1/3以上2/3以下程度である。
The long side member 10 includes a cooling plate 11 and a back plate (also referred to as a cooling box or a water box) 19 which is an example of a support member fixed to the back side of the cooling plate 11 by a plurality of attachment means 13 to 18. ing.
The cooling plate 11 (for example, about 10 mm to 100 mm in thickness) is made of copper or copper alloy, which is an example of a metal having good thermal conductivity, and a large number of water guide grooves 20 (here, on the back side). 11) are provided. Each water guide groove 20 is formed at a predetermined pitch (for example, about 10 mm or more and 40 mm or less) in the width direction of the cooling plate 11, and the depth thereof is, for example, 1/3 or more and 2/3 of the thickness of the cooling plate 11. It is about the following.

また、バックプレート19(例えば、厚み50mm以上500mm以下程度)は、例えばステンレスからなり、バックプレート19の冷却板11の接する側の下部及び上部に給水部21及び排水部22が設けられている。バックプレート19の冷却板11側周辺部には、バックプレート19の給水部21、排水部22、及び冷却板11の導水溝20を囲むように溝が形成され、この溝にOリング23を配置している。
冷却板11には雌ねじ部が形成され、この雌ねじ部に螺合する雄ねじ(例えば、ボルト)により、冷却板11の裏面側にバックプレート19が固定されている。なお、雄ねじを取付けるためにバックプレート19に形成された孔(図示しない)には、防水可能なシール座金が予め配置されている。この雌ねじ部と雄ねじが取付け手段13〜18(ここでは合計18箇所)を構成しており、この複数の取付け手段13〜18が、冷却板11の幅方向及び上下方向に所定の取付け間隔で設けられている。
The back plate 19 (for example, about 50 mm or more and 500 mm or less in thickness) is made of, for example, stainless steel, and a water supply unit 21 and a drainage unit 22 are provided at a lower part and an upper part of the back plate 19 on the side where the cooling plate 11 contacts. Grooves are formed around the cooling plate 11 side of the back plate 19 so as to surround the water supply portion 21, the drainage portion 22 of the back plate 19, and the water guide groove 20 of the cooling plate 11, and an O-ring 23 is disposed in this groove. is doing.
The cooling plate 11 has a female screw portion, and a back plate 19 is fixed to the back side of the cooling plate 11 by a male screw (for example, a bolt) that is screwed into the female screw portion. In addition, a seal washer that can be waterproofed is disposed in advance in a hole (not shown) formed in the back plate 19 for attaching the male screw. The female screw portion and the male screw constitute attachment means 13 to 18 (18 places in total here), and the plurality of attachment means 13 to 18 are provided at predetermined attachment intervals in the width direction and the vertical direction of the cooling plate 11. It has been.

ここで、複数の取付け手段13〜18の取付け位置の決定方法について説明する。
図2に示すように、冷却板の熱応力は、表面と裏面の間に温度差があり、しかも裏面側が拘束(変位拘束)されている場合に発生する。ここで、冷却板表面を高温にし裏面を低温にして、冷却板の裏面側の曲がりを完全に防止した平板の熱応力解σtを、以下に示す。
σt=±β・ΔT・E/2(1−ν)
β :線膨張係数(1/℃)
ΔT:(表面温度)−(裏面温度)(℃)
E :ヤング率(kg/mm2
ν :ポアソン比
ここで、冷却板の表面は「−側」の値となって圧縮応力が働き、裏面は「+側」の値となって引張応力が働く。
なお、表裏の温度差はあっても、裏面の拘束が全くない場合は、自由変形となり応力は発生しない。
Here, the determination method of the attachment position of the some attachment means 13-18 is demonstrated.
As shown in FIG. 2, the thermal stress of the cooling plate is generated when there is a temperature difference between the front surface and the back surface and the back surface side is constrained (displacement constrained). Here, a thermal stress solution σt of a flat plate in which the surface of the cooling plate is set to a high temperature and the back surface is set to a low temperature, and the bending of the back side of the cooling plate is completely prevented is shown below.
σt = ± β · ΔT · E / 2 (1-ν)
β: Linear expansion coefficient (1 / ° C)
ΔT: (surface temperature)-(back surface temperature) (° C)
E: Young's modulus (kg / mm 2 )
ν: Poisson's ratio Here, the surface of the cooling plate has a value of “−” and compressive stress acts, and the back surface has a value of “+” and tensile stress acts.
In addition, even if there is a temperature difference between the front and back, if there is no constraint on the back, there will be free deformation and no stress will be generated.

また、冷却板のメニスカス部へのクラックの発生は、低サイクル疲労破壊が支配していると推測される。特に、高速鋳造用鋳型又は電磁撹拌用鋳型のように、冷却板のメニスカス部付近に高熱負荷を受ける鋳型では、鋳造中の冷却板表面の応力状態が、通常塑性域に達している。鋳型は、熱間状態と冷間状態に繰り返し晒されており、また、鋳造中の湯面変動により、応力振幅を繰り返す。このため、冷却板表面は、低サイクル疲れ状態(疲労寿命:103 <Nf<105 )にあると推測される。
この低サイクル疲れ状態では、疲労寿命Nfが、塑性歪みに支配されていることから、以下に示すManson−Coffinの(1)式が成り立つ。
In addition, the occurrence of cracks in the meniscus portion of the cooling plate is presumed to be governed by low cycle fatigue failure. In particular, in a mold that receives a high thermal load in the vicinity of the meniscus portion of the cooling plate, such as a high-speed casting mold or an electromagnetic stirring mold, the stress state on the surface of the cooling plate during casting reaches the normal plastic region. The mold is repeatedly exposed to a hot state and a cold state, and the stress amplitude is repeated due to the fluctuation of the molten metal surface during casting. For this reason, it is estimated that the cooling plate surface is in a low cycle fatigue state (fatigue life: 10 3 <Nf <10 5 ).
In this low cycle fatigue state, since the fatigue life Nf is dominated by plastic strain, the following Manson-Coffin equation (1) holds.

εp・Nfn =Cp ・・・(1)
εp:塑性歪み振幅
n、Cp:材料定数
Nf:疲労寿命(回)
この(1)式を、疲労寿命Nfについて整理する。
Nfn =Cp/εp ・・・(1´)
(1´)式から、塑性歪み振幅εpが大きいほど、即ち熱応力解σtの絶対値が大きくなるほど、疲労寿命Nfが短くなり、早期にクラックが発生することが分かる。
εp · Nf n = Cp (1)
εp: plastic strain amplitude n, Cp: material constant Nf: fatigue life (times)
This equation (1) is arranged for the fatigue life Nf.
Nf n = Cp / εp (1 ′)
From equation (1 ′), it can be seen that the greater the plastic strain amplitude εp, that is, the greater the absolute value of the thermal stress solution σt, the shorter the fatigue life Nf and the earlier cracking occurs.

ここで、疲労寿命Nfを延ばす構造的な対策としては、前記熱応力解σtが小さくなるように、即ち強冷却を行ってΔTを小さくし、冷却板の表面と裏面の温度差を小さくする方法と、裏面側の曲がり拘束を緩める方法がある。
なお、電磁撹拌用鋳型の冷却板では、渦電流損を抑えるため薄肉の冷却板を使用しており、冷却板に大きな熱変形が発生し易くなっている。そして、この熱変形を防止するため、ボルト締結の数を増やし、ボルトピッチを過密にしている。このように、締結ボルトを過密に配置していることで、冷却板の裏面の曲がり拘束が強くなり、応力状態を悪化させているため、冷却板の塑性歪みが大きくなって疲労寿命も短くなる。
そこで、前記した2つの方法のうち、これを解消する効果的な方法は、高応力部となるメニスカス部近傍の取付け手段の数を減らすことである。
Here, as a structural measure for extending the fatigue life Nf, a method of reducing the temperature difference between the front and back surfaces of the cooling plate by reducing the thermal stress solution σt, that is, by performing strong cooling to reduce ΔT. And there is a method of loosening the bending restraint on the back side.
In the cooling plate of the electromagnetic stirring mold, a thin cooling plate is used in order to suppress eddy current loss, and large thermal deformation is likely to occur in the cooling plate. And in order to prevent this thermal deformation, the number of bolt fastening is increased and the bolt pitch is made dense. In this way, by arranging the fastening bolts in an overly dense manner, the bending restraint on the back surface of the cooling plate is strengthened and the stress state is deteriorated, so the plastic strain of the cooling plate is increased and the fatigue life is also shortened. .
Therefore, of the two methods described above, an effective method for solving this is to reduce the number of attachment means in the vicinity of the meniscus portion that becomes a high stress portion.

図1(A)に示すように、冷却板11の上部、即ちメニスカス部12の上方に位置する取付け手段13を、冷却板11の上端位置Pから下方へ60mmまでの範囲X内に設ける。ここで、メニスカス部12は、冷却板11の上端位置Pから下方へ50mm以上150mm以下(好ましくは、下限を70mm、上限を130mm)の範囲内に位置するため、このメニスカス部12の位置よりも上方に、取付け手段13の取付け位置を設定する。これにより、取付け手段13による拘束歪みがメニスカス部12に影響を及ぼさないようにできる。
このことから、取付け手段13の取付け位置の範囲Xを、好ましくは冷却板11の上端位置Pから下方へ50mmまでとする。
As shown in FIG. 1A, the attachment means 13 located above the cooling plate 11, that is, above the meniscus portion 12, is provided within a range X from the upper end position P of the cooling plate 11 to 60 mm downward. Here, the meniscus portion 12 is located within the range of 50 mm or more and 150 mm or less downward from the upper end position P of the cooling plate 11 (preferably, the lower limit is 70 mm and the upper limit is 130 mm). The attachment position of the attachment means 13 is set above. Thereby, the restraint distortion by the attachment means 13 can be prevented from affecting the meniscus part 12.
From this, the range X of the mounting position of the mounting means 13 is preferably set to 50 mm downward from the upper end position P of the cooling plate 11.

また、メニスカス部12の上下に位置する取付け手段13と取付け手段14の取付け間隔Dは、150mm以上250mm以下にする。これは、冷却板11の上下に位置する各取付け手段13、14が冷却板11のメニスカス部12を避け、しかも取付け手段13、14による拘束歪みのメニスカス部12への影響を小さくする。 Further, the mounting interval D between the mounting means 13 and the mounting means 14 positioned above and below the meniscus portion 12 is set to 150 mm or more and 250 mm or less. This avoids the meniscus portion 12 of the cooling plate 11 by the mounting means 13 and 14 positioned above and below the cooling plate 11 and reduces the influence of the restraining strain on the meniscus portion 12 by the mounting means 13 and 14.

なお、冷却板11の上側に位置する取付け手段13、14の取付け間隔Dを除く、他の取付け手段14、15、取付け手段15、16、取付け手段16、17、取付け手段17、18の各取付け間隔は、従来の冷却板と同様の取付け間隔、例えば、50mm以上150mm未満にしている。
また、長辺部材の冷却板の端部(溶鋼が接触しない部分である短辺部材の合わせ位置よりも外側)では、熱負荷がかからないため、取付け手段の各取付け間隔は、従来の取付け間隔と同程度でよい。
このように、メニスカス部12近傍の取付け手段の数を減らし、取付け手段13、14の取付け間隔Dを他の取付け手段14〜18の取付け間隔よりも広くすることで、冷却板11の応力緩和が可能になる。
In addition, each attachment of other attachment means 14,15, attachment means 15,16, attachment means 16,17, attachment means 17,18 except the attachment space | interval D of the attachment means 13 and 14 located in the upper side of the cooling plate 11 is carried out. The interval is the same as that of the conventional cooling plate, for example, 50 mm or more and less than 150 mm.
In addition, since the thermal load is not applied at the end of the cooling plate of the long side member (outside the alignment position of the short side member that is a portion where the molten steel does not contact), each mounting interval of the mounting means is the same as the conventional mounting interval. The same level is acceptable.
As described above, the number of attachment means in the vicinity of the meniscus portion 12 is reduced, and the attachment interval D of the attachment means 13, 14 is made wider than the attachment interval of the other attachment means 14 to 18, thereby reducing the stress of the cooling plate 11. It becomes possible.

しかし、冷却板11をバックプレート19へ取付けるための取付け手段の数を減らすことで、冷却板11の拘束力は小さくなり、冷却板の変形量は大きくなる。そのため、冷却板のメニスカス部12の表面側に凹部24を形成している。
この凹部24は、鋳造中にメニスカス部12が熱膨張し、その結果、冷却板11表面が目的としたプロフィール(鋳型の下方へかけてその中央へ傾斜した形状)になるように、冷却板表面側に熱変形をキャンセルさせたプロフィール加工(凹み加工)を行うことにより形成する。凹部24は、湯面位置に急激な凹み(凹み加工がなされていない冷却板11表面から、例えば、深さが0.05mm以上1.0mm以下程度)を設け、冷却板11の下方へ向かってなだらかに凹み量を小さくした形状である。
なお、このプロフィール加工は、予め分かっている鋳造の際の操業条件や冷却板の冷却条件に基づき、冷却板11の変形量を数値解析により予測して行うことが可能である。
これにより、熱変形による冷却板11の形状(テーパ)崩れを防止できる。
However, by reducing the number of attachment means for attaching the cooling plate 11 to the back plate 19, the restraining force of the cooling plate 11 is reduced, and the deformation amount of the cooling plate is increased. Therefore, a recess 24 is formed on the surface side of the meniscus portion 12 of the cooling plate.
The recess 24 has a cooling plate surface so that the meniscus portion 12 is thermally expanded during casting, and as a result, the surface of the cooling plate 11 has a target profile (a shape inclined downward toward the center of the mold). It is formed by performing profile processing (dent processing) in which thermal deformation is canceled on the side. The recess 24 is provided with an abrupt recess (for example, a depth of about 0.05 mm or more and 1.0 mm or less from the surface of the cooling plate 11 on which the recess processing is not performed) at the hot water surface position, and toward the lower side of the cooling plate 11. It is a shape that gently reduces the amount of dents.
Note that this profile processing can be performed by predicting the deformation amount of the cooling plate 11 by numerical analysis based on the known operating conditions during casting and cooling conditions of the cooling plate.
Thereby, the shape (taper) collapse of the cooling plate 11 due to thermal deformation can be prevented.

以上の構成となった連続鋳造用鋳型を使用し、バックプレート19の下側の給水部21に設けられた給水口(図示しない)から各導水溝20に冷却水を供給し、しかも冷却板11の下側から上側にかけて流れた冷却水(例えば、工業用水)を、バックプレート19の上側の排水部22に設けられた排水口(図示しない)から排出して、冷却板11の冷却を行っている。このとき、Oリング23により、冷却板11とバックプレート19との密着性を向上させているので、排水部22から排出する際の導水溝20からの冷却水の漏れを防止している。
このようにして、冷却板11へのクラックの発生を抑制、更には防止しながら冷却板11の冷却を行うと共に、溶鋼の冷却を行って品質が良好な鋳片を製造できる。
Using the continuous casting mold having the above-described configuration, cooling water is supplied to each water guide groove 20 from a water supply port (not shown) provided in the water supply section 21 on the lower side of the back plate 19, and the cooling plate 11. Cooling water (for example, industrial water) that flows from the lower side to the upper side is discharged from a drain port (not shown) provided in the drainage unit 22 on the upper side of the back plate 19 to cool the cooling plate 11. Yes. At this time, since the adhesion between the cooling plate 11 and the back plate 19 is improved by the O-ring 23, the leakage of the cooling water from the water guide groove 20 when discharging from the drainage part 22 is prevented.
Thus, while suppressing the generation | occurrence | production of the crack to the cooling plate 11, while cooling the cooling plate 11, while cooling molten steel, a slab with favorable quality can be manufactured.

次に、本発明の作用効果を確認するために行ったFEM改善検討結果(以下、改善例という)について説明する。ここで、図3(A)は本発明の改善例に係る連続鋳造用鋳型の冷却板の部分斜視図、(B)は従来例に係る連続鋳造用鋳型の冷却板の部分斜視図、図4(A)はボルトの取付け位置を変えた場合の冷却板熱変形の解析結果の説明図、(B)は冷却板のメニスカス部への凹み加工による熱影響の解析結果の説明図である。 Next, FEM improvement examination results (hereinafter referred to as improvement examples) performed to confirm the operational effects of the present invention will be described. 3A is a partial perspective view of a cooling plate for a continuous casting mold according to an improved example of the present invention, and FIG. 3B is a partial perspective view of a cooling plate for a continuous casting mold according to a conventional example. (A) is explanatory drawing of the analysis result of a cooling plate thermal deformation at the time of changing the attachment position of a volt | bolt, (B) is explanatory drawing of the analysis result of the thermal influence by the dent process to the meniscus part of a cooling plate.

図3(A)に示すように、改善例に係る鋳型の冷却板30上側には、上下方向にボルト31〜33が設けられ、ボルト31は冷却板30の上端から40mm(前記した範囲X内)下方位置に取付け、ボルト31とボルト32の間隔を170mm(前記した取付け間隔D内)、ボルト32とボルト33の間隔を100mmとした。一方、図3(B)に示すように、従来例に係る鋳型の冷却板34上側には、上下方向にボルト35〜38が設けられ、ボルト35は冷却板34の上端から40mm下方位置に取付け、ボルト35とボルト36、ボルト36とボルト37、ボルト37とボルト38の間隔を、それぞれ60mm、100mm、100mmとした。 As shown in FIG. 3A, bolts 31 to 33 are provided in the vertical direction on the upper side of the cooling plate 30 of the mold according to the improved example, and the bolt 31 is 40 mm from the upper end of the cooling plate 30 (in the above-mentioned range X). ) At the lower position, the distance between the bolt 31 and the bolt 32 is 170 mm (within the mounting distance D), and the distance between the bolt 32 and the bolt 33 is 100 mm. On the other hand, as shown in FIG. 3B, bolts 35 to 38 are provided in the vertical direction above the cooling plate 34 of the mold according to the conventional example, and the bolt 35 is mounted at a position 40 mm below the upper end of the cooling plate 34. The intervals between the bolts 35 and 36, the bolts 36 and 37, and the bolts 37 and 38 were 60 mm, 100 mm, and 100 mm, respectively.

このように、改善例に係る鋳型の冷却板30上側に位置する各ボルト31〜33は、従来例に係る鋳型の冷却板34の2段目のボルト36が除去されて、冷却板30のメニスカス部39(ここでは、冷却板30上端から下方へ100mmの位置)を避け、その上下に位置するボルト31、32の取付け間隔をボルト32、33の間隔よりも広くしている。なお、改善例に係る鋳型の冷却板30のメニスカス部39には、凹み加工がなされて凹部が形成されている。 As described above, the bolts 31 to 33 located on the upper side of the mold cooling plate 30 according to the improved example are removed from the second stage bolt 36 of the mold cooling plate 34 according to the conventional example, and the meniscus of the cooling plate 30 is removed. The portion 39 (here, a position of 100 mm downward from the upper end of the cooling plate 30) is avoided, and the mounting interval between the bolts 31 and 32 positioned above and below the portion is wider than the interval between the bolts 32 and 33. The meniscus portion 39 of the mold cooling plate 30 according to the improved example is recessed to form a recess.

まず、ボルトの取付け位置の影響について説明するが、ここでは、他の要因が影響しないように、改善例に係る冷却板30と同様の位置にボルトを設け、メニスカス部に凹部が設けられていないものを使用している。
図4(A)に示すように、メニスカス部の上下のボルトの取付け間隔を広くした冷却板(実線)を使用することで、メニスカス部のボルトによる冷却板の拘束をなくすことができ、従来例に係る鋳型の冷却板34(一点鎖線)よりも熱変形量(自由変形)を大きくできる。このことから、ボルト取付け間隔を広くした冷却板は、従来例に係る鋳型の冷却板34よりも塑性歪みを緩和でき、その疲労寿命を従来例に係る鋳型の冷却板34の疲労寿命の2.1倍程度に改善できると推測される。
First, the influence of the mounting position of the bolt will be described. Here, the bolt is provided at the same position as the cooling plate 30 according to the improved example, and the concave portion is not provided in the meniscus portion so that other factors do not affect. I am using something.
As shown in FIG. 4 (A), by using a cooling plate (solid line) in which the upper and lower bolts of the meniscus are widened, it is possible to eliminate the restraint of the cooling plate by the meniscus bolt. The amount of thermal deformation (free deformation) can be made larger than that of the cooling plate 34 of the mold according to (dotted line). Therefore, the cooling plate having a wider bolt mounting interval can relieve the plastic strain than the cooling plate 34 of the mold according to the conventional example, and its fatigue life is equal to the fatigue life of the cooling plate 34 of the mold according to the conventional example. It is estimated that it can be improved about 1 time.

次に、改善例に係る鋳型の冷却板30の凹み加工の影響について、図4(B)を参照しながら説明する。ここで、冷間時(破線)とは、常温での冷却板30の表面形状を意味し、鋳造中(熱間時:実線)とは、鋳造の際に熱膨張した冷却板30の表面形状を意味する。
図4(B)に示すように、予め分かっている鋳造の際の操業条件に基づき、冷却板30の変形量を数値解析して凹み加工を行うことで、鋳造の際には、冷却板30の局所的な熱膨張部分が発生することなく、所定の形状、即ち対向して配置される冷却板の内幅が鋳型の下方へ向かって縮幅する形状を保障できる。
これにより、この鋳型を使用することで、品質が良好な鋳片を製造できる。
Next, the influence of the recess processing of the cooling plate 30 of the mold according to the improvement example will be described with reference to FIG. Here, the cold state (dashed line) means the surface shape of the cooling plate 30 at room temperature, and the casting (hot state: solid line) means the surface shape of the cooling plate 30 that is thermally expanded during casting. Means.
As shown in FIG. 4 (B), the deformation amount of the cooling plate 30 is numerically analyzed on the basis of the previously known operating conditions during casting, and dent processing is performed. Without generating a local thermal expansion portion, it is possible to ensure a predetermined shape, that is, a shape in which the inner width of the cooling plates arranged opposite to each other is reduced toward the lower side of the mold.
Thereby, a cast with good quality can be manufactured by using this mold.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、長辺部材の取付け手段の取付け位置について説明したが、必要に応じて、長辺部材及び短辺部材の両方について、又は短辺部材のみについての取付け手段の取付け位置を設定することも可能である。なお、ここで、長辺部材の幅が広い場合は、必要に応じて、メニスカス部に相当する冷却板の高さ位置で、メニスカス部を外して長辺部材の幅方向両端部のみに取付け手段を設けることも可能である。これは、短辺部材についても同様である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the attachment position of the attachment means of a long side member was demonstrated, attachment of the attachment means only about both a long side member and a short side member, or only a short side member was demonstrated as needed. It is also possible to set the position. Here, when the long side member is wide, if necessary, the meniscus portion is removed at the height position of the cooling plate corresponding to the meniscus portion, and the attachment means is attached only to both ends in the width direction of the long side member. It is also possible to provide. The same applies to the short side member.

(A)は本発明の一実施の形態に係る連続鋳造用鋳型の長辺部材の冷却板の背面図、(B)は図1(A)のa−a矢視断面図である。(A) is a rear view of the cooling plate of the long side member of the casting mold for continuous casting according to an embodiment of the present invention, and (B) is a cross-sectional view taken along the line aa in FIG. 連続鋳造用鋳型を使用して鋳片を鋳造する際の冷却板形状を示す説明図である。It is explanatory drawing which shows the cooling plate shape at the time of casting a slab using the casting mold for continuous casting. (A)は本発明の改善例に係る連続鋳造用鋳型の冷却板の部分斜視図、(B)は従来例に係る連続鋳造用鋳型の冷却板の部分斜視図である。(A) is a partial perspective view of a cooling plate of a continuous casting mold according to an improved example of the present invention, and (B) is a partial perspective view of a cooling plate of a continuous casting mold according to a conventional example. (A)はボルトの取付け位置を変えた場合の冷却板熱変形の解析結果の説明図、(B)は冷却板のメニスカス部への凹み加工による影響の解析結果の説明図である。(A) is explanatory drawing of the analysis result of a cooling plate thermal deformation at the time of changing the attachment position of a volt | bolt, (B) is explanatory drawing of the analysis result of the influence by the dent process to the meniscus part of a cooling plate. (A)は従来例に係る連続鋳造用鋳型の長辺部材の背面図、(B)は図5(A)のb−b矢視断面図である。(A) is a rear view of the long side member of the casting mold for continuous casting according to the conventional example, and (B) is a cross-sectional view taken along the line bb in FIG. 5 (A).

符号の説明Explanation of symbols

10:長辺部材、11:冷却板、12:メニスカス部、13〜18:取付け手段、19:バックプレート(支持部材)、20:導水溝、21:給水部、22:排水部、23:Oリング、24:凹部、30:冷却板、31〜33:ボルト、34:冷却板、35〜38:ボルト、39:メニスカス部 10: Long side member, 11: Cooling plate, 12: Meniscus part, 13 to 18: Mounting means, 19: Back plate (support member), 20: Water guide groove, 21: Water supply part, 22: Drain part, 23: O Ring, 24: recessed portion, 30: cooling plate, 31-33: bolt, 34: cooling plate, 35-38: bolt, 39: meniscus portion

Claims (4)

裏面に多数の導水溝が設けられた冷却板と、該冷却板の上下方向に所定の取付け間隔で設けられる複数の取付け手段により、前記冷却板の裏面側に前記導水溝を囲むOリングを介して固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記各導水溝に冷却水を流すことで、前記冷却板の冷却を行うと共に溶鋼の冷却を行って鋳片を製造する連続鋳造用鋳型において、
前記取付け手段は、前記冷却板のメニスカス部を避けて設けられ、該メニスカス部の上下に位置する前記取付け手段の取付け間隔を他の部分の取付け間隔よりも広くし、更に、前記冷却板のメニスカス部の表面側には、前記鋳片の製造時の前記メニスカス部の熱膨張量に対応した凹み加工がなされていることを特徴とする連続鋳造用鋳型。
A cooling plate provided with a large number of water guide grooves on the back surface and a plurality of attachment means provided at predetermined mounting intervals in the vertical direction of the cooling plate via an O-ring surrounding the water guide grooves on the back surface side of the cooling plate. The cooling plate is cooled and the molten steel is cooled by flowing cooling water into each of the water guide grooves through a water supply portion and a drainage portion provided on the support member. In a continuous casting mold for producing a slab by performing
The attachment means is provided avoiding the meniscus portion of the cooling plate, the attachment interval of the attachment means positioned above and below the meniscus portion is wider than the attachment interval of other portions, and the meniscus of the cooling plate The mold for continuous casting is characterized in that a dent processing corresponding to the amount of thermal expansion of the meniscus portion at the time of manufacturing the slab is made on the surface side of the slab.
請求項1記載の連続鋳造用鋳型において、前記メニスカス部は、前記冷却板の上端位置から下方へ50mm以上150mm以下の範囲内であることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the meniscus portion is within a range of 50 mm or more and 150 mm or less downward from an upper end position of the cooling plate. 請求項1及び2のいずれか1項に記載の連続鋳造用鋳型において、前記メニスカス部の上方に位置する前記取付け手段の取付け位置は、前記冷却板の上端位置から下方へ60mmまでの範囲内であることを特徴とする連続鋳造用鋳型。 3. The continuous casting mold according to claim 1, wherein an attachment position of the attachment means located above the meniscus portion is within a range of 60 mm downward from an upper end position of the cooling plate. A mold for continuous casting, characterized in that there is. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型において、前記メニスカス部の上下に位置する前記取付け手段の取付け間隔は、150mm以上250mm以下であることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 3, wherein a mounting interval of the mounting means positioned above and below the meniscus portion is 150 mm or more and 250 mm or less. .
JP2005179460A 2005-06-20 2005-06-20 Continuous casting mold Active JP4355684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179460A JP4355684B2 (en) 2005-06-20 2005-06-20 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179460A JP4355684B2 (en) 2005-06-20 2005-06-20 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2006346734A true JP2006346734A (en) 2006-12-28
JP4355684B2 JP4355684B2 (en) 2009-11-04

Family

ID=37643116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179460A Active JP4355684B2 (en) 2005-06-20 2005-06-20 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4355684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188399A (en) * 2009-02-19 2010-09-02 Mishima Kosan Co Ltd Mold for continuous casting
JP2011115841A (en) * 2009-12-07 2011-06-16 Mishima Kosan Co Ltd Method for measuring displacement of water-cooled copper plate
JP2011115840A (en) * 2009-12-07 2011-06-16 Mishima Kosan Co Ltd Method for producing mold for continuous casting and mold for continuous casting
CN115194103A (en) * 2022-08-11 2022-10-18 山东兴鲁有色金属集团有限公司 Cooling device with leakage-proof function for continuous casting of nonferrous metals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188399A (en) * 2009-02-19 2010-09-02 Mishima Kosan Co Ltd Mold for continuous casting
JP2011115841A (en) * 2009-12-07 2011-06-16 Mishima Kosan Co Ltd Method for measuring displacement of water-cooled copper plate
JP2011115840A (en) * 2009-12-07 2011-06-16 Mishima Kosan Co Ltd Method for producing mold for continuous casting and mold for continuous casting
CN115194103A (en) * 2022-08-11 2022-10-18 山东兴鲁有色金属集团有限公司 Cooling device with leakage-proof function for continuous casting of nonferrous metals
CN115194103B (en) * 2022-08-11 2023-08-04 山东兴鲁有色金属集团有限公司 Cooling device with leakage-proof function for nonferrous metal continuous casting

Also Published As

Publication number Publication date
JP4355684B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4355684B2 (en) Continuous casting mold
JP2008049385A (en) Continuous casting mold
JP4808196B2 (en) Continuous casting mold
KR20060127734A (en) Liquid cooled mould for continuous casting of metal
JP2002361373A (en) Built up mold for continuous casting
JP5180876B2 (en) Continuous casting mold
KR100607855B1 (en) Ingot mould for the continuous casting of steel into billet and cogged ingot formats
KR100680736B1 (en) Core pin mounting means of high pressure casting metal mold
JP4611349B2 (en) Continuous casting mold
JP5118144B2 (en) Continuous casting mold
JP4008018B1 (en) Continuous casting mold
JP2009006375A (en) Continuous casting mold
JP5180868B2 (en) Continuous casting mold
JP5689434B2 (en) Continuous casting mold
JP5796149B1 (en) Continuous casting mold
JP2012045591A (en) Continuous casting mold
JP5383461B2 (en) Manufacturing method of continuous casting mold
JP6319179B2 (en) Method for adjusting roll interval of slab support roll
JP2005028406A (en) Mold for continuous casting
JP5525896B2 (en) Continuous casting mold
KR101066571B1 (en) Press anvil apparatus for forging the width of hot slab
JP2011115809A (en) Method for detecting abnormality in mold for continuous casting, and mold for continuous casting
JP3886774B2 (en) Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same
JP2011218401A (en) Method for repairing mold for continuous casting, and repaired mold for continuous casting
JPS5927672B2 (en) Variable width mold device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070816

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4355684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250