JP2006344877A - Manufacturing method of material for embedding metal nanoparticles - Google Patents

Manufacturing method of material for embedding metal nanoparticles Download PDF

Info

Publication number
JP2006344877A
JP2006344877A JP2005170694A JP2005170694A JP2006344877A JP 2006344877 A JP2006344877 A JP 2006344877A JP 2005170694 A JP2005170694 A JP 2005170694A JP 2005170694 A JP2005170694 A JP 2005170694A JP 2006344877 A JP2006344877 A JP 2006344877A
Authority
JP
Japan
Prior art keywords
metal
substrate
compound
nanoparticles
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005170694A
Other languages
Japanese (ja)
Other versions
JP4953045B2 (en
Inventor
Takeshi Noda
武司 野田
Nobuyuki Oguchi
信行 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005170694A priority Critical patent/JP4953045B2/en
Publication of JP2006344877A publication Critical patent/JP2006344877A/en
Application granted granted Critical
Publication of JP4953045B2 publication Critical patent/JP4953045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for utilizing as metal nanoparticles fine particles of a metal having a low melting point which are formed according to a liquid drop epitaxy method. <P>SOLUTION: This manufacturing method of a material for embedding metal nanoparticles comprises: irradiating a molecular beam of a metal having a low melting point to a substrate to form fine particles of the metal having a low melting point as metal nanoparticles on the surface of the substrate; and irradiating molecular beams of elements constituting a compound to grow the compound and consequently to embed the metal nanoparticles into the compound, wherein as the metal having a low melting point, a metal having a low melting point, such as Al which forms a compound semiconductor can be used; as the substrate, a substrate of a compound semiconductor, such as a GaAs substrate can be used; and as the elements constituting a compound, Ga and As, and the like can be used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ナノメートルサイズの金属微粒子を形成し、その金属ナノ粒子をそのまま利用して金属ナノ粒子が埋め込まれた材料を作製する技術に関する。   The present invention relates to a technique for forming a nanometer-sized metal fine particle and using the metal nanoparticle as it is to produce a material in which the metal nanoparticle is embedded.

従来より、半導体結晶成長技術の分野においては、液滴エピタキシー法では金属微粒子を形成する技術を応用し、半導体量子井戸箱等の形成が行われていた(例えば、特許文献1及び2参照)。
特公平8−21538号公報 特許第2958442号公報
Conventionally, in the field of semiconductor crystal growth technology, a technology for forming metal fine particles has been applied in the droplet epitaxy method to form semiconductor quantum well boxes and the like (see, for example, Patent Documents 1 and 2).
Japanese Patent Publication No. 8-21538 Japanese Patent No. 2958442

特許文献1には、「第1の元素成分Xが溶ける温度で、かつ、超高真空中で第1の元素成分Xを化合物半導体基板ABに対して照射することにより第1の元素成分Xの微細球を有する第1の元素成分Xの液相を化合物半導体基板ABの上に生成し、次いで、第2の元素成分Yをこの液相に対して照射することにより化合物半導体XYの微細エピタキシャル結晶を形成し、さらに、化合物半導体XYの微細エピタキシャル結晶上に化合物半導体CDをエピタキシャル成長させることにより化合物半導体XYの微細エピタキシャル結晶を埋め込み、この埋め込まれた微細エピタキシャル結晶を量子井戸箱とすることを特徴とする量子井戸箱の形成方法。」の発明が記載され、実施例1においては、第1の元素成分XとしてGaを用い、「基板上にGaをビーム強度4×1014atom/secで30秒間堆積させ、20nm程度の大きさにする」こと(Gaナノ粒子を形成すること)、実施例2においては、第1の元素成分としてInを用い、「基板温度を250℃にした状態で、Inを1.1×1014atom/secのビーム強度で1分間堆積させ、粒径10nm程度の液相微細球Inを形成する」こと(Inナノ粒子を形成すること)が示されているが、実施例1においては、引き続いて第2の元素成分YとしてAsを用い、「Asを4×1015atom/secのビーム強度でGaに照射しながら、Ga/ZnSe界面にGaAsを結晶
成長させる」ものであり、実施例2においては、引き続いて第2の元素成分YとしてSbを用い、「Sbをビーム強度1.4×1014atom/secで照射し、InSb微細結晶を形成する」もので
あるから、金属(Ga又はIn)ナノ粒子を、そのまま利用して、化合物中に埋め込むものではない。
Patent Document 1 discloses that “the first element component X is irradiated by irradiating the compound semiconductor substrate AB with the first element component X in an ultra-high vacuum at a temperature at which the first element component X is melted. A liquid phase of the first element component X having fine spheres is generated on the compound semiconductor substrate AB, and then the second element component Y is irradiated to the liquid phase to thereby finely crystallize the compound semiconductor XY. Furthermore, the compound semiconductor CD is epitaxially grown on the compound semiconductor XY fine epitaxial crystal to embed the compound semiconductor XY fine epitaxial crystal, and the embedded fine epitaxial crystal is used as a quantum well box. In the first embodiment, Ga is used as the first element component X, and “Ga on the substrate has a beam intensity of 4 × 10 1. “ Deposit for 30 seconds at 4 atom / sec and make it about 20 nm” (to form Ga nanoparticles). In Example 2, In was used as the first element component, and the “substrate temperature was 250 "In depositing In at a temperature of 1.1 x 10 14 atom / sec for 1 minute to form liquid phase microspheres In with a particle size of about 10 nm" (forming In nanoparticles). However, in the first embodiment, As is used as the second element component Y, “As is irradiated to Ga with a beam intensity of 4 × 10 15 atom / sec, GaAs is applied to the Ga / ZnSe interface. In Example 2, subsequently, Sb is used as the second element component Y, and “Sb is irradiated at a beam intensity of 1.4 × 10 14 atom / sec to form an InSb fine crystal. Therefore, metal (Ga or In) nanoparticles are not used as they are and are not embedded in the compound.

特許文献2には、「少くとも次の工程;<1> 半導体の単一あるいは多重の量子井戸
構造をもつ表面にVI族元素を吸着させる、<2> 液滴エピタキシーにより金属あるいは
半導体の微結晶を成長させる、<3> 生成された微結晶をマスクとして化学エッチング
を施し、前記のVI族元素が表面に吸着された単一あるいは多重の量子井戸構造を除去する、<4> 前記微結晶を化学エッチングにより除去する、<5> 半導体を、エッチングにより除去された単一あるいは多重の量子井戸構造の領域に埋め込むことからなる半導体量子箱の形成方法。」の発明が記載され、実施例2においては、「半導体GaAs/GaAlAsの単一あるいは多重量子井戸上の表面にVI族元素Sを吸着させ、その表面に、液滴エピタキシ
イ法により金属Inの微結晶を堆積させた」こと(Inナノ粒子を形成すること)が示されているが、「In微結晶をマスクとして化学エッチングを施した」、「さらに化学エッチングを施してInおよびSを除去し、GaAlAsを再成長により埋め込んだ」と記載されているよう
に、金属(In)ナノ粒子を、除去してしまうものであり、そのまま利用して、化合物中に埋め込むものではない。
Patent Document 2 states that “at least the next step; <1> a group VI element is adsorbed on the surface of a semiconductor having a single or multiple quantum well structure, <2> a metal or semiconductor microcrystal by droplet epitaxy. <3> Chemical etching is performed using the generated microcrystal as a mask to remove a single or multiple quantum well structure in which the group VI element is adsorbed on the surface. <4> The microcrystal is <5> A method of forming a semiconductor quantum box comprising embedding a semiconductor in a region of a single or multiple quantum well structure removed by etching. "The group VI element S was adsorbed on the surface of a single or multiple quantum well of semiconductor GaAs / GaAlAs, and a metal In microcrystal was deposited on the surface by the droplet epitaxy method." (Formation of In nanoparticles) is shown, but “chemical etching was performed using In microcrystals as a mask”, “chemical etching was further performed to remove In and S, and GaAlAs was embedded by regrowth. As it is described, the metal (In) nanoparticles are removed and not used as they are but embedded in the compound.

また、微粒子の形成に利用できる一般的な液滴エピタキシーに関する技術も公知である(非特許文献1参照)が、その際できる金属ナノ粒子をそのまま利用することは示されていない。
N.Koguchi,et al.,J.Cryst.Growth,111,688(1991)
Further, a technique related to general droplet epitaxy that can be used for the formation of fine particles is also known (see Non-Patent Document 1), but it is not shown that the metal nanoparticles formed at that time are used as they are.
N. Koguchi, et al., J. Cryst. Growth, 111,688 (1991)

以上のように、液滴エピタキシー法に基づく微粒子の作製法を用いて金属ナノ粒子を形成すること自体は公知であったが、形成された金属ナノ粒子は化合物になってしまうか、除去されてしまうものであり、形成した金属ナノ粒子をそのまま利用することは行われていなかった。   As described above, it has been publicly known to form metal nanoparticles using a method for producing fine particles based on a droplet epitaxy method. However, the formed metal nanoparticles may be compounded or removed. The formed metal nanoparticles were not used as they were.

さらに、金属微粒子の形成にはイオン注入、スパッター法、レーザアブレーションなど様々な手法があり、これらの手法は制御性、均一性、適用材料などに違いがあるが、概して金属微粒子の膜厚方向の位置制御や多周期の積層構造の形成が困難である。ただし、スパッター法を交互に行う手法(交互スパッター法)によれば、ある程度積層方向の微粒子を配置することはできるが、本発明の方法の特徴である原子スケールの位置制御性を得るのは難しいのが現状である。   In addition, there are various methods such as ion implantation, sputtering, and laser ablation for the formation of metal fine particles. These methods differ in controllability, uniformity, and applicable materials, but generally the thickness of the metal fine particles It is difficult to control the position and form a multi-cycle laminated structure. However, according to the method of performing the sputtering method alternately (alternate sputtering method), fine particles in the stacking direction can be arranged to some extent, but it is difficult to obtain the atomic scale position controllability that is a feature of the method of the present invention. is the current situation.

本発明は、上記のような問題点を解決しようとするものであり、液滴エピタキシー法に基づいて形成した低融点金属の微粒子を金属ナノ粒子として利用する技術を提供することを課題とする。   An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide a technique of using low-melting-point metal fine particles formed based on a droplet epitaxy method as metal nanoparticles.

本発明においては、上記の課題を解決するために、以下の手段を採用する。
(1)低融点金属の分子線を基板に対して照射し、前記基板の表面に前記低融点金属の微粒子を金属ナノ粒子として形成した後、化合物構成元素の分子線を照射することにより、化合物を成長させて、前記金属ナノ粒子を前記化合物中に埋め込むことを特徴とする金属ナノ粒子埋込み材料の作製法である。
(2)前記低融点金属が化合物半導体を形成する低融点金属であることを特徴とする前記(1)の金属ナノ粒子埋込み材料の作製法である。
(3)前記低融点金属がAlであることを特徴とする前記(2)の金属ナノ粒子埋込み材料の作製法である。
(4)前記基板が化合物半導体基板であることを特徴とする前記(1)〜(3)のいずれか一項の金属ナノ粒子埋込み材料の作製法である。
(5)前記化合物半導体基板がGaAs基板であることを特徴とする前記(4)の金属ナノ粒子埋込み材料の作製法である。
(6)前記化合物構成元素がGaとAsであり、前記化合物がGaAsであることを特徴とする前記(1)〜(5)のいずれか一項の金属ナノ粒子埋込み材料の作製法である。
In the present invention, the following means are adopted in order to solve the above problems.
(1) The substrate is irradiated with a molecular beam of a low-melting-point metal, the low-melting-point metal fine particles are formed as metal nanoparticles on the surface of the substrate, and then irradiated with a molecular beam of a compound constituent element. In which the metal nanoparticles are embedded in the compound.
(2) The method for producing a metal nanoparticle embedding material according to (1), wherein the low melting point metal is a low melting point metal forming a compound semiconductor.
(3) The method for producing a metal nanoparticle embedding material according to (2), wherein the low melting point metal is Al.
(4) The method for producing a metal nanoparticle embedding material according to any one of (1) to (3), wherein the substrate is a compound semiconductor substrate.
(5) The method for producing a metal nanoparticle embedding material according to (4) above, wherein the compound semiconductor substrate is a GaAs substrate.
(6) The method for producing a metal nanoparticle embedding material according to any one of (1) to (5), wherein the compound constituent elements are Ga and As, and the compound is GaAs.

本発明の方法は、母結晶中の任意の位置に金属ナノ粒子を埋め込むことができる。特に多層膜構造における位置制御や多周期の埋込みも可能である。さらに、既存のIII-V族化
合物半導体材料のみを用い、半導体と金属ナノ粒子を融合させた材料を簡便に作製できる。また本手法の特性から、本発明の方法はIII-V族系の材料のみでなく、窒化物半導体やII-VI系の酸化亜鉛などの酸化物系材料など様々な化合物材料系に適用可能であると考えられる。本発明の方法は分子線エピタキシーなどの超薄膜結晶法と組み合わせることにより、量子井戸、超格子構造など様々な超薄膜へテロ構造と融合可能である。
The method of the present invention can embed metal nanoparticles at any position in the mother crystal. In particular, position control and multi-period embedding in a multilayer film structure are possible. Furthermore, a material in which a semiconductor and metal nanoparticles are fused can be easily produced using only an existing III-V group compound semiconductor material. In addition, due to the characteristics of this method, the method of the present invention can be applied not only to III-V group materials but also to various compound material systems such as nitride semiconductors and oxide materials such as II-VI zinc oxide. It is believed that there is. The method of the present invention can be combined with various ultra-thin heterostructures such as quantum wells and superlattice structures by combining with ultrathin crystal methods such as molecular beam epitaxy.

イオン打ち込みなどによる金属ナノ粒子の形成方法では高価な装置が必要になるが、本発明の方法では既存の分子線エピタキシー装置があれば、それを利用できるので経済的に新たな投資をする必要がない。   In the method of forming metal nanoparticles by ion implantation or the like, an expensive apparatus is required. However, in the method of the present invention, if there is an existing molecular beam epitaxy apparatus, it can be used, so it is necessary to make a new investment economically. Absent.

特許文献1に示されるように、GaAs量子ドットは、液滴エピタキシーに基づいて形成した数十ナノメートルのGa液滴に砒素を照射することで形成されるが、この際、砒素照射前のGa液滴は金属としての特徴を有するナノ構造として、論理演算デバイス材料への発展が期待される。特に、金属ナノ粒子と半導体とを融合させた材料開発には、金属微粒子を半導体中に埋め込むことが必要となる。
そこで、Gaより融点の高いAlを用いて液滴エピタキシー法に基づき金属ナノ粒子を形成し、この金属ナノ粒子をGaAsへの埋め込んだ材料を作製したところ、この材料が、従来の半導体を埋め込んだ材料と比較して顕著に異なる特性を有することを知見して、本発明に到達した。
As shown in Patent Document 1, GaAs quantum dots are formed by irradiating arsenic to Ga droplets of several tens of nanometers formed based on droplet epitaxy. The droplet is expected to develop into a logical operation device material as a nanostructure having characteristics as a metal. In particular, in the development of a material in which metal nanoparticles and a semiconductor are fused, it is necessary to embed metal fine particles in the semiconductor.
Therefore, when a metal nanoparticle was formed based on the droplet epitaxy method using Al, which has a melting point higher than Ga, and a material in which this metal nanoparticle was embedded in GaAs was produced, this material embedded a conventional semiconductor. The present invention has been achieved by finding out that it has significantly different properties compared to the material.

図1に、Alナノ粒子の埋め込み構造の作製法を示す。各線は異なる材料を示す。
先ず、(a)のように基板を用意する。基板の種類は、限定されるものではないが、化合
物半導体基板が好ましく、GaAs、AlAsなど半導体基板を使用することができる。
FIG. 1 shows a method for producing a buried structure of Al nanoparticles. Each line represents a different material.
First, a substrate is prepared as shown in (a). The type of the substrate is not limited, but a compound semiconductor substrate is preferable, and a semiconductor substrate such as GaAs or AlAs can be used.

基板に直接、低融点金属(Al)の分子線を照射することもできるが、(b)のようにバッ
ファー層を成長させた基板を使用することが好ましい。バッファー層の材料としては、基板と同じ種類の材料であっても異なる材料であってもよい。例えば、Siをドープしたn型GaAs基板に対して、同じくSiをドープしたn型GaAs層をバッファー層として成長させることができる。
Although it is possible to directly irradiate the substrate with a molecular beam of a low melting point metal (Al), it is preferable to use a substrate on which a buffer layer is grown as shown in (b). The material of the buffer layer may be the same material as the substrate or a different material. For example, an n-type GaAs layer doped with Si can be grown as a buffer layer on an n-type GaAs substrate doped with Si.

続いて、(c)のようにバッファー層上に低融点金属(Al)の分子線を照射し、低融点金
属の微粒子を金属ナノ粒子として形成する。
金属ナノ粒子のサイズや密度は、基板温度、金属(Al)分子線の照射量、フラックスなどで制御できる。金属ナノ粒子の典型的なサイズとしては、20〜40nmのものを得ることができる。
Subsequently, as shown in (c), a low melting point metal (Al) molecular beam is irradiated onto the buffer layer to form low melting point metal fine particles as metal nanoparticles.
The size and density of the metal nanoparticles can be controlled by the substrate temperature, the irradiation amount of the metal (Al) molecular beam, the flux and the like. A typical size of the metal nanoparticles can be 20 to 40 nm.

Al以外でも、化合物半導体の構成元素を形成するような低融点金属であれば、その低融点金属の液滴を金属ナノ粒子を形成するために利用することができる。Al以外の材料としては、亜鉛(融点419℃)、マグネシウム(融点650℃)、銅(融点1084℃)などが考えられる。   Other than Al, any low melting point metal that forms a constituent element of a compound semiconductor can use the low melting point metal droplets to form metal nanoparticles. As materials other than Al, zinc (melting point: 419 ° C.), magnesium (melting point: 650 ° C.), copper (melting point: 1084 ° C.), and the like can be considered.

次に、(d)のように化合物構成元素の分子線を照射することにより、金属ナノ粒子を化
合物中に埋め込む。
形成された金属ナノ粒子は、様々な化合物中に埋め込むことが可能で、GaAs、AlAsなどのIII-V族系の材料、窒化物半導体、II-VI系のZnOなどの酸化物材料への適用が有望であ
ると考えられる。GaAs中に埋め込むには、GaとAsを同時に照射してGaAsを成長させる。
Next, the metal nanoparticles are embedded in the compound by irradiating the molecular beam of the compound constituent element as shown in (d).
The formed metal nanoparticles can be embedded in various compounds and applied to III-V group materials such as GaAs and AlAs, nitride semiconductors, and oxide materials such as II-VI type ZnO. Is considered promising. To embed in GaAs, Ga and As are simultaneously irradiated to grow GaAs.

本発明の方法を採用することにより、母結晶中の任意の位置に金属ナノ粒子を埋め込むことができる。さらに多周期の埋め込みも可能で、容易に積層化できる。   By adopting the method of the present invention, metal nanoparticles can be embedded at an arbitrary position in the mother crystal. Furthermore, it is possible to embed in multiple cycles and easily stack.

(参考例)
基板として(100)GaAsを用いて、基板温度300℃で、(100)GaAs面上にAl原子を6.2×1015cm-2個照射して、Alナノ粒子を形成した。
原子間力顕微鏡(AFM)で形状や密度を室温で観察した。
その結果を図2に示す。
(Reference example)
Using (100) GaAs as the substrate, Al nanoparticles were formed by irradiating 6.2 × 10 15 cm −2 Al atoms on the (100) GaAs surface at a substrate temperature of 300 ° C.
The shape and density were observed at room temperature with an atomic force microscope (AFM).
The result is shown in FIG.

また、上記のようにAlナノ粒子を形成した後、基板温度を200℃に下げて、反射高速電
子線回折(RHEED)を用いて、超高真空装置中で、ナノ粒子の形成過程を観察した。電子
線の入射方向は(a)[01-1]と(b)[011]である。
その結果を図3に示す。斑点状の回折像は、3次元的なナノ粒子の形成に起因する。
In addition, after forming Al nanoparticles as described above, the substrate temperature was lowered to 200 ° C, and the formation process of the nanoparticles was observed in an ultrahigh vacuum apparatus using reflection high-energy electron diffraction (RHEED). . The incident directions of the electron beams are (a) [01-1] and (b) [011].
The result is shown in FIG. The speckled diffraction image results from the formation of three-dimensional nanoparticles.

基板としてn型(100)GaAsを用いて、n型(100)GaAs上に、基板温度580℃、真空度~1×10-7Torrで、分子線エピタキシーでバッファー層を成長させた。基板側から1×1012cm-2個のSi、500nmのn型GaAs層、20nmのGaAs層であった。
続いて、バッファー層上に、基板温度300℃で、砒素分子線用のセルバルブを閉じ、真
空度が概ね2×10-8 Torr以下になった後、Al分子線のみを照射して、Alナノ粒子を形成した。照射したAl原子の量は 6.2×1015 cm-2個で、フラックスは2.5×1014 cm-2 s-1であ
った。20〜40nmのサイズのAlナノ粒子が形成された。
Using n-type (100) GaAs as the substrate, a buffer layer was grown on the n-type (100) GaAs by molecular beam epitaxy at a substrate temperature of 580 ° C. and a vacuum degree of 1 × 10 −7 Torr. From the substrate side, there were 1 × 10 12 cm −2 Si, a 500 nm n-type GaAs layer, and a 20 nm GaAs layer.
Subsequently, the cell valve for the arsenic molecular beam was closed on the buffer layer at a substrate temperature of 300 ° C., and after the degree of vacuum became approximately 2 × 10 −8 Torr or less, only the Al molecular beam was irradiated, Particles were formed. The amount of Al atoms irradiated was 6.2 × 10 15 cm −2 and the flux was 2.5 × 10 14 cm −2 s −1 . Al nanoparticles with a size of 20-40 nm were formed.

次に、基板温度300℃でGaとAsを同時に照射し20nmのGaAsを成長させて、GaAs中にAlナ
ノ粒子を埋め込んだ。
その後、基板温度580℃で、2nmのAlAsと2nmのGaAsを15回繰り返し、その上に10nmのGaAsを成長させて、表面障壁層とキャップ層を形成し、試料を得た。
この実施例は容量−電圧特性を測定するための試料構造である。
Next, Ga and As were simultaneously irradiated at a substrate temperature of 300 ° C. to grow 20 nm GaAs, and Al nanoparticles were embedded in GaAs.
Thereafter, 2 nm AlAs and 2 nm GaAs were repeated 15 times at a substrate temperature of 580 ° C., and 10 nm GaAs was grown thereon to form a surface barrier layer and a cap layer to obtain a sample.
This example is a sample structure for measuring capacitance-voltage characteristics.

実施例1と同じバッファー層上に、基板温度250 ℃で、Al原子の照射量を9.4×1015 cm-2個で、フラックスを2.4×1014 cm-2s-1 とした以外は、実施例1と同様にAlナノ粒子を形成し、GaAs中にAlナノ粒子を埋め込んだ後、表面障壁層とキャップ層を形成し、試料を得た。20〜40nmのサイズのAlナノ粒子を埋め込んだ試料が得られた。 Except for the same buffer layer as in Example 1, except that the substrate temperature is 250 ° C., the irradiation amount of Al atoms is 9.4 × 10 15 cm −2 , and the flux is 2.4 × 10 14 cm −2 s −1. Al nanoparticles were formed in the same manner as in Example 1, and after Al nanoparticles were embedded in GaAs, a surface barrier layer and a cap layer were formed to obtain a sample. Samples embedded with Al nanoparticles with a size of 20-40 nm were obtained.

(比較例)
実施例1と同じバッファー層上に、基板温度300℃で、砒素分子線用のセルバルブを開
けて、Al分子線照射時に砒素も同時に照射することで、Alナノ粒子の代わりに半導体であるAlAsを形成した。AlAsの膜厚は10原子層で、約2.8nmである。
次に、実施例1と同様にGaAs中にAlAsを埋め込んだ後、表面障壁層とキャップ層を形成し、試料を得た。
(Comparative example)
On the same buffer layer as in Example 1, by opening a cell valve for arsenic molecular beam at a substrate temperature of 300 ° C. and simultaneously irradiating arsenic when irradiating Al molecular beam, AlAs, which is a semiconductor, is used instead of Al nanoparticles. Formed. The film thickness of AlAs is about 2.8 nm with 10 atomic layers.
Next, as in Example 1, AlAs was embedded in GaAs, and then a surface barrier layer and a cap layer were formed to obtain a sample.

電気特性を、以下の条件で測定した。
測定機器:インピーダンスアナライザ4294A(アジレントテクノロジー社製)
測定温度:4.2K
重畳した交流周波数と振幅:1KHzで、5mV
素子形状:直径400ミクロンΦのメサ形
The electrical characteristics were measured under the following conditions.
Measuring equipment: Impedance analyzer 4294A (manufactured by Agilent Technologies)
Measurement temperature: 4.2K
Superimposed AC frequency and amplitude: 1kHz, 5mV
Element shape: Mesa shape with a diameter of 400 microns

実施例1及び比較例で得た試料について、容量−電圧(CV)測定を行った。
図4(a)及び(b)に容量−電圧測定で使用した試料のバンド図を示す。
(a)はAlAsを埋め込んだ試料で、(b)はAlナノ粒子を埋め込んだ試料である。なお、(
b)のAlナノ粒子の場合は実験結果等から予想されるバンド図である。
Capacitance-voltage (CV) measurement was performed on the samples obtained in Example 1 and Comparative Example.
FIGS. 4A and 4B show band diagrams of the samples used in the capacity-voltage measurement.
(a) is a sample in which AlAs is embedded, and (b) is a sample in which Al nanoparticles are embedded. (
In the case of b) Al nanoparticles, the band diagram is expected from the experimental results.

測定は表面に形成した金属ゲートとn型GaAs層間に電圧(ゲート電圧)を印加し、その
間の容量(キャパシタンス)を測定する。実施例1のAlナノ粒子を埋め込んだ試料は、比較例のAlAsを埋め込んだ参照試料と異なる特性を示す。
In the measurement, a voltage (gate voltage) is applied between the metal gate formed on the surface and the n-type GaAs layer, and the capacitance (capacitance) between them is measured. The sample embedded with the Al nanoparticles of Example 1 exhibits different characteristics from the reference sample embedded with AlAs of the comparative example.

参照試料ではゲート電圧が変化すると半導体側の電荷は空乏領域の端のみで変化する。ゲート電圧(Vg)が増大すると、電極間隔が単調に減少することになるので、容量はゲート電圧とともに単調に増加する。それに対して、Alナノ粒子を埋め込んだ試料ではヒステリシスが見られる。これはゲート電圧を印加することでAl粒子の帯電状況が変化し、そのためポテンシャルが変化することに起因していると考えられる。   In the reference sample, when the gate voltage changes, the charge on the semiconductor side changes only at the end of the depletion region. As the gate voltage (Vg) increases, the electrode spacing decreases monotonously, so the capacitance increases monotonously with the gate voltage. On the other hand, hysteresis is observed in the sample embedded with Al nanoparticles. This is thought to be due to the fact that the charging state of the Al particles changes by applying a gate voltage, and therefore the potential changes.

本発明の方法で作製した金属ナノ粒子が埋め込まれた材料は、量子情報デバイス(量子コンピュータ他)、単電子素子、メモリー素子、光非線形素子等に応用することができ、極めて有用である。   A material embedded with metal nanoparticles produced by the method of the present invention can be applied to quantum information devices (quantum computers, etc.), single-electron elements, memory elements, optical nonlinear elements, and the like, and is extremely useful.

Alナノ粒子の埋め込み構造の作製法を示す概略図である。It is the schematic which shows the preparation methods of the embedded structure of Al nanoparticle. Alナノ粒子の原子間力顕微鏡像を示す図である。It is a figure which shows the atomic force microscope image of Al nanoparticle. Alナノ粒子形成後の反射高速電子線回折像を示す図である。It is a figure which shows the reflection high-energy electron diffraction image after Al nanoparticle formation. 容量−電圧測定で使用した試料(AlAsを埋め込んだもの)のバンド図である。It is a band figure of the sample (what embedded AlAs) used by capacity-voltage measurement. 容量−電圧測定で使用した試料(Alナノ粒子を埋め込んだもの)のバンド図である。It is a band figure of the sample (what embedded Al nanoparticle) used by the capacity-voltage measurement. 容量−電圧測定の結果を示す図である。図中、AlとAlAsは、それぞれAlナノ粒子、AlAsが埋め込まれた試料を表す。また、矢印は印加電圧のスキャン方向を示す。It is a figure which shows the result of a capacitance-voltage measurement. In the figure, Al and AlAs represent samples in which Al nanoparticles and AlAs are embedded, respectively. An arrow indicates the scanning direction of the applied voltage.

Claims (6)

低融点金属の分子線を基板に対して照射し、前記基板の表面に前記低融点金属の微粒子を金属ナノ粒子として形成した後、化合物構成元素の分子線を照射することにより、化合物を成長させて、前記金属ナノ粒子を前記化合物中に埋め込むことを特徴とする金属ナノ粒子埋込み材料の作製法。   The substrate is irradiated with a molecular beam of a low-melting-point metal, and after the fine particles of the low-melting-point metal are formed as metal nanoparticles on the surface of the substrate, the compound is grown by irradiating the molecular beam of the compound constituent element. A method for producing a metal nanoparticle embedding material, wherein the metal nanoparticle is embedded in the compound. 前記低融点金属が化合物半導体を形成する低融点金属であることを特徴とする請求項1に記載の金属ナノ粒子埋込み材料の作製法。   The method for producing a metal nanoparticle embedding material according to claim 1, wherein the low melting point metal is a low melting point metal forming a compound semiconductor. 前記低融点金属がAlであることを特徴とする請求項2に記載の金属ナノ粒子埋込み材料の作製法。   3. The method for producing a metal nanoparticle embedding material according to claim 2, wherein the low melting point metal is Al. 前記基板が化合物半導体基板であることを特徴とする請求項1〜3のいずれか一項に記載の金属ナノ粒子埋込み材料の作製法。   The method for producing a metal nanoparticle embedding material according to any one of claims 1 to 3, wherein the substrate is a compound semiconductor substrate. 前記化合物半導体基板がGaAs基板であることを特徴とする請求項4に記載の金属ナノ粒子埋込み材料の作製法。   The method for producing a metal nanoparticle embedding material according to claim 4, wherein the compound semiconductor substrate is a GaAs substrate. 前記化合物構成元素がGaとAsであり、前記化合物がGaAsであることを特徴とする請求項1〜5のいずれか一項に記載の金属ナノ粒子埋込み材料の作製法。
The method for producing a metal nanoparticle embedding material according to claim 1, wherein the compound constituent elements are Ga and As, and the compound is GaAs.
JP2005170694A 2005-06-10 2005-06-10 Fabrication method of metal nanoparticle embedded material Expired - Fee Related JP4953045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170694A JP4953045B2 (en) 2005-06-10 2005-06-10 Fabrication method of metal nanoparticle embedded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170694A JP4953045B2 (en) 2005-06-10 2005-06-10 Fabrication method of metal nanoparticle embedded material

Publications (2)

Publication Number Publication Date
JP2006344877A true JP2006344877A (en) 2006-12-21
JP4953045B2 JP4953045B2 (en) 2012-06-13

Family

ID=37641591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170694A Expired - Fee Related JP4953045B2 (en) 2005-06-10 2005-06-10 Fabrication method of metal nanoparticle embedded material

Country Status (1)

Country Link
JP (1) JP4953045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861763B1 (en) 2007-07-09 2008-10-08 한국과학기술연구원 Formation of metal nanorings by post-thermal treatment
KR101832340B1 (en) 2016-11-10 2018-02-26 광운대학교 산학협력단 InGaAs Quantum dot-ring structure grown using droplet epitaxy and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179220A (en) * 1990-11-14 1992-06-25 Oki Electric Ind Co Ltd Manufacture of quantum well box
JP2001053014A (en) * 1999-05-31 2001-02-23 Natl Res Inst For Metals Preparation method of semiconductor super atom and its combination
JP2004247431A (en) * 2003-02-12 2004-09-02 Fujitsu Ltd Quantum semiconductor device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179220A (en) * 1990-11-14 1992-06-25 Oki Electric Ind Co Ltd Manufacture of quantum well box
JP2001053014A (en) * 1999-05-31 2001-02-23 Natl Res Inst For Metals Preparation method of semiconductor super atom and its combination
JP2004247431A (en) * 2003-02-12 2004-09-02 Fujitsu Ltd Quantum semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861763B1 (en) 2007-07-09 2008-10-08 한국과학기술연구원 Formation of metal nanorings by post-thermal treatment
KR101832340B1 (en) 2016-11-10 2018-02-26 광운대학교 산학협력단 InGaAs Quantum dot-ring structure grown using droplet epitaxy and method of manufacturing the same

Also Published As

Publication number Publication date
JP4953045B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Dhara Formation, dynamics, and characterization of nanostructures by ion beam irradiation
GB2364933A (en) Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
JP5401706B2 (en) Compound semiconductor laminate, method for manufacturing the same, and semiconductor device
Ryu et al. Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth
KR102196693B1 (en) Transition metal chalcogen compound patterned structure, method of manufacturing the same, and electrode having the same for two-dimensional planar electronic device
JP4953045B2 (en) Fabrication method of metal nanoparticle embedded material
Prucnal et al. III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics
KR101432151B1 (en) Nanoparticle layer and Nanoparticle capacitor, Flash memory comprising the same, and preparation methods thereof
Haidet et al. Epitaxial Integration and Defect Structure of Layered SnSe Films on PbSe/III–V Substrates
KR100855784B1 (en) Method of altering the properties of a thin film and substrate implementing said method
WO2023168356A2 (en) Hybrid covalent-van der waals system 2d heterostructures by dative epitaxy
Vishwanath et al. Challenges and opportunities in molecular beam epitaxy growth of 2D crystals: an overview
Lanius Topological insulating tellurides: how to tune doping, topology, and dimensionality
Knutsson Atomic scale characterization of III-V nanowire surfaces
JP4854180B2 (en) Method for producing InSb nanowire structure
JP3527941B2 (en) Method for producing semiconductor superatom and its combination
CN112689609A (en) Black phosphorus phase ultrathin bismuth nanosheet modified composite film and preparation method thereof
KR102515802B1 (en) p-type transition metal chalcogen compound and method for preparing the same
US20240071759A1 (en) Confined Growth of 2D Materials and Their Heterostructures
KR101816222B1 (en) Method of manufacturing single nanocrystal pattern using focused electron-beam
Cheng et al. Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures
JP6772192B2 (en) How to make nanostructures
Smirnov Solid State Composites Produced by Ion Beam Processing
Goswami Development of Scalable Quantum Nano-Electronic Devices Using Bottom-Up and Top-Down Fabrication
JP2004281954A (en) Method of manufacturing quantum dot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees