JP2006344575A - Coaxial cable and its shield performance evaluation method - Google Patents

Coaxial cable and its shield performance evaluation method Download PDF

Info

Publication number
JP2006344575A
JP2006344575A JP2005342674A JP2005342674A JP2006344575A JP 2006344575 A JP2006344575 A JP 2006344575A JP 2005342674 A JP2005342674 A JP 2005342674A JP 2005342674 A JP2005342674 A JP 2005342674A JP 2006344575 A JP2006344575 A JP 2006344575A
Authority
JP
Japan
Prior art keywords
conductor layer
shielding
coaxial cable
resistance
outer conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005342674A
Other languages
Japanese (ja)
Inventor
Kenji Enomoto
憲嗣 榎本
Nobuaki Sakai
信昭 酒井
Yoshiyuki Hirayama
祥之 平山
Tatsuya Hiratani
達矢 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005342674A priority Critical patent/JP2006344575A/en
Publication of JP2006344575A publication Critical patent/JP2006344575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coaxial cable capable of preventing invasion of noises by improvement of a shielding performance in a low frequency band and capable of achieving integration with a wire harness, and a shielding performance evaluation method of the coaxial cable in which the shielding performance can be evaluated without having labor, and at a low expense. <P>SOLUTION: In the coaxial cable 15 in which an outside conductor layer 17 is installed at the outer periphery of an inside conductor 3 covered by an insulator 4, and in which a sheath 7 is installed at the outer periphery, the outside conductor layer 17 is installed at the outer periphery of the insulator 4, and composed of a main conductor layer 18 of one layer in which a shielding resistance is set at 35 mΩ/m or less, and an auxiliary conductor layer 19 of one layer in which a shielding resistance of the whole outside conductor layer 17 is reduced to 3 mΩ/m to 6.5 mΩ/m. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車等の車両内の信号伝送(例えば、ラジオ、モニター画像等)に使用される同軸ケーブル及びその遮蔽性能評価方法に関するものである。   The present invention relates to a coaxial cable used for signal transmission (for example, a radio, a monitor image, etc.) in a vehicle such as an automobile, and a shielding performance evaluation method thereof.

従来、この種の一般的な同軸ケーブルは、図10、11に示すような構成になっている。図11に示す同軸ケーブル1は、絶縁体4で被覆された内部導体(中心導体)3の外周に、1層の外部導体層(遮蔽層)5が設けられ、その外周にシース(外被)7が設けられたものである。また、図10に示す同軸ケーブル2は、絶縁体4で被覆された内部導体3の外周に、遮蔽性能を改善するために、2層の外部導体層5、6が設けられ、その外周にシース7が設けられたものである。外部導体層5、6は、複数本の金属素線を網目状に編組したもの、複数本の金属素線を横巻きしたもの、金属箔、金属テープ又はプラスチックテープの片面に金属蒸着層をラミネートした複合テープを縦添え又は横巻きしたもの等が使用される(特許文献1参照)。   Conventionally, this type of general coaxial cable has a configuration as shown in FIGS. A coaxial cable 1 shown in FIG. 11 is provided with a single outer conductor layer (shielding layer) 5 on the outer periphery of an inner conductor (center conductor) 3 covered with an insulator 4, and a sheath (outer jacket) on the outer periphery thereof. 7 is provided. Further, the coaxial cable 2 shown in FIG. 10 is provided with two outer conductor layers 5 and 6 on the outer periphery of the inner conductor 3 covered with the insulator 4 in order to improve the shielding performance. 7 is provided. The outer conductor layers 5 and 6 are formed by braiding a plurality of metal strands in a mesh, laminating a plurality of metal strands, and laminating a metal vapor deposition layer on one side of a metal foil, a metal tape or a plastic tape. A composite tape that is vertically or horizontally wound is used (see Patent Document 1).

また、同軸ケーブル1、2の遮蔽性能評価方法としては、一般に国際標準IEC61196に定められた伝達インピーダンス法が用いられている。この方法は、図13に示すような伝達インピーダンス測定装置8を用い、その金属パイプ9内に、規定長さlの同軸ケーブル1、2を挿入し、発信器10側から電流を流し、外部導体層5、6を流れる外部電磁界との結合により発生した内部導体3の電圧を測定し、その出力電圧U2と入力電圧U1との比を演算し、スペクトラムアナライザ11で周波数に対する伝達インピーダンスを読み取る方法である。この伝達インピーダンスが小さいほど、外部導体層5、6の遮蔽性能が改善されることを意味する。   As a method for evaluating the shielding performance of the coaxial cables 1 and 2, the transfer impedance method defined in the international standard IEC61196 is generally used. In this method, a transmission impedance measuring device 8 as shown in FIG. 13 is used, coaxial cables 1 and 2 having a specified length l are inserted into a metal pipe 9, current is supplied from the transmitter 10 side, and external conductors are connected. A method of measuring a voltage of the inner conductor 3 generated by coupling with an external electromagnetic field flowing through the layers 5 and 6, calculating a ratio between the output voltage U2 and the input voltage U1, and reading a transfer impedance with respect to the frequency by the spectrum analyzer 11. It is. The smaller this transfer impedance, the better the shielding performance of the outer conductor layers 5 and 6.

特開2004−214137号公報JP 2004-214137 A

自動車等の車両内の信号伝送(例えば、ラジオ、モニター画像等)に使用される同軸ケーブル1、2は、車両内に配索されたワイヤーハーネスやオルタネータ、モータ等のノイズ源から生じるノイズの影響を受けやすい。ノイズの影響は、ラジオ、テレビ、ナビゲーション等の音声、画像信号を乱し、雑音、画像のちらつき等となってあらわれるため、従来の同軸ケーブル1、2はノイズ源となるワイヤーハーネス(W/H)から離れた別の経路に配索させていた。   The coaxial cables 1 and 2 used for signal transmission (for example, radio, monitor images, etc.) in vehicles such as automobiles are affected by noise generated from noise sources such as wire harnesses, alternators and motors routed in the vehicle. It is easy to receive. The influence of noise disturbs sound and image signals of radio, television, navigation, etc., and appears as noise and image flickering. Therefore, conventional coaxial cables 1 and 2 are wire harnesses (W / H) that are noise sources. ) Was routed to another route away from.

近年、車両室内の拡大化の傾向に伴い、配線材の配索経路が制限されたり、配索スペースが削減されたりする傾向にあり、同軸ケーブルをワイヤーハーネスに隣接配置して、同軸ケーブル1、2とワイヤーハーネスとの統合化が求められている。両者の統合化を行うと、従来、問題視されなかった低周波帯であるLW帯(153〜279kHz)、AMラジオで使用されるAM帯(522〜1710kHz)、SW帯(2.94〜21.975MHz)、FM帯(76〜108MHz)にもノイズ源からノイズが侵入してくる恐れがあり、このため、低周波帯(LW帯〜FM帯)において同軸ケーブルの遮蔽性能を改善することが必要になってくる。   In recent years, with the trend of expanding the interior of a vehicle cabin, the routing route of the wiring material tends to be restricted or the routing space is reduced. The coaxial cable is arranged adjacent to the wire harness, 2 and the wiring harness are required to be integrated. When both are integrated, the LW band (153 to 279 kHz) which is a low frequency band, which has not been regarded as a problem in the past, the AM band (522 to 1710 kHz) used in AM radio, and the SW band (2.94 to 21) .975 MHz) and FM band (76 to 108 MHz), noise may intrude from the noise source. Therefore, the shielding performance of the coaxial cable may be improved in the low frequency band (LW band to FM band). It becomes necessary.

しかしながら、現在、低周波帯において遮蔽性能が改善された同軸ケーブルを開発する設計方法が確立されていない。このため、従来の同軸ケーブル1、2は、低周波帯において遮蔽性能が改善されておらず、低周波帯において、ノイズが侵入する恐れがあり、同軸ケーブルをワイヤーハーネスに隣接配置(併設)してワイヤーハーネスとの統合化を図ることが困難であった。また、このような同軸ケーブルを開発する場合には、同軸ケーブルの遮蔽性能を評価する必要があるが、従来の伝達インピーダンス法による遮蔽性能評価方法は、伝達インピーダンス測定装置8が高価なこと、同軸ケーブルのサンプルを試行錯誤で多数試作する必要があること、伝達インピーダンスの測定に手間(労力、時間)がかかること等により、遮蔽性能評価方法に費用がかかるという問題があった。   However, at present, no design method has been established for developing a coaxial cable with improved shielding performance in the low frequency band. For this reason, the conventional coaxial cables 1 and 2 are not improved in shielding performance in the low frequency band, and noise may invade in the low frequency band. The coaxial cable is disposed adjacent to the wire harness (adjacent). Thus, it was difficult to integrate with the wire harness. Further, when developing such a coaxial cable, it is necessary to evaluate the shielding performance of the coaxial cable. However, the conventional shielding performance evaluation method based on the transmission impedance method is based on the fact that the transmission impedance measuring device 8 is expensive. There is a problem that the shielding performance evaluation method is expensive because it is necessary to make a large number of cable samples by trial and error and it takes time and effort (labor and time) to measure the transfer impedance.

本発明は上記課題を解決し、低周波帯において遮蔽性能が改善されてノイズの侵入を防止し、ワイヤーハーネスとの統合化を図ることができる同軸ケーブル及び手間をかけずに低費用で遮蔽性能を評価することができる同軸ケーブルの遮蔽性能評価方法の提供を目的とするものである。   The present invention solves the above problems, improves the shielding performance in the low frequency band, prevents the intrusion of noise, and can be integrated with the wire harness and the shielding performance at low cost without trouble. The objective is to provide a method for evaluating the shielding performance of a coaxial cable.

上記目的を達成するために、本発明の請求項1記載の発明は、絶縁体で被覆された内部導体の外周に外部導体層が設けられた同軸ケーブルにおいて、前記外部導体層の遮蔽抵抗が3mΩ/m〜6.5mΩ/mに設定されていることを特徴とするものである。   In order to achieve the above object, according to the first aspect of the present invention, in the coaxial cable in which the outer conductor layer is provided on the outer periphery of the inner conductor covered with the insulator, the shielding resistance of the outer conductor layer is 3 mΩ. / M to 6.5 mΩ / m.

本発明の請求項2記載の発明は、請求項1記載の同軸ケーブルにおいて、前記外部導体層が複数層設けられていることを特徴とするものである。   According to a second aspect of the present invention, in the coaxial cable according to the first aspect, the outer conductor layer is provided in a plurality of layers.

本発明の請求項3記載の発明は、請求項2記載の同軸ケーブルにおいて、前記外部導体層が、絶縁体の外周に設けられ、遮蔽抵抗が35mΩ/m以下に設定された1層又は複数層の主導体層と、その外周に設けられ、外部導体層全体の遮蔽抵抗を3mΩ/m〜6.5mΩ/mまで低減させる1層又は複数層の補助導体層とからなることを特徴とするものである。   The invention according to claim 3 of the present invention is the coaxial cable according to claim 2, wherein the outer conductor layer is provided on the outer periphery of the insulator, and the shielding resistance is set to one or more layers set to 35 mΩ / m or less. The main conductor layer is provided on the outer periphery of the main conductor layer, and one or a plurality of auxiliary conductor layers are provided to reduce the shielding resistance of the entire outer conductor layer from 3 mΩ / m to 6.5 mΩ / m. It is.

本発明の請求項4記載の発明は、請求項3記載の同軸ケーブルにおいて、前記補助導体層を形成する素線の径が0.5mm以下であることを特徴とするものである。   According to a fourth aspect of the present invention, in the coaxial cable according to the third aspect, the diameter of the strand forming the auxiliary conductor layer is 0.5 mm or less.

本発明の請求項5記載の発明は、請求項3記載の同軸ケーブルにおいて、前記補助導体層が素線又は撚線の撚り合わせ体からなり、前記撚り合わせ体のピッチが遮蔽層外径の6倍〜60倍であることを特徴とするものである。   According to a fifth aspect of the present invention, in the coaxial cable according to the third aspect, the auxiliary conductor layer is made of a strand of strands or a stranded wire, and the pitch of the twisted body is 6 of the outer diameter of the shielding layer. It is characterized by being double to 60 times.

本発明請求項6記載の発明は、請求項3記載の同軸ケーブルにおいて、前記補助導体層が素線又は撚線の撚り合わせ体からなり、前記撚り合わせ体のピッチが遮蔽層外径の7〜40倍であることを特徴とするものである。   According to a sixth aspect of the present invention, in the coaxial cable according to the third aspect, the auxiliary conductor layer is made of a strand of strands or stranded wires, and the pitch of the strands is 7 to 7 of the outer diameter of the shielding layer. It is characterized by being 40 times.

本発明の請求項7記載の発明は、絶縁体で被覆された内部導体の外周に外部導体層が設けた同軸ケーブルの遮蔽性能評価方法において、前記外部導体層の遮蔽抵抗を測定又は算出することにより遮蔽性能を評価することを特徴とするものである。   According to a seventh aspect of the present invention, in the method for evaluating the shielding performance of a coaxial cable in which an outer conductor layer is provided on the outer periphery of an inner conductor covered with an insulator, the shielding resistance of the outer conductor layer is measured or calculated. The shielding performance is evaluated by the following.

本発明の請求項8記載の発明は、請求項1乃至6のいずれかに記載の同軸ケーブルの遮蔽性能評価方法であって、請求項7記載の評価方法において、前記外部導体層の遮蔽抵抗を測定又は算出し、得られた遮蔽抵抗が6.5mΩ/m以下であるか否かを基準にして遮蔽性能を評価することを特徴とするものである。   The invention according to claim 8 of the present invention is the coaxial cable shielding performance evaluation method according to any one of claims 1 to 6, wherein the shielding resistance of the outer conductor layer is set as the evaluation method according to claim 7. It is characterized in that the shielding performance is evaluated based on measurement or calculation and whether or not the obtained shielding resistance is 6.5 mΩ / m or less.

本発明の請求項1記載の同軸ケーブルによると、外部導体層の遮蔽抵抗が3mΩ/m〜6.5mΩ/mに設定されているので、低周波帯において遮蔽性能が改善されて、ノイズの侵入を防止し、ワイヤーハーネスとの統合化を図ることができる。また外部導体層の遮蔽性能の評価が簡単になるので、遮蔽性能の優れた同軸ケーブルを容易に設計して開発することができる。   According to the coaxial cable of the first aspect of the present invention, since the shielding resistance of the outer conductor layer is set to 3 mΩ / m to 6.5 mΩ / m, the shielding performance is improved in the low frequency band, and noise intrusion occurs. And can be integrated with the wire harness. In addition, since the evaluation of the shielding performance of the outer conductor layer is simplified, a coaxial cable having excellent shielding performance can be easily designed and developed.

本発明の請求項2記載の同軸ケーブルによると、前記外部導体層が複数層設けられているので、外部導体層の遮蔽抵抗を容易に低減させ、遮蔽性能の改善を図ることができる。   According to the coaxial cable of the second aspect of the present invention, since the outer conductor layer is provided in a plurality of layers, the shielding resistance of the outer conductor layer can be easily reduced and the shielding performance can be improved.

本発明の請求項3記載の同軸ケーブルによると、外部導体層が主導体層と補助導体層からなるので、外部導体層の遮蔽抵抗を調整する場合には、外側に位置する補助導体層の遮蔽抵抗を変更して、外部導体層の遮蔽抵抗を測定又は算出すればよい。従って、遮蔽抵抗の調整が容易になり、外部導体層の遮蔽抵抗を所望の抵抗値に的確に、且つ、速やかに設定することができる。また、主導体層の遮蔽抵抗が35mΩ/m以下に設定されているので、主導体層が絶縁体の外周に一様にむらなく被覆されて遮蔽性能がばらつかず安定し、遮蔽性能を改善し易くなる。更に、補助導体層の遮蔽抵抗の調整幅を広く取れるので、外部導体層全体の遮蔽抵抗を6.5mΩ/m以下に調整することが容易になる。   According to the coaxial cable of the third aspect of the present invention, the outer conductor layer is composed of the main conductor layer and the auxiliary conductor layer. Therefore, when adjusting the shielding resistance of the outer conductor layer, the auxiliary conductor layer positioned outside is shielded. What is necessary is just to measure or calculate the shielding resistance of an external conductor layer by changing resistance. Therefore, the shielding resistance can be easily adjusted, and the shielding resistance of the outer conductor layer can be accurately and quickly set to a desired resistance value. In addition, since the shielding resistance of the main conductor layer is set to 35 mΩ / m or less, the main conductor layer is evenly coated on the outer periphery of the insulator so that the shielding performance does not vary and is stable, improving the shielding performance. It becomes easy to do. Furthermore, since the adjustment range of the shielding resistance of the auxiliary conductor layer can be widened, it becomes easy to adjust the shielding resistance of the entire outer conductor layer to 6.5 mΩ / m or less.

本発明の請求項4記載の同軸ケーブルによると、0.5mm以下の導体径の導体を用いて補助導体層を形成することにより遮蔽性能をさらに向上させることが可能となる。補助導体層の素線径に拠らず、遮蔽抵抗値を6.5mΩ/m以下にすることだけで、ワイヤーハーネスへの組み込みが可能になるが、0.5mm以下とすることで目標値に対してさらに10%の遮蔽性能を改善することが可能となる。遮蔽性能改善により、さらに信頼性が高く、ノイズに強いケーブルを得ることができる。   According to the coaxial cable of the present invention, the shielding performance can be further improved by forming the auxiliary conductor layer using a conductor having a conductor diameter of 0.5 mm or less. Regardless of the wire diameter of the auxiliary conductor layer, it is possible to incorporate it into the wire harness only by setting the shielding resistance value to 6.5 mΩ / m or less. On the other hand, the shielding performance can be further improved by 10%. By improving the shielding performance, a cable with higher reliability and noise resistance can be obtained.

本発明の請求項5記載の同軸ケーブルによると、遮蔽層外径D(図9(b)参照)の3〜60倍のピッチで補助導体層を形成することにより生産効率が確保でき、補助導体層の不良を防止することができる。さらに、請求項6記載の同軸ケーブルのように、遮蔽外径の7〜40倍のピッチで補助導体層を形成することにより、可撓性を向上させるとともに、高周波帯(数MHz以上)遮蔽性能をさらに向上させることが可能となる。また、長ピッチ化により作製速度が向上するため、作製コストを削減することができる。しかし、製作コストが抑えられる一方、大幅にピッチを長くすると、ケーブル自体の可撓性が悪化するだけでなく、屈曲時に撚りピッチの乱れや隙間が発生し特性が悪化するという欠点があるが、遮蔽層外径の7倍〜40倍のピッチとすることで、W/H組込に必要な可撓性を維持したままケーブルを作成することが出来、高周波での遮蔽性能を向上させるだけでなく作製コストを削減することが可能となる。   According to the coaxial cable of the present invention, the production efficiency can be ensured by forming the auxiliary conductor layer at a pitch of 3 to 60 times the shielding layer outer diameter D (see FIG. 9B). Defects in the layer can be prevented. Furthermore, as in the coaxial cable according to claim 6, by forming the auxiliary conductor layer at a pitch of 7 to 40 times the shielding outer diameter, the flexibility is improved and the high frequency band (several MHz or more) shielding performance is achieved. Can be further improved. In addition, since the production speed is improved by increasing the pitch, the production cost can be reduced. However, while the manufacturing cost can be suppressed, if the pitch is greatly increased, not only the flexibility of the cable itself is deteriorated, but also the twist pitch is disturbed and the gap is generated at the time of bending. By setting the pitch to 7 to 40 times the outer diameter of the shielding layer, it is possible to create a cable while maintaining the flexibility required for W / H incorporation, and to improve the shielding performance at high frequencies. Therefore, the manufacturing cost can be reduced.

本発明の請求項7記載の同軸ケーブルの遮蔽性能評価方法によると、外部導体層の遮蔽性能を評価する基準として、伝達インピーダンスではなく、遮蔽抵抗(導体電気抵抗)を用いるので、その遮蔽抵抗を安価な測定装置を用いて簡単、且つ、正確に測定することができる。また、必ずしも同軸ケーブルのサンプルを試作して測定する必要がなく、外部導体層のサンプルだけ試作して測定することもできる。また、同軸ケーブル又は外部導体層のサンプルを試作する代わりに、数式計算により算出することもできる。更に、同軸ケーブル又は外部導体層のサンプルを試作する場合でも、数式計算により予測される遮蔽抵抗のサンプルを試作すればよいので、サンプルを試行錯誤して多数試作する必要がなくなる。従って、同軸ケーブルの遮蔽性能の評価を従来の伝達インピーダンス法よりも手間をかけることなく能率よく低費用で行うことができる。   According to the method for evaluating the shielding performance of the coaxial cable according to claim 7 of the present invention, since the shielding resistance (conductor electrical resistance) is used instead of the transmission impedance as a reference for evaluating the shielding performance of the outer conductor layer, the shielding resistance is Measurement can be performed easily and accurately using an inexpensive measuring device. In addition, it is not always necessary to make a sample of a coaxial cable and measure it, and only a sample of the outer conductor layer can be made and measured. Moreover, it can also calculate by numerical calculation instead of making a sample of a coaxial cable or an outer conductor layer. Furthermore, even when a sample of a coaxial cable or an outer conductor layer is prototyped, it is only necessary to prototype a sample of shielding resistance predicted by mathematical calculation, so that it is not necessary to trial a number of samples for trial and error. Therefore, the evaluation of the shielding performance of the coaxial cable can be performed efficiently and at a low cost with less effort than the conventional transfer impedance method.

本発明の請求項8記載の同軸ケーブルの遮蔽性能評価方法によると、前記外部導体層の遮蔽抵抗を測定又は算出し、得られた遮蔽抵抗が6.5mΩ/m以下であるか否かを基準にして遮蔽性能を評価するようにしたので、低周波帯において同軸ケーブルの遮蔽性能が改善されているかどうかの評価を的確に行うことができ、低周波帯において遮蔽性能が改善された同軸ケーブルの設計、開発、試験、検査等に大きく寄与することができる。   According to the method for evaluating the shielding performance of the coaxial cable according to claim 8 of the present invention, the shielding resistance of the outer conductor layer is measured or calculated, and whether or not the obtained shielding resistance is 6.5 mΩ / m or less is used as a reference. Therefore, it is possible to accurately evaluate whether or not the shielding performance of the coaxial cable is improved in the low frequency band, and the coaxial cable having improved shielding performance in the low frequency band. It can greatly contribute to design, development, testing, inspection, etc.

次に本発明の好ましい実施形態を図面に基づき詳細に説明する。図1は本発明に係る同軸ケーブル15の1実施形態を示す斜視図である。なお、従来の同軸ケーブルと同一構成のものには同一符号が付してある。   Next, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of a coaxial cable 15 according to the present invention. In addition, the same code | symbol is attached | subjected to the thing of the same structure as the conventional coaxial cable.

本実施形態の同軸ケーブル15は、絶縁体4で被覆された内部導体(中心導体)3の外周に、外部導体層17が設けられ、その外周にシース7が設けられている。外部導体層17は、絶縁体4の外周に、これを一様に、即ち、後記金属素線、金属テープ等の間に隙間が出来ないように密着させて設けられ、遮蔽抵抗が35mΩ/m以下に設定された1層の主導体層18と、その外周に設けられ、外部導体層17全体の遮蔽抵抗を3mΩ/m〜6.5mΩ/mまで低減させる1層の補助導体層19とから構成されている。補助導体層19は、外部導体層17の遮蔽抵抗を調整する機能を備えるものであるから、主導体層18に示すように一様に覆うのではなく、金属素線、テープ等の間に周方向に1箇所又は複数箇所にわたり隙間が形成されるように設けてもよい。また、さらに遮蔽性能を改善させるためには、補助導体層を形成する導体の径を0.5mm以下にすることでワイヤーハーネスに組み入れるために必要な遮蔽性能よりも10%性能向上させることが可能となる。性能向上により、信頼性が高くノイズに強いケーブルを得ることができる。さらに、補助導体層のピッチを遮蔽層外径の7〜40倍程度とすることで、高周波の遮蔽性能を改善させるだけでなく、低コストで可撓性にも優れるケーブルを得ることが出来る。   In the coaxial cable 15 of this embodiment, an outer conductor layer 17 is provided on the outer periphery of an inner conductor (center conductor) 3 covered with an insulator 4, and a sheath 7 is provided on the outer periphery thereof. The outer conductor layer 17 is provided on the outer periphery of the insulator 4 uniformly, that is, in close contact with a metal wire, metal tape, etc. described later, and has a shielding resistance of 35 mΩ / m. One main conductor layer 18 set as follows, and one auxiliary conductor layer 19 provided on the outer periphery thereof and reducing the shielding resistance of the entire outer conductor layer 17 to 3 mΩ / m to 6.5 mΩ / m. It is configured. Since the auxiliary conductor layer 19 has a function of adjusting the shielding resistance of the outer conductor layer 17, the auxiliary conductor layer 19 is not uniformly covered as shown in the main conductor layer 18, but is surrounded by a metal wire, tape, or the like. You may provide so that a clearance gap may be formed over one place or multiple places in a direction. Moreover, in order to further improve the shielding performance, the diameter of the conductor forming the auxiliary conductor layer can be reduced to 0.5 mm or less, thereby improving the shielding performance required for incorporation into the wire harness by 10%. It becomes. By improving the performance, it is possible to obtain a cable that is highly reliable and resistant to noise. Furthermore, by setting the pitch of the auxiliary conductor layer to about 7 to 40 times the outer diameter of the shielding layer, it is possible to obtain a cable that not only improves high-frequency shielding performance but also is low in cost and excellent in flexibility.

外部導体層17を構成する主導体層18及び補助導体層19は、複数本の金属素線を網目状に編組したもの、複数本の金属素線を同方向若しくは交互に横巻きし(撚り合わせ)たもの、又は内部導体3の長手方向に沿って縦添えしたもの、金属箔、金属テープ又はプラスチックテープの片面に金属蒸着層をラミネートした複合テープを縦添え又は横巻きし(撚り合わせ)たもの等で構成される。主導体層18及び補助導体層19は前記したような1層ではなく、複数層設けるようにしてもよい。   The main conductor layer 18 and the auxiliary conductor layer 19 constituting the outer conductor layer 17 are formed by braiding a plurality of metal strands in a mesh, and winding a plurality of metal strands in the same direction or alternately (twisting together) ), Or vertically attached along the longitudinal direction of the inner conductor 3, or a composite tape obtained by laminating a metal deposition layer on one side of a metal foil, metal tape or plastic tape, or vertically wound (twisted). It consists of things. The main conductor layer 18 and the auxiliary conductor layer 19 may be provided in a plurality of layers instead of one layer as described above.

低周波帯において遮蔽性能が改善された同軸ケーブル15の設計、開発、試験、検査等のために、その外部導体層17の遮蔽性能を評価する場合には、その基準として伝達インピーダンスではなく遮蔽抵抗を用いる。その遮蔽抵抗を3mΩ/m〜6.5mΩ/mに設定する場合には、内側に位置する主導体層18の遮蔽抵抗を35mΩ/m以下の所定値に予め設定し、次に、外側に位置する補助導体層19の遮蔽抵抗を適宜選択した同軸ケーブル15又は外部導体層17のサンプルを試作し、外部導体層17の遮蔽抵抗を測定して遮蔽性能を評価する。その遮蔽抵抗の測定値が6.5mΩ/mよりも大きい場合には、その補助導体層19を別の遮蔽抵抗を有する補助導体層19に取り換えた同軸ケーブル15又は外部導体層17のサンプルを再度試作し、外部導体層17の遮蔽抵抗を測定して遮蔽性能を再評価する。このような操作を必要回数行って、外部導体層17の遮蔽抵抗を3mΩ/m〜6.5mΩ/mに設定する。   When evaluating the shielding performance of the outer conductor layer 17 for the design, development, test, inspection, etc. of the coaxial cable 15 whose shielding performance has been improved in the low frequency band, the shielding resistance, not the transfer impedance, is used as a reference. Is used. When the shielding resistance is set to 3 mΩ / m to 6.5 mΩ / m, the shielding resistance of the main conductor layer 18 located on the inner side is set in advance to a predetermined value of 35 mΩ / m or less, and then placed on the outer side. A sample of the coaxial cable 15 or the outer conductor layer 17 in which the shielding resistance of the auxiliary conductor layer 19 to be selected is appropriately selected is manufactured, and the shielding resistance of the outer conductor layer 17 is measured to evaluate the shielding performance. When the measured value of the shielding resistance is larger than 6.5 mΩ / m, a sample of the coaxial cable 15 or the outer conductor layer 17 in which the auxiliary conductor layer 19 is replaced with another auxiliary conductor layer 19 having another shielding resistance is again obtained. A prototype is manufactured, and the shielding resistance of the outer conductor layer 17 is measured to re-evaluate the shielding performance. Such an operation is performed as many times as necessary to set the shielding resistance of the outer conductor layer 17 to 3 mΩ / m to 6.5 mΩ / m.

外部導体層17の遮蔽抵抗を測定する場合には、例えば、図2に示すような構造が簡単で安価な遮蔽抵抗測定装置21を用いて測定することができる。即ち、所定長さの同軸ケーブル15又は外部導体層17のサンプルを試作して用意し、その両端をチャック等の把持部材23で把持し、電源25から把持部材23を通して外部導体層17に電流を流し、電気抵抗計27で外部導体層17の遮蔽抵抗(導体電気抵抗)を測定する。そして、得られた測定値が合否判定の基準である6.5mΩ/m以下である場合には合格(遮蔽性能が改善されている)、6.5mΩ/mよりも大きい場合には不合格(遮蔽性能が改善されていない)と判定することにより、外部導体層17の遮蔽性能を評価する。   When measuring the shielding resistance of the external conductor layer 17, for example, it can be measured using a shielding resistance measuring device 21 having a simple and inexpensive structure as shown in FIG. That is, a sample of the coaxial cable 15 or the outer conductor layer 17 having a predetermined length is prepared by prototyping, and both ends thereof are gripped by a gripping member 23 such as a chuck, and a current is supplied from the power source 25 to the outer conductor layer 17 through the gripping member 23. Then, the electrical resistance meter 27 measures the shielding resistance (conductor electrical resistance) of the outer conductor layer 17. And when the obtained measured value is 6.5 mΩ / m or less which is a criterion for pass / fail judgment, it passes (the shielding performance is improved), and when it is larger than 6.5 mΩ / m, it fails ( By determining that the shielding performance is not improved, the shielding performance of the outer conductor layer 17 is evaluated.

外部導体層17の遮蔽抵抗は、数式計算により算出することもできる。その計算式は式(1)に示す通りである。   The shielding resistance of the outer conductor layer 17 can also be calculated by mathematical calculation. The calculation formula is as shown in Formula (1).

ρ×102×10−3
R=――――――――――×L・・・・・・・・・・・(1)
S×10−2
ρ × 102 × 10-3
R = ―――――――――― × L (1)
S × 10-2

Rは外部導体層17の遮蔽抵抗(mΩ/m)、ρは金属素線の体積固有抵抗値(μΩ・cm)、Sは外部導体層17の断面積(mm)で、金属素線の本数をn、外径をdmm
とすると、nπd2/4、Lは外部導体層17の長さ(m)である。
R is the shielding resistance of the outer conductor layer 17 (mΩ / m), ρ is the volume resistivity of the metal wire (μΩ · cm), S is the cross-sectional area (mm 2 ) of the outer conductor layer 17, Number n, outer diameter dmm
Then, nπd2 / 4, L is the length (m) of the outer conductor layer 17.

そこで、外部導体層17が、仮に外径0.32mmの軟銅素線の7本を横巻きし(撚り合わせて)構成された場合を想定すると、軟銅素線の体積固有抵抗値ρが1.742μΩ・cmなので、遮蔽抵抗Rは式(1)による計算で、30.96mΩ/mとなる。このサイズの外部導体層17を遮蔽抵抗測定装置21で測定した場合には、遮蔽抵抗が30.34mΩ/mになるので、遮蔽抵抗Rの理論計算値が実測値によく一致する。   Therefore, assuming that the outer conductor layer 17 is configured by laterally winding (twisting) seven soft copper strands having an outer diameter of 0.32 mm, the volume resistivity value ρ of the annealed copper strand is 1. Since it is 742 μΩ · cm, the shielding resistance R is 30.96 mΩ / m as calculated by the equation (1). When the outer conductor layer 17 having this size is measured by the shielding resistance measuring device 21, the shielding resistance is 30.34 mΩ / m, and thus the theoretical calculation value of the shielding resistance R is in good agreement with the actually measured value.

外部導体層17が複数層、例えば、前記主導体層18と補助導体層19で構成される場合の遮蔽抵抗Rは、各層の遮蔽抵抗、即ち、主導体層18の遮蔽抵抗R1と補助導体層19の遮蔽抵抗R2を並列に接続した場合の合成抵抗の計算式を適用することができる。その計算式は式(2)に示す通りである。   When the outer conductor layer 17 is composed of a plurality of layers, for example, the main conductor layer 18 and the auxiliary conductor layer 19, the shielding resistance R is the shielding resistance of each layer, that is, the shielding resistance R1 of the main conductor layer 18 and the auxiliary conductor layer. The calculation formula of the combined resistance when 19 shielding resistors R2 are connected in parallel can be applied. The calculation formula is as shown in Formula (2).


R=―――――――――――・・・・・・・・・(2)
1/R1 + 1/R2
1
R = ----------------- (2)
1 / R1 + 1 / R2

前記外部導体層17の遮蔽抵抗を3mΩ/m〜6.5mΩ/mに設定した理由は次の理由によるものである。   The reason why the shielding resistance of the outer conductor layer 17 is set to 3 mΩ / m to 6.5 mΩ / m is as follows.

図3は、横軸にノイズ侵入が問題視されている低周波帯、即ち、LW帯(153〜279kHz)、AM帯(522〜1710kHz)、SW帯(2.94〜21.975MHz)の周波数(MHz)及びFM帯(76〜108MHz)、縦軸に伝達インピーダンス(mΩ/m)を取り、周波数をLW帯〜FM帯まで変化させたとき、外部導体層の伝達インピーダンスの目標性能値(T)と、外部導体層の異なる遮蔽抵抗(Ra、Rb、Rc、Rd)に対する伝達インピーダンスとがそれぞれ変化する状態を示すものである。   FIG. 3 shows frequencies in a low frequency band where noise intrusion is regarded as a problem on the horizontal axis, that is, LW band (153 to 279 kHz), AM band (522 to 1710 kHz), and SW band (2.94 to 21.975 MHz). (MHz) and FM band (76 to 108 MHz), the transfer impedance (mΩ / m) is taken on the vertical axis, and when the frequency is changed from LW band to FM band, the target performance value (T ) And the transfer impedance for different shielding resistances (Ra, Rb, Rc, Rd) of the outer conductor layer, respectively.

図3において、Tは、従来一般的に用いられている同軸ケーブル(1.5C2V)の遮蔽性能に対し、ノイズレベルがLW帯〜SW帯において20dB以上、FM帯において10dB以上低下するような遮蔽性能の改善が望まれるので、周波数をLW帯〜FM帯まで変化させ、その要件(20dB以上、10dB以上の低下)を満たすように求めた外部導体層の伝達インピーダンスの目標性能値を示す曲線である。また、Raは遮蔽抵抗が5.5mΩ/m、Rbは遮蔽抵抗が10.1mΩ/m、Rcは遮蔽抵抗が12.6mΩ/m、Rdは遮蔽抵抗が18.3mΩ/mの場合に、周波数をLW帯〜FM帯まで変化させ、求めた伝達インピーダンスの曲線である。   In FIG. 3, T is a shielding that reduces the noise level by 20 dB or more in the LW band to SW band and by 10 dB or more in the FM band with respect to the shielding performance of the coaxial cable (1.5C2V) that is generally used conventionally. Since improvement in performance is desired, the frequency is changed from the LW band to the FM band, and a curve showing the target performance value of the transfer impedance of the outer conductor layer obtained so as to satisfy the requirement (reduction of 20 dB or more and 10 dB or more) is there. Further, Ra is a shielding resistance of 5.5 mΩ / m, Rb is a shielding resistance of 10.1 mΩ / m, Rc is a shielding resistance of 12.6 mΩ / m, and Rd is a frequency when the shielding resistance is 18.3 mΩ / m. Is a curve of transfer impedance obtained by changing the frequency range from LW band to FM band.

図3に示す伝達インピーダンスの曲線から分かるように、LW帯の下限値である150kHz近傍において、外部導体層の伝達インピーダンスがその目標性能値(T)である2.7mΩ/m以下であれば、低周波帯(LW帯〜FM帯)すべてにおいて、遮蔽性能を改善(向上)させることができる。外部導体層の遮蔽抵抗で言えば、遮蔽抵抗(Ra)が5.5mΩ/mの場合には、LW帯〜FM帯のすべてにおいて、伝達インピーダンスが目標性能値(T)以下になり、遮蔽性能を改善することができる。しかしながら、外部導体層の遮蔽抵抗(Rb)が10.1mΩ/mの場合には、AM帯〜FM帯において目標性能値Tより低くなり、遮蔽性能を改善することができるが、LW帯において目標性能値Tである2.7mΩ/mより高くなってしまうため、遮蔽性能を改善することができない。   As can be seen from the transfer impedance curve shown in FIG. 3, in the vicinity of 150 kHz which is the lower limit value of the LW band, if the transfer impedance of the outer conductor layer is 2.7 mΩ / m or less which is the target performance value (T), The shielding performance can be improved (improved) in all low frequency bands (LW band to FM band). In terms of the shielding resistance of the outer conductor layer, when the shielding resistance (Ra) is 5.5 mΩ / m, the transfer impedance is less than or equal to the target performance value (T) in all the LW band to FM band, and the shielding performance. Can be improved. However, when the shielding resistance (Rb) of the outer conductor layer is 10.1 mΩ / m, it becomes lower than the target performance value T in the AM band to FM band, and the shielding performance can be improved. Since the performance value T becomes higher than 2.7 mΩ / m, the shielding performance cannot be improved.

そこで、上記知見に基づいて、150kHz近傍における外部導体層の伝達インピーダンスと遮蔽抵抗との関係を実験により調査した結果、図4に示すように、伝達インピーダンスと遮蔽抵抗との間には強い相関関係のあることが分かる。そこで、伝達インピーダンスの目標性能値である2.7mΩ/mを遮蔽性能の合格ラインの上限とすると、2.7mΩ/mの伝達インピーダンスに相当する遮蔽抵抗が6mΩ/m〜6.5mΩ/mになるので、6.5mΩ/mの遮蔽抵抗が遮蔽性能の合格ラインの上限となり、外部導体層の遮蔽抵抗が6.5mΩ/m以下に設定されることにより、低周波帯(LW帯〜FM帯)において、遮蔽性能が改善され、ノイズ源からのノイズの侵入を確実に防止することができる。
ところで、遮蔽抵抗が低くなるほど遮蔽性能が大きく改善されて好ましいが、外部導体層の肉厚が増大し、同軸ケーブルの外径が大きくなってくる。そこで、経済的な観点から遮蔽抵抗の下限値が3mΩ/mに設定される。
Therefore, as a result of investigating the relationship between the transfer impedance of the outer conductor layer and the shielding resistance in the vicinity of 150 kHz based on the above findings, as shown in FIG. 4, there is a strong correlation between the transfer impedance and the shielding resistance. I understand that there is. Therefore, when the target performance value of transfer impedance of 2.7 mΩ / m is set as the upper limit of the shielding performance pass line, the shielding resistance corresponding to the transfer impedance of 2.7 mΩ / m is 6 mΩ / m to 6.5 mΩ / m. Therefore, the shielding resistance of 6.5 mΩ / m becomes the upper limit of the passing line of the shielding performance, and the shielding resistance of the outer conductor layer is set to 6.5 mΩ / m or less, so that the low frequency band (LW band to FM band) ), The shielding performance is improved, and the intrusion of noise from the noise source can be surely prevented.
By the way, the lower the shielding resistance, the better the shielding performance, which is preferable, but the thickness of the outer conductor layer increases and the outer diameter of the coaxial cable becomes larger. Therefore, the lower limit value of the shielding resistance is set to 3 mΩ / m from an economical viewpoint.

前記外部導体層17の主導体層18の遮蔽抵抗を35mΩ/m以下に設定した理由は次の理由によるものである。即ち、図5に示すように、主導体層18の遮蔽抵抗が35mΩ/mを超えると、主導体層18を絶縁体4の外周に一様にむらなく被覆するのが難しくなり、遮蔽性能にばらつきが生じて不安定になる。また、外部導体層17全体の150kHz近傍における伝達インピーダンスを2.7mΩ/m以下、即ち、遮蔽抵抗を6.5mΩ/m以下に下げることが難しくなり、遮蔽性能を容易に改善することができなくなる。これに対して、主導体層18の遮蔽抵抗を35mΩ/m以下に設定すると、主導体層18が絶縁体4の外周に一様にむらなく被覆されて遮蔽性能がばらつかず安定し、遮蔽性能を改善し易くなる。また、図6に示すように、主導体層18の遮蔽抵抗に対して、補助導体層19の遮蔽抵抗の調整幅を広く取れるので、外部導体層17全体の遮蔽抵抗を6.5mΩ/m以下に調整することが容易になる。   The reason why the shielding resistance of the main conductor layer 18 of the outer conductor layer 17 is set to 35 mΩ / m or less is as follows. That is, as shown in FIG. 5, when the shielding resistance of the main conductor layer 18 exceeds 35 mΩ / m, it becomes difficult to uniformly coat the main conductor layer 18 on the outer periphery of the insulator 4, and the shielding performance is improved. Variation occurs and becomes unstable. Further, it becomes difficult to lower the transfer impedance of the entire outer conductor layer 17 in the vicinity of 150 kHz to 2.7 mΩ / m or less, that is, the shielding resistance to 6.5 mΩ / m or less, and the shielding performance cannot be easily improved. . On the other hand, when the shielding resistance of the main conductor layer 18 is set to 35 mΩ / m or less, the main conductor layer 18 is uniformly coated on the outer periphery of the insulator 4 so that the shielding performance does not vary and is stable. It becomes easy to improve performance. Further, as shown in FIG. 6, since the adjustment range of the shielding resistance of the auxiliary conductor layer 19 can be increased with respect to the shielding resistance of the main conductor layer 18, the shielding resistance of the entire outer conductor layer 17 is 6.5 mΩ / m or less. Easy to adjust.

前記補助導体層19の導体径を0.5mm以下にした理由は次の理由によるものである。図7に補助導体層を形成する素線径の変化に対して、150kHzにおける伝達インピーダンス値がどのように変化するかを示した。図には遮蔽性能20dB改善を達成するための合格ライン(伝達インピーダンス値2.7mΩ/m)と目標遮蔽性能値からさらに10%(22dB)遮蔽性能を向上させるための合格ライン(伝達インピーダンス値2.0mΩ/m)も記載してある。これによると、素線径によらず目標性能値(T)である20dB改善の合格ライン以下にすることができるが、0.5mm以下にすることにより目標性能値である20dB改善よりも10%の遮蔽性能向上した22dB改善を達成することができ、さらに信頼性が高くノイズに強いケーブルを実現することが可能となる。   The reason why the conductor diameter of the auxiliary conductor layer 19 is 0.5 mm or less is as follows. FIG. 7 shows how the transfer impedance value at 150 kHz changes with respect to the change in the diameter of the wire forming the auxiliary conductor layer. The figure shows a passing line (transfer impedance value of 2.7 mΩ / m) for achieving a shielding performance improvement of 20 dB and a passing line (transfer impedance value of 2 for improving the shielding performance by 10% (22 dB) from the target shielding performance value). .0mΩ / m) is also described. According to this, it is possible to make the target performance value (T) 20 dB improvement or less acceptable line regardless of the wire diameter, but by making it 0.5 mm or less, it is 10% of the target performance value 20 dB improvement. Thus, it is possible to achieve a 22 dB improvement with improved shielding performance and to realize a highly reliable and noise-resistant cable.

前記補助導体層(撚り合わせ体)19のピッチを遮蔽層外径D(図9(b)参照)の6倍〜60倍とした理由は、ピッチを遮蔽層外径Dの6倍未満とすると製造速度が著しく低下し、生産効率を確保できなくなり、逆に60倍を超えると製造自体が困難となり不良の発生率が増加するためである。従って、生産効率と不良発生率を両立させるためには前記ピッチは6倍〜60倍にするのが望ましい。   The reason why the pitch of the auxiliary conductor layer (twisted body) 19 is 6 to 60 times the shielding layer outer diameter D (see FIG. 9B) is that the pitch is less than 6 times the shielding layer outer diameter D. This is because the production speed is remarkably lowered and the production efficiency cannot be ensured. Conversely, when the production rate exceeds 60 times, the production itself becomes difficult and the occurrence rate of defects increases. Therefore, in order to achieve both production efficiency and defect occurrence rate, the pitch is desirably 6 to 60 times.

前記補助導体層19のピッチを遮蔽層外径D(図9(b)参照)の7倍〜40倍とした理由は、図8に示すように、ピッチが7倍以上になると高周波帯(10MHz付近)の遮蔽性能が大幅に改善でき、また製造コストが低減できるためであり、一方、ピッチが40倍を超えると可撓性が悪化し、ケーブル製造自体も難しくなるためである。即ち、遮蔽性能、可撓性、コスト、作製容易性の4つを向上させるには、ピッチを遮蔽層外径Dの7倍〜40倍にするのが望ましい。
図8は、補助導体ピッチ指数(遮蔽層外径を1とした場合のピッチ)と、U字屈曲特性、10MHzにおける伝達インピーダンス値、及びコスト指数(現行同軸ケーブルの製造コストを1としたときの製造コスト)の関係を示したもので、U字屈曲特性(可撓性)はピッチ(指数)が低いほど向上することが分かる。
The reason why the pitch of the auxiliary conductor layer 19 is 7 to 40 times the outer diameter D of the shielding layer (see FIG. 9B) is that when the pitch is 7 times or more, as shown in FIG. This is because the shielding performance in the vicinity) can be greatly improved and the manufacturing cost can be reduced. On the other hand, when the pitch exceeds 40 times, the flexibility deteriorates and the cable manufacturing itself becomes difficult. That is, in order to improve the shielding performance, flexibility, cost, and ease of production, it is desirable that the pitch be 7 to 40 times the shielding layer outer diameter D.
FIG. 8 shows the auxiliary conductor pitch index (pitch when the shielding layer outer diameter is 1), U-shaped bending characteristics, transfer impedance value at 10 MHz, and cost index (when the manufacturing cost of the current coaxial cable is 1). This shows the relationship of the manufacturing cost, and it can be seen that the U-shaped bending property (flexibility) is improved as the pitch (index) is lower.

(実施形態1)
本実施形態の同軸ケーブル15は、図9(a)に示すように、ポリエチレンで形成された外径1.61mmの絶縁体4で被覆された外径(線径)0.265mmの軟銅線(単線)で出来た内部導体(中心導体)3の外周に、外部導体層17が設けられ、その外周に厚さ0.5mmに押出し成形されたポリ塩化ビニル製のシース7が設けられる。外部導体層17は、絶縁体4の外周に一様に設けられた1層の主導体層18とその外周に設けられた2層の補助導体層19とから構成される。主導体層18は、外径(線径)0.10mmの錫めっき軟銅線をピッチ15mm、編組密度97%で網目状に編組して構成され、遮蔽抵抗が29mΩ/mに設定されている。補助導体層19は、58本の外径0.26mmの錫めっき軟銅線を60mmのピッチで同方向に内外2層に横巻きして(撚り合わせ)構成され、遮蔽抵抗が5.64mΩ/mに設定される。主導体層18及び補助導体層19とを合わせた外部導体層17全体の遮蔽抵抗は4.74mΩ/mまで低減させることができた。
(Embodiment 1)
As shown in FIG. 9A, the coaxial cable 15 of the present embodiment is an annealed copper wire having an outer diameter (wire diameter) of 0.265 mm covered with an insulator 4 made of polyethylene and having an outer diameter of 1.61 mm. An outer conductor layer 17 is provided on the outer periphery of the inner conductor (center conductor) 3 made of a single wire, and a polyvinyl chloride sheath 7 extruded to a thickness of 0.5 mm is provided on the outer periphery. The outer conductor layer 17 includes a single main conductor layer 18 provided uniformly on the outer periphery of the insulator 4 and two auxiliary conductor layers 19 provided on the outer periphery thereof. The main conductor layer 18 is formed by braiding a tin-plated annealed copper wire having an outer diameter (wire diameter) of 0.10 mm in a mesh shape with a pitch of 15 mm and a braid density of 97%, and the shielding resistance is set to 29 mΩ / m. The auxiliary conductor layer 19 is configured by horizontally winding (twisting) 58 tin-plated annealed copper wires having an outer diameter of 0.26 mm in two layers in the same direction at a pitch of 60 mm, and has a shielding resistance of 5.64 mΩ / m. Set to The shielding resistance of the entire outer conductor layer 17 including the main conductor layer 18 and the auxiliary conductor layer 19 could be reduced to 4.74 mΩ / m.

(実施形態2)
本実施形態の同軸ケーブル15は、図9(b)に示すように、補助導体層19として、19本の外径0.18mmの錫めっき軟銅線を撚り合わせた撚線を9本、主導体層18の外周に60mmのピッチで同方向に横巻きし、遮蔽抵抗が3.8mΩ/mに設定されたものを用いる。その他の構成、サイズは実施形態1のものと同じである。この実施形態の外部導体層17全体の遮蔽抵抗は3.35mΩ/mまで低減させることができた。
(Embodiment 2)
As shown in FIG. 9B, the coaxial cable 15 according to the present embodiment has nine stranded wires obtained by twisting 19 tin-plated annealed copper wires having an outer diameter of 0.18 mm as the auxiliary conductor layer 19, and the main conductor. A layer having a shielding resistance of 3.8 mΩ / m is used which is horizontally wound around the outer periphery of the layer 18 in the same direction at a pitch of 60 mm. Other configurations and sizes are the same as those of the first embodiment. The shielding resistance of the entire outer conductor layer 17 of this embodiment could be reduced to 3.35 mΩ / m.

(実施形態3)
本実施形態の同軸ケーブル15は、図示省略するが、外部導体層17が2層の主導体層18と2層の補助導体層19の計4層構造になっている。主導体層18の1層目は、外径0.1mmの錫めっき軟銅線をピッチ15mm、編組密度99%で網目状に編組し、2層目は、外径0.1mmの錫めっき軟銅線をピッチ15mm、編組密度93%で網目状に編組し、補助導体層19の1層目(主導体層18の1層目から3層目に相当)は、外径0.1mmの錫めっき軟銅線をピッチ15mm、編組密度93%で網目状に編組し、2層目(主導体層18の1層目から4層目に相当)は、外径0.1mmの錫めっき軟銅線をピッチ15mm、編組密度88%で網目状に編組したものである。その他の構成は実施形態1のものと同一である。この実施形態の外部導体層17全体の遮蔽抵抗は6.47mΩ/mまで低減させることができた。
(Embodiment 3)
Although not shown, the coaxial cable 15 of the present embodiment has a total four-layer structure in which the outer conductor layer 17 includes two main conductor layers 18 and two auxiliary conductor layers 19. The first layer of the main conductor layer 18 is a tin-plated annealed copper wire with an outer diameter of 0.1 mm braided in a mesh shape with a pitch of 15 mm and a braid density of 99%, and the second layer is a tin-plated annealed copper wire with an outer diameter of 0.1 mm. Is braided in a mesh shape with a pitch of 15 mm and a braid density of 93%, and the first layer of the auxiliary conductor layer 19 (corresponding to the first to third layers of the main conductor layer 18) is tin-plated annealed copper having an outer diameter of 0.1 mm The wire is braided in a mesh shape with a pitch of 15 mm and a braid density of 93%, and the second layer (corresponding to the first to fourth layers of the main conductor layer 18) is a tin-plated annealed copper wire with an outer diameter of 0.1 mm at a pitch of 15 mm. A braided braid with a braid density of 88%. Other configurations are the same as those of the first embodiment. The shielding resistance of the entire outer conductor layer 17 of this embodiment could be reduced to 6.47 mΩ / m.

本発明の同軸ケーブル15は、上記実施形態のものから明らかなように、外部導体層17の遮蔽抵抗が3mΩ/m〜6.5mΩ/mに設定されているので、低周波帯において遮蔽性能が改善されて、ノイズの侵入を防止し、ワイヤーハーネスとの統合化を図ることができる。また外部導体層17の遮蔽性能の評価が簡単になるので、遮蔽性能の優れた同軸ケーブルを容易に設計して開発することができる。   As is clear from the above embodiment, the coaxial cable 15 of the present invention has a shielding resistance of the outer conductor layer 17 set to 3 mΩ / m to 6.5 mΩ / m. As a result, noise can be prevented from entering and integration with the wire harness can be achieved. Moreover, since the evaluation of the shielding performance of the outer conductor layer 17 is simplified, a coaxial cable having excellent shielding performance can be easily designed and developed.

また、前記外部導体層17が複数層設けられていると、外部導体層17の遮蔽抵抗を容易に低減させ、遮蔽性能の改善を図ることができる。   Further, when the outer conductor layer 17 is provided in a plurality of layers, the shielding resistance of the outer conductor layer 17 can be easily reduced and the shielding performance can be improved.

更に、外部導体層17が主導体層18と補助導体層19から構成されていると、外部導体層17の遮蔽抵抗を調整する場合には、外側に位置する補助導体層19の遮蔽抵抗を変更して、外部導体層17の遮蔽抵抗を測定又は算出すればよい。従って、遮蔽抵抗の調整が容易になり、外部導体層17の遮蔽抵抗を所望の抵抗値に的確に、且つ、速やかに設定することができる。また、主導体層18の遮蔽抵抗が35mΩ/m以下に設定されていると、主導体層18が絶縁体4の外周に一様にむらなく被覆されて遮蔽性能がばらつかず安定し、遮蔽性能を改善し易くなる。更に、補助導体層19の遮蔽抵抗の調整幅を広く取れるので、外部導体層17全体の遮蔽抵抗を6.5mΩ/m以下に調整することが容易になる。また、補助導体層の素線径、ピッチを最適化することにより、更なる遮蔽性能の改善が出来ると共に、低コストでW/Hに組み込むのに充分な可撓性を持つケーブルを得ることが出来る。   Further, when the outer conductor layer 17 is composed of the main conductor layer 18 and the auxiliary conductor layer 19, when adjusting the shielding resistance of the outer conductor layer 17, the shielding resistance of the auxiliary conductor layer 19 located outside is changed. Then, the shielding resistance of the outer conductor layer 17 may be measured or calculated. Therefore, the shielding resistance can be easily adjusted, and the shielding resistance of the outer conductor layer 17 can be set accurately and quickly to a desired resistance value. Further, when the shielding resistance of the main conductor layer 18 is set to 35 mΩ / m or less, the main conductor layer 18 is uniformly coated on the outer periphery of the insulator 4 so that the shielding performance does not vary and is stable. It becomes easy to improve performance. Furthermore, since the adjustment range of the shielding resistance of the auxiliary conductor layer 19 can be widened, it becomes easy to adjust the shielding resistance of the entire outer conductor layer 17 to 6.5 mΩ / m or less. Further, by optimizing the wire diameter and pitch of the auxiliary conductor layer, the shielding performance can be further improved, and a cable having sufficient flexibility to be incorporated into W / H can be obtained at low cost. I can do it.

本発明の同軸ケーブル15の遮蔽性能評価方法は、外部導体層17の遮蔽性能を評価する基準として、伝達インピーダンスではなく、遮蔽抵抗(導体電気抵抗)を用いるので、その遮蔽抵抗を安価な遮蔽抵抗測定装置21を用いて簡単、且つ、正確に測定することができる。また、必ずしも同軸ケーブル15のサンプルを試作して測定する必要がなく、外部導体層17のサンプルだけ試作して測定することもできる。また、同軸ケーブル15又は外部導体層17のサンプルを試作する代わりに、数式計算により算出することもできる。更に、同軸ケーブル15又は外部導体層17のサンプルを試作する場合でも、数式計算により予測される遮蔽抵抗のサンプルを試作すればよいので、サンプルを試行錯誤して多数試作する必要がなくなる。従って、同軸ケーブル15の遮蔽性能の評価を従来の伝達インピーダンス法よりも手間をかけずに能率よく低費用で行うことができる。   The method for evaluating the shielding performance of the coaxial cable 15 according to the present invention uses a shielding resistance (conductor electrical resistance) instead of a transmission impedance as a reference for evaluating the shielding performance of the outer conductor layer 17. Measurement can be performed easily and accurately using the measuring device 21. Moreover, it is not always necessary to make a sample of the coaxial cable 15 and measure it, and only the sample of the outer conductor layer 17 can be made and measured. Further, instead of making a sample of the coaxial cable 15 or the outer conductor layer 17, it can be calculated by mathematical calculation. Furthermore, even when a sample of the coaxial cable 15 or the outer conductor layer 17 is manufactured, it is only necessary to manufacture a sample of the shielding resistance predicted by mathematical calculation, so that it is not necessary to make a large number of samples by trial and error. Therefore, the evaluation of the shielding performance of the coaxial cable 15 can be performed efficiently and at low cost with less effort than the conventional transfer impedance method.

更に、上記遮蔽性能評価方法を使用する場合、前記外部導体層17の遮蔽抵抗を測定又は算出し、得られた遮蔽抵抗が6.5mΩ/m以下であるか否かを基準にして遮蔽性能を評価するようにすると、低周波帯において同軸ケーブル15の遮蔽性能が改善されているかどうかの評価を的確に行うことができ、低周波帯において遮蔽性能が改善された同軸ケーブル15の設計、開発、試験、検査等に大きく寄与することができる。   Further, when using the above-described shielding performance evaluation method, the shielding resistance of the outer conductor layer 17 is measured or calculated, and the shielding performance is determined based on whether or not the obtained shielding resistance is 6.5 mΩ / m or less. As a result of the evaluation, it is possible to accurately evaluate whether or not the shielding performance of the coaxial cable 15 is improved in the low frequency band, and the design, development, and development of the coaxial cable 15 with improved shielding performance in the low frequency band. It can greatly contribute to testing, inspection and the like.

本発明に係る同軸ケーブルの1実施形態を示す斜視図である。It is a perspective view showing one embodiment of a coaxial cable concerning the present invention. 図1に示す同軸ケーブルの遮蔽性能を評価する遮蔽抵抗測定装置の概要図である。It is a schematic diagram of the shielding resistance measuring apparatus which evaluates the shielding performance of the coaxial cable shown in FIG. 周波数をLW帯〜FM帯まで変化させたとき、外部導体層の伝達インピーダンスの目標性能値と、外部導体層の異なる遮蔽抵抗に対する伝達インピーダンスとがそれぞれ変化する状態を示す図である。It is a figure which shows the state from which the target performance value of the transfer impedance of an outer conductor layer and the transfer impedance with respect to the different shielding resistance of an outer conductor layer each change when a frequency is changed from LW band to FM band. 150kHz近傍における外部導体層の伝達インピーダンスと遮蔽抵抗との関係を示す図である。It is a figure which shows the relationship between the transfer impedance of the outer conductor layer in the vicinity of 150 kHz, and shielding resistance. 外部導体層の主導体層と伝達インピーダンスとの関係を示す図である。It is a figure which shows the relationship between the main conductor layer of an outer conductor layer, and transmission impedance. 外部導体層の主導体層の遮蔽抵抗と補助導体層の遮蔽抵抗との関係を示す図である。It is a figure which shows the relationship between the shielding resistance of the main conductor layer of an outer conductor layer, and the shielding resistance of an auxiliary conductor layer. 補助導体層の素線径と伝達インピーダンスとの関係を示す図である。It is a figure which shows the relationship between the strand diameter of an auxiliary conductor layer, and transmission impedance. 補助導体層のピッチと伝達インピーダンス、可撓性、コストとの関係を示す図である。It is a figure which shows the relationship between the pitch of an auxiliary conductor layer, transmission impedance, flexibility, and cost. (a)は本発明の同軸ケーブルの実施形態1を示す断面図、(b)は実施形態2を示す断面図である。(A) is sectional drawing which shows Embodiment 1 of the coaxial cable of this invention, (b) is sectional drawing which shows Embodiment 2. FIG. 従来の同軸ケーブルを示す断面図である。It is sectional drawing which shows the conventional coaxial cable. 従来の他の同軸ケーブルを示す断面図である。It is sectional drawing which shows the other conventional coaxial cable. 同軸ケーブルの伝達インピーダンス法による遮蔽性能評価方法を示す概要図である。It is a schematic diagram which shows the shielding performance evaluation method by the transmission impedance method of a coaxial cable.

符号の説明Explanation of symbols

3 内部導体
4 絶縁体
7 シース
15 同軸ケーブル
17 外部導体層
18 主導体層
19 補助導体層
21 遮蔽抵抗測定装置
23 把持部材
25 電源
27 電気抵抗計
DESCRIPTION OF SYMBOLS 3 Inner conductor 4 Insulator 7 Sheath 15 Coaxial cable 17 Outer conductor layer 18 Main conductor layer 19 Auxiliary conductor layer 21 Shielding resistance measuring device 23 Gripping member 25 Power source 27 Electric resistance meter

Claims (8)

絶縁体で被覆された内部導体の外周に外部導体層が設けられた同軸ケーブルにおいて、前記外部導体層の遮蔽抵抗が3mΩ/m〜6.5mΩ/mに設定されていることを特徴とする同軸ケーブル。   A coaxial cable in which an outer conductor layer is provided on the outer periphery of an inner conductor covered with an insulator, wherein the outer conductor layer has a shielding resistance set to 3 mΩ / m to 6.5 mΩ / m. cable. 前記外部導体層が複数層設けられていることを特徴とする請求項1記載の同軸ケーブル。   The coaxial cable according to claim 1, wherein a plurality of outer conductor layers are provided. 前記外部導体層が、絶縁体の外周に設けられ、遮蔽抵抗が35mΩ/m以下に設定された1層又は複数層の主導体層と、その外周に設けられ、外部導体層全体の遮蔽抵抗を3mΩ/m〜6.5mΩ/mまで低減させる1層又は複数層の補助導体層とからなることを特徴とする請求項2記載の同軸ケーブル。   The outer conductor layer is provided on the outer periphery of the insulator, and one or a plurality of main conductor layers whose shielding resistance is set to 35 mΩ / m or less and the outer periphery thereof are provided, and the shielding resistance of the entire outer conductor layer is reduced. The coaxial cable according to claim 2, comprising one or a plurality of auxiliary conductor layers that are reduced to 3 mΩ / m to 6.5 mΩ / m. 前記補助導体層を形成する素線の径が0.5mm以下であることを特徴とする請求項3記載の同軸ケーブル。   The coaxial cable according to claim 3, wherein a diameter of the strand forming the auxiliary conductor layer is 0.5 mm or less. 前記補助導体層が素線又は撚線の撚り合わせ体からなり、前記撚り合わせ体のピッチが遮蔽層外径の6倍〜60倍であることを特徴とする請求項3記載の同軸ケーブル。   The coaxial cable according to claim 3, wherein the auxiliary conductor layer is made of a strand of strands or stranded wires, and the pitch of the strands is 6 to 60 times the outer diameter of the shielding layer. 前記撚り合わせ体のピッチが遮蔽層外径の7倍〜40倍であることを特徴とする請求項5記載の同軸ケーブル   6. The coaxial cable according to claim 5, wherein the pitch of the twisted body is 7 to 40 times the outer diameter of the shielding layer. 絶縁体で被覆された内部導体の外周に外部導体層が設けた同軸ケーブルの遮蔽性能評価方法において、前記外部導体層の遮蔽抵抗を測定又は算出することにより遮蔽性能を評価することを特徴とする同軸ケーブルの遮蔽性能評価方法。   In the method for evaluating the shielding performance of a coaxial cable in which an outer conductor layer is provided on the outer periphery of an inner conductor covered with an insulator, the shielding performance is evaluated by measuring or calculating the shielding resistance of the outer conductor layer. Coaxial cable shielding performance evaluation method. 前記外部導体層の遮蔽抵抗を測定又は算出し、得られた遮蔽抵抗が6.5mΩ/m以下であるか否かを基準にして遮蔽性能を評価することを特徴とする請求項1乃至6のいずれかに記載の同軸ケーブルの遮蔽性能評価方法。   7. The shielding resistance of the outer conductor layer is measured or calculated, and the shielding performance is evaluated based on whether or not the obtained shielding resistance is 6.5 mΩ / m or less. The shielding performance evaluation method of the coaxial cable in any one.
JP2005342674A 2005-04-04 2005-11-28 Coaxial cable and its shield performance evaluation method Pending JP2006344575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342674A JP2006344575A (en) 2005-04-04 2005-11-28 Coaxial cable and its shield performance evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005107480 2005-04-04
JP2005139391 2005-05-12
JP2005342674A JP2006344575A (en) 2005-04-04 2005-11-28 Coaxial cable and its shield performance evaluation method

Publications (1)

Publication Number Publication Date
JP2006344575A true JP2006344575A (en) 2006-12-21

Family

ID=37641366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342674A Pending JP2006344575A (en) 2005-04-04 2005-11-28 Coaxial cable and its shield performance evaluation method

Country Status (1)

Country Link
JP (1) JP2006344575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040826B2 (en) 2009-04-23 2015-05-26 Hitachi Metals, Ltd. Cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121414U (en) * 1979-02-20 1980-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121414U (en) * 1979-02-20 1980-08-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040826B2 (en) 2009-04-23 2015-05-26 Hitachi Metals, Ltd. Cable

Similar Documents

Publication Publication Date Title
JP5351642B2 (en) cable
US10340058B2 (en) Cable with braided shield
JP4933344B2 (en) Shielded twisted pair cable
CN102034567B (en) Shielded cable
US20060254805A1 (en) Low profile high speed transmission cable
WO2010126796A2 (en) Coaxial cable shielding
JP2008084800A (en) Coaxial cable, and method for evaluating its shielding performance
JP4044766B2 (en) Flat shielded cable
JP5579215B2 (en) Wire harness and wire harness shield structure
US20140027151A1 (en) Shielded cable
JP2008171778A (en) Coaxial cable
US20060011376A1 (en) Multi-axial electrically conductive cable with multi-layered core and method of manufacture and use
US20180254127A1 (en) Data cable, motor vehicle having the data cable and method of producing the data cable
JP2006344575A (en) Coaxial cable and its shield performance evaluation method
JP2004214137A (en) Coaxial cable
US7544894B2 (en) Cable structure
CN115938676A (en) coaxial cable
JP2004214138A (en) Coaxial cable
US11508497B2 (en) Communication cable and wire harness
CN113508441B (en) Shielded wire for communication
JP4865236B2 (en) coaxial cable
JP2010129180A (en) Coaxial wire
JP2006302507A (en) Coaxial cable and its shield performance evaluation method
JP2020013658A (en) cable
JP7433053B2 (en) coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130