JP2006343339A - Method and device for operation control for low-voltage load - Google Patents

Method and device for operation control for low-voltage load Download PDF

Info

Publication number
JP2006343339A
JP2006343339A JP2006175010A JP2006175010A JP2006343339A JP 2006343339 A JP2006343339 A JP 2006343339A JP 2006175010 A JP2006175010 A JP 2006175010A JP 2006175010 A JP2006175010 A JP 2006175010A JP 2006343339 A JP2006343339 A JP 2006343339A
Authority
JP
Japan
Prior art keywords
value
resistor
load
resistor bank
power capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006175010A
Other languages
Japanese (ja)
Inventor
Kesafumi Matsumoto
袈裟文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2006175010A priority Critical patent/JP2006343339A/en
Publication of JP2006343339A publication Critical patent/JP2006343339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for operation control for low-voltage load capable of precisely and continuously following to the load control value, without using industrial water and capable of maintaining the value at the load characteristic testing for an electric generator and the like. <P>SOLUTION: The operation control device adopts characteristic constitution of an electric power source G; a ground relay GR; a volt meter V; a power meter P; an ampere meter A; a main circuit breaker CB; a resistor bank groups αL, αH to be connected to the loading device equipped with the CBH, wherein the bank α is divided into a plurality number (2-N); and switches CL and a controller CV are provided to the each resistor bank groups α1 to αN which are assigned with the power capacity, obtained by dividing the maximum power capacity with 1/2 to 1/2<SP>(n-1)</SP>based on the binary numbers, wherein; a control CV is composed of a control value memorized operation circuit MC for maintaining the load control value and a comparison calculation transferring circuit OC for transferring ON/OFF signals to the switches CL provided in between with each of resistor banks α1 to αN. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高圧発電装置の負荷特性試験に用いられる乾式金属抵抗体を利用した低圧負荷演算制御方法及びその実施に直接使用する装置に関するものである。   The present invention relates to a low-pressure load calculation control method using a dry-type metal resistor used for a load characteristic test of a high-voltage power generator and a device directly used for its implementation.

従来より、発電装置の負荷特性試験の実施方法として、水槽方式や金属抵抗器を利用した乾式負荷システムが利用されている。   Conventionally, a dry load system using a water tank system or a metal resistor has been used as a method for performing a load characteristic test of a power generator.

約20年前の負荷特性試験には、縦2メートル、横2メートル、高さ1.5メートルの水槽に電極水を張った状態で、3本の電極を上から吊るし電極の水没長さを調節しながら連続的に電力の加減を行う水槽方式が主な方法として利用されていた。   About 20 years ago, in the load characteristic test, three electrodes were hung from the top in a state where electrode water was stretched in a water tank of 2 meters in length, 2 meters in width, and 1.5 meters in height. A water tank system that continuously adjusts electric power while adjusting was used as the main method.

この水槽方式では、電力の消費に伴い電極水が温度上昇し、昇圧状態において電極水の温度が約75度に達するとアーク放電が始まる。そこで、アーク放電を抑制するために頻繁に冷水の給水を行い電極水温を下げる方法が用いられたが、給水と同時に、75度まで上昇した多量の排水が放流されることとなり、その量は1時間で16立方メートルにまで及んでいた。   In this water tank system, the temperature of the electrode water rises with the consumption of electric power, and arc discharge starts when the temperature of the electrode water reaches about 75 degrees in the boosted state. Therefore, in order to suppress arc discharge, a method of frequently supplying cold water and lowering the electrode water temperature was used, but at the same time as supplying water, a large amount of drainage rising to 75 degrees was discharged, and the amount was 1 It was up to 16 cubic meters in time.

そこで、上記水槽方法により発生する温排水の処理問題を解決するために、本発明者による先行技術文献1に示す、電極水を利用しない負荷特性試験方法として、円筒形状のベース電極の底部に主電極を貫植するとともに、両電力間に絶縁鞘筒を挿入して、両電極間の電極水を抵抗体として電力を消費させ、負荷を連続的に加減する負荷装置システムである純粋抵抗器を使用する方法を利用した。   Therefore, in order to solve the problem of treatment of hot waste water generated by the water tank method, a load characteristic test method that does not use electrode water as shown in Prior Art Document 1 by the present inventor is mainly applied to the bottom of a cylindrical base electrode. A pure resistor which is a load device system that inserts an electrode and inserts an insulating sheath between both electric powers, consumes power using the electrode water between both electrodes as a resistor, and continuously adjusts the load. Utilized the method used.

この方法を用いると、高温度に加熱された電極水を送風機と水噴霧スプレーによって冷却し循環再利用することにより水の消費量が上記の水槽方式の10分の1まで低減でき、工業用水の排出の必要がなくなるという優れた効果をもたらした。   When this method is used, the consumption of water can be reduced to one-tenth of the above water tank system by cooling the electrode water heated to a high temperature with a blower and a water spray and reusing it. It has the excellent effect of eliminating the need for emissions.

特許1462423号Japanese Patent No. 1462423

しかしながら、純粋抵抗器を利用した負荷装置システムは、高温の電極水を排出せずに連続的に負荷の加減をできることが利点として挙げられるものの、その利用には水槽方式と同様、システム稼動のために大量の電極水を必要とすとともに、システム利用環境が例えば北国等であった場合、冬期の零下環境下においては電極水の凍結も危惧されるため、その保守にも手間がかかることとなる。   However, the load device system using a pure resistor has the advantage of being able to adjust the load continuously without discharging hot electrode water, but its use is similar to the water tank system for system operation. If a large amount of electrode water is required and the system utilization environment is, for example, the northern country, the electrode water may be frozen in the sub-zero environment in winter, so that the maintenance is troublesome.

上記のように、温水処理が不可能である、または水の確保が困難な施設においては、電極水を使用せずに負荷の加減を行う装置として乾式の金属抵抗体を用いた負荷装置が利用も可能であったが、金属抵抗器は絶縁性能が悪く、金属抵抗器そのものが燃焼するなど危険因子を有する部分が多く、完全な解決策とは言えなかった。   As described above, in facilities where hot water treatment is not possible or water is difficult to secure, a load device using a dry metal resistor is used as a device for adjusting the load without using electrode water. However, the metal resistor has poor insulation performance, and there are many parts with risk factors such as burning of the metal resistor itself, so it could not be said to be a complete solution.

そこで、上記問題を解決するために、特許文献2に示すように抵抗体素子を使用電圧に応じた絶縁鞘筒で支持し、不意のアーク放電と抵抗体素子の連鎖断線を抑制し、金属抵抗器の発火防止を可能とする乾式高圧負荷装置を発明した。   Therefore, in order to solve the above-mentioned problem, as shown in Patent Document 2, the resistor element is supported by an insulating sheath tube corresponding to the operating voltage, the unexpected arc discharge and the chain disconnection of the resistor element are suppressed, and the metal resistance Invented a dry-type high-pressure load device capable of preventing the ignition of the vessel.

特開2003−193358号JP 2003-193358 A

特許文献2の抵抗体素子を用いた負荷装置において電圧の微調整を行う場合、例えば2000kwの負荷装置を利用すると、図5に示すように高圧バンクに500kwを3台、250kwを1台設置し粗調整を行うとともに、変圧器を介して低圧バンクには125kwを1台、62.5kwを2台設置し、それぞれの組合せで値を段階的に変動させながら負荷の微調整を行うことが可能となる。   When fine adjustment of the voltage is performed in the load device using the resistor element of Patent Document 2, for example, when a load device of 2000 kW is used, three 500 kW units and one 250 kW unit are installed in the high voltage bank as shown in FIG. In addition to coarse adjustment, one 125 kw unit and two 62.5 kw units are installed in the low-voltage bank via a transformer, and the load can be finely adjusted while changing the value stepwise for each combination. It becomes.

この低圧バンクを用いた目標値とする負荷制御値の調整では設定可能な最小値は62.5kwとなり、負荷制御値が目標値に対しどれだけ精度が高いかを示す分解能の値は、以下の数式1より3.125%として導き出される。

Figure 2006343339
In the adjustment of the load control value as the target value using this low-pressure bank, the minimum value that can be set is 62.5 kW, and the resolution value indicating how accurate the load control value is relative to the target value is From Formula 1, it is derived as 3.125%.
Figure 2006343339

このとき、目標値の最小公倍数は62.5kwになるため、62.5kwの倍数以外を目標値とする場合には、最小容量バンクにスライドトランスを用いることが通例となる。   At this time, since the least common multiple of the target value is 62.5 kW, when a target value other than a multiple of 62.5 kW is used as a target value, it is usual to use a slide transformer for the minimum capacity bank.

しかしながら、スライドトランスを用いて滑らかな負荷制御値の調整を行う場合、バンクのON/OFF状態を設定した後に、スライド調整をするという2段階の切換操作が必要になるため、スムーズな負荷制御値の調整が困難であるという難点が生じる。   However, when a smooth load control value is adjusted using a slide transformer, a smooth load control value is required because a two-stage switching operation of adjusting the slide after setting the ON / OFF state of the bank is required. This makes it difficult to adjust.

また、500kwのバンクに常温でスイッチを入れると金属抵抗体の温度係数により時間の経過とともに収束するという特徴があり、温度係数を仮に5%とした場合に、投入初期値が525kwを示していたとしても、時間の経過とともに、500kwに収束するため、目標値に応じた組合せを数式上で算出し実行しても数分後には値が変化するため、後に追従調整を繰り返し行ったとしても実質的には目標値を持続することが不可能となる。   In addition, when a 500 kw bank is switched on at room temperature, it has a feature that it converges with the passage of time due to the temperature coefficient of the metal resistor, and when the temperature coefficient is assumed to be 5%, the input initial value showed 525 kw. However, since it converges to 500 kw with the passage of time, even if a combination corresponding to the target value is calculated and executed on the mathematical formula, the value will change after a few minutes. It is impossible to maintain the target value.

さらに、試験運転の現場環境での調整を行うにはスライドトランス付近で調整を行う作業員と、負荷装置の操作を行う作業員の配置が必要になるが、ディーゼルエンジン駆動下では120dBもの騒音が発生しているため、作業員同士の目標値の伝達が大変聞き取りづらいものとなり誤操作を引き起こす原因ともなる。   Furthermore, in order to make adjustments in the field environment of the test operation, it is necessary to arrange a worker who adjusts near the slide transformer and a worker who operates the load device, but noise of 120 dB is driven when the diesel engine is driven. Since this occurs, the transmission of the target value between the workers is very difficult to hear and may cause an erroneous operation.

また、上記の難点の改善策として以下の特許文献3に示すように、高低圧共用と高速切換可能なように、三相の抵抗体回路に応じた開閉器を用いて任意の値に近づける方法を提起したが、高速化を図ることが可能となっても、開閉器が約3倍必要となるため構造が複雑になり大型で高コストが否めない上に、精度も4.5%となり前者とほぼ変わらない。   Further, as a measure for improving the above-mentioned difficulty, as shown in Patent Document 3 below, a method of bringing the value close to an arbitrary value by using a switch corresponding to a three-phase resistor circuit so that high voltage and low voltage can be shared and high speed switching is possible. However, even if it is possible to increase the speed, the switch is required about 3 times, so the structure becomes complicated, large size and high cost cannot be denied, and the accuracy is 4.5%. And almost the same.

特願2003−193358号Japanese Patent Application No. 2003-193358

さらに、開閉器の多量使用は故障の増加とともに、保守点検整備、設備調整、修理の複雑化の原因ともなり、特許文献3を持ってしても上述した問題点の解決が難しい。   Furthermore, the use of a large number of switches causes an increase in failures and complicates maintenance, inspection, facility adjustment, and repair. Even with Patent Document 3, it is difficult to solve the above-described problems.

ここにおいて、本発明の解決すべき主要な目的は、次の通りである。   Here, the main objects to be solved by the present invention are as follows.

即ち、本発明の第1の目的は、工業用水を使用せずに負荷制御値に連続的に精度よく追従し、その値を持続できる低圧負荷演算制御方法及び装置を提供せんとするものである。   That is, the first object of the present invention is to provide a low-pressure load calculation control method and apparatus capable of continuously following a load control value accurately without using industrial water and maintaining the value. .

本発明の第2の目的は、少量の開閉器のみで連続的に負荷を精度よく加減でき、また開閉器数の減少により製造コストを下げ、整備性を向上させる低圧負荷演算制御方法及び装置を提供せんとするものである。   The second object of the present invention is to provide a low-pressure load calculation control method and apparatus capable of accurately adjusting a load continuously with only a small number of switches, reducing the manufacturing cost by reducing the number of switches, and improving maintainability. It is to be provided.

本発明第3の目的は、負荷制御値算出を自動化で行うことにより、人手によるバンクの組合せ計算から解放できる低圧負荷演算制御方法及び装置を提供せんとするものである。   The third object of the present invention is to provide a low-pressure load calculation control method and apparatus which can be freed from manual calculation of bank combinations by automatically calculating load control values.

本発明の他の目的は、明細書、図面、特に、特許請求の範囲の各請求項の記載から、自ずとくみ明らかになろう。   Other objects of the present invention will become apparent from the specification, drawings, and particularly from the claims.

本発明装置は、上記課題の解決に当たり、電源装置とを結ぶ電力ケーブルの途中に、電力計、地絡継電器、電圧計、電力計、電流計、主遮断機を具備させた負荷装置に接続する抵抗体バンクを複数(2〜N)に分割し、抵抗体バンク群の最大電力容量を2進数に基づき2分の1から2n−1分の1に等級分割した電力容量を割り当て保持させた各抵抗体バンクに開閉器と制御器を介設し、当該制御器内には、負荷制御値を保持する制御値記憶演算回路と各等級の抵抗体バンクの電力容量値と上位等級で既に差引された負荷制御値を比較し、各抵抗体バンクに介設した開閉器に対してON/OFF信号を転送する比較演算転送回路とを具備させる、低圧負荷演算制御手段を講じる特徴を有する。   In solving the above problems, the present invention device is connected to a load device equipped with a power meter, ground fault relay, voltmeter, power meter, ammeter, main breaker in the middle of the power cable connecting the power supply device. Each of the resistor banks is divided into a plurality (2-N), and the power capacities obtained by dividing the maximum power capacities of the resistor bank groups from 1/2 to 2n-1 based on binary numbers are allocated and held. A resistor bank is provided with a switch and a controller, and the control value storage arithmetic circuit that holds the load control value and the power capacity value of each grade resistor bank and the upper grade are already subtracted in the controller. And a comparison operation transfer circuit for comparing the load control values and transferring an ON / OFF signal to a switch provided in each resistor bank.

また、本発明方法は、負荷加減装置における抵抗体バンクを複数(2〜N)に等級分割しその抵抗体バンク群の全最大電力容量を2進数に基づいて2分の1から2n−1分の1まで等級分割したものを、それぞれの抵抗体バンクに割り当て、制御値記憶演算回路よって設定された目標とする負荷制御値と各等級の抵抗体バンクに割り振られた電力容量値を比較演算転送回路によって比較及び等級毎に減算しながら、負荷制御値の近似値を示す各抵抗体バンクON/OFFの組合せを導き出す低圧負荷演算制御方法を講じる特徴を有する。   In the method of the present invention, the resistor bank in the load adjusting device is divided into a plurality of (2-N) grades, and the total maximum power capacity of the resistor bank group is divided from 1/2 to 2n-1 minutes based on a binary number. 1 divided by 1 is assigned to each resistor bank, and the target load control value set by the control value storage arithmetic circuit and the power capacity value assigned to each resistor bank are compared and transferred. It has a feature of taking a low-voltage load calculation control method for deriving a combination of each resistor bank ON / OFF indicating an approximate value of the load control value while subtracting for each comparison and grade by a circuit.

さらに具体的詳細に述べると、当該課題の解決では、本発明が次に列挙する上位概念から下位概念にかかる新規な特徴的構成手段又は手法を採用することにより、前記目的を達成するよう為される。   More specifically, in solving the problem, the present invention achieves the above-mentioned object by adopting a novel characteristic configuration means or method relating to the subordinate concept from the superordinate concept listed below. The

即ち、本発明方法の第1の特徴は、発電機の負荷特性試験に関して、抵抗体バンク群を複数に分割するに際し、全抵抗体の電力容量を比較演算より上位から下位等級に順次漸減算出された各抵抗体バンクに分割、割り当てし、設定目標とする値の近似値をとるため上位から下位等級に亙り順次前記各抵抗体バンクのON/OFFの組合せを自動的に調整して加減算する低圧負荷演算制御方法であって、まず、電源装置に電力ケーブルを介して接続された前記抵抗体バンク群を複数(2〜N[Nは自然数])に分割した後、当該抵抗体バンク群の全最大電力容量を2進法に基づき、2分の1から2n−1分の1に相当する電力容量の上位から下位等級に順次漸減算出された値を分割された第1から第Nの各抵抗体バンクに割り当て、次に、前記各抵抗体バンクに接続された制御手段で、目標値とする前記負荷制御値を設定後、当該制御手段内の比較演算転送回路内の第1の演算手段にて、対応する第1の前記抵抗体バンクが保持する電力容量と、前記負荷制御値を比較し、当該負荷制御値が当該電力容量以上であれば、当該電力容量を当該負荷制御値から減算し残数値として記憶保持するとともに第2の演算手段に残数値をアナログ転送し、前記第1の抵抗体バンクにON状態を示すディジタル信号を転送する一方、当該負荷制御値が当該電力容量以下であれば、当該負荷制御値を第2の演算手段にアナログ転送し、以下、前記第2の演算手段から第Nの演算手段まで、次上位の演算手段より受け取った前記残数値と、次下位等級の抵抗体バンクの電力容量とを順次比較して行き、当該残数値が各対応する当該抵抗体バンクの電力容量以上であれば、当該電力容量を当該残数値からその都度減算し、次下位等級残数値として記憶保持し次下位等級の演算手段に当該下位残数値をアナログ転送するとともに、当該各第2から第Nの演算に各対応した前記抵抗体バンクに対し、ON状態を示すディジタル信号を転送する一方、前記次上位等級残数値が前記電力容量以下であれば、当該次上位等級残数値を次下位等級残数値として次下位等級の演算手段にアナログ転送して逐次実施してなる低圧負荷演算制御方法の構成採用にある。   That is, the first feature of the method according to the present invention is that when the resistor bank group is divided into a plurality of the load characteristic tests of the generator, the power capacity of all the resistors is gradually reduced from the higher rank to the lower rank than the comparison calculation. In order to obtain an approximate value of the target value to be divided and assigned to each resistor bank, a low voltage that automatically adjusts the ON / OFF combination of each resistor bank in order from upper to lower grades In the load calculation control method, first, the resistor bank group connected to the power supply device via the power cable is divided into a plurality (2 to N [N is a natural number]), and then all the resistor bank groups are divided. Each of the first to Nth resistances obtained by dividing the maximum power capacity based on the binary system and the values calculated from the upper to lower grades of the power capacity corresponding to 1/2 to 2n−1. Assigned to the body bank, then said After setting the load control value as a target value by the control means connected to the resistor bank, the corresponding first said resistor is set by the first calculation means in the comparison calculation transfer circuit in the control means. The power capacity held by the bank is compared with the load control value. If the load control value is equal to or greater than the power capacity, the power capacity is subtracted from the load control value and stored as a remaining value, and the second value is stored. The remaining value is analog-transferred to the arithmetic means, and the digital signal indicating the ON state is transferred to the first resistor bank. On the other hand, if the load control value is less than the power capacity, the load control value is set to the second The analog value is transferred to the calculation means, and the remaining value received from the next higher rank calculation means and the power capacity of the next lower rank resistor bank are sequentially compared from the second calculation means to the Nth calculation means. And go If the remaining value is greater than or equal to the power capacity of the corresponding resistor bank, the power capacity is subtracted from the remaining value each time, stored as the next lower class remaining value, and stored in the next lower class computing means. The numerical value is transferred in analog, and the digital signal indicating the ON state is transferred to the resistor bank corresponding to each of the second to Nth operations, while the next higher-grade remaining value is less than or equal to the power capacity. If there is, a low-pressure load calculation control method is adopted in which the next higher-order class remaining value is analog-transferred to the next lower-class calculation means as the next lower-class remaining value and sequentially executed.

本発明方法の第2の特徴は、本発明方法の第1の特徴における前記負荷制御値が、前記制御手段に接続された押しボタンスイッチのUPボタンを押すと増加方向への変更値が前記制御手段の制御値記憶演算回路に転送され、当該制御値記憶演算回路に保持された値を更新増加させる一方、当該押しボタンスイッチのDOWNボタンを押すと減少方向への変更値が前記制御値記憶演算回路に転送され、当該制御値記憶演算回路に保持された前記値を更新減少させることにより目標値設定されてなる低圧負荷演算制御方法の構成採用にある。   According to a second feature of the method of the present invention, the load control value in the first feature of the method of the present invention is such that when the UP button of a pushbutton switch connected to the control means is pressed, the change value in the increasing direction is the control value. The value transferred to the control value storage arithmetic circuit of the means is updated and increased while the value held in the control value storage arithmetic circuit is updated. On the other hand, when the DOWN button of the pushbutton switch is pressed, the change value in the decreasing direction is The configuration is a low-pressure load calculation control method in which a target value is set by updating and decreasing the value transferred to the circuit and held in the control value storage calculation circuit.

本発明方法の第3の特徴は、本発明方法の第1、又は第2の特徴における前記分割した等級数Nが、7等級であって、前記抵抗体バンク群の全最大電力容量を2進法に基づき2分の1から128分の1まで7等級に分割してなる低圧負荷演算制御方法の構成採用にある。   According to a third feature of the method of the present invention, the divided class number N in the first or second feature of the method of the present invention is seven, and the total maximum power capacity of the resistor bank group is expressed in binary. The low pressure load calculation control method is divided into 7 grades from 1/2 to 128 based on the law.

本発明方法の第4の特徴は、本発明方法の第1、第2又は第3の特徴における前記抵抗体バンク群の前記全最大電力容量が、前記分割した等級数Nのうち、必要な同等級の前記抵抗体バンクを複数並設して増加変更可能としてなる低圧負荷演算制御方法の構成採用にある。   A fourth feature of the method of the present invention is that the total maximum power capacity of the resistor bank group in the first, second or third feature of the method of the present invention is the same as the required number of the divided grades N. A configuration of a low-pressure load calculation control method is provided in which a plurality of graded resistor banks can be arranged side by side to be increased.

本発明装置の第1の特徴は、発電機の負荷特性試験に関して、抵抗体バンク群を複数に分割するに際し、全抵抗体の電力容量を比較演算で上位から下位等級に順次漸減算出された各抵抗体バンクに分割、割り当てし、設定目標とする負荷制御値の近似値をとるため上位から下位等級に亙り順次前記各抵抗体バンクのON/OFFの組合せを自動的に選択して加減算出する低圧負荷演算制御装置であって、前記電源装置に接続した電力ケーブル端に分岐接続して抵抗体バンクを2以上(2〜N[Nは自然数])に分割するため、当該抵抗体バンク群の電力容量を上位から下位等級に順次漸減算出して分割割り当てした複数の抵抗体バンクと、当該抵抗体バンク群の各抵抗体バンクそれぞれに介接し、当該各抵抗体バンクのON/OFFの切換を行う開閉器と、設定された前記負荷制御値を記憶してアナログ転送する制御値記憶演算回路と、当該制御値記憶演算回路より転送されてきた当該負荷制御値と前記各第1から第Nの抵抗体バンクに対応した当該各抵抗体バンクと前記電力容量との比較、減算を行う第1から第Nに亙る逐次演算を実行するとともに、当該演算にて算出されたディジタル信号を各対応する前記開閉器に転送して開閉実行する比較演算転送回路とを有する制御器と、前記制御値記憶演算回路内に設定保持された負荷制御値に対して増加方向へ当該負荷制御値を変更させるアナログ値を発信するUPボタンと、減少方向へ当該負荷制御値を変更させるアナログ値を発信するDOWNボタンを有する押しボタンスイッチと、を具備してなる低圧負荷演算制御装置の構成採用にある。   The first feature of the device according to the present invention is that, in the load characteristic test of the generator, when dividing the resistor bank group into a plurality, each of the power capacities of all the resistors is gradually reduced from the upper rank to the lower rank by the comparison calculation. Dividing into resistor banks, assigning them, and selecting the ON / OFF combinations of each resistor bank in order from the upper to the lower grades in order to obtain an approximate value of the load control value to be set, and calculating the addition / subtraction A low-voltage load calculation and control device for branching and connecting a resistor bank to two or more (2 to N [N is a natural number]) by branch connection to an end of a power cable connected to the power supply device. The power capacity is gradually reduced from the upper rank to the lower grade, and is divided and assigned to each resistor bank and each resistor bank of the resistor bank group, and each resistor bank is switched ON / OFF. A switch, a control value storage arithmetic circuit for storing and transferring the set load control value in analog, the load control value transferred from the control value storage arithmetic circuit, and the first to Nth Each of the resistor banks corresponding to the resistor bank and the power capacity are compared and subtracted from the first to the Nth sequential calculation, and the digital signal calculated by the calculation is associated with the corresponding one of the digital signals. A controller having a comparison operation transfer circuit that transfers to the switch and executes opening and closing, and an analog value that changes the load control value in an increasing direction with respect to the load control value set and held in the control value storage operation circuit And a push button switch having a DOWN button for transmitting an analog value for changing the load control value in a decreasing direction. It is in use.

本発明装置の第2の特徴は、本発明装置の第1の特徴における前記抵抗体バンク群の前記各第1から第Nの各抵抗体バンクが、全最大電力容量を2進法に基づく2分の1から2n−1分の1[nは自然数]に相当する前記電力容量を保持してなる低圧負荷演算制御装置の構成採用にある。   The second feature of the device of the present invention is that each of the first to Nth resistor banks of the resistor bank group in the first feature of the device of the present invention has a total maximum power capacity of 2 based on a binary system. The present invention employs a configuration of a low-pressure load calculation control device that holds the power capacity corresponding to 1 to 2n-1 / 1 [n is a natural number].

本発明装置の第3の特徴は、本発明装置の第1の特徴における前記制御器が、前記押しボタンスイッチにより更新可能に加減調整された前記負荷制御値の値を検出可能なデジタル表示する制御値計測器を有してなる低圧負荷演算制御装置の構成採用にある。   A third feature of the device according to the present invention is that the controller according to the first feature of the device according to the present invention performs digital display in which the controller can detect the value of the load control value that has been adjusted up and down by the push button switch. The configuration of the low-pressure load calculation control device having a value measuring instrument is employed.

本発明装置の第4の特徴は、本発明装置の第2、又は第3の特徴における前記分割した等級数Nが、7等級であって、前記全最大電力容量の1/2、1/4、1/8、1/16、1/32、1/64、1/128の電力容量を各等級は分割保持してなる低圧負荷演算制御装置の構成採用にある。   A fourth feature of the device of the present invention is that the divided class number N in the second or third feature of the device of the present invention is seven, and is 1/2, 1/4 of the total maximum power capacity. , 1/8, 1/16, 1/32, 1/64, 1/128, the power capacity of each grade is divided and held to adopt a configuration of a low-pressure load calculation control device.

本発明装置の第5の特徴は、本発明装置の第1、第2、又は第3の特徴における前記抵抗体バンク群が、前記分割した等級Nの内、必要な同等級の抵抗体バンクを複数並設してなる低圧負荷演算制御装置の構成採用にある。   According to a fifth feature of the device of the present invention, the resistor bank group in the first, second, or third feature of the device of the present invention includes a resistor bank of a necessary equivalent class among the divided classes N. It is in the configuration adoption of the low-pressure load calculation control device formed in parallel.

本発明装置の第6の特徴は、本発明装置の第1、第2、第3、第4又は第5の特徴における前記電力ケーブルが、途中に介接した主遮断機を挟んで負荷側に過電流継電器及び電流計を、かつ電源側に地絡継電器及び電圧計をさらに当該電流計と当該電圧計を跨いで電力計をそれぞれ接続してなる低圧負荷演算制御装置の構成採用にある。   A sixth feature of the device according to the present invention is that the power cable according to the first, second, third, fourth, or fifth feature of the device according to the present invention is placed on the load side across a main circuit breaker that is intermediately connected. The present invention employs a configuration of a low-voltage load calculation control device in which an overcurrent relay and an ammeter are connected, and a ground fault relay and a voltmeter are connected to the power supply side, and an wattmeter is connected across the ammeter and the voltmeter.

本発明によれば、抵抗体バンクと比較転送演算回路を有する制御器の組合せにより、少数の開閉器で連続かつ高精度な負荷の加減が可能となる。   According to the present invention, a combination of a controller having a resistor bank and a comparison transfer operation circuit enables continuous and highly accurate load adjustment with a small number of switches.

また、バンクの組合せの選択自動化により、負荷制御値設定の高精度化と時間短縮化が可能となるため、操作時間の短縮を図ることが可能となる。   In addition, the automatic selection of the combination of the banks enables the load control value setting to be highly accurate and shortened in time, so that the operation time can be shortened.

さらに、自動化により、デジタル電力計を見ながらの押釦スイッチ操作以外作業員が選択組合せ操作を行う必要がなくなるため、人為的ミス等の誤操作も解消されるという優れた効果を奏する。   Further, the automation eliminates the need for the operator to perform the selection / combination operation other than the push button switch operation while looking at the digital wattmeter, so that it is possible to eliminate an erroneous operation such as a human error.

以下、本発明の最良形態である低圧負荷演算制御装置例及びこれに対応する低圧負荷演算制御方法につき順に説明する。   Hereinafter, an example of a low-pressure load calculation control device that is the best mode of the present invention and a low-pressure load calculation control method corresponding thereto will be described in order.

(装置例)
はじめに、本願発明における低圧負荷演算制御装置の原理を図1を用いて説明する。
(Example of equipment)
First, the principle of the low-pressure load calculation control device according to the present invention will be described with reference to FIG.

図1は、電源装置Gに接続する抵抗体バンクαの容量構成の内容を示す原理図であり、低圧の場合も高圧の場合も考え方は同じなので、従来例との比較上前記高圧の場合で説明すると、同図は、最大能力2000kwの抵抗体バンクαが存在したとき、抵抗体バンクαを7つに分割し、それぞれバンクNo1の抵抗体バンクα1からバンクNo7の抵抗体バンクα7まで番号の割り振りを行った状態を表す。   FIG. 1 is a principle diagram showing the contents of the capacity configuration of the resistor bank α connected to the power supply device G. The concept is the same for both low voltage and high voltage. To explain, in the figure, when there is a resistor bank α having a maximum capacity of 2000 kw, the resistor bank α is divided into seven, and the numbers from the resistor bank α1 of the bank No1 to the resistor bank α7 of the bank No7 are respectively numbered. Represents the state of allocation.

なお、本装置例においては、抵抗体バンクαの数を7つとして説明するが、抵抗体バンク数Nは7つに限らず、状況に応じて抵抗体バンク数Nの増加や減少が可能である。   In this example device, the number of resistor banks α is described as seven. However, the number of resistor banks N is not limited to seven, and the number of resistor banks N can be increased or decreased depending on the situation. is there.

各抵抗体バンクαは、以下表1に示すように、例えば、最大能力である2000kwを抵抗体バンクα1から抵抗体バンクα7まで2分の1ずつの等級分割を7段階行う。具体的数値を挙げれば、2000kwの2分の1である1000kwを抵抗体バンクα1、抵抗体バンクα1の2分の1である500kwを抵抗体バンクα2とし、以下順次α3〜α5のそれぞれ2分の1の容量値(kw)をとり、最終的に抵抗体バンクα6の2分の1である15.625kwが抵抗体バンクα7の値を最小値として設定する。   As shown in Table 1 below, each resistor bank α performs, for example, a grading division of 1/2 in half from the resistor bank α1 to the resistor bank α7 with a maximum capacity of 2000 kW. Specifically, 1000 kw, which is a half of 2000 kw, is resistor bank α1, and 500 kw, which is a half of resistor bank α1, is resistor bank α2. The capacitance value (kw) of 1 is finally obtained, and 15.625 kw, which is a half of the resistor bank α6, finally sets the value of the resistor bank α7 as the minimum value.

また、分数値は、最大能力2000kwを基準値1とした場合の各抵抗体バンクの値として1/2から1/128(1/2n−1)をそれぞれ抵抗体バンクα1からα7にあてはめ表示するとともに、整数値は最小バンクNoである抵抗体バンクα7を基準値1として最大バンクNoである抵抗体バンクα1が64になるように表示し、負荷制御値の算出に用いる。   The fractional value is displayed by fitting 1/2 to 1/128 (1 / 2n-1) to the resistor banks α1 to α7 as the value of each resistor bank when the maximum capacity of 2000 kw is set as the reference value 1. At the same time, the integer value is displayed so that the resistor bank α1 as the maximum bank No becomes 64 with the resistor bank α7 as the minimum bank No as the reference value 1, and is used for calculating the load control value.

Figure 2006343339
この場合、ONは1、OFFは0を指し示し、抵抗体バンクα1〜α7の7組の組合せは、0を含めると128パターンの数値を導き出すことができ、各抵抗体バンクのON/OFFを組合せることにより、電力制御値の調整が可能となる。
Figure 2006343339
In this case, ON indicates 1 and OFF indicates 0, and 7 combinations of resistor banks α1 to α7 can be derived as 128 patterns by including 0, and ON / OFF of each resistor bank is combined. As a result, the power control value can be adjusted.

ここで、本装置による負荷制御値設定の精度は、以下の数式2に示すように、最大能力値2000kwを127で除算することにより分解能の値0.8%が算出される。

Figure 2006343339
Here, the accuracy of the load control value setting by the present apparatus is calculated by dividing the maximum capacity value of 2000 kW by 127 as shown in the following formula 2, to obtain a resolution value of 0.8%.
Figure 2006343339

また、抵抗体バンク数Nを8とする、第8の抵抗体バンクα8を追加してもよく、等級分割数を増やすことにより、分数値では256分の1、つまり最小制御値が7.81kw、分解能が0.4%と導き出されるため、さらなるに高精度に設定することが可能になる。   Further, an eighth resistor bank α8 may be added in which the resistor bank number N is 8, and by increasing the number of grade divisions, the fractional value is 1/256, that is, the minimum control value is 7.81 kW. Since the resolution is derived to be 0.4%, it becomes possible to set with higher accuracy.

さらに、抵抗体バンクαの容量にも制限はなく、例えば、抵抗体バンクの大容量側に、1/1に値する2000kwのバンクを追加設置するなどして最大容量を4000kwまで引き上げるように、必要に応じ同等級の抵抗体バンクαを複数併設しても良い。
低圧の場合には、以上の設定数値を低圧領域に下げて、よりきめ細かい微小制御を行うことができる。
Furthermore, the capacity of the resistor bank α is not limited. For example, it is necessary to increase the maximum capacity to 4000 kW by installing an additional 2000 kW bank worth 1/1 on the large capacity side of the resistor bank. Depending on the situation, a plurality of equivalent resistor banks α may be provided.
In the case of a low pressure, the above set numerical value can be lowered to the low pressure region, and finer fine control can be performed.

そこで次に、図2を使用して、図1の抵抗体バンク群を負荷装置として電源装置に接続した低圧演算制御装置の構成例を説明する。   Therefore, referring to FIG. 2, a configuration example of a low-voltage arithmetic control device in which the resistor bank group of FIG. 1 is connected to a power supply device as a load device will be described.

図2は、低圧負荷装置β1の単線結線図である。低圧負荷装置β1は、電源装置Gに対し、結ばれた電力ケーブルPCの途中に電圧計V、電流計A、電力計P、過電流継電器OCR、地絡継電器GR、主遮断機CBを図示の如く接続し、終端に分岐接続された低圧バンク群αLを介することにより負荷の加減を行う。   FIG. 2 is a single-line diagram of the low-pressure load device β1. The low-voltage load device β1 includes a voltmeter V, an ammeter A, a wattmeter P, an overcurrent relay OCR, a ground fault relay GR, and a main circuit breaker CB in the middle of the power cable PC connected to the power supply device G. The load is adjusted by passing through the low-voltage bank group αL branched and connected at the end.

ここで低圧バンク群αLは上記図1及び表2にて示したように、例えば、No1〜7として設定した抵抗体バンクα1からα7に対し最大電力容量である2000kwを7段階に2分の1分割した値を割り当て、それぞれの抵抗体バンクα1〜α7に低圧開閉器CLを介して電源装置Gに電力ケーブルPCで接続する。   Here, as shown in FIG. 1 and Table 2 described above, the low-voltage bank group αL is, for example, a maximum power capacity of 2000 kw for the resistor banks α1 to α7 set as Nos. The divided values are assigned, and the resistor banks α1 to α7 are connected to the power supply device G via the low voltage switch CL by the power cable PC.

さらに、図2の低圧負荷演算制御装置β1に対し制御器CVを取り付けた例について図3に示す制御器CV、押しボタンスイッチSWの構成図と、図4の低圧負荷演算制御装置β2の構成に係る単線結線図を用いてその構成内容を説明する。   Further, with respect to the example in which the controller CV is attached to the low-pressure load calculation control device β1 in FIG. 2, the configuration diagram of the controller CV and push button switch SW shown in FIG. 3 and the configuration of the low-voltage load calculation control device β2 in FIG. The configuration will be described with reference to such a single-line diagram.

図3は、抵抗体バンクα1〜α7にそれぞれ介設された低圧開閉器CL又は高圧開閉器CHに対し、ON/OFFのディジタル信号を転送する制御器CV及び制御器CVと接続して負荷制御値の値を設定する押しボタンスイッチSWの構成図である。   FIG. 3 shows the load control by connecting the controller CV and controller CV for transferring ON / OFF digital signals to the low-voltage switch CL or the high-voltage switch CH respectively interposed in the resistor banks α1 to α7. It is a block diagram of pushbutton switch SW which sets the value of a value.

同図に示すように、制御器CVは、負荷の目標値とする負荷制御値を制御器CV内に記憶する制御値記憶演算回路MCと、負荷制御値を視覚的に検分可能なデジタル数値でメモリ表示する制御値計測器MVと、制御値記憶演算回路MCに記憶された負荷制御値と各等級の抵抗体バンクαの電力容量との比較演算を自動的に繰り返しながら、負荷制御値に最も近い値を算出する抵抗体バンクα1〜α7のON/OFFの選択的組合せを導き出し、実際に抵抗体バンクα1〜7にON/OFFのディジタル信号として転送出力制御する比較演算転送回路OCとを具備する。それに加え、図示しないボタン又はスイッチを比較演算を開始するトリガとして用いてもよい。   As shown in the figure, the controller CV includes a control value storage arithmetic circuit MC that stores a load control value as a load target value in the controller CV, and a digital numerical value that allows visual inspection of the load control value. The control value measuring device MV that displays the memory, the load control value stored in the control value storage arithmetic circuit MC and the power capacity of the resistor bank α of each grade are automatically repeated, and the load control value is maximized. A comparison operation transfer circuit OC for deriving a selective combination of ON / OFF of the resistor banks α1 to α7 for calculating close values and actually transferring and controlling the resistor banks α1 to 7 as ON / OFF digital signals is provided. To do. In addition, a button or switch (not shown) may be used as a trigger for starting the comparison operation.

ここで、比較演算転送回路OCは、各等級の抵抗体バンクαの分割数Nに応じた第1から第Nのそれぞれ対応した演算回路を有し、制御値記憶演算回路MCから受け取った負荷制御値を第1から第N番まで比較演算し、ON/OFFのディジタル信号として転送する。   Here, the comparison operation transfer circuit OC has first to Nth operation circuits corresponding to the division number N of the resistor bank α of each grade, and the load control received from the control value storage operation circuit MC. The value is compared and calculated from No. 1 to No. N and transferred as an ON / OFF digital signal.

また、押しボタンスイッチSWには、UPボタン、DOWNボタンが配置され、制御器CVに設定目標の負荷制御の値を増加させる接点入力UPと、値を減少させる接点入力DOWNをアナログ出力し、制御器CVは押しボタンスイッチSWから受け取った負荷制御値を制御値記憶演算回路に保持する。   Further, the push button switch SW is provided with an UP button and a DOWN button, and the controller CV outputs the contact input UP for increasing the target load control value and the contact input DOWN for decreasing the value as an analog output for control. The device CV holds the load control value received from the push button switch SW in the control value storage arithmetic circuit.

さらに、図2の低圧負荷演算制御装置に、上述した制御器CV、押しボタンスイッチSWを設置した低圧抵抗体バンク群αLを用いた低圧負荷演算制御装置例β2を、それぞれ図4に示す。   Furthermore, FIG. 4 shows low-voltage load calculation control device examples β2 using the low-voltage resistor bank group αL in which the above-described controller CV and push button switch SW are installed in the low-voltage load calculation control device of FIG.

図4に示すように全最大電力容量2000kwの抵抗体バンクαを7段階に2分の1ずつ等級分割したものを番号付けして抵抗体バンクα1から抵抗体バンクα7として割り当て低圧開閉器CLを介設し、7つの低圧開閉器CLそれぞれに制御器CV内の比較演算転送回路OCからON/OFFのディジタル信号が転送可能に接続される。   As shown in FIG. 4, the resistor bank α having a total maximum power capacity of 2000 kw is divided into seven stages and numbered in half and numbered, and the resistor bank α1 is assigned as the resistor bank α7, and the low voltage switch CL is assigned. An ON / OFF digital signal is connected to each of the seven low-voltage switches CL from the comparison operation transfer circuit OC in the controller CV so as to be transferred.

(方法例)
次に、本方法例として、上記装置例で述べたNo1〜7までの抵抗体バンクに介設する開閉器、制御器を用いた各抵抗体バンクの電力容量と、負荷の目標値とする負荷制御値とを比較し、最も負荷制御値に近い値を算出することによりに自動的に各抵抗対バンクのON/OFFの制御を行う低圧演算制御方法の一連の処理手順を説明する。
(Example method)
Next, as an example of this method, the power capacity of each resistor bank using the switches and controllers provided in the resistor banks No. 1 to No. 7 described in the above device example, and the load that is the target value of the load A series of processing procedures of a low-pressure calculation control method that automatically controls ON / OFF of each resistor pair bank by calculating a value closest to the load control value by comparing with the control value will be described.

まず、負荷特性試験を行う前に、制御器CVに接続した押しボタンスイッチSWをのUP/DOWNボタンを押しながら値を増加/減少方向に変化させ、目標値とする負荷制御値を設定する。このとき、押しボタンスイッチSWのUP/DOWNボタンが押されるたびに、増加/減少方向への変更値は直接、制御器CVにアナログ転送され、制御器CVはUP/DOWN信号を受け取る度に、負荷制御値を制御値記憶演算回路に保持し制御値計測器MVに読み誤りの少ないデジタル表示する。従って、運転後は電力計Pの値と制御値計測器MVの値とを目視確認して正常運転を確認し得る。   First, before the load characteristic test is performed, the value is changed in the increasing / decreasing direction while pressing the UP / DOWN button of the push button switch SW connected to the controller CV, and a load control value as a target value is set. At this time, every time the UP / DOWN button of the push button switch SW is pressed, the change value in the increasing / decreasing direction is directly transferred to the controller CV in analog, and the controller CV receives the UP / DOWN signal every time. The load control value is held in the control value storage arithmetic circuit and digitally displayed with few reading errors on the control value measuring device MV. Therefore, after operation, the value of the wattmeter P and the value of the control value measuring instrument MV can be visually confirmed to confirm normal operation.

負荷制御値の設定後、図示しないボタン又はスイッチにより比較演算の実行を促すと、制御値記憶演算回路MCは比較演算転送回路OCに設定した負荷制御値をアナログ転送する。   After the load control value is set, if the execution of the comparison operation is prompted by a button or switch (not shown), the control value storage operation circuit MC analog-transfers the load control value set in the comparison operation transfer circuit OC.

比較演算転送回路OCは、制御値記憶演算回路MCから負荷制御値を受け取ると、等級分割された各抵抗体バンクα1〜α7へのON/OFFディジタル信号として転送するために、比較演算を開始する。   When the comparison operation transfer circuit OC receives the load control value from the control value storage operation circuit MC, the comparison operation transfer circuit OC starts a comparison operation to transfer it as an ON / OFF digital signal to each of the graded resistor banks α1 to α7. .

各抵抗体バンクα1〜α7に対応する比較演算転送回路OC内の第1から第7等級までの演算手順は、表2に示す通りであり、目標値とする負荷制御値をバンク容量の大きいほうから比較し、繰り返し演算をして加算することによって、負荷制御値の設定を行う。   The calculation procedure from the first to the seventh grade in the comparison calculation transfer circuit OC corresponding to each resistor bank α1 to α7 is as shown in Table 2, and the load control value as the target value is the one with the larger bank capacity. The load control value is set by repeating the calculation and repeating the addition.

Figure 2006343339
Figure 2006343339

まず、図1の高圧説明対応で言えば、第2演算では、制御値(負荷制御値)とバンクNo1、つまり2000kwの2分の1である1000kwとの大小の比較を行う。ここで、制御値の値が1000kw以上である場合には、バンクNo1の開閉器(低圧の場合では図4の低圧開閉器CLを採用する)に対し、ONのディジタル信号、反対に負荷制御値の値が1000kwに満たない場合はOFFのディジタル信号を転送する。   First, referring to the explanation of high voltage in FIG. 1, in the second calculation, a comparison is made between the control value (load control value) and bank No1, that is, 1000 kW which is a half of 2000 kW. Here, when the control value is 1000 kw or more, the ON digital signal is applied to the switch of bank No. 1 (in the case of low pressure, the low voltage switch CL of FIG. 4 is used), on the contrary, the load control value. If the value is less than 1000 kW, an OFF digital signal is transferred.

そして、ディジタル信号がONのときは負荷制御値から2分の1の値を減算し、算出された値を残数値1として保持し、OFF状態のときには制御値そのものを残数値1として保持して第2演算へアナログ転送する。   When the digital signal is ON, a half value is subtracted from the load control value, and the calculated value is held as the remaining value 1, and when the digital signal is OFF, the control value itself is held as the remaining value 1. Analog transfer to the second operation.

以下、第2演算以降は第1演算と同様に、表2に示すようにON、OFFのディジタル信号を転送しながらバンクNo1からバンクNo7までのON/OFFの出力判断を行う。   Thereafter, as in the first calculation, after the second calculation, ON / OFF output determination from bank No. 1 to bank No. 7 is performed while transferring ON / OFF digital signals as shown in Table 2.

この場合、第一演算から第七演算までの周期を約0.1秒以内に完了させることにより、ON/OFF信号をほぼ同時に出力することが必要である。   In this case, it is necessary to output the ON / OFF signal almost simultaneously by completing the cycle from the first calculation to the seventh calculation within about 0.1 seconds.

以上、本発明の最良の形態について説明してきたが、本発明では必ずしも上述の手段のみに限定されず、前述の効果を達成する範囲内で、適宜変更実施可能である。   Although the best mode of the present invention has been described above, the present invention is not necessarily limited to the above-described means, and can be appropriately modified within the scope of achieving the above-described effects.

本発明の低圧負荷演算制御装置例にかかる抵抗体バンクの配置構成図である。It is arrangement | positioning block diagram of the resistor bank concerning the example of the low voltage | pressure load calculation control apparatus of this invention. 本発明の低圧負荷演算制御装置例にかかる抵抗体バンクの単線結線図である。It is the single wire connection diagram of the resistor bank concerning the example of the low voltage | pressure load calculation control apparatus of this invention. 本発明の低圧負荷演算制御装置例にかかる制御器及び押しボタンスイッチの配置構成図である。FIG. 3 is an arrangement configuration diagram of a controller and push button switches according to an example of a low-pressure load calculation control device of the present invention. 本発明の低圧負荷演算制御装置例にかかる低圧負荷演算制御装置に制御器を設置した単線結線図である。It is the single line connection diagram which installed the controller in the low voltage | pressure load calculation control apparatus concerning the example of the low voltage | pressure load calculation control apparatus of this invention. 従来の乾式高圧負荷装置の単線結線図であり、抵抗体バンクを段階的に組合せ分割した構成例を示す単線結線図である。It is a single wire connection diagram of the conventional dry type high voltage load device, and is a single wire connection diagram showing a configuration example in which resistor banks are combined and divided stepwise.

符号の説明Explanation of symbols

α、α1、α2、α3、α4、α5、α6、α7、α8…抵抗体バンク
αL…低圧バンク群
αH…高圧バンク群
β1、β2…低圧負荷装置
γ´…高圧負荷装置
G…電源装置
V…電圧計
A…電流計
P…電力計
PC…電力ケーブル
GR…地絡継電器
OCR…過電流継電器
CB…主遮断機
CBH…高圧用主遮断機
CL…低圧開閉器
CV…制御器
OC…比較演算転送回路
MC…制御値記憶演算回路
MV…制御値計測器
SW…押しボタンスイッチ

α, α1, α2, α3, α4, α5, α6, α7, α8 ... resistor bank αL ... low voltage bank group αH ... high voltage bank group β1, β2 ... low voltage load device γ '... high voltage load device G ... power supply device V ... Voltmeter A ... Ammeter P ... Power meter PC ... Power cable GR ... Ground fault relay OCR ... Overcurrent relay CB ... Main circuit breaker CBH ... Main circuit breaker CL for high voltage ... Low voltage switch CV ... Controller OC ... Comparison calculation transfer Circuit MC ... Control value storage arithmetic circuit MV ... Control value measuring instrument SW ... Push button switch

Claims (10)

発電機の負荷特性試験に関して、抵抗体バンク群を複数に分割するに際し、全抵抗体の電力容量を比較演算より上位から下位等級に順次漸減算出された各抵抗体バンクに分割、割り当てし、設定目標とする値の近似値をとるため上位から下位等級に亙り順次前記各抵抗体バンクのON/OFFの組合せを自動的に調整して加減算する低圧負荷演算制御方法であって、
まず、電源装置に電力ケーブルを介して接続された前記抵抗体バンク群を複数(2〜N[Nは自然数])に分割した後、当該抵抗体バンク群の全最大電力容量を2進法に基づき、2分の1から2n−1分の1に相当する電力容量の上位から下位等級に順次漸減算出された値を分割された第1から第Nの各抵抗体バンクに割り当て、
次に、前記各抵抗体バンクに接続された制御手段で、目標値とする前記負荷制御値を設定後、当該制御手段内の比較演算転送回路内の第1の演算手段にて、対応する第1の前記抵抗体バンクが保持する電力容量と、前記負荷制御値を比較し、当該負荷制御値が当該電力容量以上であれば、当該電力容量を当該負荷制御値から減算し残数値として記憶保持するとともに第2の演算手段に残数値をアナログ転送し、前記第1の抵抗体バンクにON状態を示すディジタル信号を転送する一方、当該負荷制御値が当該電力容量以下であれば、当該負荷制御値を第2の演算手段にアナログ転送し、
以下、前記第2の演算から第Nの演算まで、次上位の演算手段より受け取った前記残数値と、次下位等級の抵抗体バンクの電力容量とを順次比較して行き、当該残数値が各対応する当該抵抗体バンクの電力容量以上であれば、当該電力容量を当該残数値からその都度減算し、次下位等級残数値として記憶保持し次下位等級の演算手段に当該下位残数値をアナログ転送するとともに、当該各第2から第Nの演算手段に各対応した前記抵抗体バンクに対し、ON状態を示すディジタル信号を転送する一方、前記次上位等級残数値が前記電力容量以下であれば、当該次上位等級残数値を次下位等級残数値として次下位等級の演算手段にアナログ転送して逐次実施する、
ことを特徴とする、低圧負荷演算制御方法。
For the generator load characteristics test, when dividing the resistor bank group into multiple groups, the power capacity of all resistors is divided, assigned, and set to each resistor bank that is gradually reduced from the higher order to the lower order than the comparison calculation. In order to obtain an approximate value of a target value, a low-pressure load calculation control method for automatically adjusting and adding / subtracting the combination of ON / OFF of each resistor bank sequentially from upper to lower grades,
First, after dividing the resistor bank group connected to the power supply device via a power cable into a plurality (2 to N [N is a natural number]), the total maximum power capacity of the resistor bank group is expressed in binary. Based on the power capacity corresponding to 1/2 to 2n-1 1/2, a value that is gradually reduced from upper to lower grades is assigned to each of the divided first to Nth resistor banks,
Next, after setting the load control value as a target value by the control means connected to each resistor bank, the first calculation means in the comparison calculation transfer circuit in the control means corresponds to the first Compare the power capacity held by one resistor bank with the load control value. If the load control value is equal to or greater than the power capacity, the power capacity is subtracted from the load control value and stored as a remaining value. In addition, the remaining value is analog-transferred to the second arithmetic means, and a digital signal indicating the ON state is transferred to the first resistor bank. On the other hand, if the load control value is less than or equal to the power capacity, the load control Analogly transfer the value to the second computing means,
Hereinafter, from the second calculation to the Nth calculation, the remaining value received from the next higher-order calculation means is sequentially compared with the power capacity of the next-lower class resistor bank. If the power capacity of the corresponding resistor bank is equal to or greater than that, the power capacity is subtracted from the remaining value each time, stored as the next lower class remaining value, and the lower remaining value is transferred to the next lower class computing means in analog form. In addition, a digital signal indicating an ON state is transferred to the corresponding resistor bank corresponding to each of the second to Nth arithmetic means, and if the next higher rank residual value is less than or equal to the power capacity, The next higher and lower class remaining values are transferred as analog values to the next lower and higher class arithmetic means as the next lower class remaining values and executed sequentially.
A low-pressure load calculation control method characterized by the above.
前記負荷制御値は、
前記制御手段に接続された押しボタンスイッチのUPボタンを押すと増加方向への変更値が前記制御手段の制御値記憶演算回路に転送され、当該制御値記憶演算回路に保持された値を更新増加させる一方、
当該押しボタンスイッチのDOWNボタンを押すと減少方向への変更値が前記制御値記憶演算回路に転送され、当該制御値記憶演算回路に保持された前記値を更新減少させることにより目標値設定される、
ことを特徴とする請求項1に記載の低圧負荷演算制御方法。
The load control value is
When the UP button of the push button switch connected to the control means is pressed, the change value in the increasing direction is transferred to the control value storage arithmetic circuit of the control means, and the value held in the control value storage arithmetic circuit is updated and increased. While letting
When the DOWN button of the push button switch is pressed, the change value in the decreasing direction is transferred to the control value storage arithmetic circuit, and the target value is set by updating and decreasing the value held in the control value storage arithmetic circuit. ,
The low-pressure load calculation control method according to claim 1.
前記分割した等級数Nは、
7等級であって、前記抵抗体バンク群の全最大電力容量を2進法に基づき2分の1から128分の1まで7等級に分割する、
ことを特徴とする、請求項1又は2に記載の低圧負荷演算制御方法。
The divided grade number N is
The total maximum power capacity of the resistor bank group is divided into 7 grades from 1/2 to 1/128 based on the binary system.
The low-pressure load calculation control method according to claim 1 or 2, characterized in that
前記抵抗体バンク群の前記全最大電力容量は、
前記分割した等級数Nのうち、必要な同等級の前記抵抗体バンクを複数並設して増加変更可能とする、
ことを特徴とする、請求項1、2又は3に記載の低圧負荷演算制御方法。
The total maximum power capacity of the resistor bank group is:
Among the divided grades N, a plurality of the same equivalent resistor banks can be arranged side by side to be increased.
The low-pressure load calculation control method according to claim 1, 2, or 3.
発電機の負荷特性試験に関して、抵抗体バンク群を複数に分割するに際し、全抵抗体の電力容量を比較演算で上位から下位等級に順次漸減算出された各抵抗体バンクに分割、割り当てし、設定目標とする負荷制御値の近似値をとるため上位から下位等級に亙り順次前記各抵抗体バンクのON/OFFの組合せを自動的に選択して加減算出する低圧負荷演算制御装置であって、
前記電源装置に接続した電力ケーブル端に分岐接続して抵抗体バンクを2以上(2〜N[Nは自然数])に分割するため、当該抵抗体バンク群の全電力容量を上位から下位等級に順次漸減算出して分割割り当てした複数の抵抗体バンクと、
当該抵抗体バンク群の各抵抗体バンクそれぞれに介接し、当該各抵抗体バンクのON/OFFの切換を行う開閉器と、
設定された前記負荷制御値を記憶してアナログ転送する制御値記憶演算回路と、当該制御値記憶演算回路より転送されてきた当該負荷制御値と前記各第1から第Nの抵抗体バンクに対応した当該各抵抗体バンクと前記電力容量との比較、減算を行う第1から第Nに亙る逐次演算を実行するとともに、当該演算にて算出されたディジタル信号を各対応する前記開閉器に転送して開閉実行する比較演算転送回路とを有する制御器と、
前記制御値記憶演算回路内に設定保持された負荷制御値に対して増加方向へ当該負荷制御値を変更させるアナログ値を発信するUPボタンと、減少方向へ当該負荷制御値を変更させるアナログ値を発信するDOWNボタンを有する押しボタンスイッチと、を具備する、
ことを特徴とする低圧負荷演算制御装置。
For the generator load characteristics test, when dividing the resistor bank group into multiple groups, the power capacity of all resistors is divided, assigned, and set to each resistor bank that is gradually reduced from higher to lower grades by comparison. In order to obtain an approximate value of a target load control value, a low-pressure load calculation control device that automatically selects and adjusts the ON / OFF combination of each resistor bank sequentially from the upper rank to the lower rank,
Since the resistor bank is divided into two or more (2 to N [N is a natural number]) by branch connection to the end of the power cable connected to the power supply device, the total power capacity of the resistor bank group is changed from upper to lower grades. A plurality of resistor banks that are sequentially calculated and divided and allocated, and
A switch that is connected to each resistor bank of the resistor bank group and that switches the resistor bank ON / OFF; and
Corresponding to the control value storage arithmetic circuit for storing and transferring the set load control value in analog, the load control value transferred from the control value storage arithmetic circuit, and the first to Nth resistor banks The first to Nth sequential computations for comparing and subtracting each resistor bank and the power capacity are performed, and the digital signal calculated by the computation is transferred to each corresponding switch. A controller having a comparison operation transfer circuit that opens and closes,
An UP button for transmitting an analog value for changing the load control value in the increasing direction with respect to the load control value set and held in the control value storage arithmetic circuit, and an analog value for changing the load control value in the decreasing direction. A push button switch having a DOWN button for transmitting,
A low-pressure load calculation control device characterized by that.
前記抵抗体バンク群の前記各第1から第Nの各抵抗体バンクは、
全最大電力容量を2進法に基づく2分の1から2n−1分の1[nは自然数]に相当する前記電力容量を保持する、
ことを特徴とする、請求項5に記載の低圧負荷演算制御装置。
Each of the first to Nth resistor banks of the resistor bank group is:
Holding the power capacity corresponding to 1/2 to 2n-1 [n is a natural number] based on the binary system of the maximum power capacity,
The low-pressure load calculation control device according to claim 5, wherein
前記制御器は、
前記押しボタンスイッチにより更新可能に加減調整された前記負荷制御値の値を検出可能なデジタル表示する制御値計測器を有する、
ことを特徴とする、請求項5に記載の低圧負荷演算制御装置。
The controller is
A control value measuring instrument that digitally displays the load control value that can be updated and adjusted by the push button switch.
The low-pressure load calculation control device according to claim 5, wherein
前記分割した等級数Nは、
7等級であって、前記全最大電力容量の1/2、1/4、1/8、1/16、1/32、1/64、1/128の電力容量を各等級は分割保持する、
ことを特徴とする請求項6又は7に記載の低圧負荷演算制御装置。
The divided grade number N is
7 grades, and each grade holds the power capacity of 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 of the total maximum power capacity,
The low-pressure load calculation control device according to claim 6 or 7.
前記抵抗体バンク群は、
前記分割した等級Nの内、必要な同等級の抵抗体バンクを複数並設する、
ことを特徴とする請求項5、6又は7に記載の低圧負荷演算制御装置。
The resistor bank group is:
Among the divided grades N, a plurality of necessary equivalent grade resistor banks are juxtaposed,
The low-pressure load calculation control device according to claim 5, 6, or 7.
前記電力ケーブルは、
途中に介接した主遮断機を挟んで負荷側に過電流継電器及び電流計を、かつ電源側に地絡継電器及び電圧計をさらに当該電流計と当該電圧計を跨いで電力計をそれぞれ接続する、
ことを特徴とする請求項5、6、7、8又は9に記載の低圧負荷演算制御装置。
The power cable is
Connect an overcurrent relay and ammeter to the load side across the main circuit breaker connected in the middle, and connect a ground fault relay and voltmeter to the power source side, and a wattmeter across the ammeter and the voltmeter. ,
The low-pressure load calculation control device according to claim 5, 6, 7, 8, or 9.
JP2006175010A 2006-06-26 2006-06-26 Method and device for operation control for low-voltage load Pending JP2006343339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175010A JP2006343339A (en) 2006-06-26 2006-06-26 Method and device for operation control for low-voltage load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175010A JP2006343339A (en) 2006-06-26 2006-06-26 Method and device for operation control for low-voltage load

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005167774A Division JP4385007B2 (en) 2005-06-08 2005-06-08 High pressure load calculation control method and apparatus

Publications (1)

Publication Number Publication Date
JP2006343339A true JP2006343339A (en) 2006-12-21

Family

ID=37640374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175010A Pending JP2006343339A (en) 2006-06-26 2006-06-26 Method and device for operation control for low-voltage load

Country Status (1)

Country Link
JP (1) JP2006343339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812501A (en) * 2020-07-20 2020-10-23 三门核电有限公司 Generator-transformer set fault triggering system and method for diesel engine sequential on-load test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812501A (en) * 2020-07-20 2020-10-23 三门核电有限公司 Generator-transformer set fault triggering system and method for diesel engine sequential on-load test

Similar Documents

Publication Publication Date Title
JP4385007B2 (en) High pressure load calculation control method and apparatus
US4677363A (en) Method of and apparatus for monitoring the state of charge of a rechargeable battery
US11545839B2 (en) System for charging a series of connected batteries
CN112182846B (en) Online monitoring and diagnosing method and device for tap changer and storage medium
JP6382453B2 (en) Battery monitoring device
KR940701546A (en) Method and device for charging and testing the battery
RU174066U1 (en) Relay Test Device
CN102439440B (en) Method for gas analysis of on-load tap changers
EP2890991A1 (en) Method and apparatus for measuring load tap changer characteristics
CN101769963A (en) Line insulation testing system
KR101286747B1 (en) Load bank pareallel control system and load input control method thereof
US2675522A (en) Method and apparatus for testing storage batteries
JP2006343341A (en) Method and device for calculation control for high-voltage load
KR20180006264A (en) Simulation apparatus and method of battery
JP2006343339A (en) Method and device for operation control for low-voltage load
JP2006343340A (en) Method and device for operation control for low-voltage load
CN106797197A (en) Power conversion system female connector fault detection system and method
JP2010008269A (en) Electronic indicating instrument
RU2342673C2 (en) Method and device for time chart construction for selector and contactor of high-speed regulator-under-load (rul)
US2758275A (en) Battery testing apparatus
RU2290653C2 (en) Mode of evaluation of parameters of the process of switching of fast-acting regulator of contactor&#39;s contacts under loading in a three-phase transformer without its opening and an arrangement for its fulfillment
RU2175138C1 (en) Method and device for measuring power circuit insulation resistance in live electrical equipment of vehicles
JP2020010445A (en) Simulation device
DE1010161B (en) Device for the optional implementation of continuity and insulation measurements on electrical lines and devices
US2432068A (en) Battery testing and charging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081212

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090814

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101008