JP2006343179A - Measurement of reynolds number or the like utilizing boundary layer turbulent flow transition phenomenon - Google Patents

Measurement of reynolds number or the like utilizing boundary layer turbulent flow transition phenomenon Download PDF

Info

Publication number
JP2006343179A
JP2006343179A JP2005168054A JP2005168054A JP2006343179A JP 2006343179 A JP2006343179 A JP 2006343179A JP 2005168054 A JP2005168054 A JP 2005168054A JP 2005168054 A JP2005168054 A JP 2005168054A JP 2006343179 A JP2006343179 A JP 2006343179A
Authority
JP
Japan
Prior art keywords
reynolds number
boundary layer
state
fluid
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005168054A
Other languages
Japanese (ja)
Other versions
JP4214210B2 (en
Inventor
Yoshihisa Aoki
良尚 青木
Yuzuru Yokogawa
譲 横川
Yoshiro Morita
義郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2005168054A priority Critical patent/JP4214210B2/en
Publication of JP2006343179A publication Critical patent/JP2006343179A/en
Application granted granted Critical
Publication of JP4214210B2 publication Critical patent/JP4214210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new measuring method capable of determining easily a parameter in hydrodynamics including an effective Reynolds number of fluid in an optional dynamic pressure without being influenced by a rotational frequency change or the like of a blower in a wind tunnel experiment. <P>SOLUTION: In this Reynolds number measurement, a boundary layer transition point position is measured in the state where a specimen is installed in some wind tunnel and the air flow state such as a flow velocity is set, and the Reynolds number per unit length is allowed to correspond to the boundary layer transition point position, and correspondence results in each air flow state are summarized on a table and provided as a database, to thereby detect the Reynolds number per unit length from a measured value of the boundary layer transition point. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

ある物体の周りを流れる流体の境界層乱流遷移現象を利用して、任意の動圧における流体の有効レイノルズ数に代表される流体力学上のパラメータを計測する技術に関する。   The present invention relates to a technique for measuring a hydrodynamic parameter typified by an effective Reynolds number of a fluid at an arbitrary dynamic pressure by utilizing a boundary layer turbulent transition phenomenon of a fluid flowing around a certain object.

航空機の高性能化技術の開発などに用いられる低速風洞試験において、空気力学的解析を行う際にレイノルズ数は重要な物理量となる。このレイノルズ数Rは無次元の値であって、流れの中にある物体の代表的長さをL、速度をU、密度をρ、粘性率をηそして動粘性率をνとしたとき、R=ρLU/η=LU/νで表わされる。すなわち、その物理的意味は慣性の大きさと粘性の大きさの比と考ればよい。   The Reynolds number is an important physical quantity when performing aerodynamic analysis in low-speed wind tunnel tests used for developing high-performance aircraft technologies. This Reynolds number R is a dimensionless value. When a typical length of an object in a flow is L, velocity is U, density is ρ, viscosity is η, and kinematic viscosity is ν, R = ΡLU / η = LU / ν. That is, the physical meaning can be considered as the ratio of the magnitude of inertia to the magnitude of viscosity.

風洞試験における乱流球を使った有効レイノルズ数の計測についてまず説明する。乱流球とは図5上部に示すように球体にその中心点を向いた直管形態の導圧管が連結され、導圧管の軸延長線上の球面に全圧孔が開口され、該全圧孔とは球の反対面となる導圧管の軸と22.5°の角をなす位置に静圧孔が開口し、前記導圧管内には全圧孔と静圧孔を連通した管が配置された構造をしたものである。この乱流球に加わる流体による力を乱流球の最大断面積と動圧の積で無次元化した抗力係数Cdが0.3になる時、又は静圧孔で計測される圧力を全圧孔で計測される圧力で割った値である圧力係数Cpが−1.22になる時のレイノルズ数を臨界レイノルズ数と呼び、この値は球の場合大気中では385000である。この臨界レイノルズ数にはそれ以上では境界層内の流れはもはや層流ではとどまり得ない限界値という物理的意味がある。実験時の臨界レイノルズ数を求めるために、動圧を変化させながら抗力係数又は圧力係数を縦軸、その時のレイノルズ数を横軸にとりグラフを書くと、図5のグラフのようになる。このグラフから実験時の臨界レイノルズ数を推定する。その後、大気中における臨界レイノルズ数を実験時の臨界レイノルズ数で割った値を乱れ定数TFとし、
TF=Rc/Rtc ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (1)
有効レイノルズ数Rは実験レイノルズ数Rtにこの乱れ定数TFを掛けることで風洞試験における有効レイノルズ数を算出するという手法が一般に取られる。(非特許文献1参照)
R=TF・Rt ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (2)
First, the measurement of the effective Reynolds number using a turbulent sphere in the wind tunnel test will be explained. As shown in the upper part of FIG. 5, the turbulent sphere is connected to a spherical body with a straight tube-shaped pressure guiding tube facing the center point, and a total pressure hole is opened on a spherical surface on the axial extension line of the pressure guiding tube. Is a structure in which a static pressure hole is opened at a position that forms an angle of 22.5 ° with the axis of the pressure guiding tube that is the opposite surface of the sphere, and a tube that communicates all the pressure holes and the static pressure hole is disposed in the pressure guiding tube. It is what you did. The force due to the fluid applied to the turbulent sphere is made dimensionless by the product of the maximum cross-sectional area and the dynamic pressure of the turbulent sphere, and the drag coefficient Cd becomes 0.3, or the pressure measured by the static pressure hole is the total pressure hole. The Reynolds number when the pressure coefficient Cp, which is a value divided by the measured pressure, becomes −1.22, is called the critical Reynolds number, and this value is 385,000 in the atmosphere in the case of a sphere. This critical Reynolds number has the physical meaning above which the flow in the boundary layer is no longer limited to laminar flow. In order to obtain the critical Reynolds number at the time of experiment, when the dynamic coefficient is changed and the drag coefficient or pressure coefficient is plotted on the vertical axis and the Reynolds number at that time is plotted on the horizontal axis, the graph is as shown in FIG. The critical Reynolds number during the experiment is estimated from this graph. Then, the value obtained by dividing the critical Reynolds number in the atmosphere by the critical Reynolds number at the time of the experiment is defined as the turbulence constant TF.
TF = Rc / Rtc ……………………………………………………………… (1)
The effective Reynolds number R is generally calculated by multiplying the experimental Reynolds number Rt by the turbulence constant TF to calculate the effective Reynolds number in the wind tunnel test. (See Non-Patent Document 1)
R = TF ・ Rt ………………………………………………………………………………………………………… (2)

しかし、この有効レイノルズ数計測方法は大気中における臨界レイノルズ数を実験時の臨界レイノルズ数で割った値である乱れ定数TFを用い、有効レイノルズ数を実験レイノルズ数にこの乱れ定数を掛けて求めるもので、有効レイノルズ数は実験レイノルズ数の定数倍であるという仮定を前提にしているため、任意の動圧における正しい有効レイノルズ数を計測することはできない。特に流速変化や、流れの乱れ度が変化する変化送風機の回転数が切り替ったときなどの影響を考慮できないという問題がある。   However, this effective Reynolds number measurement method uses a turbulent constant TF, which is a value obtained by dividing the critical Reynolds number in the atmosphere by the critical Reynolds number at the time of experiment, and obtains the effective Reynolds number by multiplying the experimental Reynolds number by this turbulent constant. Therefore, since it is assumed that the effective Reynolds number is a constant multiple of the experimental Reynolds number, the correct effective Reynolds number at an arbitrary dynamic pressure cannot be measured. In particular, there is a problem that it is not possible to take into account influences such as changes in flow velocity or changes in the degree of flow turbulence when the rotational speed of the blower is switched.

一方、風洞実験において粘性流体は、流体の流れとその流体が接触する物体との間に流速を低減させるせん断力が作用する境界層と呼ばれる領域を持つ。この境界層には、層流境界層と乱流境界層が存在し、物体表面を流れるに従って前者から後者に変化する。この変化する位置を境界層遷移点と呼び、この位置は物体の表面状態や流体のレイノルズ数、流体の体の乱れ度、熱伝達性といった流体力学的なパラメータによって変化することが知られている。   On the other hand, in a wind tunnel experiment, a viscous fluid has a region called a boundary layer in which a shearing force that reduces a flow velocity acts between a fluid flow and an object with which the fluid contacts. The boundary layer includes a laminar boundary layer and a turbulent boundary layer, and changes from the former to the latter as it flows on the object surface. This changing position is called the boundary layer transition point, and this position is known to change depending on the hydrodynamic parameters such as the surface state of the object, the fluid Reynolds number, the degree of fluid turbulence, and heat transfer. .

ちなみに、非特許文献1には航空機,船舶,高速鉄道車両,自動車,流体機械,配管系の内部流路などにおいて、流れのレイノルズ数が大きく物体表面の境界層が乱流に遷移している状態では、流体の摩擦抵抗は無視できないエネルギーの損失を与えている。境界層の遷移を遅らせ、流れをできるだけ長い距離層流に保つことができれば、摩擦抵抗を大幅に減らすことができること、また、乱流への遷移や流れの剥離の前兆があると判断された場合には、流れに遷移や剥離を打ち消す向きの変動を人工的に導入する技術が開示されている。具体的には物体表面部材に多数の小さな流体通路を並べて設け、その背後の物体内部には空洞を設ける。空洞は空気駆動源へ接続されており、空気駆動源を外部の圧力に対して動的に正圧または負圧にすることにより、空気駆動源によって駆動される吹き出しまたは吸い込みの流れが生じ、物体表面では流体通路からの吹き出しまたは吸い込みの流れが生じる。これによって物体表面の境界層には壁面と垂直方向の速度変動が励起され、遷移や剥離を効果的に打ち消す向きの変動が成長し、遷移や剥離は抑制されるというものである。   Incidentally, Non-Patent Document 1 states that the boundary layer on the surface of an object is transitioning to a turbulent flow in an aircraft, a ship, a high-speed railway vehicle, an automobile, a fluid machine, an internal flow path of a piping system, etc. Then, the frictional resistance of the fluid gives a non-negligible energy loss. If it is judged that if the boundary layer transition can be delayed and the flow can be kept in laminar flow for as long a distance as possible, the frictional resistance can be greatly reduced, and there is a precursor to the transition to turbulence and flow separation. Discloses a technique for artificially introducing a change in the direction of canceling transition or separation in a flow. Specifically, a large number of small fluid passages are provided side by side on the object surface member, and a cavity is provided inside the object behind the object. The cavity is connected to an air drive source, and dynamically making the air drive source positive or negative with respect to the external pressure creates a flow of blow or suction driven by the air drive source, On the surface, there is a flow of blowout or suction from the fluid passage. As a result, velocity fluctuations in the direction perpendicular to the wall surface are excited in the boundary layer on the surface of the object, and fluctuations in the direction that effectively cancels transitions and separations grow, and transitions and separations are suppressed.

本発明者らも非特許文献2で、風洞実験に設置した模型と境界層遷移点の計測について発表している。境界層遷移の位置や特性がレイノルズ数およびその他のパラメータにより変化することに起因していることから、境界層遷移特性を把握することが、現象解明さらに風洞試験結果からの信頼性のある実機特性予測につながるものとの考えにたって、プレストン管、ホットフィルム、赤外線カメラおよび感温液晶フィルムを用いた境界層遷移位置測定法を比較提示している。
特開平10−28115号公報 「流体制御方法」 平成10年10月20日公開 進藤 章二朗 著「低速風洞実験法」 1992年8月20日 コロナ社発行 p.36〜40 横川譲、青木良尚、森田義郎他、「6.5m×5.5m低速風洞における全機模型遷移計測の試み」 “境界層遷移の解明と制御”研究会講演論文集(第33回・第34回)宇宙航空研究開発機構特別資料JAXA-SP-04-002 2005年1月28日発行
In the non-patent document 2, the present inventors have also announced the measurement of the model installed in the wind tunnel experiment and the boundary layer transition point. Because the position and characteristics of boundary layer transitions are caused by changes in Reynolds number and other parameters, grasping boundary layer transition characteristics is a reliable real-world characteristic from phenomenon clarification and wind tunnel test results. Based on the idea that it will lead to prediction, a comparative method for measuring the boundary layer transition position using a Preston tube, a hot film, an infrared camera, and a temperature-sensitive liquid crystal film is presented.
Japanese Patent Laid-Open No. 10-28115 “Fluid Control Method” Released on October 20, 1998 Shojiro Shindo, “Low-Speed Wind Tunnel Experiment” August 20, 1992, Corona Publishing, p.36-40 Yuko Yokokawa, Yoshinao Aoki, Yoshiro Morita, et al. “A trial of measuring all-machine model transition in a 6.5m × 5.5m low-speed wind tunnel” JAXA-SP-04-002, published on January 28, 2005

本発明の課題は、前述した乱流球を使った有効レイノルズ数計測法における問題点を解決した計測方法、すなわち、送風機の回転数変化などの影響を受けることなく、任意の動圧における流体の有効レイノルズ数をはじめとする、流体力学上のパラメータを風洞実験から容易に求めることができる新規な計測方法を提示することにある。   The subject of the present invention is a measurement method that solves the problems in the effective Reynolds number measurement method using the turbulent sphere described above, i.e., without being affected by changes in the rotational speed of the blower, etc. It is to present a novel measurement method that can easily obtain hydrodynamic parameters such as effective Reynolds number from wind tunnel experiments.

本発明は他のパラメータを変化させない環境の下でこの境界層の乱流遷移の位置が変わる現象を計測することによって、レイノルズ数等特定パラメータの値を求める方法を提示するものである。境界層遷移にもっとも大きな影響を及ぼすパラメータは物体の表面状態とレイノルズ数であるところから、物体の表面状態が等しい場合、その位置はほぼレイノルズ数によって決まるので、例えば、ある風洞設備において気流状態を設定した状態でレイノルズ数と境界層遷移点の位置を対応させ、この位置を計測し、その結果を用いて、境界層遷移点の位置を対応させた時の気流状態を基準とした単位長さ当たりのレイノルズ数を計測する。   The present invention presents a method for obtaining the value of a specific parameter such as the Reynolds number by measuring a phenomenon in which the position of the turbulent transition in the boundary layer changes under an environment where other parameters are not changed. The parameter that has the greatest influence on the boundary layer transition is the surface state of the object and the Reynolds number. When the surface state of the object is the same, its position is almost determined by the Reynolds number. Associate the Reynolds number with the position of the boundary layer transition point in the set state, measure this position, and use the result to determine the unit length based on the airflow state when the position of the boundary layer transition point is associated Measure the Reynolds number per hit.

本発明のレイノルズ数を求める方法は、ある表面状態の物体を風洞内に設置し、密度、粘性率そして動粘性率といった物性が一定である空気等の流体を用い、流体の乱れ度と熱伝達が安定である状態の下でその流体速度を変化させ、それぞれの気流状態におけるレイノルズ数とその物体表面における境界層乱流遷移位置との関係を予めテーブル情報として蓄積しておき、実験においてある気流状態で計測した境界層乱流遷移位置データから、前記テーブル情報に基づき当該風洞における流体の単位長さあたりのレイノルズ数を求める。
上記のテーブル情報としては、1)ある気流状態におけるレイノルズ数とその物体表面における境界層乱流遷移位置を計測したデータから予め作成したテーブル、2)計測に使う物体と同一の表面状態や形状と、気流のレイノルズ数や状態を条件として、流体力学の理論から予測される境界層乱流遷移位置から作成したテーブル、3)計測に使う物体と同一の表面状態や形状と、気流のレイノルズ数や状態を条件として、コンピュータシミュレーションから予測される境界層乱流遷移位置から作成したテーブル、若しくは4)実験と理論、又は実験とコンピュータシミュレーションなど前記の3つの方法を組み合わせることによって、ある気流状態におけるレイノルズ数とその物体表面における予測された境界層乱流遷移位置から作成したテーブルを採用する。
The method for obtaining the Reynolds number of the present invention is to install an object in a certain surface state in a wind tunnel, and use a fluid such as air having constant physical properties such as density, viscosity and kinematic viscosity, and the degree of fluid turbulence and heat transfer. The velocity of the fluid is changed under the condition that is stable, and the relationship between the Reynolds number in each airflow state and the boundary layer turbulent transition position on the surface of the object is stored as table information in advance. The Reynolds number per unit length of the fluid in the wind tunnel is obtained from the boundary layer turbulent transition position data measured in the state based on the table information.
The table information includes 1) a table prepared in advance from data obtained by measuring the Reynolds number in a certain airflow state and the boundary layer turbulent transition position on the object surface, and 2) the same surface state and shape as the object used for measurement. A table created from the boundary layer turbulent transition position predicted from fluid dynamics theory, subject to the Reynolds number and state of the airflow, 3) the same surface state and shape as the object used for measurement, the Reynolds number of the airflow, Reynolds in a certain airflow state by combining the above three methods such as a table created from a boundary layer turbulent transition position predicted from computer simulation, or 4) experiment and theory, or experiment and computer simulation Number and the predicted boundary layer turbulent transition position on the object surface. To adopt a Bull.

また、本発明の流体力学上のパラメータ算出方法は、請求項1に記載の方法によって得られたレイノルズ数Rから、物体の代表的長さをL、速度をU、密度をρ、粘性率をηそして動粘性率をνとしたとき、R=ρLU/η=LU/νで表せる関係に基づき、流体の密度ρ、粘性率η若しくは動粘性率νのうちのいずれか1つの未知数を算出する。   The hydrodynamic parameter calculation method of the present invention is based on the Reynolds number R obtained by the method according to claim 1, wherein the representative length of the object is L, the velocity is U, the density is ρ, and the viscosity is When η and kinematic viscosity are ν, an unknown number of any one of fluid density ρ, viscosity η, or kinematic viscosity ν is calculated based on the relationship represented by R = ρLU / η = LU / ν. .

さらに、本発明に係る他の流体力学上のパラメータ算出方法は、ある表面状態の物体を風洞内に設置し、密度、粘性率そして動粘性率といった物性が一定である空気等の流体を用い、特定形状の物体の表面状態と、流体の乱れ度と、熱伝達のパラメータのうち2つを安定とした状態で所定気流を流した状態における他の1つのパラメータを変化させたときの境界層遷移点を計測したデータを予めテーブル情報として蓄積しておき、実験において前記所定気流状態で計測した前記特定形状の境界層乱流遷移位置データから、未知の1つのパラメータを評価する。   Furthermore, another hydrodynamic parameter calculation method according to the present invention is to install an object in a certain surface state in a wind tunnel, and use a fluid such as air whose physical properties such as density, viscosity and kinematic viscosity are constant, Boundary layer transition when changing one of the parameters of the surface of a specific shape, the degree of turbulence of the fluid, and the heat transfer parameters in a state where two of the parameters are stable and a given airflow is flowing Data obtained by measuring points is stored in advance as table information, and one unknown parameter is evaluated from boundary layer turbulent transition position data of the specific shape measured in the predetermined airflow state in an experiment.

本発明のレイノルズ数を求める方法は、ある表面状態の物体を風洞内に設置し、密度、粘性率そして動粘性率といった物性が一定である空気等の流体を用い、流体の乱れ度と熱伝達が安定である状態の下でその流体速度を変化させ、それぞれの気流状態におけるレイノルズ数とその物体表面における境界層乱流遷移位置を計測したデータとの関係を予めテーブル情報として蓄積しておき、実験においてある気流状態で計測した境界層乱流遷移位置データから、前記テーブル情報に基づき当該風洞における流体の単位長さあたりのレイノルズ数を求めるものであるから、風洞によって異なる気流状態の有効レイノルズ数や、乱流格子などによって意図的に有効レイノルズ数をあげる場合に、ある気流状態を基準とする単位長さ当たりの有効レイノルズ数として容易に測定することが出来る。
境界層遷移現象を計測することによって、流体の密度・粘度・流速を計測しなくてもある流れの状態を基準とした有効レイノルズ数を容易に計測することが出来る。
The method for obtaining the Reynolds number of the present invention is to install an object in a certain surface state in a wind tunnel, and use a fluid such as air having constant physical properties such as density, viscosity and kinematic viscosity, and the degree of fluid turbulence and heat transfer. The fluid velocity is changed under a stable state, and the relationship between the Reynolds number in each airflow state and the data obtained by measuring the boundary layer turbulent transition position on the object surface is stored as table information in advance. The Reynolds number per unit length of fluid in the wind tunnel is obtained from the boundary layer turbulent transition position data measured in the air flow state in the experiment based on the table information. When the effective Reynolds number is intentionally increased by a turbulent grid, etc., the effective ray per unit length based on a certain air flow state is used. It can be easily measured as Luz number.
By measuring the boundary layer transition phenomenon, it is possible to easily measure the effective Reynolds number based on the state of the flow without measuring the density, viscosity and flow velocity of the fluid.

また、このようにして得られたレイノルズ数Rから、物体の代表的長さをL、速度をU、密度をρ、粘性率をηそして動粘性率をνとしたとき、R=ρLU/η=LU/νで表せる関係に基づいて容易に、流体の密度ρ、粘性率η若しくは動粘性率νのうちのいずれか1つの未知数を算出することができる。   Further, from the Reynolds number R thus obtained, when the representative length of the object is L, the velocity is U, the density is ρ, the viscosity is η, and the kinematic viscosity is ν, R = ρLU / η Based on the relationship represented by = LU / ν, it is possible to easily calculate any one of the fluid density ρ, viscosity η, or kinematic viscosity ν.

また、本発明に係る境界層乱流遷移現象に影響を与える外部要因評価方法は、ある表面状態の物体を風洞内に設置し、密度、粘性率そして動粘性率といった物性が一定である空気等の流体を用い、特定形状の物体の表面状態と、流体の乱れ度と、熱伝達のパラメータのうち2つを安定とした状態で所定気流を流した状態における他の1つのパラメータを変化させたときの境界層遷移点を計測したデータを予めテーブル情報として蓄積しておくことによって、実験において前記所定気流状態で計測した前記特定形状の境界層乱流遷移位置データから容易に未知の1つのパラメータを評価することができる。   In addition, the external factor evaluation method that affects the boundary layer turbulent transition phenomenon according to the present invention is a method in which an object having a certain surface state is installed in a wind tunnel and the physical properties such as density, viscosity, and kinematic viscosity are constant. This was used to change the surface condition of an object of a specific shape, the degree of fluid turbulence, and one other parameter in a state where a predetermined air flow was flown with two of the heat transfer parameters stabilized. By storing the measured data of the boundary layer transition point at the time as table information in advance, one parameter that is easily unknown from the boundary layer turbulent transition position data of the specific shape measured in the predetermined airflow state in the experiment Can be evaluated.

粘性流体の流れとその流体が接触する物体との間には境界層と呼ばれる領域が形成される。この境界層には、層流境界層と乱流境界層が存在し、物体表面を流れるに従って前者から後者に変化する。この変化する位置を境界層遷移点と呼び、この位置は物体の表面状態や流体のレイノルズ数、流体の乱れ度、熱伝達のような様々な要因によって変化することが解明されてきた。本発明の境界層乱流遷移現象を利用した計測は、この遷移点の位置を計測することによってレイノルズ数に代表される流体力学上の有用なパラメータを検知しようとするものである。   A region called a boundary layer is formed between the flow of the viscous fluid and the object with which the fluid contacts. The boundary layer includes a laminar boundary layer and a turbulent boundary layer, and changes from the former to the latter as it flows on the object surface. This changing position is called a boundary layer transition point, and it has been elucidated that this position changes depending on various factors such as the surface state of the object, fluid Reynolds number, fluid turbulence, and heat transfer. The measurement using the boundary layer turbulent transition phenomenon of the present invention is intended to detect useful parameters in hydrodynamics represented by the Reynolds number by measuring the position of this transition point.

境界層遷移点の計測手法については特に特定する必要はないが、ここでは1つの形態として円筒部材を風洞内の流れの場に置きその外表面において層流境界層から乱流境界層へ遷移する位置を熱伝達率の変化から検出するもので説明する。すなわち、図1に示すように中空円筒状部材1にはその外表面を均一に加熱するヒーター2と流れ方向にアレー状に配置された温度センサ3が設置されている。物体表面の近傍に形成された境界層の流れの状態が均一であるならば、円筒状部材1の外表面の放熱も均一であるはずであるが、実際はその境界層では層流境界層から乱流境界層へ遷移するという現象が起こるため、その位置によって放熱状態が変化する。この変化は表面温度の変化として現れ流れ方向にアレー状に配置された温度センサ3によって検出することができ、その変化点として境界層遷移点を検知することができる。ちなみに本発明者が用いた中空円筒体形状は外径寸法50mm、内径寸法49mm、長さ100mmで素材は金属で表面は滑らかなものを用い、円筒内部に流体を通過させて測定した。   Although it is not necessary to specify the measurement method of the boundary layer transition point in particular, here, as one form, a cylindrical member is placed in the flow field in the wind tunnel and the outer surface transitions from the laminar boundary layer to the turbulent boundary layer. The description will be made by detecting the position from the change of the heat transfer coefficient. That is, as shown in FIG. 1, the hollow cylindrical member 1 is provided with a heater 2 for uniformly heating the outer surface and a temperature sensor 3 arranged in an array in the flow direction. If the flow state of the boundary layer formed in the vicinity of the object surface is uniform, the heat radiation on the outer surface of the cylindrical member 1 should be uniform, but in reality, the boundary layer is disturbed from the laminar boundary layer. Since a phenomenon of transition to the flow boundary layer occurs, the heat dissipation state changes depending on the position. This change appears as a change in the surface temperature and can be detected by the temperature sensor 3 arranged in an array in the flow direction, and a boundary layer transition point can be detected as the change point. Incidentally, the shape of the hollow cylinder used by the present inventor was measured by passing a fluid through the inside of the cylinder using an outer diameter of 50 mm, an inner diameter of 49 mm, a length of 100 mm, a material having a metal and a smooth surface.

まず、有効レイノルズ数の計測についてであるが、境界層遷移点に影響を与えるレイノルズ数以外の要因であるパラメータを変化させない環境の下で流速のみを変化させ、この境界層の乱流遷移の位置が変わる現象を計測し、そのデータを蓄積する。すなわち、ある風洞設備において、上記の中空円筒体1を風洞内に設置し、流体速度を変化させて境界層遷移点を計測する。この場合、滑らかな金属表面は安定しており物体の表面状態は安定とみなされ、ヒーター2による加熱も均一安定状態とするので熱伝達も安定とみなすことができる。また、流体は大気であるからその密度と粘度も安定とみなすことができる。このような条件下で流速を変化させながら、温度センサ3によって境界層遷移点の計測を実施し、その条件下における流速と境界層遷移点データの対応をテーブル情報として蓄積する。ここで得られた境界層遷移点データはこの場合レイノルズ数以外の要因による変化分は重畳されていないと解されるので、レイノルズ数に対応したものとみなすことができる。レイノルズ数の定義式R=ρLU/η=LU/νに基づき、それぞれの流速に対応したレイノルズ数を算出すればレイノルズ数に対応した境界層遷移点の対応表が得られる。なお、汎用性を得るため、レイノルズ数は単位長さあたりのレイノルズ数としてデータを蓄積することが望ましい。このデータは、当該風洞において実施される物体表面が等しい模型の実験におけるレイノルズ数計測に利用することができる。すなわち、境界層遷移現象を計測することによって、流体の密度・粘度・流速を計測しなくてもある流れの状態を基準とした有効レイノルズ数を容易に計測することが出来る。   First, regarding the measurement of effective Reynolds number, the position of the turbulent transition in this boundary layer is changed by changing only the flow velocity in an environment where the parameters other than the Reynolds number that affect the boundary layer transition point are not changed. The phenomenon that changes is measured and the data is accumulated. That is, in a certain wind tunnel facility, the hollow cylindrical body 1 is installed in the wind tunnel, and the boundary layer transition point is measured by changing the fluid velocity. In this case, the smooth metal surface is stable, the surface state of the object is regarded as stable, and heating by the heater 2 is also in a uniform stable state, so that heat transfer can also be regarded as stable. Further, since the fluid is air, its density and viscosity can be regarded as stable. The boundary layer transition point is measured by the temperature sensor 3 while changing the flow velocity under such conditions, and the correspondence between the flow velocity and boundary layer transition point data under the conditions is stored as table information. The boundary layer transition point data obtained here can be regarded as corresponding to the Reynolds number because it is understood that the change due to factors other than the Reynolds number is not superimposed in this case. If the Reynolds number corresponding to each flow velocity is calculated based on the Reynolds number defining formula R = ρLU / η = LU / ν, a correspondence table of boundary layer transition points corresponding to the Reynolds number is obtained. In order to obtain versatility, it is desirable to store data as the Reynolds number as the Reynolds number per unit length. This data can be used for Reynolds number measurement in a model experiment performed in the wind tunnel with the same object surface. That is, by measuring the boundary layer transition phenomenon, it is possible to easily measure the effective Reynolds number based on the flow state without measuring the density, viscosity, and flow velocity of the fluid.

レイノルズ数に対応した境界層遷移点の対応表は、上記した、
1)ある気流状態におけるレイノルズ数とその物体表面における境界層乱流遷移位置を計測したデータから予め作成したテーブル、
に限らず、
2)計測に使う物体と同一の表面状態や形状と、気流のレイノルズ数や状態を条件として、流体力学の理論から予測される境界層乱流遷移位置から作成したテーブル、
3)計測に使う物体と同一の表面状態や形状と、気流のレイノルズ数や状態を条件として、コンピュータシミュレーションから予測される境界層乱流遷移位置から作成したテーブル、
4)実験と理論、又は実験とコンピュータシミュレーションなど前記の3つの方法を組み合わせることによって、ある気流状態におけるレイノルズ数とその物体表面における予測された境界層乱流遷移位置から作成したテーブル、
を用いることができる。
また、本発明に係る流体力学上のパラメータ算出方法は、この方法によって得られたレイノルズ数Rから、物体の代表的長さをL、速度をU、密度をρ、粘性率をηそして動粘性率をνとしたとき、R=ρLU/η=LU/νで表せる関係に基づき、流体の密度ρ、粘性率η若しくは動粘性率νのうちのいずれか1つの未知数を算出することが可能となる。
The correspondence table of boundary layer transition points corresponding to the Reynolds number is as described above.
1) A table created in advance from data obtained by measuring the Reynolds number in a certain airflow state and the boundary layer turbulent transition position on the surface of the object,
Not only
2) A table created from the boundary layer turbulent transition position predicted from the theory of fluid dynamics, subject to the same surface state and shape as the object used for measurement, and the Reynolds number and state of the airflow.
3) A table created from the boundary layer turbulent transition position predicted from computer simulation, subject to the same surface state and shape as the object used for measurement, and Reynolds number and state of the airflow,
4) A table created from the Reynolds number in a certain airflow state and the predicted boundary layer turbulent transition position on the object surface by combining the above three methods such as experiment and theory, or experiment and computer simulation,
Can be used.
Also, the hydrodynamic parameter calculation method according to the present invention is based on the Reynolds number R obtained by this method, the representative length of the object is L, the velocity is U, the density is ρ, the viscosity is η, and the kinematic viscosity When the rate is ν, it is possible to calculate any one of the unknowns of fluid density ρ, viscosity η, and kinematic viscosity ν based on the relationship expressed by R = ρLU / η = LU / ν. Become.

次に、本発明者らが独立行政法人宇宙航空研究開発機構の研究本部に設置している小型低乱風洞で本発明が提示するレイノルズ数と境界層遷移点との関係すなわち、レイノルズ数が変わればそれに対応して境界層遷移点が変わり、この境界層遷移点を測定すればレイノルズ数が計測できることを実証した実験結果を示す。供試体はNACA0015で、素材はカーボンFRP、風洞幅方向寸法Bが1.0m,前後方向寸法Cが0.4mの二次元翼形状のもので、迎角は0℃の姿勢で風洞内に設置した。この二次元翼形状とは実際の航空機の翼と異なり、断面形状は図2に示すようなものでB方向すべての位置について同じものである。境界層遷移点位置センサには図3に示すような先端開口部の内径が0.3mm,外径が0.5mmのプレストン管を用い、この翼面流れ方向にプレストン管を配置して検出された圧力変化から境界層遷移点位置を検知するようにした。主流流速(センサ設置位置の流速に相当する。)を20m/s,30m/s,40m/s,50m/s,58m/sと設定切り替えし、それぞれの流速状態におけるピトー管総圧と壁面静圧をプレストン管配置位置(X/C)20,30,40,45,50,55,60,65,70,75,80の11ケ所で測定した。ここでCは先の二次元翼形状の前後方向寸法であって、この場合0.4mで、X/Cの値は翼の前端位置が0、後端位置が100ということで示してある。測定結果は表1に示すとおりであり、プレストン管によって計測された総圧を主流動圧で割って無次元化した値である圧力係数Cpを縦軸にとり、計測位置X/Cを横軸にしてそれをグラフにしたものが図4に示すグラフである。このグラフで急激に立ち上がっている変曲点が境界層遷移点に対応するので、その計測位置X/Cをそれぞれの流速における境界層遷移点として取り込む。具体的には「立ち上がり前」「立ち上がり中」「立ち上がり後」の曲線部分に折線を引きその交点を遷移のOnset点、End点としその中間点を遷移点として推定する。   Next, the relationship between the Reynolds number and the boundary layer transition point proposed by the present invention in the small low turbulence wind tunnel established by the present inventors in the Research Division of the Japan Aerospace Exploration Agency, that is, the Reynolds number is changed. For example, the boundary layer transition point changes correspondingly, and the experimental results demonstrating that the Reynolds number can be measured by measuring this boundary layer transition point are shown. The specimen was NACA0015, the material was carbon FRP, the wind tunnel width direction dimension B was 1.0 m, and the longitudinal dimension C was 0.4 m, and it was installed in the wind tunnel with an angle of attack of 0 ° C. Unlike the actual aircraft wing, this two-dimensional wing shape has the same cross-sectional shape as shown in FIG. 2 and is the same for all positions in the B direction. As the boundary layer transition point position sensor, a Preston tube having an inner diameter of 0.3 mm and an outer diameter of 0.5 mm as shown in FIG. 3 is used, and the pressure detected by arranging the Preston tube in the blade surface flow direction. The boundary layer transition point position is detected from the change. The main flow velocity (corresponding to the flow velocity at the sensor installation position) is switched between 20 m / s, 30 m / s, 40 m / s, 50 m / s, and 58 m / s. The pressure was measured at 11 locations of Preston tube arrangement positions (X / C) 20, 30, 40, 45, 50, 55, 60, 65, 70, 75, 80. Here, C is the dimension in the front-rear direction of the previous two-dimensional wing shape, in this case 0.4 m, and the value of X / C is indicated by the front end position of the wing being 0 and the rear end position being 100. The measurement results are shown in Table 1. The pressure coefficient Cp, which is a dimensionless value obtained by dividing the total pressure measured by the Preston tube by the main flow pressure, is taken on the vertical axis, and the measurement position X / C is taken on the horizontal axis. A graph of this is shown in FIG. Since the inflection point rising rapidly in this graph corresponds to the boundary layer transition point, the measurement position X / C is taken in as the boundary layer transition point at each flow velocity. Specifically, a polygonal line is drawn on the curve parts “before rising”, “during rising”, and “after rising”, and the intersection is set as the Onset point and End point of the transition, and the intermediate point is estimated as the transition point.

Figure 2006343179
ここで、圧力データはすべて主流静圧との差で示してある。また、空気の粘度は25℃の、密度は30℃の乾燥空気を仮定してその値を用いた。
それぞれの流速に対応した単位長さ(1m)当たりのレイノルズ数を算出すればレイノルズ数は、レイノルズ数の定義式R=ρLU/η=LU/νに基づき、算出すると
主流流速 単位長さ当たりのレイノルズ数
20m/s 1301×10/m
30m/s 1752×10/m
40m/s 2602×10/m
50m/s 3253×10/m
58m/s 3773×10/m
となる。図4のグラフは境界層遷移点位置を示す立ち上がり位置が、上記のようなレイノルズ数値とみなされる主流流速に対応して大きく異なることを示しており、この境界層遷移点位置が感度のよいレイノルズ数検知パラメータであることを実証している。なお、ここで得られた境界層遷移点データはこの場合レイノルズ数以外の要因による変化分は重畳されていないと解されるので、レイノルズ数に対応したものとみなすことができる。
Figure 2006343179
Here, all the pressure data are shown as differences from the mainstream static pressure. Further, assuming that the viscosity of air is 25 ° C. and the density is 30 ° C., the values are used.
If the Reynolds number per unit length (1 m) corresponding to each flow velocity is calculated, the Reynolds number is calculated based on the Reynolds number definition formula R = ρLU / η = LU / ν. Reynolds number
20m / s 1301 × 10 3 / m
30m / s 1752 × 10 3 / m
40m / s 2602 × 10 3 / m
50m / s 3253 × 10 3 / m
58m / s 3773 × 10 3 / m
It becomes. The graph of FIG. 4 shows that the rising position indicating the boundary layer transition point position is greatly different corresponding to the mainstream flow velocity regarded as the Reynolds value as described above, and this boundary layer transition point position is highly sensitive. It is proved to be a number detection parameter. Note that the boundary layer transition point data obtained here can be regarded as corresponding to the Reynolds number because it is understood that the change due to factors other than the Reynolds number is not superimposed in this case.

境界層遷移点の計測手法の1例である中空円筒体を示す図である。It is a figure which shows the hollow cylinder which is an example of the measuring method of a boundary layer transition point. 本発明の実験に用いた供試体の二次元翼断面を示す図である。It is a figure which shows the two-dimensional blade cross section of the test body used for experiment of this invention. 本発明の実験に用いたプレストン管を示す図である。It is a figure which shows the Preston tube used for experiment of this invention. 本発明のレイノルズ数と境界層遷移の位置との対応性を実証する実験結果をグラフ表示したものである。FIG. 4 is a graph showing experimental results demonstrating the correspondence between the Reynolds number and the boundary layer transition position according to the present invention. 乱流球を用いた従来のレイノルズ数計測手法を説明する図である。It is a figure explaining the conventional Reynolds number measurement method using a turbulent sphere.

符号の説明Explanation of symbols

1 中空円筒体
2 ヒーター
3 センサ
1 Hollow cylinder 2 Heater 3 Sensor

Claims (7)

ある表面状態の物体を風洞内に設置し、密度、粘性率そして動粘性率といった物性が一定である空気等の流体を用い、流体の乱れ度と熱伝達が安定である状態の下でその流体速度を変化させ、それぞれの気流状態におけるレイノルズ数とその物体表面における境界層乱流遷移位置との関係を予めテーブル情報として蓄積しておき、実験においてある気流状態で計測した境界層乱流遷移位置データから、前記テーブル情報に基づき当該風洞における流体の単位長さあたりのレイノルズ数を求める方法。   An object with a certain surface state is installed in a wind tunnel, and fluid such as air with constant physical properties such as density, viscosity and kinematic viscosity is used, and the fluid is turbulent and heat transfer is stable. Boundary layer turbulent transition position measured in a certain airflow state in an experiment by previously storing the table as a table of the relationship between the Reynolds number in each airflow state and the boundary layer turbulent transition position on the object surface. A method of obtaining Reynolds number per unit length of fluid in the wind tunnel from data based on the table information. テーブル情報は、ある気流状態におけるレイノルズ数とその物体表面における境界層乱流遷移位置を計測したデータから予め作成したものである請求項1に記載のレイノルズ数を求める方法。   2. The method according to claim 1, wherein the table information is created in advance from data obtained by measuring the Reynolds number in a certain airflow state and the boundary layer turbulent transition position on the object surface. テーブル情報は、計測に使う物体と同一の表面状態や形状と、気流のレイノルズ数や状態を条件として、流体力学の理論から予測される境界層乱流遷移位置から作成したものである請求項1に記載のレイノルズ数を求める方法。   2. The table information is created from the boundary layer turbulent transition position predicted from the theory of fluid dynamics under the conditions of the same surface state and shape as the object used for measurement and the Reynolds number and state of the airflow. The method of calculating | requiring the Reynolds number of description. テーブル情報は、計測に使う物体と同一の表面状態や形状と、気流のレイノルズ数や状態を条件として、コンピュータシミュレーションから予測される境界層乱流遷移位置から作成したものである請求項1に記載のレイノルズ数を求める方法。   2. The table information is created from boundary layer turbulent transition positions predicted from computer simulation on condition of the same surface state and shape as an object used for measurement, and Reynolds number and state of airflow. To find the Reynolds number. テーブル情報は、請求項2乃至4に記載の3つの方法を組み合わせることによって、ある気流状態におけるレイノルズ数とその物体表面における予測された境界層乱流遷移位置から作成したものである当該風洞における流体の単位長さあたりのレイノルズ数を求める方法。   The table information is created from the Reynolds number in a certain airflow state and the predicted boundary layer turbulent transition position on the object surface by combining the three methods described in claims 2 to 4. To find the Reynolds number per unit length. 請求項1乃至5に記載の方法によって得られたレイノルズ数Rから、物体の代表的長さをL、速度をU、密度をρ、粘性率をηそして動粘性率をνとしたとき、R=ρLU/η=LU/νで表せる関係に基づき、流体の密度ρ、粘性率η若しくは動粘性率νのうちのいずれか1つの未知数を算出する方法。   From the Reynolds number R obtained by the method according to claim 1 to 5, when the representative length of the object is L, velocity is U, density is ρ, viscosity is η, and kinematic viscosity is ν, R = [Rho] LU / [eta] = A method for calculating any one of the unknowns among the density [rho], the viscosity [eta], and the kinematic viscosity [nu] based on the relationship expressed by [LU / v]. ある表面状態の物体を風洞内に設置し、密度、粘性率そして動粘性率といった物性が一定である空気等の流体を用い、特定形状の物体の表面状態と、流体の乱れ度と、熱伝達のパラメータのうち2つを安定とした状態で所定気流を流した状態における他の1つのパラメータを変化させたときの境界層遷移点を計測したデータを予めテーブル情報として蓄積しておき、実験において前記所定気流状態で計測した前記特定形状の境界層乱流遷移位置データから、未知の1つのパラメータを評価する方法。   An object with a certain surface condition is installed in a wind tunnel, and fluid such as air with constant physical properties such as density, viscosity and kinematic viscosity is used. The surface condition of the object of a specific shape, fluid turbulence, and heat transfer In the experiment, data obtained by measuring the boundary layer transition point when another parameter in the state where a predetermined airflow was flowed in a state where two of the parameters were stabilized were previously stored as table information. A method of evaluating one unknown parameter from boundary layer turbulent transition position data of the specific shape measured in the predetermined airflow state.
JP2005168054A 2005-06-08 2005-06-08 Measurement of Reynolds number using boundary layer turbulent transition phenomenon Expired - Fee Related JP4214210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168054A JP4214210B2 (en) 2005-06-08 2005-06-08 Measurement of Reynolds number using boundary layer turbulent transition phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168054A JP4214210B2 (en) 2005-06-08 2005-06-08 Measurement of Reynolds number using boundary layer turbulent transition phenomenon

Publications (2)

Publication Number Publication Date
JP2006343179A true JP2006343179A (en) 2006-12-21
JP4214210B2 JP4214210B2 (en) 2009-01-28

Family

ID=37640252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168054A Expired - Fee Related JP4214210B2 (en) 2005-06-08 2005-06-08 Measurement of Reynolds number using boundary layer turbulent transition phenomenon

Country Status (1)

Country Link
JP (1) JP4214210B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716826A (en) * 2016-02-18 2016-06-29 江西洪都航空工业集团有限责任公司 Reynolds number effect correcting method of zero lift-drag force coefficient
CN106979853A (en) * 2017-04-01 2017-07-25 西安交通大学 It is a kind of to be used for FLOW VISUALIZATION, the experimental provision of measurement and method
CN108287054A (en) * 2017-12-25 2018-07-17 中国航天空气动力技术研究院 A kind of transition Reynolds number acquisition methods under flying condition
CN112945518A (en) * 2021-02-04 2021-06-11 武汉大学 Open channel constant flow energy loss determination method
CN113326625A (en) * 2021-06-07 2021-08-31 北京四良科技有限公司 Wind tunnel model evaluation method for dwarf close-planting apple orchard wind-proof grillwork
CN113639955A (en) * 2021-10-15 2021-11-12 中国空气动力研究与发展中心计算空气动力研究所 Device for measuring concave panel boundary layer disturbance
CN113899525A (en) * 2021-12-06 2022-01-07 中国空气动力研究与发展中心高速空气动力研究所 Compressible Reynolds stress measurement system based on combined schlieren technology
CN113947035A (en) * 2021-08-27 2022-01-18 中国航天空气动力技术研究院 Data heaven-earth correlation method for transition of hypersonic velocity boundary layer
CN114061896A (en) * 2021-11-17 2022-02-18 中国空气动力研究与发展中心超高速空气动力研究所 Method for processing internal resistance measurement test data of lifting body ventilation model
CN114608784A (en) * 2022-05-10 2022-06-10 中国空气动力研究与发展中心高速空气动力研究所 Method for obtaining dynamic running pressure matching point of jet flow in jet wind tunnel through ultrasonic velocity jet flow
CN114707301A (en) * 2022-03-09 2022-07-05 东华大学 Fractal theory-based riding suit fabric resistance crisis prediction method
CN114993609A (en) * 2022-08-08 2022-09-02 中国空气动力研究与发展中心计算空气动力研究所 Method, medium, processor and equipment for predicting transition position of variable Reynolds number blunt cone
CN115979571A (en) * 2023-03-20 2023-04-18 中国人民解放军国防科技大学 Wind tunnel experiment measurement method and device for thickness of micro-scale air film on wall surface of aircraft
CN116337396A (en) * 2023-05-30 2023-06-27 中国航空工业集团公司哈尔滨空气动力研究所 Method for actively simulating wind tunnel test by using high-altitude atmospheric turbulence
CN116399552A (en) * 2023-06-08 2023-07-07 中国空气动力研究与发展中心低速空气动力研究所 Low-Reynolds number wind tunnel test method and system
CN116952525A (en) * 2023-09-20 2023-10-27 中国空气动力研究与发展中心低速空气动力研究所 Non-contact measurement method and system for friction resistance of wing-shaped wall surface for wind tunnel experiment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108304603A (en) * 2017-08-16 2018-07-20 北京空天技术研究所 A kind of high-speed aircraft is forced to turn to twist device verification method
CN110806300B (en) * 2019-10-12 2021-02-09 北京临近空间飞行器系统工程研究所 Measuring point arrangement method suitable for hypersonic flight test transition research

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716826A (en) * 2016-02-18 2016-06-29 江西洪都航空工业集团有限责任公司 Reynolds number effect correcting method of zero lift-drag force coefficient
CN106979853A (en) * 2017-04-01 2017-07-25 西安交通大学 It is a kind of to be used for FLOW VISUALIZATION, the experimental provision of measurement and method
CN106979853B (en) * 2017-04-01 2023-04-07 西安交通大学 Experimental device and method for flow display and measurement
CN108287054A (en) * 2017-12-25 2018-07-17 中国航天空气动力技术研究院 A kind of transition Reynolds number acquisition methods under flying condition
CN112945518A (en) * 2021-02-04 2021-06-11 武汉大学 Open channel constant flow energy loss determination method
CN112945518B (en) * 2021-02-04 2023-05-05 武汉大学 Method for determining energy loss of constant flow of open channel
CN113326625B (en) * 2021-06-07 2023-08-25 北京四良科技有限公司 Wind tunnel model evaluation method for wind-proof grillwork of dwarf close-planted apple orchard
CN113326625A (en) * 2021-06-07 2021-08-31 北京四良科技有限公司 Wind tunnel model evaluation method for dwarf close-planting apple orchard wind-proof grillwork
CN113947035A (en) * 2021-08-27 2022-01-18 中国航天空气动力技术研究院 Data heaven-earth correlation method for transition of hypersonic velocity boundary layer
CN113639955B (en) * 2021-10-15 2022-01-04 中国空气动力研究与发展中心计算空气动力研究所 Device for measuring concave panel boundary layer disturbance
CN113639955A (en) * 2021-10-15 2021-11-12 中国空气动力研究与发展中心计算空气动力研究所 Device for measuring concave panel boundary layer disturbance
CN114061896A (en) * 2021-11-17 2022-02-18 中国空气动力研究与发展中心超高速空气动力研究所 Method for processing internal resistance measurement test data of lifting body ventilation model
CN113899525B (en) * 2021-12-06 2022-02-22 中国空气动力研究与发展中心高速空气动力研究所 Compressible Reynolds stress measurement system based on combined schlieren technology
CN113899525A (en) * 2021-12-06 2022-01-07 中国空气动力研究与发展中心高速空气动力研究所 Compressible Reynolds stress measurement system based on combined schlieren technology
CN114707301A (en) * 2022-03-09 2022-07-05 东华大学 Fractal theory-based riding suit fabric resistance crisis prediction method
CN114608784B (en) * 2022-05-10 2022-07-19 中国空气动力研究与发展中心高速空气动力研究所 Method for obtaining dynamic running pressure matching point of jet flow in jet wind tunnel through ultrasonic velocity jet flow
CN114608784A (en) * 2022-05-10 2022-06-10 中国空气动力研究与发展中心高速空气动力研究所 Method for obtaining dynamic running pressure matching point of jet flow in jet wind tunnel through ultrasonic velocity jet flow
CN114993609A (en) * 2022-08-08 2022-09-02 中国空气动力研究与发展中心计算空气动力研究所 Method, medium, processor and equipment for predicting transition position of variable Reynolds number blunt cone
CN115979571A (en) * 2023-03-20 2023-04-18 中国人民解放军国防科技大学 Wind tunnel experiment measurement method and device for thickness of micro-scale air film on wall surface of aircraft
CN115979571B (en) * 2023-03-20 2023-06-02 中国人民解放军国防科技大学 Wind tunnel experiment measurement method and device for micro-scale air film thickness of wall surface of aircraft
CN116337396A (en) * 2023-05-30 2023-06-27 中国航空工业集团公司哈尔滨空气动力研究所 Method for actively simulating wind tunnel test by using high-altitude atmospheric turbulence
CN116337396B (en) * 2023-05-30 2023-07-21 中国航空工业集团公司哈尔滨空气动力研究所 Method for actively simulating wind tunnel test by using high-altitude atmospheric turbulence
CN116399552A (en) * 2023-06-08 2023-07-07 中国空气动力研究与发展中心低速空气动力研究所 Low-Reynolds number wind tunnel test method and system
CN116399552B (en) * 2023-06-08 2023-08-18 中国空气动力研究与发展中心低速空气动力研究所 Low-Reynolds number wind tunnel test method and system
CN116952525A (en) * 2023-09-20 2023-10-27 中国空气动力研究与发展中心低速空气动力研究所 Non-contact measurement method and system for friction resistance of wing-shaped wall surface for wind tunnel experiment
CN116952525B (en) * 2023-09-20 2023-12-01 中国空气动力研究与发展中心低速空气动力研究所 Non-contact measurement method and system for friction resistance of wing-shaped wall surface for wind tunnel experiment

Also Published As

Publication number Publication date
JP4214210B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4214210B2 (en) Measurement of Reynolds number using boundary layer turbulent transition phenomenon
Häggmark et al. Experiments on a two–dimensional laminar separation bubble
CN112052632B (en) Hypersonic flow direction transition prediction method
Costantini et al. Nonadiabatic surface effects on transition measurements using temperature-sensitive paints
Young et al. Effects of cavitation on periodic wakes behind symmetric wedges
CN108304601A (en) A kind of judgment method of hypersonic aircraft boundary layer transition
Koca et al. Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output
Costantini et al. Pressure gradient and nonadiabatic surface effects on boundary layer transition
Koca et al. Experimental flow control investigation over suction surface of turbine blade with local surface passive oscillation
Kohri et al. Prediction of the performance of the engine cooling fan with CFD simulation
Costantini et al. A robust method for reliable transition detection in temperature-sensitive paint data
Chen et al. Experimental and numerical studies of low aspect ratio wing at critical Reynolds number
Lee et al. PIV measurements of hull wake behind a container ship model with varying loading condition
Sagmo et al. PIV measurements and CFD simulations of a hydrofoil at lock-in
Yarusevych et al. Airfoil performance at low Reynolds numbers in the presence of periodic disturbances
Miller et al. Investigation of the scaling of roughness and blowing effects on turbulent channel flow
Verhaagen Flow over 50o Delta Wings with Different Leading-Edge Radii
Brzek et al. Characterizing developing adverse pressure gradient flows subject to surface roughness
Wu et al. Numerical study of the installed controlled diffusion airfoil at transitional Reynolds number
Degrez et al. Surface phenomena in a three-dimensional skewed shock wave/laminar boundary-layer interaction
Haghiri et al. Experimental study of boundary layer in compressible flow using hot film sensors through statistical and qualitative methods
Dollinger et al. Thermographic detection of separated flow
Li et al. Hypersonic transition analysis for HIFiRE experiments
Panina et al. Experimental study of the natural disturbance development in a supersonic flat plate boundary layer with a wavy surface
Wu et al. Effects of tip perturbation on asymmetric vortex flow over slender delta wings

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees