JP2006343110A - Absolute position detection apparatus - Google Patents

Absolute position detection apparatus Download PDF

Info

Publication number
JP2006343110A
JP2006343110A JP2005166417A JP2005166417A JP2006343110A JP 2006343110 A JP2006343110 A JP 2006343110A JP 2005166417 A JP2005166417 A JP 2005166417A JP 2005166417 A JP2005166417 A JP 2005166417A JP 2006343110 A JP2006343110 A JP 2006343110A
Authority
JP
Japan
Prior art keywords
scale
detection
stage
scales
absolute position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166417A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
洋 小川
Daisuke Ogawa
大介 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005166417A priority Critical patent/JP2006343110A/en
Publication of JP2006343110A publication Critical patent/JP2006343110A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect absolute positions with high accuracy and high resolution in position detection, while reducing the number of stages of a scale provided for a scale member, reduce the size and the weight of an apparatus itself, and being able to effective mount to a narrow space. <P>SOLUTION: This absolute position detection apparatus specifies as absolute positions the positions of arrangement of a first detection part and non-detection parts 5a and 5b in a first-stage scale 5, which face first detection members 11a and 11b, on the basis of the amount of displacement of detections signals from second detection members 13a and 13b to detection signals to the first detection member 11a and the first light reception member 11b. A second count means 35b counts the arrangement number of the specified first detection part and the specified non-detection parts 5a and 5b. The count value by a first counting means 35a is added to a value, acquired by multiplying a count value of the second counting means 35b by the pitch of the first detection part and the non-detection parts 5a and 5b and detected as absolute position. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、サーボモータを閉ループ制御して移動体を移動する際に、該移動体の移動位置を絶対位置として検出する絶対位置検出装置に関する。   The present invention relates to an absolute position detection device that detects a moving position of a moving body as an absolute position when the moving body is moved by closed loop control of a servo motor.

サーボモータを閉ループ制御して移動体を移動制御する際の位置検出装置としては、光学式または磁気式のリニアエンコーダやロータリーエンコーダ等が知られている。このように位置検出装置により移動体の移動位置を絶対位置として検出するには、スケール板の1段目に、例えば1mmピッチの検出部及び非検出部からなる多数の目盛を設けると共に2段目に1段目の目盛の倍ピッチからなる目盛を、3段目に前段の目盛の倍ピッチからなる目盛を順に設け、上段側の目盛により下段側の目盛位置を順に特定して絶対位置を検出できるようにしている。   As position detection devices for controlling the movement of a moving body by performing closed loop control of a servo motor, optical or magnetic linear encoders, rotary encoders, and the like are known. In order to detect the moving position of the moving body as an absolute position by the position detection device in this way, a number of scales made up of, for example, a detection unit and a non-detection unit with a pitch of 1 mm are provided on the first stage of the scale plate and the second stage. A scale with double pitch of the first scale and a scale with double pitch of the previous scale are provided in order on the third stage, and the absolute position is detected by sequentially identifying the scale position on the lower stage with the upper scale. I can do it.

しかし、1段目の目盛を1mmピッチとして検出分解能を1μm、検出距離を1000mmとする場合には、100万分割する必要があり、これを実現するには、上記した目盛の段数を、全体として20段で構成する必要があり、これによりスケール板の構造が複雑化したり、大型化すると共に段数に応じた組数の検出部材を必要とするため、装置自体が大型化及び重量化して高コスト化する問題を有している。特に、位置検出分解能を0.001μm、検出距離を1000mmとした場合には、上記スケール板の目盛を30段構成にする必要があり、上記欠点が顕著になると共に狭小スペースに取付けることが困難になる問題を有している。
特開平−号公報
However, if the scale of the first stage is 1 mm pitch, the detection resolution is 1 μm, and the detection distance is 1000 mm, it is necessary to divide it into 1 million. Since the structure of the scale plate is complicated or increased in size and requires a number of detection members according to the number of stages, the apparatus itself is increased in size and weight, resulting in high cost. Have the problem of becoming In particular, when the position detection resolution is 0.001 μm and the detection distance is 1000 mm, the scale plate needs to have a 30-stage scale, which makes the above-described drawbacks conspicuous and makes it difficult to install in a narrow space. Have the problem.
JP-A

解決しようとする問題点は、スケール部材に、検出分解能に応じて多数のスケールを多段状に形成すると共に各スケールに対して検出部を設けることによりスケール部材の構造が複雑化して大型化し、装置自体の大型化及び重量化を招いて狭小空間に取付けることが困難になる点にある。   The problem to be solved is that the structure of the scale member is complicated and enlarged by forming a large number of scales on the scale member in accordance with the detection resolution and providing a detector for each scale. This increases the size and weight of the device itself, and makes it difficult to mount it in a narrow space.

本発明の請求項1は、少なくとも第1検出部からなる第1目盛を所望のピッチで配列した1段目スケール、1段目スケールの第1目盛に対し、所望の個数ごとに一致するピッチの少なくとも第2検出部からなる多数の第2目盛を配列した2段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目及び2段目スケールの各目盛に基づいて電気信号をそれぞれ出力する少なくとも第1及び第2検出部材と、第1検出部材からの第1検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、分割された第1検出信号数を計数する第1計数手段と、第1検出信号に対する第2検出信号の変位を検出して変位数を計数する第2計数手段と、第2計数手段の計数値に第1目盛相互間の距離を乗じた値に第1計数手段による計数値を加算して絶対位置を検出する演算手段とからなる。   According to the first aspect of the present invention, the first scale of at least the first detectors arranged at a desired pitch and the first scale of the first scale and the first scale of the first scale have a pitch that matches every desired number. A second-stage scale in which a plurality of second graduations comprising at least a second detection unit are arranged in parallel to each other, and a first-stage and second-stage scale provided to move relative to the scale member. At least first and second detection members that respectively output electrical signals based on the respective scales, and a dividing unit that divides the first detection signals from the first detection members by a number corresponding to a desired position detection resolution, First counting means for counting the number of divided first detection signals, second counting means for detecting the displacement of the second detection signal relative to the first detection signal and counting the number of displacements, and the count value of the second counting means Between the first graduations The value obtained by multiplying the release by adding a count value by the first counting means comprising a computing means for detecting the absolute position.

請求項2は、少なくとも第1検出部からなる多数の第1目盛を所望のピッチで配列した1段目スケール、第1目盛に対し、該第1目盛の所定数ごとに一致するピッチの少なくとも第2検出部からなる多数の第2目盛を配列した2段目スケール及び第2目盛に対し、少なくとも第3検出部からなる多数の第3目盛を該第2目盛の所定個数ごとに所定量、変位する関係で配列した3段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目乃至3段目スケールのそれぞれの目盛に基づいて電気信号をそれぞれ出力する少なくとも第1乃至第3検出部材と、第1検出部材からの第1検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、出力されて分割された第1検出信号数を計数する第1計数手段と、第1検出信号に対する第2検出部材からの第2検出信号の変位に基づいて変位数を計数する第2計数手段と、第2検出信号に対する第3検出部材からの第3検出信号の変位量が所定量になる回数を計数する第3計数手段と、第3計数手段の計数値により特定された2段目スケールの区画数に2段目スケールの区画間距離を乗じた値と第2計数手段の計数値に第1目盛間の距離を乗じた値と第1計数手段による計数値による第1目盛間の距離を加算して絶対位置検出する演算手段とからなる。 According to a second aspect of the present invention, the first scale and the first scale in which a large number of first scales each including at least a first detection unit are arranged at a desired pitch, and at least the first pitch corresponding to the predetermined number of the first scales. A second stage scale and a second scale in which a large number of second scales composed of two detectors are arranged, and a plurality of third scales composed of at least a third detector are displaced by a predetermined amount for each predetermined number of the second scales. A scale member provided in parallel with each other and a scale member arranged in parallel with each other, and an electrical signal based on the scales of the first to third stage scales provided to move relative to the scale member. At least first to third detection members that respectively output, a dividing unit that divides a first detection signal from the first detection member by a number corresponding to a desired position detection resolution, and a first detection that is output and divided Number of signals First counting means for counting, second counting means for counting the number of displacements based on the displacement of the second detection signal from the second detection member relative to the first detection signal, and from the third detection member for the second detection signal Third counting means for counting the number of times the displacement of the third detection signal reaches a predetermined amount, and the distance between the sections of the second-stage scale to the number of sections of the second-stage scale specified by the count value of the third counting means A value obtained by multiplying the multiplied value and the count value of the second counting means by the distance between the first graduations, and a calculating means for detecting the absolute position by adding the distance between the first graduations based on the count values by the first counting means. .

請求項3は、少なくとも第1検出部からなる第1目盛を所望の位置検出分解能に応じたピッチで配列した1段目スケール、少なくとも第2検出部からなる多数の第2目盛を第1目盛の所定数倍のピッチで配列した2段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目及び2段目スケールの各目盛に基づいて電気信号をそれぞれ出力する少なくとも第1及び第2検出部材と、第2検出部材からの第2検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、第1検出信号数を計数する第1計数手段と、第1検出信号に対して分割された第2検出信号の変位を検出して変位数を計数する第2計数手段と、第2計数手段の計数値に第1目盛相互間の距離を乗じた値に第1計数手段による計数値を加算して絶対位置を検出する演算手段とからなる。 According to a third aspect of the present invention, the first scale composed of at least the first detection section is arranged at a pitch corresponding to the desired position detection resolution, and the second scale composed of at least the second detection section includes the first scale. A scale member in which second stage scales arranged at a predetermined multiple pitch are provided in parallel with each other, and is provided so as to move relative to the scale member. Electricity is applied based on the scales of the first stage and second stage scales. At least first and second detection members that output signals, a dividing unit that divides the second detection signal from the second detection member by a number corresponding to a desired position detection resolution, and counts the number of first detection signals First counting means, second counting means for detecting the displacement of the second detection signal divided with respect to the first detection signal and counting the number of displacements, and the first graduation to the count value of the second counting means. First value multiplied by the distance between Comprising a computing means for detecting the absolute position by adding the count value by means.

請求項4は、少なくとも第1検出部からなる多数の第1目盛を所望の位置検出分解能に応じたピッチで配列した1段目スケール、少なくとも第2検出部からなる多数の第2目盛を第1目盛の所定数倍のピッチで配列した2段目スケール及び第2目盛に対し、少なくとも第3検出部からなる多数の第3目盛を第2目盛の所定個数ごとに所定量、変位する関係で配列した3段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目乃至3段目スケールのそれぞれの目盛に基づいて電気信号をそれぞれ出力する少なくとも第1乃至第3検出部材と、第2検出部材からの第2検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、第1検出信号数を計数する第1計数手段と、第1検出信号に対して分割された第2検出信号の変位を検出して変位数を計数する第2計数手段と、第2検出信号に対する第3検出部材からの第3検出信号の変位量が所定量になる回数を計数する第3計数手段と、第3計数手段の計数値により特定された2段目スケールの区画数に2段目スケールの区画間距離を乗じた値と第2計数手段の計数値に第1目盛間の距離を乗じた値と第1計数手段による計数値による第1目盛間の距離を加算して絶対位置を検出する演算手段とからなる。 According to a fourth aspect of the present invention, a first-stage scale in which a plurality of first scales including at least first detection units are arranged at a pitch corresponding to a desired position detection resolution, and a plurality of second scales including at least second detection units are first. With respect to the second-stage scale and the second scale arranged at a pitch that is a predetermined number times the scale, a large number of third scales composed of at least a third detection unit are arranged in such a manner that they are displaced by a predetermined amount for each predetermined number of second scales. A scale member provided with the third-stage scales parallel to each other, and provided so as to move relative to the scale member, and at least outputs electrical signals based on the respective scales of the first-stage to third-stage scales. First to third detection members; dividing means for dividing the second detection signal from the second detection member by a number corresponding to a desired position detection resolution; and first counting means for counting the number of first detection signals. , First Second counting means for detecting the displacement of the second detection signal divided with respect to the outgoing signal and counting the number of displacements, and the displacement of the third detection signal from the third detection member with respect to the second detection signal is a predetermined amount A third counting means for counting the number of times of the second counting means, a value obtained by multiplying the number of divisions of the second-stage scale specified by the count value of the third counting means by the distance between the divisions of the second-stage scale, and a total of the second counting means Computation means for detecting the absolute position by adding the value obtained by multiplying the numerical value by the distance between the first graduations and the distance between the first graduations based on the count value by the first counting means.

本発明は、スケール部材に設けられるスケールの段数を少なくしながら高い位置検出分解能で絶対位置を高精度に検出することができる。また、装置自体を小型化及び軽量化することができ、狭小空間に対しても有効に取付けることができる。   The present invention can detect an absolute position with high accuracy with high position detection resolution while reducing the number of scale steps provided on the scale member. Further, the device itself can be reduced in size and weight, and can be effectively attached to a narrow space.

本発明は、第2計数手段の計数値に第1目盛相互間の距離を乗じた値に第1計数手段による計数値を加算して少なくとも絶対位置を検出することを最良の形態とする。   The best mode of the present invention is to detect at least the absolute position by adding the count value of the first counting means to the value obtained by multiplying the count value of the second counting means by the distance between the first graduations.

以下、本発明を光学式リニアエンコーダとして実施した例に基づいて説明する。
図1及び図2において、絶対位置検出装置としての光学式リニアエンコーダ1のスケール部材であるスケール板3には、例えば1段目に長手方向が、例えば2mm幅の光透過部5a及び光遮断部5bからなる多数の第1目盛5cを長手方向へ配列した1段目スケール5、2段目に長手方向が、例えば2.05mm幅の光透過部7a及び光遮断部7bからなり、1段目スケール5の第1目盛5cが41個ごとに一致する関係で多数の第2目盛7cを長手方向へ配列した2段目スケール7、3段目に長手方向が、例えば2.0525mm幅の光透過部9a及び光遮断部9bからなり、2段目スケール7の第2目盛7cが40個ごと、従って82mmごとに0.1mm、変位する関係で多数の第3目盛9cを長手方向へ配列した3段目スケール9が、1段目スケール5のホームポジションである図示する左端にて各1段目スケール5,2段目スケール7及び3段目スケール9が長手直交方向へ一致した平行状態に設けられている。
Hereinafter, the present invention will be described based on an example implemented as an optical linear encoder.
1 and 2, the scale plate 3 which is a scale member of the optical linear encoder 1 as an absolute position detecting device has a light transmitting portion 5a and a light blocking portion whose longitudinal direction is, for example, 2 mm in the first stage. A first stage scale 5 in which a large number of first scales 5c made up of 5b are arranged in the longitudinal direction, and the longitudinal direction in the second stage is composed of a light transmitting portion 7a and a light blocking portion 7b having a width of, for example, 2.05 mm. Light transmission in which the longitudinal direction is, for example, 2.0525 mm wide in the second stage scale 7 and the third stage in which a plurality of second scales 7c are arranged in the longitudinal direction so that the first scales 5c of the scale 5 coincide with every 41. 3 which consists of a part 9a and a light blocking part 9b, and a plurality of third scales 9c are arranged in the longitudinal direction in such a manner that the second scale 7c of the second stage scale 7 is displaced every 40 pieces, and thus every 82 mm is 0.1 mm. The stage scale 9 is the first stage scale. The first-stage scale 5, the second-stage scale 7, and the third-stage scale 9 are provided in a parallel state in the longitudinal orthogonal direction at the left end in the figure, which is the home position of the lens 5.

尚、上記説明は、スケール板3の計測原点であるホームポジションを図示する左端として各1段目スケール5,2段目スケール7,3段目スケール9の光透過部5a・7a・9aを一致して配置したが、ホームポジションをスケール板3の長手方向中央としてもよく、本発明はスケール板3におけるホームポジションにより制限されるものではない。また、1段目スケール5の第1目盛5cに対する2段目スケール7の第2目盛7cの変位幅を上記した0.05mmとし、第2目盛7c、40個分を2段目スケール7の1区画としたが、本発明はこの数値に限定されるものではなく、任意に設定することができる。更に、2段目スケール7の第2目盛7cに対する3段目スケール9の第3目盛9cの変位幅を上記した0.0025mmとしたが、本発明は、これに限定されるものではなく、第1目盛5cに対する第2目盛7cの変位幅と2段目スケール7における第2目盛7cの1区画数に応じて適宜、設定すればよい。 In the above description, the light transmission portions 5a, 7a, and 9a of the first-stage scale 5, the second-stage scale 7, and the third-stage scale 9 are set to the left end of the home position that is the measurement origin of the scale plate 3. However, the home position may be the center of the scale plate 3 in the longitudinal direction, and the present invention is not limited by the home position on the scale plate 3. Further, the displacement width of the second scale 7c of the second-stage scale 7 relative to the first scale 5c of the first-stage scale 5 is set to 0.05 mm as described above, and 40 pieces of the second scale 7c are equivalent to 1 of the second-stage scale 7. However, the present invention is not limited to this numerical value, and can be arbitrarily set. Furthermore, although the displacement width of the third scale 9c of the third stage scale 9 relative to the second scale 7c of the second stage scale 7 is 0.0025 mm as described above, the present invention is not limited to this. What is necessary is just to set suitably according to the displacement width of the 2nd scale 7c with respect to the 1 scale 5c, and the 1 division | segmentation number of the 2nd scale 7c in the 2nd stage scale 7. FIG.

そしてスケール板3の長手方向に沿って移動可能に支持された移動体10のスケール板3を挟んだ箇所には第1発光部材11a及び第1受光部材11bが1段目スケール5に、また第2発光部材13a及び第2受光部材13bが2段目スケール7に、更に第3発光部材15a及び第3受光部材15bが3段目スケール9にそれぞれ相対し、かつこれら第1乃至第3発光部材11a・13a・15a及び第1乃至第3受光部材11b・13b・15bがスケール板3の長手直交方向に対してそれぞれ一列になるように取付けられる。   The first light-emitting member 11a and the first light-receiving member 11b are arranged on the first-stage scale 5 and the first-stage scale 5 at a position sandwiching the scale plate 3 of the moving body 10 supported so as to be movable along the longitudinal direction of the scale plate 3. The second light emitting member 13a and the second light receiving member 13b are opposed to the second stage scale 7, and the third light emitting member 15a and the third light receiving member 15b are opposed to the third stage scale 9, and the first to third light emitting members. 11 a, 13 a, 15 a and the first to third light receiving members 11 b, 13 b, 15 b are attached in a row with respect to the longitudinal orthogonal direction of the scale plate 3.

第1乃至第3発光部材11a・13a・15aとしては、発光ダイオードまたはレーザダイオードが、また第1乃至第3受光部材11b・13b・15bとしては、フォトダイオードが適しており、各第1受光部材11b、第2受光部材13b、第3受光部材15bは各スケール板3,1段目スケール5,2段目スケール7の光透過部5a・7a・9aを透過した第1乃至第3発光部材11a・13a・15aからの光の光強度に応じた擬似sin波形及び擬似cos波形の電気信号を出力する。 Light emitting diodes or laser diodes are suitable as the first to third light emitting members 11a, 13a, and 15a, and photodiodes are suitable as the first to third light receiving members 11b, 13b, and 15b. 11b, the second light receiving member 13b, and the third light receiving member 15b are the first to third light emitting members 11a that are transmitted through the light transmitting portions 5a, 7a, and 9a of the scale plate 3, the first stage scale 5, and the second stage scale 7, respectively. Outputs electrical signals of pseudo sin waveform and pseudo cos waveform corresponding to the light intensity of light from 13a and 15a.

図3において、演算手段を構成するCPU31はプログラムメモリ33及び作業メモリ35を有し、プログラムメモリ33には後述する移動体10の移動位置を絶対位置として検出処理するためのプログラムデータが記憶される。作業メモリ35は第1計数領域35a、第2計数領域35b、第3計数領域35c及び作業領域35dを有し、第1計数領域35aは後述する第1受光部材11bからの分割入力信号数を計数し、第1目盛5c間における位置データとして記憶する。第2計数領域35bは第1受光部材11bからの信号に対して第2受光部材13bからの信号の入力タイミングがずれた変位回数を計数し、第1目盛5cの絶対値に関するデータを記憶する。第3計数領域35cは第2受光部材13bからの信号に対する第3受光部材15bからの信号の入力タイミングのずれが所定の区画距離になった回数を計数し、2段目スケール7の区画数に関するデータとして記憶する。作業領域35dは後述する絶対位置検出動作を実行するのに必要な分割数データ等の各種データを記憶させる。   In FIG. 3, the CPU 31 constituting the calculation means has a program memory 33 and a work memory 35, and the program memory 33 stores program data for detecting a moving position of the moving body 10 described later as an absolute position. . The work memory 35 includes a first count area 35a, a second count area 35b, a third count area 35c, and a work area 35d. The first count area 35a counts the number of divided input signals from the first light receiving member 11b described later. And it memorize | stores as position data between the 1st scales 5c. The second counting area 35b counts the number of displacements in which the input timing of the signal from the second light receiving member 13b deviates from the signal from the first light receiving member 11b, and stores data relating to the absolute value of the first scale 5c. The third counting area 35c counts the number of times that the input timing shift of the signal from the third light receiving member 15b with respect to the signal from the second light receiving member 13b reaches a predetermined section distance, and relates to the number of sections of the second-stage scale 7. Store as data. The work area 35d stores various data such as division number data necessary for executing an absolute position detection operation described later.

一方、CPU31には第1受光部材11b、第2受光部材13b及び第3受光部材15bがA/D変換手段37を介して接続され、移動体10の移動に伴って第1受光部材11b、第2受光部材13b及び第3受光部材15bからの電気信号をデジタル信号に変換する。デジタル信号に変換された第1受光部材11b、第2受光部材13b及び第3受光部材15bの信号の内、第1受光部材11bからの信号については、分割手段39により移動体10の位置検出分解能に応じ、第1受光部材11bからの信号の1周期当たり、所定数に分割処理する。今、移動体10の移動位置検出分解能を1μmとする場合には、第1目盛5c相互の間隔が2mmである処から、上記分割数を2000に設定する。この分割処理は、CPU31が演算して実行する。そしてCPU31は第1受光部材11bから入力されて分割された分割入力信号数を第1計数領域35aに記憶させる。これにより1段目スケール5における各第1目盛5c間の距離を検出する。   On the other hand, the first light receiving member 11b, the second light receiving member 13b, and the third light receiving member 15b are connected to the CPU 31 via the A / D conversion means 37, and the first light receiving member 11b, The electric signals from the second light receiving member 13b and the third light receiving member 15b are converted into digital signals. Of the signals from the first light receiving member 11b, the second light receiving member 13b, and the third light receiving member 15b converted into digital signals, the signal from the first light receiving member 11b is divided by the dividing means 39 to detect the position of the moving body 10. Accordingly, the signal is divided into a predetermined number per cycle of the signal from the first light receiving member 11b. If the moving position detection resolution of the moving body 10 is 1 μm, the number of divisions is set to 2000 since the interval between the first graduations 5c is 2 mm. This division process is performed by the CPU 31. Then, the CPU 31 stores the number of divided input signals inputted and divided from the first light receiving member 11b in the first counting area 35a. Thereby, the distance between each first scale 5c in the first stage scale 5 is detected.

CPU31はA/D変換された第1受光部材11bからの信号と第2受光部材13bからの信号を比較し、第1受光部材11bからの信号に対する第2受光部材13bからの信号の入力タイミングがずれている場合に順次演算して変位数を計数する。今、第1目盛5cの配列間隔と第2目盛7cの配列間隔が上記したように0.05mmづつ、ずれているため、第1目盛5cが41個になるまで、第1目盛5cと第2目盛7cとの間にずれが発生する。このため、第1受光部材11bからの信号に対する第2受光部材13bからの信号がずれている回数を計数することにより移動体10が何個目の第1目盛5cに位置しているのかを特定し、対応する第1目盛5cの絶対位置を検出可能にする。   The CPU 31 compares the A / D converted signal from the first light receiving member 11b with the signal from the second light receiving member 13b, and the input timing of the signal from the second light receiving member 13b with respect to the signal from the first light receiving member 11b is When there is a deviation, the number of displacements is counted by sequentially calculating. Now, since the arrangement interval of the first graduation 5c and the arrangement interval of the second graduation 7c are deviated by 0.05 mm as described above, the first graduation 5c and the second graduation until the first graduation 5c reaches 41 pieces. Deviation occurs between the scale 7c. Therefore, the number of the first graduations 5c is specified by counting the number of times the signal from the second light receiving member 13b is shifted with respect to the signal from the first light receiving member 11b. Then, the absolute position of the corresponding first scale 5c can be detected.

同様に、CPU31はA/D変換された第2受光部材13bからの信号と第3受光部材15bからの信号を比較し、第2受光部材13bからの信号に対する第3受光部材15bからの信号の入力タイミングが所定の距離、変位している場合に演算して計数する。今、上記したように第3目盛9c相互の間隔を、2段目スケール7による計測長さが82mm(第2目盛7cが40個ごと)になるごとに0.1mm変位する関係になるように第2目盛7cの間隔に対して第3目盛9cの間隔、上記例にあっては第2目盛7cの間隔が2.05mmに対し、第3目盛9cの間隔を2.0525mmに設定している。そして2段目スケール7を第2目盛7c、40個分の82mmごとに複数の区画に設定し、第2目盛7cと第3目盛9cのずれが0.1mmになる回数を計数することにより移動体10が2段目スケール7の何番目の区画に位置しているのかを特定する。   Similarly, the CPU 31 compares the signal from the second light receiving member 13b after A / D conversion with the signal from the third light receiving member 15b, and compares the signal from the third light receiving member 15b with respect to the signal from the second light receiving member 13b. When the input timing is displaced by a predetermined distance, it is calculated and counted. Now, as described above, the interval between the third scales 9c is changed by 0.1 mm every time the measurement length of the second stage scale 7 becomes 82 mm (every 40 second scales 7c). The interval of the third scale 9c is set to 2.0525 mm with respect to the interval of the third scale 9c with respect to the interval of the second scale 7c. In the above example, the interval of the third scale 9c is set to 2.0525 mm. . Then, the second stage scale 7 is set to a plurality of sections for every 82 mm of the second scale 7c and 40 pieces, and the second scale 7 is moved by counting the number of times the deviation between the second scale 7c and the third scale 9c is 0.1 mm. It is specified in which section of the second-stage scale 7 the body 10 is located.

CPU31には出力制御手段41が設けられ、該出力制御手段41は接続された、例えばNC機械のサーボアンプやホストコンピュータ或いはLCDやプリンター等の出力部材43に、後述する絶対位置検出処理により検出された移動体10の移動位置を絶対位置として出力させる。   The CPU 31 is provided with output control means 41. The output control means 41 is detected by an absolute position detection process, which will be described later, to a connected output member 43 such as a servo amplifier of a NC machine, a host computer, or an LCD or a printer. The moving position of the moving body 10 is output as an absolute position.

次に、上記した光学式リニアエンコーダ1による移動体10の絶対位置検出作用を説明する。
移動体10を、スケール板3の図示する左端の移動原点(ホームポジション)から右方へ移動すると、移動体10の移動に伴ってスケール板3における1段目スケール5の光透過部5a及び光遮断部5b、2段目スケール7の光透過部7a及び光遮断部7b、3段目スケール9の光透過部9a及び光遮断部9bに対し、第1発光部材11a,第2発光部材13a,第3発光部材15aからの光が増減されることにより対応する第1受光部材11b、第2受光部材13b及び第3受光部材15bから擬似正弦波波形と余弦波波形の電気信号を出力する。
Next, the action of detecting the absolute position of the moving body 10 by the optical linear encoder 1 will be described.
When the moving body 10 is moved to the right from the moving origin (home position) at the left end of the scale plate 3 shown in the drawing, the light transmitting portion 5a and the light of the first-stage scale 5 in the scale plate 3 as the moving body 10 moves. With respect to the light transmitting part 7a and light blocking part 7b of the second stage scale 7 and the light transmitting part 9a and light blocking part 9b of the third stage scale 9, the first light emitting member 11a, the second light emitting member 13a, When the light from the third light emitting member 15a is increased or decreased, the corresponding first light receiving member 11b, second light receiving member 13b, and third light receiving member 15b output electric signals having a pseudo sine wave waveform and a cosine wave waveform.

今、例えば図4に示すように移動体10がスケール板3の1段目スケール5における5番目と6番目の第1目盛5c間に位置しているとすると、CPU31は、先ず、A/D変換された第3受光部材15bからの信号と第2受光部材13bからの信号を比較し、第2受光部材13bからの信号の入力タイミングに対して第3受光部材15bからの信号の入力タイミングの変位幅が所定量に対しているか否かを判断する。今、上記したように移動体10が1段目スケール5における5番目の第1目盛5cの箇所に位置しているため、第3計数領域35cに記憶された計数値が‘0’であり、移動体10が2段目スケール7の1番目区画内に位置していると判断する。   If, for example, the moving body 10 is located between the fifth and sixth first scales 5c of the first stage scale 5 of the scale plate 3 as shown in FIG. The converted signal from the third light receiving member 15b is compared with the signal from the second light receiving member 13b, and the input timing of the signal from the third light receiving member 15b is compared with the input timing of the signal from the second light receiving member 13b. It is determined whether the displacement width is relative to a predetermined amount. Now, as described above, since the moving body 10 is located at the position of the fifth first scale 5c in the first stage scale 5, the count value stored in the third count area 35c is '0', It is determined that the moving body 10 is located in the first section of the second stage scale 7.

また、CPU31は同様にA/D変換された第2受光部材13bからの信号と第1受光部材11bからの信号を比較し、第1受光部材11bに対して第2受光部材13bからの信号のずれを検出して第2計数領域35bをイクリメントすることにより変位回数を記憶させる。今、移動体10がスケール板3における1段目スケール5の5個目と6番目の第1目盛5c間に位置しているところから、CPU31は第2計数領域35bに記憶された計数値‘4’により、移動体10が1段目スケール5における5番目の第1目盛5c、従って移動体10がスケール板3の図示する左端から少なくとも8mmを越えた位置に移動していると判断する。   Similarly, the CPU 31 compares the signal from the second light receiving member 13b, which has been A / D converted, with the signal from the first light receiving member 11b, and outputs the signal from the second light receiving member 13b to the first light receiving member 11b. The number of displacements is stored by detecting the deviation and incrementing the second counting area 35b. Now, since the moving body 10 is located between the 5th of the 1st step scale 5 and the 6th 1st scale 5c in the scale board 3, CPU31 count value 'memorize | stored in the 2nd count area | region 35b. By 4 ′, it is determined that the moving body 10 has moved to a position beyond at least 8 mm from the left end of the scale plate 3 shown in FIG.

更に、CPU31は、A/D変換された第1受光部材11bからの信号を、分割手段39により所定数で分割し、第1受光部材11bからの分割入力信号数を第1計数領域35aに記憶させる。これによりCPU31は第1計数領域35aに記憶された計数値に基づいて5番目に位置する第1目盛5cからの距離を、位置検出分解能に応じた1μm単位で検出する。 Further, the CPU 31 divides the A / D converted signal from the first light receiving member 11b by a predetermined number by the dividing means 39 and stores the number of divided input signals from the first light receiving member 11b in the first counting area 35a. Let Thus, the CPU 31 detects the distance from the first scale 5c located at the fifth position based on the count value stored in the first count area 35a in units of 1 μm according to the position detection resolution.

そしてCPU31は第3計数領域35cに記憶された2段目スケール7における区画数データに基づく値(0mm)と、第2計数領域35bに記憶された変位数データに第1目盛5c相互間の単位距離を乗じた値(8mm)と、第1計数領域35aに記憶された分割入力信号数データに基づく第1目盛5c間における距離とを加算した値を、移動体10の絶対位置として検出し、このデータを出力制御手段41に出力して出力部材43に出力することによりNC機械や作業者に確認可能にさせる。 Then, the CPU 31 adds a unit (between the first scale 5c) to the value (0 mm) based on the section number data in the second-stage scale 7 stored in the third counting area 35c and the displacement number data stored in the second counting area 35b. A value obtained by multiplying the value (8 mm) multiplied by the distance and the distance between the first graduations 5c based on the divided input signal number data stored in the first counting area 35a is detected as the absolute position of the mobile body 10, This data is output to the output control means 41 and output to the output member 43 so that it can be confirmed by the NC machine or the operator.

一方、例えば図5に示すように移動体10がスケール板3の1段目スケール5における45番目と46番目の第1目盛5c間に位置しているとすると、CPU31は、先ず、A/D変換された第3受光部材15bからの信号と第2受光部材13bからの信号を比較し、第2受光部材13bからの信号の入力位相に対して第3受光部材15bからの信号の入力位相のずれが所定量に対しているか否かを判断する。今、移動体10が50番目と51番目の第1目盛5c間に位置しており、2段目スケール7の第2番目の区画内に位置していると判断する。即ち、3段目スケール9の第3目盛9cは、第2目盛7cが所定の個数(本例では、82mmとする。)ごとに所定の間隔(本例では、0.1mmとする。)ずれる関係で配列されるため、所定の間隔のずれ数を計数することにより移動体10が2段目スケール7のどの区画に位置しているのかを検出する。CPU31は、第3計数領域35cの計数値に基づいて移動体10が2段目スケール7の2番目の区画内に位置していると判断し、移動体10がホームポジションから少なくとも82mmを越えた箇所に位置していると判断する。 On the other hand, for example, as shown in FIG. 5, if the moving body 10 is located between the 45th and 46th first scales 5 c in the first stage scale 5 of the scale plate 3, the CPU 31 first performs A / D. The converted signal from the third light receiving member 15b is compared with the signal from the second light receiving member 13b, and the input phase of the signal from the third light receiving member 15b is compared with the input phase of the signal from the second light receiving member 13b. It is determined whether or not the deviation is with respect to a predetermined amount. Now, it is determined that the moving body 10 is located between the 50th and 51st first scales 5 c and is located within the second section of the second stage scale 7. That is, the third scale 9c of the third stage scale 9 is displaced by a predetermined interval (0.1 mm in this example) every predetermined number (82 mm in this example) of the second scale 7c. Since they are arranged in a relationship, the division number of the second stage scale 7 is detected by counting the number of deviations at a predetermined interval. The CPU 31 determines that the moving body 10 is located in the second section of the second stage scale 7 based on the count value of the third counting area 35c, and the moving body 10 has exceeded at least 82 mm from the home position. Judged to be located at the location.

また、CPU31は同様にA/D変換された第2受光部材13bからの信号と第1受光部材11bからの信号を比較し、第1受光部材11bに対して第2受光部材13bからの信号の変位数を検出する。今、移動体10が1段目スケール5における45番目と46番目の第1目盛5c間に位置し、かつ第1目盛5cと第2目盛7cが40個の周期で一致するところから、上記した変位数が‘4’になる。これによりCPU31は上記した第2計数領域35bの計数値に基づいて移動体10が40個を1周期とする5番目と6番目に位置し、少なくとも8mm以上であると判断する。 Similarly, the CPU 31 compares the signal from the second light receiving member 13b, which has been A / D converted, with the signal from the first light receiving member 11b, and outputs the signal from the second light receiving member 13b to the first light receiving member 11b. Detect the number of displacements. Now, since the moving body 10 is located between the 45th and 46th first scales 5c in the first stage scale 5, and the first scale 5c and the second scale 7c coincide with each other with 40 cycles, the above-mentioned is described. The displacement number becomes “4”. As a result, the CPU 31 determines that the moving bodies 10 are located at the fifth and sixth positions where one cycle is 40, based on the count value of the second count area 35b, and at least 8 mm or more.

更に、CPU31は、A/D変換された第1受光部材11bからの信号を、分割手段39により所定数で分割し、第1受光部材11bからの分割入力信号数を第1計数領域35aに記憶し、この分割入力信号数に基づいて1段目スケール5における45番目と46番目の間における移動体10の位置を1μmの位置検出分解能で検出する。 Further, the CPU 31 divides the A / D converted signal from the first light receiving member 11b by a predetermined number by the dividing means 39 and stores the number of divided input signals from the first light receiving member 11b in the first counting area 35a. Based on the number of divided input signals, the position of the moving body 10 between the 45th and 46th positions on the first stage scale 5 is detected with a position detection resolution of 1 μm.

そしてCPU31は第3計数領域35cに記憶された2段目スケール7における区画数データに2段目スケール7の区画距離を乗じた値(82mm)と、第2計数領域35bに記憶された変位数データに第1目盛5cの単位距離を乗じた値(8mm)と、第1計数領域35aに記憶された分割入力数数データよる第1目盛5c間の距離とを加算処理した値を、移動体10の絶対位置として検出し、このデータを出力制御手段41に出力して出力部材43に出力することにより作業者に確認可能にさせる。 Then, the CPU 31 multiplies the section number data stored in the third count area 35c by the section distance data of the second stage scale 7 and the displacement number stored in the second count area 35b. A value obtained by adding the value (8 mm) obtained by multiplying the data by the unit distance of the first scale 5c and the distance between the first scale 5c based on the divided input number data stored in the first counting area 35a 10 is detected as an absolute position, and this data is output to the output control means 41 and output to the output member 43 so that it can be confirmed by the operator.

本発明は、以下のように変更実施することができる。
1.上記説明は、スケール板3に3段目スケール9を設けることにより82mmの倍数の距離を絶対位置として検出する構成としたが、移動体10の移動距離が82mm以下の場合にあっては、請求項1に記載された構成のようにスケール板3に1段目スケール5及び2段目スケール7のみを設けた構成としてもよい。反対に、スケール部材に4段以上のスケール部を設けることにより移動体10の移動距離が長い場合であっても、移動位置を絶対位置として検出することができる。
The present invention can be modified as follows.
1. In the above description, the scale plate 3 is provided with the third stage scale 9 to detect a distance that is a multiple of 82 mm as an absolute position. However, if the moving distance of the moving body 10 is 82 mm or less, As in the configuration described in Item 1, only the first-stage scale 5 and the second-stage scale 7 may be provided on the scale plate 3. On the other hand, by providing the scale member with four or more scale portions, even if the moving distance of the moving body 10 is long, the moving position can be detected as an absolute position.

2.上記説明は、光学式のリニアエンコーダとして構成したが、本発明は、ロータリーエンコーダとして構成しても実施できる。即ち、図6に示すようにディスク61の外周側又は円筒体(図示せず)の外周面に実施例1と同様の関係で各目盛63a、65a、67aがそれぞれ周方向へ、例えば実施例1における1段目スケール5,2段目スケール7及び3段目スケール9と同様のピッチで配列される1段目スケール63、2段目スケール65及び3段目スケール67を半径方向に対して所要の間隔をおいて設けると共にディスク61の各1段目乃至3段目スケール63,65,67を挟んで第1乃至第3検出部材(図示せず)を設ける。尚、絶対位置検出作用については、実施例1と同様のため、詳細な説明を省略する。 2. Although the above description is configured as an optical linear encoder, the present invention can also be implemented as a rotary encoder. That is, as shown in FIG. 6, the scales 63a, 65a, 67a are respectively arranged in the circumferential direction on the outer peripheral side of the disk 61 or the outer peripheral surface of a cylindrical body (not shown) in the same relationship as in the first embodiment. The first stage scale 63, the second stage scale 65, and the third stage scale 67 arranged at the same pitch as the first stage scale 5, the second stage scale 7 and the third stage scale 9 in FIG. The first to third detection members (not shown) are provided with the first to third scales 63, 65, 67 of the disk 61 interposed therebetween. Since the absolute position detection operation is the same as that of the first embodiment, detailed description thereof is omitted.

3.絶対位置検出用のロータリーエンコーダの他の例を説明すると、図7に示すようにディスク71の外周側又は円筒体(図示せず)の外周面に光透過部及び光遮断部又は異なる磁極からなる多数の第1目盛73を、例えば角度1分(1/60度)ごとに周方向へ延出するように形成すると共にその内周側に、同様の光透過部及び光遮断部又は異なる磁極からなる多数の第2目盛75を、例えば角度1度ごとに周方向へ延出するように形成し、更にディスク71の中心部に異なる磁極の第3目盛77を180度の間隔をおいて設ける。 3. Another example of the absolute position detecting rotary encoder will be described. As shown in FIG. 7, a light transmitting portion and a light blocking portion or different magnetic poles are provided on the outer peripheral side of the disk 71 or the outer peripheral surface of a cylindrical body (not shown). A large number of first scales 73 are formed so as to extend in the circumferential direction, for example, at an angle of 1 minute (1/60 degrees), and from the same light transmission part and light blocking part or different magnetic poles on the inner peripheral side thereof A plurality of second scales 75 are formed so as to extend in the circumferential direction, for example, at an angle of 1 degree, and third scales 77 of different magnetic poles are provided at the center of the disk 71 at intervals of 180 degrees.

そして第3目盛77により360度分を1周期とする第2目盛75の回転角度(回転数)を検出すると共に第1目盛73に対する第2目盛75のずれ数を検出して第1目盛73の回転角度を特定し、これに第1目盛73間を所望の検出分解能に応じて分割されて演算された角度を加算して絶対位置を検出する。具体的には、第1目盛73間を300分割することにより0.2秒の分解能で絶対位置を検出することができる。   Then, the rotation angle (number of rotations) of the second scale 75 with one cycle of 360 degrees is detected by the third scale 77 and the number of deviations of the second scale 75 relative to the first scale 73 is detected. The rotation angle is specified, and the absolute position is detected by adding the angle calculated by dividing the first scale 73 according to the desired detection resolution. Specifically, the absolute position can be detected with a resolution of 0.2 seconds by dividing the first scale 73 by 300.

4.上記説明は、検出部材として発光部材及び受光部材により構成される光学式検出部材としているが、検出部材としてはホール素子、磁気抵抗素子、磁気ダイオード等の感磁性素子により構成してもよいことは勿論である。 4). In the above description, the detection member is an optical detection member composed of a light emitting member and a light receiving member. However, the detection member may be composed of a magnetic element such as a Hall element, a magnetoresistive element, or a magnetic diode. Of course.

5.上記説明は、第1目盛間の間隔を、例えば2mm、第2目盛間の間隔を2.05mm、第3目盛間の間隔を2.0525mmとしたが、各目盛ピッチの変位を更に微小としてピコ単位、ナノ単位で形成するのは、技術的に極めて困難である。 5. In the above description, the interval between the first graduations is 2 mm, the interval between the second graduations is 2.05 mm, and the interval between the third graduations is 2.0525 mm. It is technically very difficult to form a unit or nano unit.

これを解決するため、請求項3及び4に記載された発明のように、例えば1段目スケールの目盛間隔を、例えば10μm、2段目スケールの目盛間隔を、例えば2mm、3段目スケールの目盛間隔を、例えば2.05mmとする。そして2段目スケールの目盛に応じて出力される電気信号を、例えば200分割して1段目スケールにおける目盛位置を特定可能にして絶対位置を検出する構成としてもよい。   In order to solve this, as in the invention described in claims 3 and 4, for example, the scale interval of the first stage scale is, for example, 10 μm, the scale interval of the second stage scale is, for example, 2 mm, The scale interval is set to 2.05 mm, for example. The electrical signal output according to the scale of the second stage scale may be divided into, for example, 200 to specify the scale position on the first stage scale and detect the absolute position.

尚、この場合にあっては、1段目スケールの目盛に対応して出力される電気信号を、例えば500分割することにより位置検出分解能を20nmとして82mmの距離の絶対位置を検出することができる。   In this case, the absolute position at a distance of 82 mm can be detected with a position detection resolution of 20 nm by dividing the electrical signal output corresponding to the scale of the first stage, for example, by 500. .

6.請求項1乃至4においては、2段目スケールにおける第2目盛の配列ピッチを、1段目スケールの第1目盛に対し、所望の個数ごとに一致する関係と規定し、実施例1として1段目スケール5の第1目盛5cに対し、2段目スケール7の第2目盛7cを所定数ごとに一致させて所望の距離(82mm)以上の距離を絶対位置として検出する構成としたが、所望の距離(82mm)以下の距離を絶対位置として検出する場合には、上記した所定の関係を維持した状態であれば、必ずしも第1目盛に対して第2目盛を一致させることなく、絶対位置として検出することができる。 6). In claims 1 to 4, the arrangement pitch of the second scale in the second stage scale is defined as a relationship that matches every desired number with respect to the first scale of the first stage scale. The second scale 7c of the second stage scale 7 is made to coincide with the first scale 5c of the scale 5 for every predetermined number, and a distance of a desired distance (82 mm) or more is detected as an absolute position. In the case of detecting a distance equal to or less than (82 mm) as an absolute position, as long as the above-described predetermined relationship is maintained, the second scale is not necessarily matched with the first scale. Can be detected.

絶対位置検出装置の概略を示す説明図である。It is explanatory drawing which shows the outline of an absolute position detection apparatus. スケール板の説明図である。It is explanatory drawing of a scale board. 絶対位置検出装置の電気的ブロック図である。It is an electrical block diagram of an absolute position detection apparatus. 絶対位置検出処理例を示す説明図である。It is explanatory drawing which shows the example of an absolute position detection process. 絶対位置検出処理例を示す説明図である。It is explanatory drawing which shows the example of an absolute position detection process. 絶対位置検出装置をロータリーエンコーダとして場合の概略を示す説明図である。It is explanatory drawing which shows the outline in the case of using an absolute position detection apparatus as a rotary encoder. 絶対位置検出用ロータリーエンコーダの他の例を示す説明図である。It is explanatory drawing which shows the other example of the rotary encoder for absolute position detection.

符号の説明Explanation of symbols

1 絶対位置検出装置としてのリニアエンコーダ
3 スケール部材としてのスケール板
5 1段目スケール
5a 光透過部
5b 光遮断部
5c 第1目盛
7 2段目スケール
7a 光透過部
7b 光遮断部
7c 第2目盛
9 3段目スケール
9a 光透過部
9b 光遮断部
9c 第3目盛
11a〜13a 第1乃至第3発光部材
11b〜13b 第1乃至第3受光部材
35a〜35c 第1乃至第3計数領域
DESCRIPTION OF SYMBOLS 1 Linear encoder 3 as absolute position detection device Scale plate 5 as scale member First stage scale 5a Light transmission part 5b Light blocking part 5c First scale 7 Second stage scale 7a Light transmission part 7b Light blocking part 7c Second scale 9 Third stage scale 9a Light transmission part 9b Light blocking part 9c Third scale 11a to 13a First to third light emitting members 11b to 13b First to third light receiving members 35a to 35c First to third counting areas

Claims (10)

少なくとも第1検出部からなる第1目盛を所望のピッチで配列した1段目スケール、1段目スケールの第1目盛に対し、所望の個数ごとに一致するピッチの少なくとも第2検出部からなる多数の第2目盛を配列した2段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目及び2段目スケールの各目盛に基づいて電気信号をそれぞれ出力する少なくとも第1及び第2検出部材と、第1検出部材からの第1検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、分割された第1検出信号数を計数する第1計数手段と、第1検出信号に対する第2検出信号の変位を検出して変位数を計数する第2計数手段と、第2計数手段の計数値に第1目盛相互間の距離を乗じた値に第1計数手段による計数値を加算して絶対位置を検出する演算手段とからなる絶対位置検出装置。 A large number of at least second detectors having a pitch that matches every desired number with respect to the first scale of the first stage scale and the first scale of the first stage scale in which the first scales composed of at least the first detector units are arranged at a desired pitch. The second stage scale in which the second scales are arranged is provided in parallel with each other, and the electrical signal based on the scales of the first stage and the second stage scale provided so as to move relative to the scale member. At least the first and second detection members, the dividing means for dividing the first detection signal from the first detection member by the number corresponding to the desired position detection resolution, and the number of divided first detection signals A first counting means that counts the distance, a second counting means that detects the displacement of the second detection signal relative to the first detection signal and counts the number of displacements, and a distance between the first scales in the count value of the second counting means Multiplied by the first Absolute position detection device comprising a calculation means for detecting the absolute position by adding the count value by the number of means. 少なくとも第1検出部からなる多数の第1目盛を所望のピッチで配列した1段目スケール、第1目盛に対し、該第1目盛の所定数ごとに一致するピッチの少なくとも第2検出部からなる多数の第2目盛を配列した2段目スケール及び第2目盛に対し、少なくとも第3検出部からなる多数の第3目盛を該第2目盛の所定個数ごとに所定の変位量になる関係で配列した3段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目乃至3段目スケールのそれぞれの目盛に基づいて電気信号をそれぞれ出力する少なくとも第1乃至第3検出部材と、第1検出部材からの第1検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、出力されて分割された第1検出信号数を計数する第1計数手段と、第1検出信号に対する第2検出部材からの第2検出信号の変位に基づいて変位数を計数する第2計数手段と、第2検出信号に対する第3検出部材からの第3検出信号の変位量が所定量になる回数を計数する第3計数手段と、第3計数手段の計数値により特定された2段目スケールの区画数に2段目スケールの区画間距離を乗じた値と第2計数手段の計数値に第1目盛間の距離を乗じた値と第1計数手段による計数値による第1目盛間の距離を加算して絶対位置検出する演算手段とからなる絶対位置検出装置。 A first stage scale in which a plurality of first graduations comprising at least first detectors are arranged at a desired pitch, and the first graduations are composed of at least second detectors having a pitch that matches every predetermined number of the first graduations. With respect to the second scale and the second scale in which a large number of second graduations are arranged, a large number of third graduations composed of at least a third detection unit are arranged in such a relationship that a predetermined displacement amount is obtained for each predetermined number of the second graduations. A scale member provided with the third-stage scales parallel to each other, and provided so as to move relative to the scale member, and at least outputs electrical signals based on the respective scales of the first-stage to third-stage scales. First to third detection members, dividing means for dividing the first detection signal from the first detection member by a number corresponding to a desired position detection resolution, and the number of first detection signals divided by output are counted. First Counting means; second counting means for counting the number of displacements based on the displacement of the second detection signal from the second detection member relative to the first detection signal; and a third detection signal from the third detection member for the second detection signal. A third counting unit that counts the number of times the displacement amount of the second stage becomes a predetermined amount, and a value obtained by multiplying the number of sections of the second-stage scale specified by the count value of the third counting means by the distance between the sections of the second-stage scale; An absolute position detecting device comprising a value obtained by multiplying the count value of the second counting means by the distance between the first graduations and the distance between the first graduations based on the count value obtained by the first counting means to detect the absolute position. . 少なくとも第1検出部からなる第1目盛を所望の位置検出分解能に応じたピッチで配列した1段目スケール、少なくとも第2検出部からなる多数の第2目盛を第1目盛の所定数倍のピッチで配列した2段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目及び2段目スケールの各目盛に基づいて電気信号をそれぞれ出力する少なくとも第1及び第2検出部材と、第2検出部材からの第2検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、第1検出信号数を計数する第1計数手段と、第1検出信号に対して分割された第2検出信号の変位を検出して変位数を計数する第2計数手段と、第2計数手段の計数値に第1目盛相互間の距離を乗じた値に第1計数手段による計数値を加算して絶対位置を検出する演算手段とからなる絶対位置検出装置。 A first-stage scale in which at least a first scale composed of first detectors is arranged at a pitch corresponding to a desired position detection resolution, and a plurality of second scales composed of at least second detectors are a predetermined number times the pitch of the first scale. A scale member provided in parallel with each other and a scale member provided in parallel with each other and an electrical signal is output based on each scale of the first stage scale and the second stage scale. At least first and second detection members, dividing means for dividing the second detection signal from the second detection member by a number corresponding to a desired position detection resolution, and first counting means for counting the number of first detection signals And second counting means for detecting the displacement of the second detection signal divided with respect to the first detection signal and counting the number of displacements, and multiplying the count value of the second counting means by the distance between the first scales. By the first counting means Absolute position detection device comprising a calculation means for detecting the absolute position by adding a number. 少なくとも第1検出部からなる多数の第1目盛を所望の位置検出分解能に応じたピッチで配列した1段目スケール、少なくとも第2検出部からなる多数の第2目盛を第1目盛の所定数倍のピッチで配列した2段目スケール及び第2目盛に対し、少なくとも第3検出部からなる多数の第3目盛を第2目盛の所定個数ごとに所定量、変位する関係で配列した3段目スケールを互いに平行に設けたスケール部材と、スケール部材に対して相対移動するように設けられ、1段目乃至3段目スケールのそれぞれの目盛に基づいて電気信号をそれぞれ出力する少なくとも第1乃至第3検出部材と、第2検出部材からの第2検出信号を、所望の位置検出分解能に応じた数で分割する分割手段と、第1検出信号数を計数する第1計数手段と、第1検出信号に対して分割された第2検出信号の変位を検出して変位数を計数する第2計数手段と、第2検出信号に対する第3検出部材からの第3検出信号の変位量が所定量になる回数を計数する第3計数手段と、第3計数手段の計数値により特定された2段目スケールの区画数に2段目スケールの区画間距離を乗じた値と第2計数手段の計数値に第1目盛間の距離を乗じた値と第1計数手段による計数値による第1目盛間の距離を加算して絶対位置を検出する演算手段とからなる絶対位置検出装置。 A first-stage scale in which a large number of first graduations comprising at least first detectors are arranged at a pitch according to a desired position detection resolution, and a plurality of second graduations comprising at least second detectors are a predetermined number of times the first graduation. In contrast to the second stage scale and the second scale arranged at a pitch of 3, the third stage scale in which a large number of third scales composed of at least third detection units are arranged in a predetermined amount for each predetermined number of second scales. Are provided so as to move relative to the scale member, and output at least first to third electric signals based on the scales of the first to third scales, respectively. A detection member; a dividing means for dividing the second detection signal from the second detection member by a number corresponding to a desired position detection resolution; a first counting means for counting the number of first detection signals; and a first detection signal. Vs. And a second counting means for detecting the displacement of the second detection signal divided and counting the number of displacements, and the number of times the displacement of the third detection signal from the third detection member relative to the second detection signal becomes a predetermined amount. Third counting means for counting, a value obtained by multiplying the number of sections of the second-stage scale specified by the count value of the third counting means by the distance between the sections of the second-stage scale, and the count value of the second counting means are the first An absolute position detection device comprising: a calculation unit for detecting an absolute position by adding a value obtained by multiplying a distance between the scales and a distance between the first scales based on a count value obtained by the first counting means. 請求項1乃至4において、各検出部材から出力される電気信号を擬似正弦波信号及び余弦波信号に波形整形する波形整形手段を設けた絶対位置検出装置。 5. The absolute position detection device according to claim 1, further comprising waveform shaping means for shaping an electric signal output from each detection member into a pseudo sine wave signal and a cosine wave signal. 請求項1乃至4において、各検出部材は発光部材と受光部材からなる光学式検出部材から構成すると共に各スケールの目盛は光透過部及び光遮断部から構成した絶対位置検出装置。 5. The absolute position detection device according to claim 1, wherein each detection member is composed of an optical detection member composed of a light emitting member and a light receiving member, and each scale has a scale composed of a light transmitting portion and a light blocking portion. 請求項1乃至4において、各検出部材は感磁素子から構成すると共に各スケールの目盛は着磁部からなる絶対位置検出装置。 5. The absolute position detecting device according to claim 1, wherein each detection member is composed of a magnetosensitive element, and each scale scale is composed of a magnetized portion. 請求項1乃至4において、各検出部材は一部を発光部材と受光部材からなる光学式検出部材、残りを感磁素子から構成すると共に光学式検出部材に対応するスケールの目盛を光透過部及び光遮断部、感磁素子に対応するスケールの目盛を着磁部により構成する絶対位置検出装置。 5. The detection member according to claim 1, wherein a part of each detection member is an optical detection member made up of a light emitting member and a light receiving member, and the rest is made up of a magnetosensitive element, and a scale scale corresponding to the optical detection member is formed on the light transmission part and An absolute position detection device in which the scale of the scale corresponding to the light blocking unit and the magnetosensitive element is configured by the magnetized unit. 請求項1乃至4において、スケール部材は検出距離に応じた長さからなり、各スケールを長手方向に対して平行に多段状に設けた絶対位置検出装置。 5. The absolute position detection device according to claim 1, wherein the scale member has a length corresponding to the detection distance, and each scale is provided in a multistage shape in parallel to the longitudinal direction. 請求項1乃至4において、スケール部材はディスクに対し、周方向に延出する各スケールを半径方向へ多段状に設けた絶対位置検出装置。 5. The absolute position detecting device according to claim 1, wherein the scale member is provided with a plurality of scales extending in the circumferential direction with respect to the disk in a multistage shape in the radial direction.
JP2005166417A 2005-06-07 2005-06-07 Absolute position detection apparatus Pending JP2006343110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166417A JP2006343110A (en) 2005-06-07 2005-06-07 Absolute position detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166417A JP2006343110A (en) 2005-06-07 2005-06-07 Absolute position detection apparatus

Publications (1)

Publication Number Publication Date
JP2006343110A true JP2006343110A (en) 2006-12-21

Family

ID=37640195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166417A Pending JP2006343110A (en) 2005-06-07 2005-06-07 Absolute position detection apparatus

Country Status (1)

Country Link
JP (1) JP2006343110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225674A (en) * 2011-04-15 2012-11-15 Nikon Corp Position information detection sensor, manufacturing method for position information detection sensor, encoder, motor device, and robot device
CN111102947A (en) * 2018-10-26 2020-05-05 德马吉森精机有限公司 Position detection device and conveying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225674A (en) * 2011-04-15 2012-11-15 Nikon Corp Position information detection sensor, manufacturing method for position information detection sensor, encoder, motor device, and robot device
CN111102947A (en) * 2018-10-26 2020-05-05 德马吉森精机有限公司 Position detection device and conveying device
US11906333B2 (en) 2018-10-26 2024-02-20 Dmg Mori Co., Ltd. Position detection device and conveyance device

Similar Documents

Publication Publication Date Title
JP5230800B2 (en) Position measuring device
US8823367B2 (en) Rotation angle detection apparatus
JP2012037392A5 (en)
CN103075965A (en) Displacement detecting device, scale calibrating method and scale calibrating program
US10209104B2 (en) Absolute encoder, processing method, program, driving apparatus, and industrial machine
JP6338360B2 (en) Absolute encoder, signal processing method, and program
JP2007271458A (en) Rotation angle detecting apparatus
JP5660671B2 (en) Encoder signal processing device
JP2006528343A (en) Reader for scale marking
JP2006343110A (en) Absolute position detection apparatus
JP6261380B2 (en) Optical encoder
JP5164264B2 (en) Absolute linear encoder and actuator
KR101341804B1 (en) Absolute Position Measuring Method, Absolute Position Measuring Apparatus, and Scale
CN103258769A (en) Assembly and method for positioning a machining tool relative to a workpiece
JP2010539506A (en) Sequential reading type absolute position sensor
RU2594669C1 (en) Method for measuring displacements of object
JP7234087B2 (en) absolute linear encoder
US9683871B2 (en) Optical encoder
JP2012083280A (en) Absolute position detector for mobile body
US10571306B2 (en) Electromagnetic induction type position detector
JP2010286444A (en) Device and method for detecting absolute position
JPS6365316A (en) Optical displacement detecting device
KR101604446B1 (en) Optical encoder
US10107652B2 (en) Method for measuring displacements of object
WO2023028967A1 (en) Absolute position measurement device