JP2006342952A - Pilot solenoid valve - Google Patents

Pilot solenoid valve Download PDF

Info

Publication number
JP2006342952A
JP2006342952A JP2005199400A JP2005199400A JP2006342952A JP 2006342952 A JP2006342952 A JP 2006342952A JP 2005199400 A JP2005199400 A JP 2005199400A JP 2005199400 A JP2005199400 A JP 2005199400A JP 2006342952 A JP2006342952 A JP 2006342952A
Authority
JP
Japan
Prior art keywords
valve
hole
valve body
pilot
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005199400A
Other languages
Japanese (ja)
Other versions
JP3771577B1 (en
Inventor
Kazuhiro Honda
和宏 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005199400A priority Critical patent/JP3771577B1/en
Application granted granted Critical
Publication of JP3771577B1 publication Critical patent/JP3771577B1/en
Priority to PCT/JP2006/310913 priority patent/WO2006132120A1/en
Publication of JP2006342952A publication Critical patent/JP2006342952A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/402Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/402Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm
    • F16K31/404Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm the discharge being effected through the diaphragm and being blockable by an electrically-actuated member making contact with the diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • F16K47/023Means in valves for absorbing fluid energy for preventing water-hammer or noise for preventing water-hammer, e.g. damping of the valve movement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pilot solenoid valve capable of reducing water hammer and valve element closing impact by valve opening/closing or closing without disadvantage in aspects of clogging, minimum operating differential pressure, operating stability, main passage stream, electric system, outer size, and valve opening/closing time. <P>SOLUTION: The valve comprises: a communication chamber 1 for allowing a bleed hole 3a and pilot hole 3b to communicate with each other; an orifice 1a for allowing the communication chamber 1 and valve chest 3 to communicate with each other; a valve 2 for throttling the orifice 1a; a groove 2b located in a closing face 2a of the valve 2; and a helical compression spring 12 which prevents the valve 2 from being closed by a force of differential pressure or having a maximum force less than the differential pressure of the valve 2. The effective cross-section area of the orifice 1a less than the area of the bleed hole in throttling is increased to that of the pilot hole 3b or more by opening the valve 2 by a pushing action produced by a reciprocation of valve element 4 or a force of differential pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は水等の液体、気液混合流体、蒸気、気体の流体を制御するパイロット電磁弁、特に弁開、弁閉による水撃や弁体衝止衝撃を低減するパイロット電磁弁に関する。   The present invention relates to a pilot solenoid valve that controls a liquid such as water, a gas-liquid mixed fluid, a vapor, or a gas fluid, and more particularly to a pilot solenoid valve that reduces water hammer and valve body impact impact due to valve opening and closing.

従来のパイロット電磁弁においては、後記理由により水撃が大きく、圧力変動、騒音、振動、破損等が起こるという問題があり、下記の様々な水撃の低減対策がある。   In the conventional pilot solenoid valve, there is a problem that water hammer is large due to reasons described later and pressure fluctuation, noise, vibration, breakage, etc. occur, and there are various measures for reducing water hammer as described below.

まず、ブリード孔に通じる外周室と、パイロット孔に通じる内周室とに弁室を分け、環状隙間の絞りで連通させることにより弁体速度を緩やかにし、弁閉による水撃の低減対策を施したものがある(例えば、特許文献1参照)。   First, the valve chamber is divided into an outer peripheral chamber that communicates with the bleed hole and an inner peripheral chamber that communicates with the pilot hole, and the valve body speed is reduced by communicating with the throttle of the annular gap, and measures to reduce water hammer due to valve closing are taken. (For example, refer to Patent Document 1).

また、弁閉直前にブリード孔を絞ることにより弁体速度を緩やかにし、弁閉による水撃や着座衝撃の低減対策を施したものがある(例えば、特許文献2〜特許文献5参照)。   In addition, there is one in which the bleed hole is narrowed immediately before the valve is closed to reduce the valve body speed and take measures to reduce water hammer and seating impact due to the valve closing (for example, see Patent Documents 2 to 5).

また、弁体に弁口挿入面を設けることにより弁体速度を緩やかにし、弁閉による水撃の低減対策を施したものがある(例えば、特許文献6、特許文献7参照)。   In addition, there is a valve body provided with a valve port insertion surface to slow the valve body speed and take measures to reduce water hammer by closing the valve (see, for example, Patent Document 6 and Patent Document 7).

また、弁閉過程途中から、プランジャまたは弁体が、減速体に当接することにより弁体速度を緩やかにし、弁閉による水撃の低減対策を施したものがある(例えば、特許文献8参照)。   Further, in the middle of the valve closing process, the plunger or the valve body comes into contact with the speed reducing body to moderate the valve body speed and take measures to reduce water hammer by closing the valve (for example, see Patent Document 8). .

また、ニードル弁形状の弁部でパイロット孔を開閉するプランジャを、電気で半開状態で保持することにより弁体を半開状態で保持し、弁開と弁閉による水撃の低減対策を施したものがある(例えば、特許文献9参照)。   In addition, the plunger that opens and closes the pilot hole in the needle valve-shaped valve part is held in a half-open state by electricity to hold the valve body in a half-open state, and measures to reduce water hammer by opening and closing the valve are taken (See, for example, Patent Document 9).

以下、図7の従来の一般的なパイロット電磁弁について説明する。
電磁弁は、大きく分けてソレノイド部と弁部で構成される。ソレノイド部において、ガイドパイプ22上部の固定鉄心23と、往復動するプランジャ10と、プランジャ10を付勢する復帰ばね11とが、内側に有る。そしてコイルボビン19に巻かれたコイル18と、磁気枠20とが、外側に有る。
Hereinafter, the conventional general pilot solenoid valve of FIG. 7 will be described.
A solenoid valve is roughly divided into a solenoid part and a valve part. In the solenoid portion, a fixed iron core 23 above the guide pipe 22, a plunger 10 that reciprocates, and a return spring 11 that biases the plunger 10 are provided inside. The coil 18 wound around the coil bobbin 19 and the magnetic frame 20 are on the outside.

弁部において、流入口5aと流出口5cとを連通する弁口5bと、弁口5bに対向し弁口5bを開閉する弁体4と、弁体4を挟んで弁口5bの反対側に形成される弁室3と、流入口5aと弁室3とを連通するブリード孔3aと、弁部3と流出口5cとを連通するパイロット孔3bと、パイロット孔3bを開閉するパイロット弁9と、弁体4を付勢する弁体圧縮ばね13とが有る。弁体圧縮ばね13は、弁開時間と最低作動差圧が増すため無くてよいが、取付姿勢等による弁開トラブルまたは漏れと、弁閉時間とを低減する。小さい有効断面積順に列記すると、ブリード孔3a、パイロット孔3b、通孔3cの順になる.   In the valve portion, a valve port 5b that communicates the inflow port 5a and the outflow port 5c, a valve body 4 that faces the valve port 5b and opens and closes the valve port 5b, and on the opposite side of the valve port 5b across the valve body 4 A formed valve chamber 3, a bleed hole 3a communicating the inlet 5a and the valve chamber 3, a pilot hole 3b communicating the valve portion 3 and the outlet 5c, and a pilot valve 9 opening and closing the pilot hole 3b And a valve body compression spring 13 for urging the valve body 4. The valve body compression spring 13 may be omitted because the valve opening time and the minimum operating differential pressure increase, but it reduces valve opening trouble or leakage due to the mounting posture and the like, and the valve closing time. When listed in the order of small effective area, the bleed hole 3a, the pilot hole 3b, and the through hole 3c are arranged in this order.

次に作動を説明する。弁開過程において、コイル18に通電すると磁界が発生、復帰ばね11の力に反しプランジャ10が吸引され、パイロット孔3bが開き弁室3圧は急減する。差圧の力により弁体4は上昇し、蓋体6に衝止され弁開に至る。弁体4の上昇につれ、流入口5a圧は減少し、流出口5c圧は増加する。 Next, the operation will be described. In the valve opening process, when the coil 18 is energized, a magnetic field is generated, the plunger 10 is attracted against the force of the return spring 11, the pilot hole 3b is opened, and the valve chamber 3 pressure is rapidly reduced. The valve body 4 is raised by the force of the differential pressure, and is blocked by the lid body 6 to open the valve. As the valve body 4 rises, the inlet 5a pressure decreases and the outlet 5c pressure increases.

弁閉過程において、非通電にすると磁界が消滅、復帰ばね11によりプランジャ10が下降、パイロット孔3bが閉じ弁室3圧が増加、差圧の力と弁体圧縮ばね13の力により、弁体4は下降し弁閉に至る。弁体4の下降につれ、流入口5a圧は増加し、流出口5c圧は減少する。 In the valve closing process, the magnetic field disappears when deenergized, the plunger 10 is lowered by the return spring 11, the pilot hole 3 b is closed, the valve chamber 3 pressure is increased, and the valve body is compressed by the force of the differential pressure and the force of the valve body compression spring 13. 4 descends and the valve closes. As the valve body 4 descends, the inlet 5a pressure increases and the outlet 5c pressure decreases.

次に、図8の従来の一般的なパイロット電磁弁について、図7との相違点を説明する。弁体引張ばね14が、パイロット弁9が有るプランジャ10と、パイロット孔3bが有る弁体4とに掛け止めされている。このため、弁開過程は、プランジャ10吸引が、弁体引張ばね14を介して弁体4の上昇を助けるため、最低作動差圧が低減する。弁閉過程は、弁体4の差圧の力と復帰ばね11の力により、弁体4は下降し弁閉に至る。 Next, the difference between the conventional general pilot solenoid valve of FIG. 8 and FIG. 7 will be described. The valve body tension spring 14 is hooked on the plunger 10 having the pilot valve 9 and the valve body 4 having the pilot hole 3b. For this reason, in the valve opening process, the plunger 10 suction helps the valve body 4 to rise through the valve body tension spring 14, so that the minimum operating differential pressure is reduced. In the valve closing process, the valve body 4 is lowered by the pressure difference of the valve body 4 and the force of the return spring 11 to close the valve.

実開平4―97186号 公報Japanese Utility Model Publication No. 4-97186 特開平4―327083号 公報Japanese Patent Laid-Open No. 4-327083 特開平7―119863号 公報Japanese Patent Laid-Open No. 7-119863 特開平7―229580号 公報JP-A-7-229580 特開2002―106748号 公報JP 2002-106748 A 特開平8―145226号 公報JP-A-8-145226 特開2002―286158号 公報Japanese Patent Laid-Open No. 2002-286158 特開2004ー308885号 公報JP 2004-308885 A 特開平11―2356号 公報Japanese Patent Laid-Open No. 11-2356

以上に述べた従来のパイロット電磁弁では、弁開過程において、パイロット孔が開くと弁室圧は激減、初期ほど、流入口と弁室の差圧が大きく弁体は急加速になり、そして蓋体に衝止され弁開に至る。このため、流入側の圧力降下と流出側の圧力上昇の変動が大きい。特に気液混合流体は、滞留液の激突、気体溜りの破裂、双方の干渉等により水撃が大きく圧力変動、騒音、振動、破損等が起こる。   In the conventional pilot solenoid valve described above, in the valve opening process, when the pilot hole is opened, the valve chamber pressure is drastically reduced. In the initial stage, the differential pressure between the inlet and the valve chamber is large, and the valve body is accelerated rapidly. It is blocked by the body and leads to valve opening. For this reason, fluctuations in the pressure drop on the inflow side and the pressure increase on the outflow side are large. In particular, a gas-liquid mixed fluid has a large water hammer due to a collision of a staying liquid, a burst of a gas reservoir, interference between the two, and the like, and pressure fluctuation, noise, vibration, breakage, and the like occur.

また、弁閉過程において、初期ほど、流入口と流出口と弁室の差圧が小さいため、弁体は低加速で動く。そして、弁体が弁座に近づくほど、流入口と弁室の圧力は増加し流出口の圧力は減少する等により、弁体は徐々に加速、流体が流出口に逃げ難い着座時に、加速度と速度が最大になる。このため流入側は加速的に圧力上昇する。気液混合流体と液体は、運動エネルギーが大きいため水撃になり易く、特に液体は非圧縮性のため水撃が大きい。また、流出側流体の運動エネルギーにより、流出側が圧力降下し液柱分離という水撃が起こることも有る。   In the valve closing process, since the differential pressure between the inlet, the outlet, and the valve chamber is smaller in the initial stage, the valve body moves with low acceleration. As the valve body approaches the valve seat, the pressure at the inlet and the valve chamber increases and the pressure at the outlet decreases, so that the valve body gradually accelerates. Maximum speed. For this reason, the pressure rises at the inflow side in an accelerating manner. The gas-liquid mixed fluid and the liquid are likely to cause water hammer due to their large kinetic energy, and in particular, the liquid is incompressible so that the water hammer is large. In addition, due to the kinetic energy of the outflow side fluid, the outflow side may drop in pressure and a water hammer called liquid column separation may occur.

また、近年、生活環境等において、静粛性が求められている。上記の弁開の蓋体に弁体が衝止される衝撃と、弁閉の弁座に弁体が衝止される着座衝撃とにより、騒音、弁体等の破損が起こる。特に気体や気液混合流体は、流速が高速のため悪化し易い。   In recent years, quietness has been demanded in the living environment. Noise, damage to the valve body, and the like occur due to the impact that the valve body is stopped by the valve opening lid and the seating impact that the valve body is stopped by the valve seat that is closed. In particular, gas and gas-liquid mixed fluids are likely to deteriorate due to the high flow rate.

また、目詰まり問題は、農業用水等の使用流体の拡大と保守の面から重要だが、水撃の低減のためのブリード孔の縮径と弁閉直前にブリード孔を絞る方法は、弁閉時間とブリード孔目詰まりが増加するため特に縮径が制限され、絞る方法は、主流路の流れで不安定になり易く、作動と水撃の低減が不安定になると共に、どちらも、弁開による水撃を低減しない。   In addition, the clogging problem is important from the viewpoint of the expansion and maintenance of fluids used such as agricultural water, but the method of reducing the diameter of the bleed hole and reducing the bleed hole immediately before closing the valve to reduce water hammer is the valve closing time. As the bleed hole clogging increases, the diameter reduction is particularly limited, and the method of squeezing tends to be unstable due to the flow of the main flow path, making the operation and reduction of water hammer unstable, both of which are caused by valve opening. Does not reduce water hammer.

また、ブリード孔に通じる外周室と、パイロット孔に通じる内周室とに弁室を分け環状隙間の絞りで連通させる方法は、弁開時において外周室圧が従来より高くなるため最低作動差圧が高くなると共に、弁開閉時間も増加し、弁開による水撃も低減しない。   In addition, the valve chamber is divided into an outer peripheral chamber that communicates with the bleed hole and an inner peripheral chamber that communicates with the pilot hole. The valve opening / closing time increases and the water hammer due to valve opening does not decrease.

また、弁体に弁口挿入面を設けることによる方法は、主流路の流れと影響し合い、流れの妨げと渦により圧力損失、振動が増加し易い。弁開による水撃も低減しない。   In addition, the method by providing the valve port insertion surface on the valve body interacts with the flow of the main flow path, and pressure loss and vibration are likely to increase due to the flow obstruction and vortex. Water hammer due to valve opening is not reduced.

また、弁閉過程途中から、プランジャまたは弁体が減速体に当接する方法は、弁開による水撃を低減しない。   Further, the method in which the plunger or the valve body comes into contact with the speed reducer from the middle of the valve closing process does not reduce the water hammer due to the valve opening.

また、ニードル弁形状の弁部でパイロット孔を開閉するプランジャを、半開状態で保持する方法は、プランジャを半開状態で保持するため、電力を段階的に変える電磁弁駆動装置と保持する電力量とが必要となる。   In addition, the method of holding the plunger that opens and closes the pilot hole with the needle valve-shaped valve portion in the half-open state is an electromagnetic valve driving device that changes the electric power step by step to hold the plunger in the half-open state. Is required.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、目詰まり、最低作動差圧、作動の安定性、主流路の流れ、電気系統、外形寸法の面で不利にさせず、弁開と弁閉による水撃や弁体衝止衝撃を低減するパイロット電磁弁、さらに弁開閉時間の面で不利にさせず、弁開と弁閉、又は弁閉による水撃や弁体衝止衝撃をより低減するパイロット電磁弁を得ることを目的とする。   The present invention is intended to solve the problems of such a conventional configuration, such as clogging, minimum operating differential pressure, operation stability, main flow path, electrical system, and external dimensions. The pilot solenoid valve reduces water hammer and valve body impact shock due to valve opening and closing, and does not adversely affect the valve opening and closing time. The purpose is to obtain a pilot solenoid valve that further reduces the impact and impact of the valve body.

そして、本発明は上記目的を達成するため、後記理由により、流入口と流出口とを連通する弁口と、弁口に対向し弁口を開閉する弁体と、弁体を挟んで弁口の反対側に形成される弁室と、流入口と通じるブリード孔と、流出口と通じるパイロット孔と、プランジャの往復動によりパイロット孔を開閉するパイロット弁とが有るパイロット電磁弁において、ブリード孔とパイロット孔とを連通する連通室と、連通室と弁室とを連通しブリード孔有効断面積未満のオリフィスとを設けるとよい。   In order to achieve the above object, the present invention achieves the above-described object by a reason described later, a valve port that communicates the inlet and the outlet, a valve body that faces the valve port and opens and closes the valve port, and a valve port that sandwiches the valve body. A pilot solenoid valve having a valve chamber formed on the opposite side, a bleed hole that communicates with the inlet, a pilot hole that communicates with the outlet, and a pilot valve that opens and closes the pilot hole by reciprocating movement of the plunger. A communication chamber that communicates with the pilot hole, and an orifice that communicates with the communication chamber and the valve chamber and has an effective cross-sectional area less than the bleed hole may be provided.

さらに、弁開と弁閉による水撃や弁体衝止衝撃をより低減するため、後記理由により、蓋体の連通室に設けたガイド孔と、その中を摺動し弁体に設けた弁体摺動部とが円柱状であり、弁体の弁開時に、弁体摺動部が、ブリード孔出口のみをブリード孔有効断面積未満に絞るとよい。   Furthermore, in order to further reduce water hammer and valve element impact impact due to valve opening and closing, for the reasons described later, a guide hole provided in the communication chamber of the lid and a valve provided in the valve element by sliding in the guide hole are provided. The body sliding portion is cylindrical, and when the valve body is opened, the valve body sliding portion may restrict only the bleed hole outlet to less than the effective area of the bleed hole.

さらに、弁開と弁閉による水撃や弁体衝止衝撃をより低減するため、後記理由により、ガイド孔と弁体摺動部の環状隙間であるオリフィスが、周縁部を挟持固定されたダイヤフラム弁体の僅かな開度以上で、ガイド孔に設けた溝と弁体摺動部に設けた溝とが合い、パイロット孔有効断面積以上に増加するとよい。また、連通室と弁室とを連通する連通孔と、連通孔を開閉する弁2と、差圧の力による弁2開鎖を抑止する圧縮コイルばねとを設けると共に、弁体の僅かな開度以上で、弁体の往復動により押動され弁が開く時、連通孔がパイロット孔有効断面積以上であるのもよい。また、パイロット孔有効断面積以上である連通孔が、僅かな開度未満で弁体のダイヤフラムに閉じられるように、蓋体の取付面内周側に穿設されるのもよい。 Furthermore, in order to further reduce water hammer and valve element impact impact due to valve opening and closing, a diaphragm in which an orifice, which is an annular gap between the guide hole and the valve body sliding part, is sandwiched and fixed for the reason described later. It is preferable that the groove provided in the guide hole and the groove provided in the valve body sliding portion fit each other at a slight opening degree or more of the valve body and increase beyond the effective area of the pilot hole. In addition, a communication hole that connects the communication chamber and the valve chamber, a valve 2 that opens and closes the communication hole, a compression coil spring that suppresses the opening of the valve 2 due to the force of the differential pressure, and a slight opening degree of the valve body As described above, when the valve is pushed by the reciprocating motion of the valve body and the valve is opened, the communication hole may be larger than the effective area of the pilot hole. Further, the communication hole having an effective area greater than or equal to the pilot hole may be formed on the inner peripheral side of the attachment surface of the lid so that it is closed by the diaphragm of the valve body with a slight opening.

さらに、流体の相違により、弁閉による水撃や弁体衝止衝撃のみを低減する場合も、同様な後記理由により、弁閉過程の僅かな開度未満以外、連通孔がパイロット孔有効断面積以上であるとよい。このため、弁が連通室側に有ると共に、圧縮コイルばねが、差圧の力による弁2開鎖を抑止するに代えて、弁2の差圧の力未満であるとよい Furthermore, when reducing only the water hammer or valve body impact impact due to valve closing due to the difference in fluid, the communication hole has an effective cross-sectional area of the pilot hole other than a slight opening in the valve closing process for the same reason as described later. It is good to be above. For this reason, the valve is on the side of the communication chamber, and the compression coil spring is preferably less than the force of the differential pressure of the valve 2 instead of suppressing the opening of the valve 2 due to the force of the differential pressure .

さらに、連通孔を無くし連通孔に代えてオリフィスを絞ると共に、オリフィス絞り時にオリフィスがブリード孔有効断面積未満になるように、閉鎖面またはシート座面に溝を凹設するとよい。オリフィス絞り時に溝に有る堆積ゴミ類が、開鎖直後に流出除去され、目詰まりが低減する。この目詰まりの低減分を減らし、溝の断面積をより絞ることは、目詰まりの面でより不利にさせず、弁開閉または弁閉による水撃や弁体衝止衝撃をより低減する。 Furthermore, the narrow orifice instead of communicating holes eliminates the communication hole, so that the orifice aperture at the orifice is less than the bleed hole effective area, it may be recessed grooves in the closed chain surface or seating surface. Accumulated debris in the groove when the orifice is squeezed out and removed immediately after the chain is opened, reducing clogging. Reducing the amount of clogging reduction and further reducing the cross-sectional area of the groove do not make the clogging more disadvantageous, and further reduce water hammer and valve body impact impact due to valve opening / closing or valve closing.

次に作用を説明する。連通室と弁室とを連通する流路は、弁開時の流量激減と、弁開過程と弁閉過程の交互の逆流による堆積ゴミ類の除去と、ブリード孔によるゴミ類の除去とにより、目詰まりし難く、ブリード孔よりも絞れる。さらに、弁体速度は弁室の流出入の流量により、流量は有効断面積と差圧による。このため、ブリード孔有効断面積未満で、弁室が連通室のみと通じることは、弁体速度を緩やかにし、弁開と弁閉による水撃や弁体衝止衝撃を低減できる。   Next, the operation will be described. The flow path that connects the communication chamber and the valve chamber has a drastic reduction in flow rate when the valve is opened, removal of accumulated dust by alternating backflow of the valve opening process and valve closing process, and removal of garbage by the bleed hole. It is hard to clog and can be squeezed more than the bleed hole. Furthermore, the valve body speed depends on the flow rate of the flow in and out of the valve chamber, and the flow rate depends on the effective sectional area and the differential pressure. For this reason, if the valve chamber is less than the effective cross-sectional area of the bleed hole and the valve chamber communicates with only the communication chamber, the valve body speed can be moderated, and the water hammer and valve body impact impact caused by opening and closing the valve can be reduced.

また、弁体摺動部が、弁開時に、ブリード孔出口のみをブリード孔有効断面積未満に絞ることにより、ブリード孔流量が減少し、オリフィス、ブリード孔、パイロット孔等の目詰まりが低減する。この低減分を減らし、オリフィス、ブリード孔、またはパイロット孔をより絞ることで、弁体速度をより緩やかにし、目詰まりと、弁開と弁閉による水撃や弁体衝止衝撃とがより低減する。   In addition, when the valve slide part is opened, only the bleed hole outlet is restricted to less than the effective area of the bleed hole, so that the flow rate of the bleed hole is reduced and clogging of the orifice, bleed hole, pilot hole, etc. is reduced. . By reducing this reduction and further narrowing the orifice, bleed hole, or pilot hole, the valve body speed becomes slower, clogging, and water hammer and valve body impact impact due to valve opening and closing are further reduced. To do.

さらに、弁体が弁座に近いほど、弁開閉時間と相反し、水撃や弁体衝止衝撃に影響するため、弁体の僅かな開度以上で、連通室弁室間をパイロット孔有効断面積以上で通じると、弁開閉時間とオリフィス目詰まりとが大幅に低減すると共に、弁開と弁閉による水撃や弁体衝止衝撃の増加は僅かである。この低減分を減らし、弁体の僅かな開度未満で、連通室弁室間をより絞り通じさせることにより、弁開閉時間と目詰まりの面で不利にさせず、弁開と弁閉による水撃や弁体衝止衝撃がより低減する。   Furthermore, the closer the valve body is to the valve seat, the more the valve opening and closing time is, the more it affects the water hammer and the valve body impact shock. When the cross-sectional area is passed, the valve opening / closing time and orifice clogging are significantly reduced, and the increase in water hammer and valve impact resistance due to valve opening and valve closing is small. By reducing the amount of this reduction and making the valve chamber more tightly squeezed, with less than a slight opening of the valve body, there is no disadvantage in terms of valve opening / closing time and clogging. The impact and impact of the valve body are further reduced.

さらに、同様に、弁閉過程の僅かな開度未満以外、連通室弁室間をパイロット孔有効断面積以上で通じると、弁開時間とオリフィス目詰まりとがより低減する。この低減分を減らし、弁閉直前より連通室弁室間をより絞り通じさせることで、弁開時間と目詰まりの面でより不利にさせず、弁閉による水撃や弁体衝止衝撃がより低減する。   Further, similarly, if the communication chambers communicate with each other with a pilot hole effective cross-sectional area larger than the slight opening in the valve closing process, the valve opening time and orifice clogging are further reduced. By reducing this reduction and making the communication chambers more restrictive between just before the valve closes, there is no disadvantage in terms of valve opening time and clogging, and water hammer or valve body impact shock due to valve closing occurs. Reduce more.

上述したような本発明のパイロット電磁弁は、下記のような効果を奏する。   The pilot solenoid valve of the present invention as described above has the following effects.

ブリード孔とパイロット孔とを連通する連通室と、連通室と弁室とを連通しブリード孔有効断面積未満のオリフィスとを設けることは、前記理由により、目詰まりの面で不利が生じず、弁開と弁閉による水撃や弁体衝止衝撃を低減できる。   Providing a communication chamber that communicates the bleed hole and the pilot hole, and an orifice that communicates the communication chamber and the valve chamber with an area less than the effective cross-sectional area of the bleed hole is not disadvantageous in terms of clogging due to the above reasons. It can reduce water hammer and valve element impact shock due to valve opening and closing.

また、ブリード孔とパイロット孔とを連通する連通室に弁室が通じ、弁開直後に等圧になるため、最低作動差圧の面で不利が生じない。また、オリフィスは目詰まりし難いと共に、本機構は内部にあり主流路の流れに影響され難いため、作動の安定性の面で不利が生じない。また、弁体に弁口挿入面を設ける必要がないため、圧力損失、振動等の主流路の流れの面で不利が生じない。また、電気系統によらないため、電気系統の面で不利が生じない。また、連通室は、パイロット孔有効断面積以上であればよく、小さくできるため、外形寸法の面で不利が生じない。   In addition, since the valve chamber communicates with the communication chamber that communicates the bleed hole and the pilot hole and becomes equal pressure immediately after the valve is opened, there is no disadvantage in terms of the minimum operating differential pressure. In addition, the orifice is less likely to be clogged, and the present mechanism is inside and hardly affected by the flow of the main flow path, so there is no disadvantage in terms of operation stability. Further, since it is not necessary to provide a valve port insertion surface in the valve body, there is no disadvantage in terms of the flow of the main flow path such as pressure loss and vibration. Moreover, since it does not depend on the electric system, there is no disadvantage in terms of the electric system. Further, the communication chamber only needs to be larger than the effective sectional area of the pilot hole and can be made small, so that there is no disadvantage in terms of the external dimensions.

また、蓋体の連通室に設けたガイド孔と、その中を摺動し弁体に設けた弁体摺動部とが円柱状であり、弁体摺動部が、弁開時に、ブリード孔出口のみをブリード孔有効断面積未満に絞ることは、前記理由により、目詰まりと、弁開と弁閉による水撃や弁体衝止衝撃とをより低減できる。また、弁開時のブリード孔の絞りにより、連通室圧と弁室圧が下がるため、最低作動差圧の低減、パイロット孔縮径によるプランジャ所要吸引力の低減、弁体リフト量増加による流量係数の増加、または弁体縮径による小型化等が可能となる。   Further, the guide hole provided in the communication chamber of the lid body and the valve body sliding portion provided in the valve body which slides in the guide hole are cylindrical, and the valve body sliding portion is a bleed hole when the valve is opened. By restricting only the outlet to less than the effective cross-sectional area of the bleed hole, clogging, water hammer due to valve opening and valve closing, and valve body impact impact can be further reduced for the reasons described above. In addition, the communication chamber pressure and the valve chamber pressure are reduced due to the restriction of the bleed hole when the valve is opened, so the minimum operating differential pressure is reduced, the plunger required suction force is reduced by the pilot hole diameter reduction, and the flow coefficient is increased by the valve body lift amount. Increase in size or downsizing due to the reduced diameter of the valve body.

ガイド孔と弁体摺動部の環状隙間であるオリフィスが、周縁部を挟持固定されたダイヤフラム弁体の僅かな開度以上で、ガイド孔に設けた溝と弁体摺動部に設けた溝とが合い、パイロット孔有効断面積以上に増加することは、前記理由で、弁開閉時間と目詰まりの面で不利にさせず、弁開と弁閉による水撃や弁体衝止衝撃をより低減できる。   An orifice, which is an annular gap between the guide hole and the valve body sliding portion, is a slight opening degree or more of the diaphragm valve body sandwiched and fixed at the periphery, and a groove provided in the guide hole and a groove provided in the valve body sliding portion Therefore, the increase in the pilot hole effective cross-sectional area is not disadvantageous in terms of valve opening / closing time and clogging. Can be reduced.

また、連通室と弁室とを連通する連通孔と、連通孔を開閉する弁2と、差圧の力による弁2の開鎖を抑止する圧縮コイルばねとを設けると共に、弁体の僅かな開度以上で、弁体の往復動により押動され弁2が開く時、連通孔がパイロット孔有効断面積以上であることは、前記理由により、弁開閉時間と目詰まりの面で不利にさせず、弁開と弁閉による水撃や弁体衝止衝撃をより低減できる。 In addition, a communication hole that communicates the communication chamber and the valve chamber, a valve 2 that opens and closes the communication hole, a compression coil spring that prevents the valve 2 from being opened by the force of the differential pressure, and a slight opening of the valve body are provided. When the valve 2 is pushed by the reciprocating motion of the valve body and the valve 2 opens, the communication hole is larger than the effective area of the pilot hole. For the above reasons, the valve opening / closing time and clogging are not disadvantageous. , Water hammer and valve impact shock due to valve opening and closing can be further reduced.

また、弁2が連通室側に有ると共に、圧縮コイルばねが、差圧の力による弁2開鎖を抑止するに代えて、弁2の差圧の力未満であることにより、弁開過程において、連通室圧の急減により、弁2が、押動される前に弁2の差圧の力で開くため、前記理由により、弁開時間と目詰まりの面でより不利にさせず、弁閉による水撃や弁体衝止衝撃をより低減できる。 Further, the valve 2 is in the communication chamber side, a compression coil spring, instead of suppressing the valve 2 open-chain by the force of the pressure difference, by less than the force of the differential pressure valve 2, the valve opening process, Due to the sudden decrease in the communication chamber pressure, the valve 2 is opened by the force of the differential pressure of the valve 2 before being pushed. Therefore, for the reasons described above, the valve opening time and clogging are not adversely affected. Water hammer and valve impact resistance can be further reduced.

また、パイロット孔有効断面積以上である連通孔が、僅かな開度未満で弁体のダイヤフラムに閉じられるように、蓋体の取付面内周側に穿設されることにより、弁開過程は、連通室圧の急減により、ダイヤフラムは弁室側に撓み連通孔が閉じ、弁体速度は初期従来より遅い.弁閉過程は、流入口圧が弁室圧より高く、差圧が増すほどダイヤフラムは弁室側に撓み、弁閉直前より、連通孔が、ダイヤフラムに閉じられる。僅かな開度未満以外、連通孔が開くため、オリフィス目詰まりがより低減する。この低減分を減らし、オリフィスをより絞ることにより、目詰まりの面でより不利にさせず、水撃や弁体衝止衝撃をより低減できる。また、部品数が少なく安価にできる。 In addition, the valve opening process is performed by drilling the communication hole that is equal to or larger than the pilot hole effective cross-sectional area on the inner peripheral side of the mounting surface of the lid so that it is closed to the diaphragm of the valve body with a slight opening degree. Due to the sudden decrease in the communication chamber pressure, the diaphragm bends toward the valve chamber and the communication hole closes , and the valve speed is initially slower than before . In the valve closing process, the inlet pressure is higher than the valve chamber pressure, and as the differential pressure increases, the diaphragm bends toward the valve chamber, and the communication hole is closed by the diaphragm immediately before the valve is closed . Except under small quantity Kana opening, to open the communication hole, the orifice clogging is further reduced. By reducing this reduced amount and further narrowing the orifice , water hammer and valve element impact can be further reduced without causing a disadvantage in terms of clogging. In addition, the number of parts is small and the cost can be reduced.

また、連通孔を無くし連通孔に代えてオリフィスを絞ると共に、オリフィス絞り時にオリフィスがブリード孔有効断面積未満になるように、閉鎖面またはシート座面に溝を凹設することは、前記により、目詰まりの面でより不利にさせず、弁開閉または弁閉による水撃や弁体衝止衝撃をより低減できる。 Further, the squeeze orifice instead of communicating holes eliminates the communication hole, so that the orifice aperture at the orifice is less than the bleed hole effective area, be recessed grooves in the closed chain surface or seating surface is by the In addition, it is possible to further reduce water hammer and valve body impact shock due to valve opening / closing or valve closing without causing further disadvantage in terms of clogging.

以下、本発明の実施の形態を図1〜図6に基づいて説明する。図7、図8の従来例を含め図面は共通部分が多く、その共通部分は同符号を付す。尚、本発明は、通電時開形に限定されず、通電時閉形のパイロット電磁弁等においても適用できる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. The drawings including the conventional examples of FIGS. 7 and 8 have many common parts, and the common parts are denoted by the same reference numerals. The present invention is not limited to the open type when energized, and can also be applied to a closed pilot solenoid valve when energized.

図1〜図4のソレノイド部は、ガイドパイプ22上部の固定鉄心23と、往復動するプランジャ10と、プランジャ10を付勢する復帰ばね11とが、内側に有る。そしてコイルボビン19に巻かれたコイル18と、磁気枠20とが外側に有り、従来の図7、図8と同様である。   The solenoid part of FIGS. 1-4 has the fixed iron core 23 of the guide pipe 22 upper part, the plunger 10 which reciprocates, and the return spring 11 which urges | biases the plunger 10 inside. The coil 18 wound around the coil bobbin 19 and the magnetic frame 20 are on the outside, and are the same as those in FIGS.

図1〜図4の弁部は、流入口5aと流出口5cとを連通する弁口5bと、弁口5bに対向し弁口5bを開閉する弁体4と、弁体4を挟んで弁口5bの反対側に形成される弁室3と、流入口5aと通じるブリード孔3aと、流出口5cと通じるパイロット孔3bと、パイロット孔3bを開閉するパイロット弁9と、ブリード孔3aとパイロット孔3bとを連通する連通室1と、連通室1と弁室3とを連通するオリフィス1aとが有る。小さい有効断面積順に列記すると、ブリード孔3a、パイロット孔3b、連通室1の順になる.   1 to 4 includes a valve port 5b that communicates the inflow port 5a and the outflow port 5c, a valve body 4 that faces the valve port 5b and opens and closes the valve port 5b, and a valve member 4 sandwiching the valve body 4 therebetween. A valve chamber 3 formed on the opposite side of the port 5b, a bleed hole 3a communicating with the inflow port 5a, a pilot hole 3b communicating with the outflow port 5c, a pilot valve 9 for opening and closing the pilot hole 3b, a bleed hole 3a and a pilot There is a communication chamber 1 that communicates with the hole 3b, and an orifice 1a that communicates the communication chamber 1 and the valve chamber 3. When listed in order of small effective area, the bleed hole 3a, the pilot hole 3b, and the communication chamber 1 are arranged in this order.

図1のオリフィス1aは、閉鎖面2aに溝2bが有る弁2の絞り、有効断面積がブリード孔3a未満である
図2は、オリフィス1aがブリード孔3a有効断面積未満であると共に、連通室1と弁室3とを連通する連通孔1bが有る。
図3は、ブリード孔3a有効断面積未満のオリフィス1aを絞り、弁閉時間と水撃や弁体衝止衝撃とを外部調整する流量調整ねじ16と、連通孔1bとが蓋体6に有る。
図4のオリフィス1aは、ガイド孔6aと弁体摺動部4aの環状隙間であり、弁体4の僅かな開度以上で、ガイド孔6aの溝6bと弁体摺動部4aの溝4bとが合い、有効断面積がブリード孔3a未満から増す。
Orifice 1a of FIG. 1, when the throttle groove 2b in the closed chain surface 2a is closed Ru valve 2, chromatic Kodan area is less than the bleed hole 3a.
2, with the orifice 1a is less than the bleed hole 3a effective area, the communication hole 1b communicating with the communication chamber 1 and the valve chamber 3 there.
FIG. 3 shows that the lid body 6 includes a flow rate adjusting screw 16 that throttles the orifice 1a having an effective cross-sectional area less than the bleed hole 3a and externally adjusts the valve closing time, water hammer and valve body impact, and the communication hole 1b. .
The orifice 1a in FIG. 4 is an annular gap between the guide hole 6a and the valve body sliding portion 4a, and the groove 6b of the guide hole 6a and the groove 4b of the valve body sliding portion 4a exceed a slight opening degree of the valve body 4. The effective sectional area increases from less than the bleed hole 3a.

次に図1〜図4の基本的作動を説明する。弁開過程において、コイル18に通電すると磁界が発生、復帰ばね11の力に反しプランジャ10が吸引され、パイロット孔3bが開き連通室1圧は激減する。オリフィス1a、連通孔1b(図2、図3のみ)により弁室3圧も減少、差圧の力により弁体4は上昇し、蓋体6に衝止され弁開に至る。弁体4の上昇につれ、流入口5a圧は減少し、流出口5c圧は増加する。 Next, the basic operation of FIGS. 1 to 4 will be described. In the valve opening process, when the coil 18 is energized, a magnetic field is generated, the plunger 10 is attracted against the force of the return spring 11, the pilot hole 3b is opened, and the communication chamber 1 pressure is drastically reduced. The pressure in the valve chamber 3 is also reduced by the orifice 1a and the communication hole 1b (only in FIGS. 2 and 3), and the valve body 4 is raised by the force of the differential pressure, and is blocked by the lid body 6 to open the valve. As the valve body 4 rises, the inlet 5a pressure decreases and the outlet 5c pressure increases.

弁閉過程において、非通電にすると磁界が消滅、復帰ばね11の力によりプランジャ10が下降、パイロット孔3bが閉じ連通室1圧が増加する。オリフィス1a、連通孔1b(図2、図3のみ)により弁室3圧も増加、差圧の力等により弁体4は下降し弁閉に至る。弁体4の下降につれ、流入口5a圧は増加し、流出口5c圧は減少する。 When the valve is not energized in the valve closing process, the magnetic field disappears, the plunger 10 is lowered by the force of the return spring 11, the pilot hole 3b is closed, and the communication chamber 1 pressure is increased. The valve chamber 3 pressure is also increased by the orifice 1a and the communication hole 1b (FIGS. 2 and 3 only), and the valve element 4 is lowered by the force of the differential pressure and the valve is closed. As the valve body 4 descends, the inlet 5a pressure increases and the outlet 5c pressure decreases.

尚、図1〜図3の弁体圧縮ばね13は、弁開時間と最低作動差圧が増すため無くてもよいが、取付姿勢等による弁開トラブルまたは漏れと、弁閉時間とを低減する。
図4は、弁体4の弁軸4fとプランジャ10に掛け止めされている弁体引張ばね14が、無くてよいが、弁開過程において、プランジャ10の吸引により、弁体引張ばね14の力が弁体4の上昇を助けるため、最低作動差圧が下がる。弁閉時は、復帰ばね11が弁体4を弁座5dに押すため、電磁弁の取付姿勢は自由になる。
The valve body compression spring 13 of FIGS. 1 to 3 is not necessary because the valve opening time and the minimum operating differential pressure increase, but it reduces valve opening trouble or leakage due to the mounting posture and the like, and the valve closing time. .
In FIG. 4, the valve body tension spring 14 that is latched to the valve shaft 4 f of the valve body 4 and the plunger 10 may be omitted, but the force of the valve body tension spring 14 is generated by the suction of the plunger 10 in the valve opening process. However, since the valve body 4 is lifted, the minimum operating differential pressure is lowered. When the valve is closed, the return spring 11 pushes the valve body 4 against the valve seat 5d, so that the mounting posture of the electromagnetic valve is free.

図1〜図4のオリフィス1aと、図2と図3の連通孔1bとにおいて、弁開時の流量激減、弁開過程と弁閉過程の交互の逆流による堆積ゴミ類の除去、ブリード孔3aによるゴミ類の除去により、目詰まりし難い。このため、弁2の絞り(図1)・弁2の閉鎖(図2)・連通孔1bの閉鎖(図3)・または溝4b溝6の離間(図4)により、ブリード孔3a有効断面積未満のオリフィス1aで、弁室3が連通室1のみと通じるため、弁体速度が緩やかになり、目詰まりの面で不利が生じず、弁開と弁閉による水撃や弁体衝止衝撃が低減する。 1-4, and the communication hole 1b shown in FIGS. 2 and 3, drastic reduction of the flow rate when the valve is opened, removal of accumulated debris by alternating backflow between the valve opening process and the valve closing process, and the bleed hole 3a. It is hard to be clogged by removing garbage. For this reason, the effective cross-sectional area of the bleed hole 3a can be reduced by restricting the valve 2 (FIG. 1), closing the valve 2 (FIG. 2), closing the communication hole 1b (FIG. 3), or separating the groove 4b and the groove 6 (FIG. 4). Since the valve chamber 3 communicates only with the communication chamber 1 with the orifice 1a less than that, the speed of the valve body becomes slow, there is no disadvantage in terms of clogging, and water hammer or valve body impact shock due to valve opening and closing Is reduced.

また、ブリード孔3aとパイロット孔3bとを連通する連通室1に、弁室3が通じ、弁開直後より等圧になるため、最低作動差圧の面で不利が生じない。また、オリフィス1a、連通孔1bは、上記により目詰まりし難いと共に、本機構は内部にあり主流路の流れに影響され難いため、作動の安定性の面で不利が生じない。また、弁体4に弁口5b挿入面が無いため、圧力損失、振動等の主流路の流れの面で不利が生じない。また、電気系統を変えていないため、電気系統の面で不利が生じない。また、外形寸法の面において、図1〜図3、図4が、従来例の図7、図8と各々等しいように、不利が生じない。   In addition, since the valve chamber 3 communicates with the communication chamber 1 that communicates the bleed hole 3a and the pilot hole 3b and becomes equal pressure immediately after the valve is opened, there is no disadvantage in terms of the minimum operating differential pressure. Further, the orifice 1a and the communication hole 1b are not easily clogged as described above, and the mechanism is inside and hardly affected by the flow of the main flow path, so that there is no disadvantage in terms of operation stability. Further, since the valve body 4 has no insertion surface for the valve port 5b, there is no disadvantage in terms of the flow of the main flow path such as pressure loss and vibration. Moreover, since the electric system is not changed, there is no disadvantage in terms of the electric system. Further, in terms of the outer dimensions, there is no disadvantage so that FIGS. 1 to 3 and 4 are equal to FIGS. 7 and 8 of the conventional example.

さらに、図2と図4は、蓋体6の連通室1に設けたガイド孔6aと、その中を摺動し弁体4に設けた弁体摺動部4aとが円柱状であり、弁開時に弁体摺動部4aが、ブリード孔3a出口のみをブリード孔3aの有効断面積未満に絞る。尚、図2の連通室1は、通孔3dにより分けられない。このため、ブリード孔3aの流量が減少し、オリフィス1aとブリード孔3aとパイロット孔3bの目詰まりが低減する。この低減分を減らしオリフィス1aをより絞ることで、弁体速度をより緩やかにし、目詰まりと、弁開と弁閉による水撃や弁体衝止衝撃とをより低減する。尚、ガイド孔6a径が小さいほど、弁室3受圧面積が増加し弁体速度を緩やかにする。また、弁開時は、上記により、連通室1圧と弁室3圧が下がるため、最低作動差圧の低減、パイロット孔3b縮径によるプランジャ10所要吸引力の低減、弁体4リフト量増加による流量係数の増加、または弁体4縮径による小型化等が可能となる。   Further, in FIGS. 2 and 4, the guide hole 6 a provided in the communication chamber 1 of the lid body 6 and the valve body sliding portion 4 a that slides in the valve body 4 and is provided in the valve body 4 are cylindrical. When opened, the valve body sliding portion 4a restricts only the outlet of the bleed hole 3a to less than the effective sectional area of the bleed hole 3a. 2 is not divided by the through holes 3d. For this reason, the flow rate of the bleed hole 3a is reduced, and clogging of the orifice 1a, the bleed hole 3a, and the pilot hole 3b is reduced. By reducing this reduced amount and further narrowing down the orifice 1a, the valve body speed is made gentler, and clogging, water hammer and valve body impact impact due to valve opening and closing are further reduced. The smaller the diameter of the guide hole 6a, the larger the pressure receiving area of the valve chamber 3 and the slower the valve body speed. Further, when the valve is opened, the communication chamber 1 pressure and the valve chamber 3 pressure are reduced as described above, so that the minimum operating differential pressure is reduced, the required suction force of the plunger 10 is reduced by the diameter of the pilot hole 3b, and the lift amount of the valve body 4 is increased. It is possible to increase the flow coefficient by reducing the size by reducing the diameter of the valve body 4 or the like.

さらに図4は、ガイド孔6aと弁体摺動部4aの環状隙間であるオリフィス1aが、周縁部を挟持固定されたダイヤフラム弁体4の僅かな開度以上で、ガイド孔6aに設けた溝6bと弁体摺動部4aに設けた溝4bとが合い、パイロット孔3b有効断面積以上になる。弁体4が弁座5dに近いほど、弁開閉時間と相反し水撃や弁体衝止衝撃に影響することにより、弁体4の僅かな開度以上でのオリフィス1a有効断面積の増加は、弁開閉時間とオリフィス1a目詰まりを大幅に低減すると共に、弁開と弁閉による水撃や弁体衝止衝撃の増加は僅かである。この低減分を減らし、弁体4の僅かな開度未満でオリフィス1aをより絞ることにより、弁開閉時間と目詰まりの面で不利にさせず、弁開と弁閉による水撃や弁体衝止衝撃をより低減する。尚、ガイド孔6aの溝6bと、弁体摺動部4aの溝4bとは、半円状の断面で軸方向に凹設し、円周方向で合うように取り付ける(図6)。   Further, FIG. 4 shows a groove provided in the guide hole 6a so that the orifice 1a, which is an annular gap between the guide hole 6a and the valve body sliding portion 4a, is more than a slight opening degree of the diaphragm valve body 4 sandwiched and fixed at the periphery. 6b and the groove 4b provided in the valve body sliding part 4a are fitted, and the pilot hole 3b has an effective sectional area or more. The closer the valve body 4 is to the valve seat 5d, the opposite of the valve opening / closing time and the influence of the water hammer and the valve body impact impact, the increase in the effective sectional area of the orifice 1a above the slight opening of the valve body 4 is The valve opening / closing time and the clogging of the orifice 1a are greatly reduced, and the water hammer and valve body impact impact due to the valve opening and closing are slight. By reducing this reduced amount and further narrowing the orifice 1a below the slight opening of the valve body 4, there is no disadvantage in terms of valve opening / closing time and clogging, and water hammer and valve body impact by valve opening and valve closing are avoided. Reduces stop impact more. In addition, the groove 6b of the guide hole 6a and the groove 4b of the valve body sliding part 4a are recessed in the axial direction with a semicircular cross section, and are attached so as to fit in the circumferential direction (FIG. 6).

さらに図1と図2は、連通室1と弁室3とを連通するオリフィス1aと、オリフィス1a弁2と、差圧の力による弁2開鎖を抑止する圧縮コイルばね12とを設けている。そして、図1は弁2と弁体4が僅かに離れていると共に、図2は弁2とピン15が僅かに離れている。このため、弁体4の僅かな開度以上で、弁体4の往復動により押動され弁2が開く時、オリフィス1aはパイロット孔3b有効断面積以上になる。上記理由により、弁開閉時間と、弁体4の僅かな開度未満での溝2b目詰まりとを大幅に低減すると共に、弁開と弁閉による水撃や弁体衝止衝撃の増加は僅かである。この低減分を減らし、溝2bの断面積を縮小することにより、弁開閉時間と目詰まりの面で不利にさせず、弁開と弁閉による水撃や弁体衝止衝撃をより低減する。また、弁2が蓋体6から出ているため、図1のガイド無しダイヤフラム弁体4のふらつきに対応できる。尚、圧縮コイルばね12の付勢力は、最高作動差圧時の弁2の差圧の力以上である。また、図1は、プラグ7が有り弁2を替え、弁開閉時間と水撃や弁体衝止衝撃とを容易に調整できる。また、図2の弁2は、鋼球のため、かじりが無く、平行ピン15と共に市販品のため安価である。 Further, FIGS. 1 and 2 are provided with an orifice 1a that connects the communication chamber 1 and the valve chamber 3, a valve 2 of the orifice 1a , and a compression coil spring 12 that suppresses opening of the valve 2 due to the force of differential pressure . . In FIG. 1, the valve 2 and the valve body 4 are slightly separated, and in FIG. 2, the valve 2 and the pin 15 are slightly separated. For this reason, when the valve 2 is opened by being reciprocated by the valve body 4 at a slight opening degree or more of the valve body 4, the orifice 1a becomes larger than the effective sectional area of the pilot hole 3b. The above reasons, a valve opening and closing times, and a groove 2b clogging with greatly reduced at a slight angle less than the valve element 4, the increase in water hammer and the valve body衝止impact by the valve opening and valve closing There are few. By reducing this reduction amount and reducing the cross-sectional area of the groove 2b, the water hammer and valve body impact impact due to valve opening and closing are further reduced without adversely affecting the valve opening / closing time and clogging. Further, since the valve 2 protrudes from the lid body 6, it can cope with the wobbling of the unguided diaphragm valve body 4 of FIG. The urging force of the compression coil spring 12 is equal to or greater than the force of the differential pressure of the valve 2 at the maximum operating differential pressure. Further, in FIG. 1, the plug 7 is provided and the valve 2 is changed, so that the valve opening / closing time and the water hammer and the valve body impact impact can be easily adjusted. Further, the valve 2 in FIG. 2 is a steel ball, so there is no galling, and it is inexpensive because it is a commercial product together with the parallel pin 15.

さらに図1おいて、弁2の差圧の力未満である圧縮コイルばね12に替えた場合、弁2が連通室1側に有るため、弁開過程の連通室1圧の急減により、弁2は押動される前に差圧の力により開く。このため、弁開時間とオリフィス1aの目詰まりが低減する。この低減分を減らし、弁体4の僅かな開度未満で溝2bをより絞ることは、弁開時間と目詰まりの面で不利にさせず、弁閉による水撃や弁体衝止衝撃をより低減する。尚、圧縮コイルばね12の付勢力は、パイロット電磁弁の自由な取付姿勢のため弁2重量以上で、最低作動差圧時の弁2の差圧の力未満である。 Further, in FIG. 1, when the compression spring 12 is replaced with a compression coil spring 12 having a pressure less than the differential pressure of the valve 2, the valve 2 is on the communication chamber 1 side. Is opened by the force of differential pressure before being pushed. For this reason, valve opening time and clogging of the orifice 1a are reduced. Reduce the amount of decrease, the squeezing more grooves 2b with a small opening less than the valve element 4, without being disadvantageous in terms of the valve opening time and clogging, water by valve closing hammer and the valve body衝止impact Is further reduced. The urging force of the compression coil spring 12 is not less than the weight of the valve 2 due to the free mounting posture of the pilot solenoid valve, and less than the force of the differential pressure of the valve 2 at the minimum operating differential pressure.

さらに、図3は、パイロット孔3b有効断面積以上である連通孔1bが、僅かな開度未満で弁体4のダイヤフラム4dに閉じられるように、蓋体6の取付面内周側6cに穿設されている。弁開過程は、連通室1圧の急減により、ダイヤフラム4dは弁室3側に撓み連通孔1bは閉じるため、弁体速度は初期従来より遅い.弁閉過程は、弁体4が弁座5に近づくほど、流入口5a圧が増え弁室3圧との差圧が増しダイヤフラム4dは弁室側に撓み、弁閉直前より、連通孔1bがダイヤフラム4dに閉じられる。僅かな開度未満以外、連通孔1bが開くため、オリフィス1aの目詰まりより低減する。この低減分を減らし、オリフィス1aをより絞ることにより、目詰まりの面でより不利にさせず、水撃や弁体衝止衝撃をより低減する。また、部品数が少なく安価である。 Further, FIG. 3 shows that the communication hole 1b which is larger than the effective cross-sectional area of the pilot hole 3b is drilled on the inner peripheral side 6c of the attachment surface of the cover body 6 so that it is closed by the diaphragm 4d of the valve body 4 with a slight opening. It is installed. Valve opening process, the rapid decrease of the communication chamber 1 pressure, because the diaphragm 4d is to close the communication hole 1b deflection in the valve chamber 3 side, the valve body speed is slower than a conventional early. In the valve closing process, as the valve body 4 approaches the valve seat 5, the pressure at the inlet 5 a increases and the pressure difference from the valve chamber 3 pressure increases, and the diaphragm 4 d bends toward the valve chamber 3 , and the communication hole 1 b starts immediately before closing the valve. Is closed by the diaphragm 4d . Except under small quantity Kana opening, to open the communication hole 1b, clogging of the orifice 1a is further reduced. By reducing this reduced amount and further narrowing the orifice 1a , water hammer and valve element impact impact are further reduced without causing any disadvantage in terms of clogging. In addition, the number of parts is small and inexpensive.

さらに、図1は、連通孔1bを無くし連通孔1bに代えてオリフィス1aを絞ると共に、オリフィス1a絞り時にオリフィス1aがブリード孔3a有効断面積未満になるように、弁2閉鎖面2aの円周方向に溝2bを凹設している(図5)。このため、オリフィス1a絞り時に溝2bに有る堆積ゴミ類が、開鎖直後に除去され、目詰まりが低減する。この低減分を減らし、溝2bの断面積をより絞ることは、目詰まりの面でより不利にさせず、弁開閉または弁閉による水撃や弁体衝止衝撃をより低減する。尚、閉鎖面2aまたはシート座面8において、オリフィス1a絞り時にオリフィス1aがブリード孔3a有効断面積未満になれば、溝2に限定せず、凹凸または面のアラサ等でもよい。 Furthermore, FIG. 1, the squeeze orifice 1a in place of the communication hole 1b eliminates the communication hole 1b, as at the orifice 1a restrictive orifice 1a is less than the bleed hole 3a effective area, the circumference of the valve 2 closed surface 2a A groove 2b is provided in the direction (FIG. 5). For this reason, the accumulated debris in the groove 2b when the orifice 1a is throttled is removed immediately after the chain is opened, and clogging is reduced. Reducing this reduction and further reducing the cross-sectional area of the groove 2b does not make the clogging more disadvantageous, and further reduces water hammer and valve body impact impact due to valve opening and closing or valve closing. In the closing surface 2a or the seat seat surface 8, as long as the orifice 1a is smaller than the effective sectional area of the bleed hole 3a when the orifice 1a is squeezed, it is not limited to the groove 2, but may be unevenness or surface roughness.

実施例パイロット電磁弁の弁閉時の縦断面図Example Vertical cross-sectional view of pilot solenoid valve when closed 実施例パイロット電磁弁の弁閉時の縦断面図Example Vertical cross-sectional view of pilot solenoid valve when closed 実施例パイロット電磁弁の弁閉時の縦断面図Example Vertical cross-sectional view of pilot solenoid valve when closed 実施例パイロット電磁弁の弁閉時の縦断面図Example Vertical cross-sectional view of pilot solenoid valve when closed 図1の弁2の溝2b付近を拡大した立体図A three-dimensional view enlarging the vicinity of the groove 2b of the valve 2 of FIG. 図4の溝6b溝4b付近を拡大した立体図The three-dimensional view which expanded the groove | channel 6b vicinity of the groove | channel 4b of FIG. 従来例パイロット電磁弁の弁閉時の縦断面図Longitudinal sectional view of a conventional pilot solenoid valve when closed 従来例パイロット電磁弁の弁閉時の縦断面図Longitudinal sectional view of a conventional pilot solenoid valve when closed

符号の説明Explanation of symbols

1 連通室 4 弁体 6 蓋体
1a オリフィス 4a 弁体摺動部 6a ガイド孔
1b 連通孔 4b 溝 6b 溝
2 弁 4c ダイヤフラム受 6c 取付面内周側
2a 閉鎖面 4d ダイヤフラム 8 シート座面
2b 溝 4g 隔壁 9 パイロット弁
3 弁室 5 弁箱 10 プランジャ
3a ブリード孔 5a 流入口 11 復帰ばね
3b パイロット孔 5b 弁口 12 圧縮コイルばね
3c 通孔 5c 流出口 13 弁体圧縮ばね
3d 通孔 5d 弁座 14 弁体引張ばね
DESCRIPTION OF SYMBOLS 1 Communication chamber 4 Valve body 6 Cover body 1a Orifice 4a Valve body sliding part 6a Guide hole 1b Communication hole 4b Groove 6b Groove 2 Valve 4c Diaphragm receiver 6c Mounting surface inner peripheral side 2a Closed surface 4d Diaphragm 8 Seat seat surface 2b Groove 4g Bulkhead 9 Pilot valve 3 Valve chamber 5 Valve box 10 Plunger 3a Bleed hole 5a Inlet 11 Return spring 3b Pilot hole 5b Valve port 12 Compression coil spring 3c Through hole 5c Outlet 13 Valve body compression spring 3d Through hole 5d Valve seat 14 Valve Body tension spring

Claims (7)

流入口と流出口とを連通する弁口と、該弁口に対向し該弁口を開閉する弁体と、該弁体を挟んで該弁口の反対側に形成される弁室と、前記流入口と通じるブリード孔と、前記流出口と通じるパイロット孔と、プランジャの往復動により該パイロット孔を開閉するパイロット弁とが有るパイロット電磁弁において、前記ブリード孔と前記パイロット孔とを連通する連通室と、該連通室と前記弁室とを連通し前記ブリード孔有効断面積未満のオリフィスとを設けたパイロット電磁弁。  A valve port communicating with the inflow port and the outflow port, a valve body facing the valve port and opening and closing the valve port, a valve chamber formed on the opposite side of the valve port across the valve body, In a pilot solenoid valve having a bleed hole that communicates with an inflow port, a pilot hole that communicates with the outflow port, and a pilot valve that opens and closes the pilot hole by reciprocating movement of a plunger, the communication that connects the bleed hole and the pilot hole A pilot solenoid valve provided with a chamber, an orifice having an effective cross-sectional area less than the bleed hole, which communicates the communication chamber and the valve chamber. 蓋体の前記連通室に設けたガイド孔と、その中を摺動し前記弁体に設けた弁体摺動部とが円柱状であり、前記弁体の弁開時に、該弁体摺動部が、前記ブリード孔出口のみを該ブリード孔有効断面積未満に絞る請求項1記載のパイロット電磁弁。  The guide hole provided in the communication chamber of the lid body and the valve body sliding portion provided in the valve body that slides in the communication hole are cylindrical, and the valve body slides when the valve body is opened. The pilot solenoid valve according to claim 1, wherein the portion restricts only the bleed hole outlet to be less than the effective area of the bleed hole. 前記ガイド孔と前記弁体摺動部の環状隙間である前記オリフィスが、周縁部を挟持固定されたダイヤフラム前記弁体の僅かな開度以上で、前記ガイド孔に設けた溝と前記弁体摺動部に設けた溝とが合い、前記パイロット孔有効断面積以上に増加する請求項2記載のパイロット電磁弁。  The orifice, which is an annular gap between the guide hole and the valve body sliding portion, has a diaphragm with a peripheral edge sandwiched and fixed above the slight opening of the valve body, and the groove provided in the guide hole and the valve body slide The pilot solenoid valve according to claim 2, wherein the pilot solenoid valve is fitted with a groove provided in the moving portion and increases beyond the effective area of the pilot hole. 前記連通室と前記弁室とを連通する連通孔と、該連通孔を開閉する弁と、全圧力による該弁の開鎖を抑止する圧縮コイルばねとを設けると共に、前記弁体の僅かな開度以上で、前記弁体の往復動により押動され前記弁が開く時、前記連通孔が前記パイロット孔有効断面積以上である請求項1又は2記載のパイロット電磁弁。  A communication hole that communicates the communication chamber and the valve chamber, a valve that opens and closes the communication hole, and a compression coil spring that suppresses opening of the valve due to total pressure, and a slight opening degree of the valve body The pilot solenoid valve according to claim 1 or 2, wherein when the valve is opened by being reciprocated by the valve body, the communication hole is larger than the effective area of the pilot hole. 前記弁が前記連通室側に有ると共に、前記圧縮コイルばねが、全圧力による前記弁の開鎖を抑止するに代えて、前記弁の全圧力未満である請求項4記載のパイロット電磁弁。  5. The pilot solenoid valve according to claim 4, wherein the valve is on the side of the communication chamber, and the compression coil spring is less than the total pressure of the valve instead of preventing the valve from being opened due to the total pressure. 前記パイロット孔有効断面積以上である前記連通孔が、弁閉直前より前記弁体の前記ダイヤフラムに閉じられるように、前記蓋体の取付面内周側に穿設された請求項1又は2記載のパイロット電磁弁。  The said communicating hole more than the said pilot hole effective cross-sectional area is drilled in the attachment surface inner peripheral side of the said cover body so that it may be closed by the said diaphragm of the said valve body from immediately before valve closing. Pilot solenoid valve. 前記連通孔を無くし前記連通孔に代えて前記オリフィスを開閉すると共に、前記オリフィス閉鎖時に前記オリフィスが前記ブリード孔有効断面積未満になるように、前記オリフィスの閉鎖面またはシート座面に溝を凹設した請求項4、5又は6記載のパイロット電磁弁。  The communication hole is eliminated, the orifice is opened and closed instead of the communication hole, and a groove is recessed in the closed surface or seat seat surface of the orifice so that the orifice is less than the effective area of the bleed hole when the orifice is closed. The pilot solenoid valve according to claim 4, 5 or 6.
JP2005199400A 2005-06-10 2005-06-10 Pilot solenoid valve Expired - Fee Related JP3771577B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005199400A JP3771577B1 (en) 2005-06-10 2005-06-10 Pilot solenoid valve
PCT/JP2006/310913 WO2006132120A1 (en) 2005-06-10 2006-05-31 Pilot solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199400A JP3771577B1 (en) 2005-06-10 2005-06-10 Pilot solenoid valve

Publications (2)

Publication Number Publication Date
JP3771577B1 JP3771577B1 (en) 2006-04-26
JP2006342952A true JP2006342952A (en) 2006-12-21

Family

ID=36383740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199400A Expired - Fee Related JP3771577B1 (en) 2005-06-10 2005-06-10 Pilot solenoid valve

Country Status (2)

Country Link
JP (1) JP3771577B1 (en)
WO (1) WO2006132120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662255A (en) * 2018-07-16 2018-10-16 浙江中孚流体机械有限公司 A kind of guide electromagnetic valve that spool aperture is controllable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374329B (en) * 2010-08-27 2013-06-05 孙全伟 Air source pressure boosting gas circuit electromagnetic valve
CN107152552B (en) * 2017-07-07 2023-09-22 鞍山电磁阀有限责任公司 Multistage action electromagnetic valve and pipeline system
GB2600678A (en) * 2020-10-07 2022-05-11 Norcros Group Holdings Ltd A water heater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119863A (en) * 1993-10-27 1995-05-12 Toto Ltd Pilot type diaphragm valve
JPH07229580A (en) * 1993-12-22 1995-08-29 Toto Ltd Pilot type diaphragm valve
US5687759A (en) * 1996-04-04 1997-11-18 The Curators Of The University Of Missouri Low operating power, fast-response servovalve
JP2002286158A (en) * 2001-03-27 2002-10-03 Maezawa Kyuso Industries Co Ltd Electromagnetic stop cock
JP3927145B2 (en) * 2003-04-04 2007-06-06 和宏 本田 Pilot solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662255A (en) * 2018-07-16 2018-10-16 浙江中孚流体机械有限公司 A kind of guide electromagnetic valve that spool aperture is controllable

Also Published As

Publication number Publication date
JP3771577B1 (en) 2006-04-26
WO2006132120A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US8678341B2 (en) Normally closed solenoid valve
EP3187730A1 (en) Variable-capacity compressor control valve
JP4898563B2 (en) piston
WO2012032594A1 (en) Linear solenoid valve
US8205636B2 (en) Flow rate control valve
JP4714626B2 (en) Control valve for variable displacement compressor
JP2010116979A (en) Backflow preventive device
EP2020507A2 (en) Control valve for variable capacity compressors
JP2007078187A (en) Damper spool
CN104896130A (en) Fluid control valve
JP3771577B1 (en) Pilot solenoid valve
KR20170072149A (en) Variable-capacity compressor control valve
CN105135029A (en) Two-stage pilot solenoid valve
KR20210015930A (en) Relief valve
KR20190003769A (en) Control Valves for Variable Capacity Compressors
JP3927145B2 (en) Pilot solenoid valve
CN109469768B (en) Refrigerating system and electronic expansion valve thereof
JP7504461B2 (en) Electrically operated valve
JP2008106926A (en) Valve structure of damper
JP5648037B2 (en) Pilot operated solenoid valve
WO2013122250A1 (en) Damping force control valve and shock absorber
JP2016173099A (en) Intake regulation valve for compressor
CN111692345A (en) Electromagnetic valve
TW201920857A (en) Valve device
JP2019120318A (en) Valve mechanism

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees