JP2006342404A - Electric heating method for steel strip - Google Patents

Electric heating method for steel strip Download PDF

Info

Publication number
JP2006342404A
JP2006342404A JP2005170222A JP2005170222A JP2006342404A JP 2006342404 A JP2006342404 A JP 2006342404A JP 2005170222 A JP2005170222 A JP 2005170222A JP 2005170222 A JP2005170222 A JP 2005170222A JP 2006342404 A JP2006342404 A JP 2006342404A
Authority
JP
Japan
Prior art keywords
steel strip
current
heating
cross
welding point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005170222A
Other languages
Japanese (ja)
Other versions
JP4630134B2 (en
Inventor
Takao Nagase
隆夫 永瀬
Masayoshi Matsuda
雅義 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005170222A priority Critical patent/JP4630134B2/en
Publication of JP2006342404A publication Critical patent/JP2006342404A/en
Application granted granted Critical
Publication of JP4630134B2 publication Critical patent/JP4630134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric heating method for a steel strip where, even in the case the cross-sectional area of a steel strip is changed at a welding point, the final arrival sheet temperature of the steel strip infiltrated into a hot dip metal bath can be controlled to a fixed range where sheet fracture and plating peeling are not generated, and further, even in the case the cut of energizing is performed before and after the welding point, the final arrival sheet temperature of the steel strip can be secured. <P>SOLUTION: In the electric heating method for a steel strip where, when a welding point connecting a preceding material and a posterior material whose cross-sectional areas are different in a steel strip passes within an electric heating range, the change of heating current is performed in such a manner that the change distance L2 from the passage of the welding point through a conductive roll to a heating current set value change point satisfies the formula: L2=L1×(1-t)×(Ja')<SP>2</SP>/((1-t)×(Ja')<SP>2</SP>+(1+t)×(Jb')<SP>2</SP>) (wherein L2: the change distance from the conductive roll to the heating current set value change point; L1: heating length in the electric heating range; Ja: the set current density of the preceding material; Jb: the set current density of the posterior material; a: the cross-sectional area of the preceding material; b: the cross-sectional area of the posterior material; Ja'=Jb×b/a; Jb'=Ja×a/b; and t: a constant). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、連続送給される鋼帯を、該鋼帯の入側に配置された通電ロールに接触させるとともに、該鋼帯の出側に配置された金属浴に接触させ、上記ロールと金属浴を電極とし電極間の鋼帯に通電して加熱する鋼帯の通電加熱方法に関する。
具体的には、大量生産される鋼帯を連続的に高速送給しつつ、通電ロールを用いて電流を流して加熱する方法であって、例えば鋼帯を焼入れ、焼なまし、メッキ用予熱などの各種熱処理のために加熱する際に用いられる鋼帯の通電加熱方法に関する。
According to the present invention, the steel strip that is continuously fed is brought into contact with an energizing roll disposed on the entry side of the steel strip, and is brought into contact with a metal bath disposed on the exit side of the steel strip. The present invention relates to a method for electrically heating a steel strip that uses a bath as an electrode to energize and heat the steel strip between the electrodes.
Specifically, it is a method in which a steel strip to be mass-produced is continuously fed at high speed and heated by passing an electric current using an energizing roll. For example, the steel strip is quenched, annealed, and preheated for plating. The present invention relates to an electric heating method for a steel strip used for heating for various heat treatments.

鋼帯を焼入れ、焼なまし、メッキ用予熱などの各種熱処理のために加熱する際に用いられる鋼帯の通電加熱方法に関しては、従来から種々の提案がなされている。
例えば、実公平6−30844号公報には、連続式溶融亜鉛メッキ設備において、鋼帯が走行する空間を形成したリングトランスの入側に設けた通電ロールと溶融亜鉛浴とを導電部材で接続することにより2次閉回路を構成し、リングトランスによって2次閉回路に誘起する電圧で鋼帯に電流を流し加熱する設備において、鋼帯の抵抗と通電部材の抵抗を特定範囲にするとともに、コンパクトで安価な雰囲気加熱装置を採用した連続式溶融亜鉛メッキ設備が提案されている。
Conventionally, various proposals have been made regarding the current heating method of the steel strip used when heating the steel strip for various heat treatments such as quenching, annealing, and preheating for plating.
For example, in Japanese Utility Model Publication No. 6-30844, in a continuous hot dip galvanizing facility, a conductive roll provided on the entrance side of a ring transformer that forms a space in which a steel strip travels and a hot dip zinc bath are connected by a conductive member. In a facility that configures a secondary closed circuit and heats the steel strip with a voltage induced in the secondary closed circuit by a ring transformer, the resistance of the steel strip and the resistance of the current-carrying member are within a specific range and compact. In addition, a continuous hot-dip galvanizing facility that employs an inexpensive and inexpensive atmosphere heating device has been proposed.

この連続式溶融亜鉛メッキ設備において、先行材と後行材とを繋ぐ溶接点で鋼帯の断面積が変化する場合、通電ロールと溶融亜鉛浴間の加熱範囲内は同一電流が流れるため、断面積大側は温度低下、断面積小側は温度上昇するので溶融亜鉛浴に浸入する最終到達板温が大幅に変動し、板破断等のトラブルを発生させるという問題があった。
この最終到達板温の変動を必要最小限に抑えるためには溶接点での繋ぎ目が加熱範囲内にある間に電流を切替える必要があるが、この適切な切替えタイミングを決定することが課題となっていた。
例えば、「先行材の断面積>後行材の断面積」の場合には、後行材が切替点に到達するまでは断面積の大きい先行材加熱に必要な大きな電流を流すこととなるが、この電流は断面積の小さい後行材にとっては過大な電流となり、切替えタイミングが遅れると断面積の小さい後行材が過加熱となり板破断を引き起こす危険性があった。
また、逆に切替タイミングが早過ぎると、断面積の大きい先行材が十分に加熱されなくなり、先行材の板温が所定の温度以下となる部分でメッキ剥離が発生し、後工程のロールに疵を発生させる等の被害を与える場合があった。
なお、「先行材の断面積<後行材の断面積」の場合には現象は逆になるが、同様の問題が発生していた。
In this continuous hot dip galvanizing equipment, when the cross-sectional area of the steel strip changes at the welding point that connects the preceding material and the following material, the same current flows in the heating range between the energizing roll and the molten zinc bath. Since the temperature is decreased on the large area side and the temperature is increased on the small cross-sectional area side, there has been a problem in that the final reached plate temperature entering the molten zinc bath fluctuates greatly, causing troubles such as plate breakage.
In order to minimize the fluctuation of the final plate temperature, it is necessary to switch the current while the joint at the welding point is within the heating range, but determining the appropriate switching timing is a problem. It was.
For example, in the case of “the cross-sectional area of the preceding material> the cross-sectional area of the following material”, a large current necessary for heating the preceding material having a large cross-sectional area will flow until the succeeding material reaches the switching point. This current is excessive for a succeeding material having a small cross-sectional area, and if the switching timing is delayed, the succeeding material having a small cross-sectional area may be overheated to cause a plate breakage.
On the other hand, if the switching timing is too early, the preceding material having a large cross-sectional area will not be sufficiently heated, and plating peeling will occur at the portion where the plate temperature of the preceding material is lower than the predetermined temperature. In some cases, it causes damage.
In the case of “the cross-sectional area of the preceding material <the cross-sectional area of the succeeding material”, the phenomenon is reversed, but the same problem has occurred.

また、通電ロールを用いた従来の通電加熱方法においては、鋼帯を接続する溶接点での繋ぎ目が通電ロールを通過する際にスパークによる鋼帯およびロールへの疵発生防止のため加熱電流をカットする場合があり、加熱電流をカットするとその間は通電ロールと溶融亜鉛浴との間にある鋼帯には電流が流れないため、溶融亜鉛浴に浸入する最終到達板温が低下するという問題があった。
実公平6−30844号公報
Moreover, in the conventional energization heating method using an energizing roll, when a joint at a welding point connecting the steel strip passes through the energizing roll, a heating current is applied to prevent generation of wrinkles on the steel strip and the roll due to sparks. When the heating current is cut, the current does not flow in the steel strip between the energizing roll and the molten zinc bath, so the problem is that the final temperature of the plate that enters the molten zinc bath decreases. there were.
No. 6-30844

本発明は、溶接点を有する鋼帯を通電ロール電極と浴電極を用いて通電し加熱する鋼 帯の通電加熱方法における前述のような従来技術の問題点を解決し、溶接点で鋼帯の断 面積が変化する場合であっても溶融金属浴に浸入する最終到達板温を板破断とメッキ剥 離が発生しない一定範囲に収めることができるうえ、溶接点の前後で通電カットを行う 場合であっても鋼帯の最終到達板温を確保することができる鋼帯の通電加熱方法を提供 することを課題とする。     The present invention solves the above-mentioned problems of the prior art in the method of energizing and heating a steel strip having a welding point by energizing and heating the steel strip using an energizing roll electrode and a bath electrode. Even when the cutting area changes, it is possible to keep the final plate temperature entering the molten metal bath within a certain range that does not cause breakage and peeling of the plate, and when cutting the current before and after the welding point. It is an object of the present invention to provide an electric heating method for the steel strip that can secure the final temperature of the steel strip even if it exists.

本発明は、上記課題を解決するために鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)連続送給される鋼帯を、該鋼帯の入側に配置された通電ロールに接触させるとともに、該鋼帯の出側に配置された金属浴に接触させ、前記通電ロールと金属浴を電極とし電極間の鋼帯に通電して加熱する鋼帯の通電加熱方法であって、前記鋼帯の断面積が異なる先行材と後行材とを繋ぐ溶接点が通電加熱範囲内を通過する際に、前記溶接点が通電ロールを通過してから加熱電流設定値切替点までの切替距離L2が下記(A)式を満足するように加熱電流の切替を行うことを特徴とする鋼帯の通電加熱方法。
L2=L1× (1-t)×(Ja')2/((1-t)×(Ja')2+(1+t)×(Jb')2)・・・(A)
ここに、L2:通電ロールから加熱電流設定値切替点までの切替距離
L1:通電加熱範囲における加熱長
Ja:先行材の設定電流密度
Jb:後行材の設定電流密度
a:先行材の断面積
b:後行材の断面積
Ja'=Jb×b/a
Jb'=Ja×a/b
t:定数
(2)前記鋼帯の溶接点が通電ロールを通過する際に電流を停止する通電カットにより前記鋼帯の最終到達板温に見合う電流に対して不足する電流を、前記通電カットの前後に通常の設定電流に加えて供給することにより、前記鋼帯の最終到達板温を確保することを特徴とする(1)に記載の鋼帯の通電加熱方法。
The present invention has been made as a result of intensive studies in order to solve the above-mentioned problems, and the gist of the present invention is the following contents as described in the claims.
(1) A steel strip that is continuously fed is brought into contact with an energizing roll disposed on the entry side of the steel strip, and is brought into contact with a metal bath disposed on the exit side of the steel strip. An electric heating method for a steel strip that uses a bath as an electrode to energize and heat the steel strip between the electrodes, and a welding point that connects a preceding material and a succeeding material having different cross-sectional areas of the steel strip within the current heating range. When passing, the heating current is switched so that the switching distance L2 from the welding point passing through the energizing roll to the heating current set value switching point satisfies the following formula (A): Band heating method.
L2 = L1 × (1-t) × (Ja ′) 2 / ((1-t) × (Ja ′) 2 + (1 + t) × (Jb ′) 2 ) (A)
Where L2: switching distance from energizing roll to heating current set value switching point
L1: Heating length in the current heating range
Ja: Set current density of the preceding material
Jb: set current density of the following material
a: Cross-sectional area of the preceding material
b: Cross-sectional area of following material
Ja '= Jb × b / a
Jb '= Ja x a / b
t: Constant (2) The current shortage with respect to the current corresponding to the final temperature of the steel strip due to the energization cut that stops the current when the welding point of the steel strip passes through the energizing roll, The method for energizing and heating a steel strip according to (1), wherein a final ultimate plate temperature of the steel strip is secured by supplying in addition to a normal set current before and after.

本発明により、溶接点で鋼帯の断面積が変化する場合であっても溶融金属浴に浸入する最終到達板温を一定範囲に収めることができるので、断面積の異なる鋼帯溶接点繋ぎ目部分で板破断、メッキ剥離等の発生がなく、通電加熱することができ安定した生産が可能となる。
また、溶接点の前後で通電カットを行う場合であっても通電カットにより最終到達板温が低下する量だけ、通電カット前後の電流を多めに供給することにより、通電ロール付近で加熱電流をカットしても、鋼帯の最終到達板温を確保することによりメッキ品位を確保することができ、鋼帯の歩留り向上を図ることができるなど、産業上有用な著しい効果を奏する。
According to the present invention, even when the cross-sectional area of the steel strip changes at the welding point, it is possible to keep the final reached plate temperature entering the molten metal bath within a certain range. There is no occurrence of plate breakage, plating peeling, etc. at the part, and heating can be performed by energization and stable production becomes possible.
In addition, even when performing energization cut before and after the welding point, the heating current is cut in the vicinity of the energizing roll by supplying more current before and after the energization cut by the amount that the final ultimate plate temperature decreases by energization cut. Even in this case, it is possible to ensure the plating quality by ensuring the final temperature of the steel strip, and to achieve remarkable industrially useful effects, such as improving the yield of the steel strip.

以下、本発明を適用した通電加熱方法の実施形態を図1を参照して説明する。なお、この実施形態は、鋼帯を溶融メッキするために予熱する装置である。
図1は、本発明における鋼帯の通電加熱方法の実施形態を例示する図である。
リングトランス20によって鋼帯Wに誘起される電圧は通電ロール3および金属浴30を介して導電部材14を帰線として流れ、鋼帯Wが加熱される。通電ロール3の中心から浴32への浸漬点までの鋼帯Wの長さが加熱長L1となる。
金属浴30は、浴漕31に溶融金属32を満たして構成され、導電部材14の端部が溶融金属32内に浸されている。通電加熱されて送られる鋼帯Wは、方向転換ロールR5によって方向を変えられ、溶融金属32内に浸され、方向転換ロールR6によって方向を転換されて排出される。また、導電部材14は、通電ロール3の直後で上側部分14a、下側部分14bに分かれ、方向転換ロールR5の直前で1つにまとめられ、方向転換ロールR5の直後で再び上側部分14c、下側部分14dに分かれて、上側部分14c、下側部分14dがそれぞれ溶融金属32内に浸される。溶融金属としては、例えば溶融亜鉛、溶融亜鉛系合金が採用できる。
Hereinafter, an embodiment of an electric heating method to which the present invention is applied will be described with reference to FIG. In addition, this embodiment is an apparatus which preheats in order to hot-plate a steel strip.
FIG. 1 is a diagram illustrating an embodiment of a method for electrically heating a steel strip in the present invention.
The voltage induced in the steel strip W by the ring transformer 20 flows through the conductive roll 3 and the metal bath 30 with the conductive member 14 as a retrace line, and the steel strip W is heated. The length of the steel strip W from the center of the energizing roll 3 to the immersion point in the bath 32 is the heating length L1.
The metal bath 30 is configured by filling a bath 31 with a molten metal 32, and the end of the conductive member 14 is immersed in the molten metal 32. The steel strip W that is sent by being electrically heated is changed in direction by the direction changing roll R5, immersed in the molten metal 32, changed in direction by the direction changing roll R6, and discharged. In addition, the conductive member 14 is divided into an upper portion 14a and a lower portion 14b immediately after the energizing roll 3, and is united immediately before the direction changing roll R5. The upper part 14c and the lower part 14d are immersed in the molten metal 32 by being divided into side parts 14d. As the molten metal, for example, molten zinc or a molten zinc-based alloy can be employed.

図2は、図1における通電ロール周りの詳細図である。
図2において、1は先行材、2は後行材、3は通電ロール(CDR)、L1は通電ロールから金属浴浸入位置までの加熱長、L2は通電ロールから加熱電流設定値切替点までの切替距離を示す。
図2に示すように、本発明が加熱対象とする鋼帯は、先行材1と後行材2が溶接点で接合されており、通電ロール(CDR)3の中心から金属浴浸入位置までの加熱長L1の距離まで電流が供給されて、常温から例えば450℃程度の最終到達温度まで加熱される。
ここで、先行材1と後行材2とを繋ぐ溶接点が通電加熱範囲内を通過する際に、先行材1と後行材2の最終到達板温が「板破断する温度以下で 且つ、メッキ剥離が発生させない温度以上」となるような最適な切替点を求めて、切替制御を行う。
この際に、通電加熱範囲内のどの点に到達したときに次材の加熱設定(=通電量設定)に変更するかは、板の過加熱防止、および、温度低下による不メッキ防止の観点から非常に重要なファクターとなる。
FIG. 2 is a detailed view around the energizing roll in FIG. 1.
In FIG. 2, 1 is a preceding material, 2 is a following material, 3 is an energizing roll (CDR), L1 is a heating length from the energizing roll to the metal bath intrusion position, and L2 is an energizing roll to a heating current set value switching point. Indicates the switching distance.
As shown in FIG. 2, in the steel strip to be heated by the present invention, the preceding material 1 and the following material 2 are joined at the welding point, and from the center of the energizing roll (CDR) 3 to the metal bath intrusion position. A current is supplied up to the distance of the heating length L1, and it is heated from room temperature to a final temperature of about 450 ° C., for example.
Here, when the welding point connecting the preceding material 1 and the succeeding material 2 passes through the electric heating range, the final reached plate temperature of the preceding material 1 and the succeeding material 2 is “below the temperature at which the plate breaks, and The switching control is performed by obtaining an optimum switching point that is “above the temperature at which plating peeling does not occur”.
At this time, the point at which the current heating range is reached is changed to the heating setting of the next material (= energization amount setting) from the viewpoints of preventing overheating of the plate and preventing non-plating due to temperature drop. It becomes a very important factor.

そこで、本発明の鋼帯の通電加熱方法は、連続送給される鋼帯を、該鋼帯の入側に配置された通電ロール3に接触させるとともに、該鋼帯の出側に配置された金属浴に接触させ、前記通電ロール3と金属浴を電極とし電極間の鋼帯に通電して加熱する鋼帯の通電加熱方法であって、前記鋼帯の断面積が異なる先行材1と後行材2とを繋ぐ溶接点が通電加熱範囲内を通過する際に、前記溶接点が通電ロールを通過してから加熱電流設定値切替点までの切替距離L2を下記に示す方法で算出して加熱電流の切替を行うことを特徴とする。   Then, the current heating method of the steel strip according to the present invention is such that the continuously fed steel strip is brought into contact with the current-carrying roll 3 disposed on the entry side of the steel strip and disposed on the exit side of the steel strip. An electric heating method for a steel strip that is brought into contact with a metal bath and energizes and heats the steel strip between the electrodes using the current roll 3 and the metal bath as an electrode, and the preceding material 1 and the rear material having different cross-sectional areas of the steel strip When the welding point connecting the row material 2 passes through the energization heating range, the switching distance L2 from the welding point passing through the energization roll to the heating current set value switching point is calculated by the following method. The heating current is switched.

<切替え距離設定方法の考え方>
鋼帯を加熱するための熱量は電流の2乗に比例することから、切替え距離L2の設定 方法として、先行材1と後行材2の必要2次電流の2乗の比で電流切替点を求める方法 が考えられる。
しかし、この方法では先行材1と後行材2の相手材の設定になった場合の自材の電流 密度を考慮できないため、断面積差が大きい場合の過加熱や加熱不足の防止が困難とな ることがわかった。
そこで本発明においては、基本的に先行材1と後行材2の目標温度は変わらない(= 同一速度での必要電流密度は変わらない)という前提のもと、相手材の電流設定になっ た場合の自材の電流密度を計算し、その比率で加熱長L1を案分することにより切替え 距離L2を決めることとした。
<Concept of switching distance setting method>
Since the amount of heat for heating the steel strip is proportional to the square of the current, the method of setting the switching distance L2 is to set the current switching point by the ratio of the square of the required secondary current of the preceding material 1 and the following material 2. The way to find it can be considered.
However, with this method, it is difficult to prevent overheating and insufficient heating when the cross-sectional area difference is large because the current density of the own material when the counterpart material of the preceding material 1 and the following material 2 is set cannot be considered. I found out that
Therefore, in the present invention, the target temperature of the counterpart material is basically set on the assumption that the target temperature of the leading material 1 and the following material 2 does not change (= the required current density at the same speed does not change). In this case, the current density of the own material was calculated, and the switching distance L2 was determined by apportioning the heating length L1 according to the ratio.

すなわち、先行材の断面積:a(mm2)、後行材の断面積:b(mm2)、先行材の設定電流 密度:Ja(=後行材の設定:Jb)(A/mm2)とすると、先行材1の電流設定で制御し ているときに加熱部に後行材2が入ってきた場合の後行材2の電流密度Jb'は下式で表 される。
Jb'=Ja×a/b (A/mm2)
また、後行材2の電流設定に切り替わったときの加熱部内の先行材1の電流密度Ja' は下式で表される。
Ja'=Jb×b/a (A/mm2)
また、断面積差が大になるほど、Ja'とJb'の比が大きくなることから、この比率で加熱長L1を案分する下記(A)式により切替え距離L2を決定する。
この(A)式を用いることによって、先行材1と後行材2の相手材の設定になった場合の自材の電流密度を考慮して切替距離L2を求めることができるので、断面積差が大きい場合であっても過加熱や加熱不足を防止することができる。
L2=L1× (1-t)×(Ja')2/((1-t)×(Ja')2+(1+t)×(Jb')2)・・・(A)
ここに、L2:通電ロールから加熱電流設定値切替点までの切替距離
L1:通電加熱範囲における加熱長
Ja:先行材の設定電流密度
Jb:後行材の設定電流密度
a:先行材の断面積
b:後行材の断面積
Ja'=Jb×b/a
Jb'=Ja×a/b
t:定数
なお、定数tは、最終到達板温の範囲を調整するための補正係数であって、目標とする最終到達板温の上下限に合わせて適宜設定すればよい。
That is, if the cross-sectional area of the preceding material: a (mm2), the cross-sectional area of the following material: b (mm2), the set current density of the preceding material: Ja (= setting of the following material: Jb) (A / mm2) The current density Jb ′ of the succeeding material 2 when the succeeding material 2 enters the heating portion while being controlled by the current setting of the preceding material 1 is expressed by the following equation.
Jb '= Ja x a / b (A / mm2)
Further, the current density Ja ′ of the preceding material 1 in the heating section when the current setting of the succeeding material 2 is switched is expressed by the following equation.
Ja '= Jb × b / a (A / mm2)
Further, since the ratio of Ja ′ and Jb ′ increases as the cross-sectional area difference increases, the switching distance L2 is determined by the following equation (A) that apportions the heating length L1 with this ratio.
By using this equation (A), the switching distance L2 can be obtained in consideration of the current density of the own material when the preceding material 1 and the succeeding material 2 are set as the mating materials. Even when is large, overheating and insufficient heating can be prevented.
L2 = L1 × (1-t) × (Ja ′) 2 / ((1-t) × (Ja ′) 2 + (1 + t) × (Jb ′) 2 ) (A)
Where L2: switching distance from energizing roll to heating current set value switching point
L1: Heating length in the current heating range
Ja: Set current density of the preceding material
Jb: set current density of the following material
a: Cross-sectional area of the preceding material
b: Cross-sectional area of following material
Ja '= Jb × b / a
Jb '= Ja x a / b
t: Constant The constant t is a correction coefficient for adjusting the range of the final ultimate plate temperature, and may be set as appropriate according to the target upper and lower limits of the final ultimate plate temperature.

また、加熱された鋼帯は、メッキ浴に浸漬されてメッキが施されるが、鋼帯温度が目標とする最終到達温度から外れると不メッキや不均一なメッキが発生してしまう。
一方、溶接点が通電ロール(CDR)3を通過する際には、溶接点の凹凸によってスパークが発生して通電ロール3や鋼帯に疵が発生する場合があるためスパーク防止のため通電を停止する電流カットを行うが、この際の板温低下が問題となっていた。
そこで本発明の通電加熱方法の好ましい実施形態は、溶接点を有する鋼帯を通電ロール(CDR)3と金属浴30を電極として用いて通電し加熱する鋼帯の通電加熱方法であって、前記溶接点が通電ロール3を通過する際に電流を停止する通電カットにより前記鋼帯の最終到達板温に見合う電流に対して不足する電流を、前記通電カットの前後に通常の設定電流に加えて供給することにより、鋼帯の最終到達板温を確保することを特徴とする。
本発明者等は、先行材1および後行材2を接合する溶接点が通電ロール(CDR)3を通過する際に電流を停止する電流カットによる不足電流の補償量および補償距離について鋭意検討を行った結果、溶接点が通電ロールを通過する際に電流を停止させる通電カットにより最終到達板温が低下する量だけ、通電カット前後の電流を多めに供給することにより鋼帯の最終到達板温を確保することができ、メッキ品位を確保することができることを見出した。
The heated steel strip is immersed in a plating bath to be plated. However, if the steel strip temperature deviates from the target final temperature, non-plating or non-uniform plating occurs.
On the other hand, when the welding point passes through the energizing roll (CDR) 3, the energization of the energizing roll 3 or the steel strip may be flawed due to the unevenness of the welding point, so that energization is stopped to prevent sparks. However, there is a problem of a decrease in the plate temperature at this time.
Therefore, a preferred embodiment of the electric heating method of the present invention is an electric heating method for a steel strip in which a steel strip having a welding point is energized and heated using an energizing roll (CDR) 3 and a metal bath 30 as electrodes. The current that is insufficient for the current corresponding to the final temperature of the steel strip is added to the normal set current before and after the energization cut by the energization cut that stops the current when the welding point passes through the energization roll 3. By supplying, it is characterized by ensuring the final temperature of the steel strip.
The present inventors have intensively studied the compensation amount and the compensation distance of the insufficient current by the current cut that stops the current when the welding point for joining the leading material 1 and the following material 2 passes through the energizing roll (CDR) 3. As a result, the final ultimate plate temperature of the steel strip is supplied by supplying more current before and after the energization cut by the amount that the final ultimate plate temperature is reduced by the energization cut that stops the current when the welding point passes the energization roll. It was found that the plating quality can be ensured.

本発明の通電加熱方法を用いて図1に示す溶接点を有する鋼帯を図1に示す金属浴として溶融亜鉛浴を採用し、下記の条件で加熱した実施例を図3および図4に示す。
図3は、本発明の鋼帯の通電加熱方法を用いて鋼帯の断面が厚物から薄物に変更される場合の金属浴ポットへの浸入温度を示す図である。
図4は、本発明の鋼帯の通電加熱方法を用いて鋼帯の断面が薄物から厚物に変更される場合の金属浴ポットへの浸入温度を示す図である。
<実施条件>
・加熱長L1:18m
・最終到達温度:450℃
An embodiment in which a hot-dip zinc bath is employed as the metal bath shown in FIG. 1 and the steel strip having the welding points shown in FIG. 1 is heated using the electric heating method of the present invention under the following conditions is shown in FIGS. .
FIG. 3 is a diagram showing the intrusion temperature into the metal bath pot when the cross section of the steel strip is changed from a thick material to a thin material using the method for energizing and heating the steel strip of the present invention.
FIG. 4 is a diagram showing the intrusion temperature into the metal bath pot when the cross section of the steel strip is changed from a thin material to a thick material using the method for energizing and heating the steel strip of the present invention.
<Conditions for implementation>
・ Heating length L1: 18m
・ Final temperature: 450 ℃

図3は、板厚0.5mm、板巾1000mmの先行材1を電流9.8KAで通電加熱を行い、連続して板厚0.4mm、板巾1000mmの後行材2との溶接部を通電加熱範囲内に通し、通電加熱を行ったときのポット浸入温度の変化を示したものである。
この時、先行材1と後行材2の加熱電流切替点を下記の(A)の式に加熱長18m、t=0.1を代入して切替距離を求めると4.5mとなった。この点で加熱電流の設定切替えを行った結果、厚物側の先行材の最低到達板温は300℃、薄物側の後行材の最高到達板温は600℃で板破断、メッキ剥離等の発生はなく、溶接部繋ぎ目部分での通電切替えができた。
L2=L1× (1-t)×(Ja')2/((1-t)×(Ja')2+(1+t)×(Jb')2)・・・(A)
ここに、L2:通電ロールから加熱電流設定値切替点までの切替距離
L1:通電加熱範囲における加熱長
Ja:先行材の設定電流密度
Jb:後行材の設定電流密度
a:先行材の断面積
b:後行材の断面積
Ja'=Jb×b/a
Jb'=Ja×a/b
t:定数
Figure 3 shows the current heating range of the leading material 1 with a plate thickness of 0.5 mm and a plate width of 1000 mm at a current of 9.8 KA, and the welded part with the subsequent material 2 with a plate thickness of 0.4 mm and a plate width of 1000 mm. It shows the change of the pot penetration temperature when conducting heating through the inside.
At this time, when the heating current switching point of the preceding material 1 and the succeeding material 2 was substituted by the heating length of 18 m and t = 0.1 in the following formula (A), the switching distance was 4.5 m. As a result of changing the setting of the heating current at this point, the minimum temperature of the leading material on the thick material side is 300 ° C, and the maximum temperature of the following material on the thin material side is 600 ° C. There was no occurrence, and energization switching was possible at the weld joint.
L2 = L1 × (1-t) × (Ja ′) 2 / ((1-t) × (Ja ′) 2 + (1 + t) × (Jb ′) 2 ) (A)
Where L2: switching distance from energizing roll to heating current set value switching point
L1: Heating length in the current heating range
Ja: Set current density of the preceding material
Jb: set current density of the following material
a: Cross-sectional area of the preceding material
b: Cross-sectional area of following material
Ja '= Jb × b / a
Jb '= Ja x a / b
t: Constant

また、図4は、図3と逆に、板厚0.4mm、板巾1000mmの先行材1を電流7.84KAで通電加熱を行い、連続して板厚0.5mm、板巾1000mmの後行材2との溶接部を通電加熱範囲内に通し、通電加熱を行ったときのポット浸入温度の変化を示したものであり、前述の(A)式で求めた切替距離L2で設定切替えを行った結果、板破断、メッキ剥離等の発生はなく、溶接部繋ぎ目部分での通電切替えができた。
なお、図3および図4の双方において、溶接部の前後50cmの範囲で通電カットを行い、溶接部の前後6mにおける加熱電流を通常の電流より多い目に流すことにより通電カットによる不足する電流を補償して温度低下を防止することができた。
Also, in FIG. 4, contrary to FIG. 3, the preceding material 1 having a plate thickness of 0.4 mm and a plate width of 1000 mm is energized and heated at a current of 7.84 KA, and the succeeding material 2 continuously has a plate thickness of 0.5 mm and a plate width of 1000 mm. This shows the change in the pot intrusion temperature when the energization heating is performed by passing the welded portion in the energization heating range, and the result of setting switching at the switching distance L2 obtained by the above-described equation (A). There was no occurrence of breakage of the plate, peeling of the plating, etc., and the energization could be switched at the weld joint.
In both FIG. 3 and FIG. 4, the current is cut in the range of 50 cm before and after the welded portion, and the current that is insufficient due to the current cut is applied by passing the heating current at 6 m before and after the welded portion over the normal current. Compensation could prevent temperature drop.

本発明における鋼帯の通電加熱方法の実施形態を例示する図である。It is a figure which illustrates embodiment of the current heating method of the steel strip in this invention. 本発明における鋼帯の通電加熱方法の実施形態を例示する図であって、図1における通電ロール周りの詳細図である。It is a figure which illustrates embodiment of the current heating method of the steel strip in this invention, Comprising: It is detail drawing around the electricity supply roll in FIG. 本発明の鋼帯の通電加熱方法を用いて鋼帯の断面が厚保物から薄物に変更される場合の金属浴ポットへの浸入温度を示す図である。It is a figure which shows the penetration | invasion temperature to a metal bath pot in case the cross section of a steel strip is changed from a thick preserve to a thin thing using the current heating method of the steel strip of this invention. 本発明の鋼帯の通電加熱方法を用いて鋼帯の断面が薄物から厚物に変更される場合の金属浴ポットへの浸入温度を示す図である。It is a figure which shows the permeation temperature to a metal bath pot in case the cross section of a steel strip is changed into a thick thing from the thin thing using the current heating method of the steel strip of this invention.

符号の説明Explanation of symbols

1 先行材
2 後行材
3 通電ロール
14 導電部材
20 リングトランス
30 金属浴
31 浴漕
32 溶融金属
R5、R6 方向転換ロール
W 鋼帯
L1 加熱長
L2 通電ロールから加熱電流設定値切替点までの切替距離
DESCRIPTION OF SYMBOLS 1 Leading material 2 Subsequent material 3 Current supply roll 14 Conductive member 20 Ring transformer 30 Metal bath 31 Bath tub 32 Molten metal R5, R6 Direction change roll W Steel strip L1 Heating length L2 Switching from current supply roll to heating current set value switching point distance

Claims (2)

連続送給される鋼帯を、該鋼帯の入側に配置された通電ロールに接触させるとともに、該鋼帯の出側に配置された金属浴に接触させ、前記通電ロールと金属浴を電極とし電極間の鋼帯に通電して加熱する鋼帯の通電加熱方法であって、前記鋼帯の断面積が異なる先行材と後行材とを繋ぐ溶接点が通電加熱範囲内を通過する際に、前記溶接点が通電ロールを通過してから加熱電流設定値切替点までの切替距離L2が下記(A)式を満足するように加熱電流の切替を行うことを特徴とする鋼帯の通電加熱方法。
L2=L1× (1-t)×(Ja')2/((1-t)×(Ja')2+(1+t)×(Jb')2)・・・(A)
ここに、L2:通電ロールから加熱電流設定値切替点までの切替距離
L1:通電加熱範囲における加熱長
Ja:先行材の設定電流密度
Jb:後行材の設定電流密度
a:先行材の断面積
b:後行材の断面積
Ja'=Jb×b/a
Jb'=Ja×a/b
t:定数
The steel strip that is continuously fed is brought into contact with an energizing roll disposed on the entry side of the steel strip, and is brought into contact with a metal bath disposed on the exit side of the steel strip, and the energizing roll and the metal bath are connected to electrodes. In this method, the steel strip between the electrodes is energized and heated, and the welding point connecting the preceding material and the subsequent material having different cross-sectional areas of the steel strip passes through the current heating range. The heating current is switched so that the switching distance L2 from the welding point passing through the energizing roll to the heating current set value switching point satisfies the following expression (A): Heating method.
L2 = L1 × (1-t) × (Ja ′) 2 / ((1-t) × (Ja ′) 2 + (1 + t) × (Jb ′) 2 ) (A)
Where L2: switching distance from energizing roll to heating current set value switching point
L1: Heating length in the current heating range
Ja: Set current density of the preceding material
Jb: set current density of the following material
a: Cross-sectional area of the preceding material
b: Cross-sectional area of following material
Ja '= Jb × b / a
Jb '= Ja x a / b
t: Constant
前記鋼帯の溶接点が通電ロールを通過する際に電流を停止する通電カットにより前記鋼帯の最終到達板温に見合う電流に対して不足する電流を、前記通電カットの前後に通常の設定電流に加えて供給することにより、前記鋼帯の最終到達板温を確保することを特徴とする請求項1に記載の鋼帯の通電加熱方法。
When the welding point of the steel strip passes through the energizing roll, a current that is insufficient with respect to the current corresponding to the final temperature of the steel strip due to the energization cut that stops the current is set to a normal set current before and after the energization cut. The method for energizing and heating a steel strip according to claim 1, wherein a final ultimate plate temperature of the steel strip is ensured by supplying in addition to the above.
JP2005170222A 2005-06-10 2005-06-10 Electrical heating method for steel strip Active JP4630134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170222A JP4630134B2 (en) 2005-06-10 2005-06-10 Electrical heating method for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170222A JP4630134B2 (en) 2005-06-10 2005-06-10 Electrical heating method for steel strip

Publications (2)

Publication Number Publication Date
JP2006342404A true JP2006342404A (en) 2006-12-21
JP4630134B2 JP4630134B2 (en) 2011-02-09

Family

ID=37639578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170222A Active JP4630134B2 (en) 2005-06-10 2005-06-10 Electrical heating method for steel strip

Country Status (1)

Country Link
JP (1) JP4630134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044923A (en) * 2008-08-11 2010-02-25 Nippon Steel Corp Ohmic heating method and ohmic heating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562761A (en) * 1991-08-29 1993-03-12 Nippon Steel Corp Electric heating device
JPH07268492A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Electric heating method of metallic strip
JPH07331340A (en) * 1994-06-06 1995-12-19 Nippon Steel Corp Method for electrically heating metal strip
JPH08176684A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Electric heating of thin steel sheet
JPH093554A (en) * 1995-06-21 1997-01-07 Nippon Steel Corp Electric heating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562761A (en) * 1991-08-29 1993-03-12 Nippon Steel Corp Electric heating device
JPH07268492A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Electric heating method of metallic strip
JPH07331340A (en) * 1994-06-06 1995-12-19 Nippon Steel Corp Method for electrically heating metal strip
JPH08176684A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Electric heating of thin steel sheet
JPH093554A (en) * 1995-06-21 1997-01-07 Nippon Steel Corp Electric heating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044923A (en) * 2008-08-11 2010-02-25 Nippon Steel Corp Ohmic heating method and ohmic heating device

Also Published As

Publication number Publication date
JP4630134B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US20100059493A1 (en) Induction heated, hot wire welding
KR100979836B1 (en) Method of vertical-position welding
US8664568B2 (en) Arc welding control method and arc welding apparatus
WO2015099192A1 (en) Resistance spot welding method
JP4912699B2 (en) Hot dipping equipment
JP4630134B2 (en) Electrical heating method for steel strip
JP4734091B2 (en) Hot dipping method and hot dipping equipment
JP4630130B2 (en) Electrical heating method for steel strip
JP4570581B2 (en) Metal plating material reflow processing method, metal plating material and metal plating material reflow processing apparatus
US9370841B2 (en) Electrode extension guide for use with welding systems
JPH0215156A (en) Alloying treatment for metal hot dipped steel sheet
JPH03477A (en) Welding equipment utilizing combined heat sources
KR20160062820A (en) METHOD FOR RESISTANCE SPOT WELDING FOR Zn PLATED STEEL SHEET
JP5020905B2 (en) Electric heating method and electric heating device
SU1808560A1 (en) Process of automatic electric arc welding
KR100949723B1 (en) Method for controling the current of conduction reflow in the plating process
JPH06172955A (en) Plating thickness control device and method for hot-dip coated metallic sheet
KR100928979B1 (en) Combination Reflow Control Method of Tin Plating Process
JP2004197210A (en) Method and apparatus for manufacturing tin-electroplated sheet
RU2401726C2 (en) Method of welding in protective gas by infusible electrode and magnet-controlled arc
KR101070268B1 (en) Control method for combination reflow brightening of tin plating process
JPH0938712A (en) Method for induction-heating metallic plate
JP2003275872A (en) Electrode tip and welding equipment for arc welding
JPH06228790A (en) Method for reflowing thin coating surface density tin electroplated steel strip
JP2000273682A (en) Method for preventing surface defect of tin electroplated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4630134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350