JP2006342316A - Process for concentrating organic particle - Google Patents

Process for concentrating organic particle Download PDF

Info

Publication number
JP2006342316A
JP2006342316A JP2005213121A JP2005213121A JP2006342316A JP 2006342316 A JP2006342316 A JP 2006342316A JP 2005213121 A JP2005213121 A JP 2005213121A JP 2005213121 A JP2005213121 A JP 2005213121A JP 2006342316 A JP2006342316 A JP 2006342316A
Authority
JP
Japan
Prior art keywords
solvent
organic
pigment
particles
organic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213121A
Other languages
Japanese (ja)
Inventor
Yasuyuki Izumi
泰之 泉
Yosuke Miyashita
陽介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005213121A priority Critical patent/JP2006342316A/en
Priority to PCT/JP2006/309270 priority patent/WO2006121018A1/en
Priority to US11/920,082 priority patent/US20090045535A1/en
Priority to KR1020077028498A priority patent/KR100967335B1/en
Publication of JP2006342316A publication Critical patent/JP2006342316A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for efficiently concentrating organic particles prepared by reprecipitation, to provide particles obtained by the process, to provide a concentration process causing change of neither particle size nor monodisperse property of the organic particles in a concentration step and capable of easily redispersing the organic particles aggregated by condensation, to provide organic particles having fine particle size and high monodisperse property and obtained by the condensation process, and to provide a condensation process hardly causing change of particle size, monodisperse property and the like even when scaleup is put into practice. <P>SOLUTION: The process for concentrating organic particles comprises mixing a solution of an organic material dissolved in a good solvent with a poor solvent for the organic material which poor solvent is compatible with the good solvent so as to form the organic material as crystals having ≤1 μm particle diameter or an association, wherein the solvent of the organic particle dispersion containing the organic particles, or the solvent of a condensed extraction liquid condensing/extracting the organic particles with an extraction solvent, is removed by at least one process selected from centrifugation and heat-drying under reduced pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、再沈法により作製した有機粒子を効率よく濃縮する方法、およびそれにより得られる有機粒子の提供を目的とする。また、濃縮工程において有機粒子の粒径および単分散性が変化せず、また濃縮により凝集した有機粒子が容易に再分散できる濃縮方法の提供を目的とする。   An object of the present invention is to provide a method for efficiently concentrating organic particles produced by a reprecipitation method, and organic particles obtained thereby. It is another object of the present invention to provide a concentration method in which the particle size and monodispersity of organic particles do not change in the concentration step, and the organic particles aggregated by concentration can be easily redispersed.

近年、粒子を小サイズ化する取り組みが進められている。特に、粉砕法、析出法などでは製造することが困難なナノメートルサイズ(例えば、10〜100nmの範囲)にまで小サイズ化する研究が進められている。さらに、ナノメートルサイズに小サイズ化し、しかも単分散性(本発明において、単分散性とは粒径が揃っている度合いをいう。)の高い粒子とすることが試みられている。
このようなナノメートルサイズの微粒子の大きさは、より大きなバルク粒子や、より小さな分子や原子と異なりその中間に位置し、従来にないサイズ領域であり、予想できなかった新たな特性を引き出しうることが指摘されている。しかも、この単分散性を高くできれば、その特性を安定化することも可能である。このようなナノ粒子のもつ可能性はさまざまな分野で期待され、生化学、新規材料、電子素子、発光表示素子、印刷、医療などの広い分野で研究が盛んになりつつある。
特に、有機化合物からなる有機ナノ粒子は、有機化合物自体が多様性を有するため、機能性材料としてのそのポテンシャルは高い。例えば、ポリイミドは、耐熱性、耐溶剤性、機械的特性など、化学的および機械的に安定な材料であること、電気絶縁性が優れているなどのことから多く分野で利用されている。ポリイミドを微粒子化した材料には、ポリイミドの特性と形状との組み合わせにより、新しい利用が広がっている。例えば、微粒子化したポリイミドの利用の提案技術として、画像形成用の粉末トナーの添加剤とすること(特許文献1)などが提案されている。
In recent years, efforts have been made to reduce the size of particles. In particular, research is being conducted to reduce the size to nanometer size (for example, in the range of 10 to 100 nm), which is difficult to produce by a pulverization method, a precipitation method, or the like. Furthermore, attempts have been made to reduce the size to nanometer size and to obtain particles having high monodispersity (in the present invention, monodispersity means the degree of uniform particle size).
Unlike the larger bulk particles and smaller molecules and atoms, these nanometer-sized microparticles are located in the middle of them, and are unprecedented size regions, which can lead to unexpected new properties. It has been pointed out. In addition, if the monodispersity can be increased, the characteristics can be stabilized. The potential of such nanoparticles is expected in various fields, and research is being actively conducted in a wide range of fields such as biochemistry, new materials, electronic devices, light-emitting display devices, printing, and medicine.
In particular, organic nanoparticles made of an organic compound have a high potential as a functional material because the organic compound itself has diversity. For example, polyimide is used in many fields because it is a chemically and mechanically stable material such as heat resistance, solvent resistance, and mechanical properties, and has excellent electrical insulation. The use of polyimide in fine particles is expanding its new use due to the combination of polyimide characteristics and shape. For example, as a proposed technique for using finely divided polyimide, it has been proposed to use an additive for powder toner for image formation (Patent Document 1).

また、有機ナノ粒子のなかでも有機顔料についてみると、例えば、塗料、印刷インク、電子写真用トナー、インクジェットインク、カラーフィルター等を用途として挙げることができ、今や、生活上欠くことができない重要な化合物となっている。なかでも高性能が要求され、実用上特に重要なものとしては、インクジェットインク用顔料およびカラーフィルター用顔料が挙げられる。
インクジェット用インクの色材については、従来、染料が用いられてきたが、耐水性や耐光性の面で問題があり、それを改良するために顔料が用いられるようになってきている。顔料インクにより得られた画像は、染料系のインクによる画像に較べて耐光性、耐水性に優れるという利点を有する。しかしながら、紙表面の空隙に染み込むことが可能なナノメートルサイズで単分散性を高くすることは難しく、紙への密着性に劣るという問題がある。
また、デジタルカメラの高画素化に伴い、CCDセンサーなどの光学素子や表示素子に用いるカラーフィルターの薄層化が望まれている。カラーフィルターには有機顔料が用いられているが、フィルターの厚さは有機顔料の粒子径に大きく依存するため、ナノメートルサイズレベルで、しかも単分散で安定な微粒子の製造が望まれている。
Also, regarding organic pigments among organic nanoparticles, for example, paints, printing inks, electrophotographic toners, ink-jet inks, color filters, etc. can be cited as applications, and now important in life. It has become a compound. Among these, high performance is required, and pigments for inkjet inks and color filter pigments are particularly important for practical use.
Conventionally, dyes have been used for coloring materials for ink jet inks, but there are problems in terms of water resistance and light resistance, and pigments have been used to improve them. An image obtained with the pigment ink has an advantage of being excellent in light resistance and water resistance as compared with an image obtained with a dye-based ink. However, it is difficult to increase the monodispersity at a nanometer size that can penetrate into the voids on the paper surface, and there is a problem that the adhesion to paper is poor.
In addition, with the increase in the number of pixels of a digital camera, it is desired to reduce the thickness of color filters used for optical elements such as CCD sensors and display elements. An organic pigment is used for the color filter. However, since the thickness of the filter greatly depends on the particle diameter of the organic pigment, it is desired to produce fine particles having a nanometer size level and being monodispersed and stable.

有機粒子の製造に関しては、気相法(不活性ガス雰囲気下で試料を昇華させ、粒子を基板上に回収する方法)、液相法(例えば、良溶媒に溶解した試料を攪拌条件や温度を制御した貧溶媒に注入することにより、微粒子を得る再沈法)、レーザーアブレーション法(溶液中に分散させた試料に、レーザーを照射しアブレーションさせることにより粒子を微細化する方法)などが研究されている。また、これらの方法により、所望のサイズで単分散化を試みた製造例が報告されている。(特許文献2〜4など参照)。
中でも再沈法は、簡易性および生産性に優れた有機粒子の製造法として注目されている。
Regarding the production of organic particles, the gas phase method (a method in which a sample is sublimated in an inert gas atmosphere and the particles are recovered on a substrate), the liquid phase method (for example, a sample dissolved in a good solvent under stirring conditions and temperature). Reprecipitation method to obtain fine particles by injecting into a controlled poor solvent), laser ablation method (method of refining particles by ablating by irradiating laser to sample dispersed in solution), etc. ing. In addition, production examples in which monodispersion with a desired size is attempted by these methods have been reported. (Refer patent documents 2-4 etc.).
Among them, the reprecipitation method is attracting attention as a method for producing organic particles excellent in simplicity and productivity.

再沈法では調製した有機粒子は溶媒中に分散した状態で得られる。これを工業的に利用するためには適切な濃度に濃縮し、または微粒子として分離することが必要となる。しかし、これについては十分な研究がなされていない。例えば、特許文献5には有機粒子含有水分散液に蒸発促進液を添加し、蒸留することにより濃縮する方法が開示されている。しかし、この方法を再沈法で作製した有機粒子含有水分散液に適用することを考えると、有機材料の良溶媒の沸点が水より高い場合、水のみが蒸発してしまうことにより良溶媒濃度が増加し、濃縮中に有機粒子の粒径が大きくなってしまう懸念がある。
特許文献6には、微粒子を含有する分散液に、その分散媒と実質的に溶解しないイオン性液体を添加して、当該イオン性液体中に微粒子を濃縮する方法が開示されている。しかしながら、この方法のみでは有機粒子分散液を十分に所望の濃度まで濃縮できないことがある。
特許文献7には、微細な顔料分散体を減圧ろ過により濃縮する製造例が開示されているが、濃縮によって粒径が大きくなってしまっている場合が多い。また、製造スケールが比較的小さい場合の製造例であり、製造スケールを上げた際に粒径、単分散性及び再分散性を維持できない懸念がある。
再沈法などによりせっかく所望の粒子を分散液中で調製できたとしても、濃縮、分離回収工程において粒子サイズが変化したり、単分散性が悪化したりしては製品化することはできない。またその工程に多大なコストを要するのでは実用化することはできない。
In the reprecipitation method, the prepared organic particles are obtained in a state dispersed in a solvent. In order to utilize this industrially, it is necessary to concentrate it to an appropriate concentration or to separate it as fine particles. However, there is not enough research on this. For example, Patent Document 5 discloses a method of adding an evaporation promoting liquid to an organic particle-containing aqueous dispersion and concentrating it by distillation. However, considering that this method is applied to organic particle-containing aqueous dispersions prepared by the reprecipitation method, if the boiling point of the good solvent of the organic material is higher than that of water, only the water will evaporate. There is a concern that the particle size of the organic particles increases during the concentration.
Patent Document 6 discloses a method in which an ionic liquid that does not substantially dissolve in the dispersion medium is added to a dispersion containing fine particles, and the fine particles are concentrated in the ionic liquid. However, this method alone may not sufficiently concentrate the organic particle dispersion to a desired concentration.
Patent Document 7 discloses a production example in which a fine pigment dispersion is concentrated by filtration under reduced pressure, but the particle size is often increased by concentration. Moreover, it is a manufacture example when a manufacturing scale is comparatively small, and when a manufacturing scale is raised, there exists a possibility that a particle size, monodispersibility, and redispersibility cannot be maintained.
Even if desired particles can be prepared in a dispersion by reprecipitation or the like, they cannot be commercialized if the particle size changes or the monodispersibility deteriorates in the concentration and separation / recovery process. Moreover, it cannot be put into practical use because the process requires a great deal of cost.

特開平11−237760号公報JP-A-11-237760 特表2002−092700号公報Japanese translation of PCT publication No. 2002-092700 特開平6−79168号公報JP-A-6-79168 特開2004−91560号公報JP 2004-91560 A 特開2004−181312号公報JP 2004-181312 A 特開2004−292632号公報JP 2004-292632 A 特開2004−43776号公報JP 2004-43776 A

本発明は、再沈法により作製した有機粒子を効率よく濃縮する方法、およびそれにより得られる有機粒子の提供を目的とする。また、濃縮工程において有機粒子の粒径および単分散性が変化せず、また濃縮により凝集した有機粒子が容易に再分散できる濃縮方法、およびそれにより得られる微細粒径および単分散性の高い有機粒子の提供を目的とする。また、有機粒子の濃縮工程をスケールアップした際も粒径、単分散性及び再分散性の変化が少なく、工業化に適した有機粒子の濃縮方法の提供を目的とする。   An object of the present invention is to provide a method for efficiently concentrating organic particles produced by a reprecipitation method, and organic particles obtained thereby. Further, the concentration method in which the particle size and monodispersity of the organic particles do not change in the concentration step, and the organic particles aggregated by the concentration can be easily redispersed, and the resulting organic particles having a fine particle size and high monodispersibility. The purpose is to provide particles. Another object of the present invention is to provide a method for concentrating organic particles suitable for industrialization with little change in particle size, monodispersibility and redispersibility even when the concentration step of organic particles is scaled up.

上記課題は下記の手段により達成された。
(1)良溶媒に溶解した有機材料の溶液と、該溶媒と相溶する前記有機材料の貧溶媒とを混合し、該有機材料を粒子として形成した有機粒子の濃縮方法であって、前記有機粒子を含む有機粒子分散液の溶媒または該有機粒子を抽出溶媒により濃縮抽出した濃縮抽出液の溶媒を、遠心分離および加熱減圧乾燥から選ばれる少なくとも一つの方法によって除去することを特徴とする有機粒子の濃縮方法。
(2)前記有機粒子の数平均粒径が1μm以下であることを特徴とする、(1)に記載の有機粒子の製造方法。
(3)前記有機材料の貧溶媒が、水系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、またはこれらの混合物であることを特徴とする(1)または(2)に記載の有機粒子の濃縮方法。
(4)前記有機材料の良溶媒が、水系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、またはこれらの混合物であることを特徴とする(1)〜(3)のいずれか1項に記載の有機粒子の濃縮方法。
(5)前記抽出溶媒が、エステル系溶媒であることを特徴とする(1)〜(4)のいずれか1項に記載の有機粒子の濃縮方法。
(6)前記有機材料が、有機顔料であることを特徴とする(1)〜(5)のいずれか1項に記載の有機粒子の濃縮方法。
The above problems have been achieved by the following means.
(1) A method of concentrating organic particles formed by mixing a solution of an organic material dissolved in a good solvent and a poor solvent of the organic material compatible with the solvent, and forming the organic material as particles. Organic particles characterized by removing the solvent of the organic particle dispersion containing particles or the solvent of the concentrated extract obtained by concentrating and extracting the organic particles with an extraction solvent by at least one method selected from centrifugation and heating under reduced pressure Concentration method.
(2) The method for producing organic particles according to (1), wherein the number average particle diameter of the organic particles is 1 μm or less.
(3) The poor solvent of the organic material is an aqueous solvent, an alcohol solvent, a ketone solvent, an ether solvent, an ester solvent, or a mixture thereof, described in (1) or (2) To concentrate organic particles.
(4) A good solvent for the organic material is an aqueous solvent, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent, an amide solvent, or a mixture thereof ( The method for concentrating organic particles according to any one of 1) to (3).
(5) The method for concentrating organic particles according to any one of (1) to (4), wherein the extraction solvent is an ester solvent.
(6) The method for concentrating organic particles according to any one of (1) to (5), wherein the organic material is an organic pigment.

本発明の有機粒子の濃縮方法によれば、再沈法により作製した有機粒子分散液から、分散溶媒を除去して、有機粒子を効率よく濃縮することができる。再沈法による有機粒子作製時に貧溶媒中への良溶媒の注入量を増やした際や、有機粒子作製のスケールを上げた際も、粒子サイズの増加、単分散性の悪化を生じることなく濃縮することができ、また、濃縮により凝集させた有機粒子を容易に再分散することができ、高効率な有機粒子作製が可能となる。
本発明の濃縮方法で製造された濃縮有機粒子ペーストおよびそこから得られる有機粒子は、好適なインクジェットインクもしくはその原料微粒子、またはカラーフィルター塗布液もしくはその原料微粒子として利用可能である。
According to the organic particle concentration method of the present invention, the organic solvent can be efficiently concentrated by removing the dispersion solvent from the organic particle dispersion prepared by the reprecipitation method. Concentration without increasing the particle size and degrading monodispersity even when the amount of good solvent injected into the poor solvent is increased or the scale of organic particle production is increased during reprecipitation. In addition, the organic particles aggregated by concentration can be easily redispersed, so that highly efficient organic particles can be produced.
The concentrated organic particle paste produced by the concentration method of the present invention and the organic particles obtained therefrom can be used as a suitable inkjet ink or its raw material fine particles, or a color filter coating liquid or its raw material fine particles.

本発明は有機粒子分散液または有機粒子を濃縮して抽出した有機粒子濃縮抽出液の濃縮方法に関し、有機粒子分散液または濃縮抽出液の溶媒を、遠心分離および加熱減圧乾燥から選ばれる少なくとも一つの方法によって除去することで、有機粒子を濃縮する方法に関するものである。以下、本発明の濃縮方法について詳細に説明する。なお、本発明の製造方法で形成される粒子は結晶質粒子であっても非晶質粒子であってもよく、またはこれらの混合物であってもよい。   The present invention relates to an organic particle dispersion or a concentration method of an organic particle concentrated extract obtained by concentrating and extracting organic particles, and the solvent of the organic particle dispersion or concentrated extract is at least one selected from centrifugation and heating under reduced pressure. The present invention relates to a method of concentrating organic particles by removing by a method. Hereinafter, the concentration method of the present invention will be described in detail. The particles formed by the production method of the present invention may be crystalline particles, amorphous particles, or a mixture thereof.

本発明の有機粒子の濃縮方法に用いられる有機材料は、再沈法で有機粒子を形成しうるものであれば特に制限はない。有機材料としては、例えば、有機顔料、有機色素、フラーレン、ポリジアセチレン、ポリイミドなどの高分子化合物、芳香族炭化水素もしくは脂肪族炭化水素(例えば、配向性を有する芳香族炭化水素もしくは脂肪族炭化水素、または昇華性を有する芳香族炭化水素もしくは脂肪族炭化水素)などが挙げられ、有機顔料、有機色素、または高分子化合物が好ましく、有機顔料が特に好ましい。また、これらを組み合わせたものでもよい。   The organic material used in the organic particle concentration method of the present invention is not particularly limited as long as it can form organic particles by a reprecipitation method. Examples of the organic material include organic pigments, organic dyes, fullerenes, polydiacetylenes, polyimides and other high molecular compounds, aromatic hydrocarbons or aliphatic hydrocarbons (eg, aromatic hydrocarbons or aliphatic hydrocarbons having orientation). Or an aromatic or aliphatic hydrocarbon having a sublimation property), an organic pigment, an organic dye, or a polymer compound is preferable, and an organic pigment is particularly preferable. A combination of these may also be used.

本発明の有機粒子の濃縮方法に用いられる有機顔料は、色相的に限定されるものではなく、例えば、ペリレン、ペリノン、キナクリドン、キナクリドンキノン、アントラキノン、アントアントロン、ベンズイミダゾロン、ジスアゾ縮合、ジスアゾ、アゾ、インダントロン、フタロシアニン、トリアリールカルボニウム、ジオキサジン、アミノアントラキノン、ジケトピロロピロール、チオインジゴ、イソインドリン、イソインドリノン、ピラントロンもしくはイソビオラントロン系顔料、またはそれらの混合物などが挙げられる。   The organic pigment used in the organic particle concentration method of the present invention is not limited in hue. For example, perylene, perinone, quinacridone, quinacridonequinone, anthraquinone, anthanthrone, benzimidazolone, disazo condensation, disazo, Examples thereof include azo, indanthrone, phthalocyanine, triarylcarbonium, dioxazine, aminoanthraquinone, diketopyrrolopyrrole, thioindigo, isoindoline, isoindolinone, pyranthrone or isoviolanthrone pigments, and mixtures thereof.

更に詳しくは、たとえば、C.I.ピグメントレッド190(C.I.番号71140)、C.I.ピグメントレッド224(C.I.番号71127)、C.I.ピグメントバイオレット29(C.I.番号71129)等のペリレン系顔料、C.I.ピグメントオレンジ43(C.I.番号71105)、もしくはC.I.ピグメントレッド194(C.I.番号71100)等のペリノン系顔料、C.I.ピグメントバイオレット19(C.I.番号73900)、C.I.ピグメントバイオレット42、C.I.ピグメントレッド122(C.I.番号73915)、C.I.ピグメントレッド192、C.I.ピグメントレッド202(C.I.番号73907)、C.I.ピグメントレッド207(C.I.番号73900、73906)、もしくはC.I.ピグメントレッド209(C.I.番号73905)のキナクリドン系顔料、C.I.ピグメントレッド206(C.I.番号73900/73920)、C.I.ピグメントオレンジ48(C.I.番号73900/73920)、もしくはC.I.ピグメントオレンジ49(C.I.番号73900/73920)等のキナクリドンキノン系顔料、C.I.ピグメントイエロー147(C.I.番号60645)等のアントラキノン系顔料、C.I.ピグメントレッド168(C.I.番号59300)等のアントアントロン系顔料、C.I.ピグメントブラウン25(C.I.番号12510)、C.I.ピグメントバイオレット32(C.I.番号12517)、C.I.ピグメントイエロー180(C.I.番号21290)、C.I.ピグメントイエロー181(C.I.番号11777)、C.I.ピグメントオレンジ62(C.I.番号11775)、もしくはC.I.ピグメントレッド185(C.I.番号12516)等のベンズイミダゾロン系顔料、C.I.ピグメントイエロー93(C.I.番号20710)、C.I.ピグメントイエロー94(C.I.番号20038)、C.I.ピグメントイエロー95(C.I.番号20034)、C.I.ピグメントイエロー128(C.I.番号20037)、C.I.ピグメントイエロー166(C.I.番号20035)、C.I.ピグメントオレンジ34(C.I.番号21115)、C.I.ピグメントオレンジ13(C.I.番号21110)、C.I.ピグメントオレンジ31(C.I.番号20050)、C.I.ピグメントレッド144(C.I.番号20735)、C.I.ピグメントレッド166(C.I.番号20730)、C.I.ピグメントレッド220(C.I.番号20055)、C.I.ピグメントレッド221(C.I.番号20065)、C.I.ピグメントレッド242(C.I.番号20067)、C.I.ピグメントレッド248、C.I.ピグメントレッド262、もしくはC.I.ピグメントブラウン23(C.I.番号20060)等のジスアゾ縮合系顔料、C.I.ピグメントイエロー13(C.I.番号21100)、C.I.ピグメントイエロー83(C.I.番号21108)、もしくはC.I.ピグメントイエロー188(C.I.番号21094)等のジスアゾ系顔料、C.I.ピグメントレッド187(C.I.番号12486)、C.I.ピグメントレッド170(C.I.番号12475)、C.I.ピグメントイエロー74(C.I.番号11714)、C.I.ピグメントイエロー150(C.I.番号48545)、C.I.ピグメントレッド48(C.I.番号15865)、C.I.ピグメントレッド53(C.I.番号15585)、C.I.ピグメントオレンジ64(C.I.番号12760)、もしくはC.I.ピグメントレッド247(C.I.番号15915)等のアゾ系顔料、C.I.ピグメントブルー60(C.I.番号69800)等のインダントロン系顔料、C.I.ピグメントグリーン7(C.I.番号74260)、C.I.ピグメントグリーン36(C.I.番号74265)、ピグメントグリーン37(C.I.番号74255)、ピグメントブルー16(C.I.番号74100)、C.I.ピグメントブルー75(C.I.番号74160:2)、もしくは15(C.I.番号74160)等のフタロシアニン系顔料、C.I.ピグメントブルー56(C.I.番号42800)、もしくはC.I.ピグメントブルー61(C.I.番号42765:1)等のトリアリールカルボニウム系顔料、C.I.ピグメントバイオレット23(C.I.番号51319)、もしくはC.I.ピグメントバイオレット37(C.I.番号51345)等のジオキサジン系顔料、C.I.ピグメントレッド177(C.I.番号65300)等のアミノアントラキノン系顔料、C.I.ピグメントレッド254(C.I.番号56110)、C.I.ピグメントレッド255(C.I.番号561050)、C.I.ピグメントレッド264、C.I.ピグメントレッド272(C.I.番号561150)、C.I.ピグメントオレンジ71、もしくはC.I.ピグメントオレンジ73等のジケトピロロピロール系顔料、C.I.ピグメントレッド88(C.I.番号73312)等のチオインジゴ系顔料、C.I.ピグメントイエロー139(C.I.番号56298)、C.I.ピグメントオレンジ66(C.I.番号48210)等のイソインドリン系顔料、C.I.ピグメントイエロー109(C.I.番号56284)、もしくはC.I.ピグメントオレンジ61(C.I.番号11295)等のイソインドリノン系顔料、C.I.ピグメントオレンジ40(C.I.番号59700)、もしくはC.I.ピグメントレッド216(C.I.番号59710)等のピラントロン系顔料、またはC.I.ピグメントバイオレット31(60010)等のイソビオラントロン系顔料が挙げられる。
本発明の有機粒子の濃縮方法において、2種類以上の有機顔料または有機顔料の固溶体を組み合わせて用いることもできる。
More specifically, for example, C.I. I. Pigment red 190 (C.I. No. 71140), C.I. I. Pigment red 224 (C.I. No. 71127), C.I. I. Perylene pigments such as CI Pigment Violet 29 (C.I. No. 71129); I. Pigment orange 43 (C.I. No. 71105), or C.I. I. Perinone pigments such as CI Pigment Red 194 (C.I. No. 71100); I. Pigment violet 19 (C.I. No. 73900), C.I. I. Pigment violet 42, C.I. I. Pigment red 122 (C.I. No. 73915), C.I. I. Pigment red 192, C.I. I. Pigment red 202 (C.I. No. 73907), C.I. I. Pigment Red 207 (C.I. No. 73900, 73906) or C.I. I. Pigment Red 209 (C.I. No. 73905), a quinacridone pigment, C.I. I. Pigment red 206 (C.I. No. 73900/73920), C.I. I. Pigment orange 48 (C.I. No. 73900/73920), or C.I. I. Quinacridone quinone pigments such as CI Pigment Orange 49 (C.I. No. 73900/73920); I. Anthraquinone pigments such as CI Pigment Yellow 147 (C.I. No. 60645); I. Anthanthrone pigments such as CI Pigment Red 168 (C.I. No. 59300); I. Pigment brown 25 (C.I. No. 12510), C.I. I. Pigment violet 32 (C.I. No. 12517), C.I. I. Pigment yellow 180 (C.I. No. 21290), C.I. I. Pigment yellow 181 (C.I. No. 11777), C.I. I. Pigment orange 62 (C.I. No. 11775), or C.I. I. Benzimidazolone pigments such as CI Pigment Red 185 (C.I. No. 12516); I. Pigment yellow 93 (C.I. No. 20710), C.I. I. Pigment yellow 94 (C.I. No. 20038), C.I. I. Pigment yellow 95 (C.I. No. 20034), C.I. I. Pigment yellow 128 (C.I. No. 20037), C.I. I. Pigment yellow 166 (C.I. No. 20035), C.I. I. Pigment orange 34 (C.I. No. 21115), C.I. I. Pigment orange 13 (C.I. No. 21110), C.I. I. Pigment orange 31 (C.I. No. 20050), C.I. I. Pigment red 144 (C.I. No. 20735), C.I. I. Pigment red 166 (C.I. No. 20730), C.I. I. Pigment red 220 (C.I. No. 20055), C.I. I. Pigment red 221 (C.I. No. 20065), C.I. I. Pigment red 242 (C.I. No. 20067), C.I. I. Pigment red 248, C.I. I. Pigment red 262, or C.I. I. Disazo condensation pigments such as CI Pigment Brown 23 (C.I. No. 20060); I. Pigment yellow 13 (C.I. No. 21100), C.I. I. Pigment yellow 83 (C.I. No. 21108), or C.I. I. Disazo pigments such as CI Pigment Yellow 188 (C.I. No. 21094); I. Pigment red 187 (C.I. No. 12486), C.I. I. Pigment red 170 (C.I. No. 12475), C.I. I. Pigment yellow 74 (C.I. No. 11714), C.I. I. Pigment yellow 150 (C.I. No. 48545), C.I. I. Pigment red 48 (C.I. No. 15865), C.I. I. Pigment red 53 (C.I. No. 15585), C.I. I. Pigment orange 64 (C.I. No. 12760), or C.I. I. Azo pigments such as C.I. Pigment Red 247 (C.I. No. 15915), C.I. I. Indanthrone pigments such as CI Pigment Blue 60 (C.I. No. 69800); I. Pigment green 7 (C.I. No. 74260), C.I. I. Pigment Green 36 (C.I. No. 74265), Pigment Green 37 (C.I. No. 74255), Pigment Blue 16 (C.I. No. 74100), C.I. I. Phthalocyanine pigments such as CI Pigment Blue 75 (C.I. No. 74160: 2) or 15 (C.I. No. 74160); I. Pigment blue 56 (C.I. No. 42800), or C.I. I. Triarylcarbonium pigments such as CI Pigment Blue 61 (C.I. No. 42765: 1); I. Pigment violet 23 (C.I. No. 51319) or C.I. I. Dioxazine pigments such as CI Pigment Violet 37 (C.I. No. 51345); I. Aminoanthraquinone pigments such as CI Pigment Red 177 (C.I. No. 65300); I. Pigment red 254 (C.I. No. 56110), C.I. I. Pigment Red 255 (C.I. No. 561050), C.I. I. Pigment red 264, C.I. I. Pigment red 272 (C.I. No. 561150), C.I. I. Pigment orange 71, or C.I. I. Diketopyrrolopyrrole pigments such as C.I. Pigment Orange 73; I. Thioindigo pigments such as CI Pigment Red 88 (C.I. No. 7313), C.I. Pigment Yellow 139 (C.I. No. 56298), C.I. I. Pigment Orange 66 (C.I. No. 48210) and the like, isoindoline pigments such as C.I. I. Pigment yellow 109 (C.I. No. 56284), or C.I. Pigment Orange 61 (C.I. No. 11295) and the like, isoindolinone pigments such as C.I. I. Pigment Orange 40 (C.I. No. 59700), or C.I. I. Pyranthrone pigments such as CI Pigment Red 216 (C.I. No. 59710), or C.I. I. And isoviolanthrone pigments such as CI Pigment Violet 31 (60010).
In the organic particle concentration method of the present invention, two or more kinds of organic pigments or solid solutions of organic pigments can be used in combination.

有機色素としては、例えば、アゾ色素、シアニン色素、メロシアニン色素、クマリン系色素などが挙げられる。高分子化合物としては、例えば、ポリジアセチレン、ポリイミドなどが挙げられる。   Examples of organic dyes include azo dyes, cyanine dyes, merocyanine dyes, and coumarin dyes. Examples of the polymer compound include polydiacetylene and polyimide.

有機粒子の粒径に関しては、計測法により数値化して集団の平均の大きさを表現する方法があるが、よく使用されるものとして、分布の最大値を示すモード径、積分分布曲線の中央値に相当するメジアン径、各種の平均径(数平均、長さ平均、面積平均、重量平均、体積平均等)などがあり、本発明においては、特に断りのない限り、粒径とは数平均径をいう。本発明の有機粒子の濃縮方法に用いられる有機粒子分散液に含まれる有機粒子(一次粒子)の粒径は、500μm以下であるが、100μm以下が好ましく、10μm以下がより好ましい。さらにナノメートルサイズのナノ粒子を製造する場合は、該粒径は1nm〜1μmであることが好ましく、1〜200nmであることがより好ましく、2〜100nmであることがさらに好ましく、5〜80nmであることが特に好ましい。
また、粒子の単分散性を表す指標として、本発明においては、特に断りのない限り、体積平均粒径(Mv)と数平均粒径(Mn)の比(Mv/Mn)を用いる。本発明の有機粒子の濃縮方法に用いられる有機粒子分散液に含まれる粒子(一次粒子)の単分散性、つまりMv/Mnは、1.0〜2.0であることが好ましく、1.0〜1.8であること
がより好ましく、1.0〜1.5であることが特に好ましい。
有機粒子の粒径の測定方法としては、顕微鏡法、重量法、光散乱法、光遮断法、電気抵抗法、音響法、動的光散乱法が挙げられ、顕微鏡法、動的光散乱法が特に好ましい。顕微鏡法に用いられる顕微鏡としては、例えば、走査型電子顕微鏡(例えば、有機粒子の分散液をろ紙上に乾かし、走査型電子顕微鏡により撮影し、写真の粒子をノギスで測定することすることにより平均粒径を求めることができる。)、透過型電子顕微鏡などが挙げられる。動的光散乱法による粒子測定装置として、例えば、日機装社製ナノトラックUPA−EX150、大塚電子社製ダイナミック光散乱光度計DLS−7000シリーズなどが挙げられる。
Regarding the particle size of organic particles, there is a method of expressing the average size of the population by quantifying by a measurement method, but as a common use, the mode diameter indicating the maximum value of the distribution, the median value of the integral distribution curve Median diameter, various average diameters (number average, length average, area average, weight average, volume average, etc.), etc. in the present invention, unless otherwise specified, the particle size is the number average diameter. Say. The particle size of the organic particles (primary particles) contained in the organic particle dispersion used in the organic particle concentration method of the present invention is 500 μm or less, preferably 100 μm or less, and more preferably 10 μm or less. Further, when producing nanometer-sized nanoparticles, the particle size is preferably 1 nm to 1 μm, more preferably 1 to 200 nm, further preferably 2 to 100 nm, and 5 to 80 nm. It is particularly preferred.
In the present invention, the ratio (Mv / Mn) of the volume average particle diameter (Mv) and the number average particle diameter (Mn) is used as an index representing the monodispersity of the particles unless otherwise specified. The monodispersity, that is, Mv / Mn, of particles (primary particles) contained in the organic particle dispersion used in the organic particle concentration method of the present invention is preferably 1.0 to 2.0. More preferably, it is -1.8, and it is especially preferable that it is 1.0-1.5.
Examples of the method for measuring the particle size of organic particles include microscopy, gravimetric method, light scattering method, light blocking method, electrical resistance method, acoustic method, and dynamic light scattering method. Particularly preferred. Examples of the microscope used in the microscopy include, for example, a scanning electron microscope (for example, by drying a dispersion of organic particles on a filter paper, taking a photograph with a scanning electron microscope, and measuring the particles in a photograph with a caliper. Particle diameter can be obtained.), And a transmission electron microscope. Examples of the particle measuring apparatus by the dynamic light scattering method include Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd. and Dynamic Light Scattering Photometer DLS-7000 series manufactured by Otsuka Electronics Co., Ltd.

次に、有機粒子を析出、形成する方法について説明する。
有機粒子を析出させて形成する際に用いられる溶媒は、有機材料の貧溶媒であり、有機材料を溶解する良溶媒と相溶するもしくは均一に混ざるものであれば特に制限はない。有機材料の貧溶媒としては、有機材料の溶解度が0.02質量%以下であることが好ましく、0.01質量%以下であることがより好ましい。この溶解度は酸またはアルカリの存在下で溶解された場合の溶解度であってもよい。また、良溶媒と貧溶媒との相溶性もしくは均一混合性は、良溶媒の貧溶媒に対する溶解度が30質量%以上であることが好ましく、50質量%以上であることがより好ましい。
貧溶媒としては、例えば、水系溶媒(例えば、水、または塩酸、水酸化ナトリウム水溶液)、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、芳香族系溶媒、二硫化炭素、脂肪族系溶媒、ニトリル系溶媒、ハロゲン系溶媒、エステル系溶媒、イオン性液体、これらの混合溶媒などが挙げられ、水系溶媒、アルコール系溶媒またはエステル系溶媒が好ましい。
アルコール系溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n−プロピルアルコール、1−メトキシ−2−プロパノールなどが挙げられる。ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。エーテル系溶媒としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフランなどが挙げられる。芳香族系溶媒としては、例えば、ベンゼン、トルエンなどが挙げられる。脂肪族系溶媒としては、例えば、ヘキサンなどが挙げられる。ニトリル系溶媒としては、例えば、アセトニトリルなどが挙げられる。ハロゲン系溶媒としては、例えば、ジクロロメタン、トリクロロエチレンなどが挙げられる。エステル系溶媒としては、例えば、酢酸エチル、乳酸エチル、2−(1−メトキシ)プロピルアセテートなどが挙げられる。イオン性液体としては、例えば、1−ブチル−3−メチルイミダゾリウムとPF6 との塩などが挙げられる。
Next, a method for depositing and forming organic particles will be described.
The solvent used for forming the organic particles by precipitation is a poor solvent for the organic material, and is not particularly limited as long as it is compatible with or uniformly mixed with a good solvent for dissolving the organic material. As a poor solvent for the organic material, the solubility of the organic material is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less. This solubility may be the solubility when dissolved in the presence of an acid or alkali. In addition, the compatibility or uniform mixing property between the good solvent and the poor solvent is preferably such that the solubility of the good solvent in the poor solvent is 30% by mass or more, and more preferably 50% by mass or more.
Examples of the poor solvent include aqueous solvents (for example, water, hydrochloric acid, aqueous sodium hydroxide), alcohol solvents, ketone solvents, ether solvents, aromatic solvents, carbon disulfide, aliphatic solvents, nitriles. Examples thereof include a system solvent, a halogen solvent, an ester solvent, an ionic liquid, a mixed solvent thereof, and the like, and an aqueous solvent, an alcohol solvent, or an ester solvent is preferable.
Examples of the alcohol solvent include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, 1-methoxy-2-propanol and the like. Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of the ether solvent include dimethyl ether, diethyl ether, tetrahydrofuran and the like. Examples of the aromatic solvent include benzene and toluene. Examples of the aliphatic solvent include hexane. Examples of the nitrile solvent include acetonitrile. Examples of the halogen solvent include dichloromethane, trichloroethylene, and the like. Examples of the ester solvent include ethyl acetate, ethyl lactate, 2- (1-methoxy) propyl acetate and the like. Examples of the ionic liquid include a salt of 1-butyl-3-methylimidazolium and PF 6 .

次に、有機材料を溶解する良溶媒について説明する。
良溶媒は用いる有機材料を溶解することが可能で、有機粒子作製時に用いる貧溶媒と相溶するもしくは均一に混ざるものであれば特に制限はない。有機顔料の良溶媒への溶解性は有機材料の溶解度が0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。この溶解度は酸またはアルカリの存在下で溶解された場合の溶解度であってもよい。貧溶媒と良溶媒との相溶性もしくは均一混合性の好ましい範囲は前述のとおりである。
良溶媒としては、例えば、水系溶媒(例えば、水、または塩酸、水酸化ナトリウム水溶液)、アルコール系溶媒、アミド系溶媒、ケトン系溶媒、エーテル系溶媒、芳香族系溶媒、二硫化炭素、脂肪族系溶媒、ニトリル系溶媒、スルホキシド系溶媒、ハロゲン系溶媒、エステル系溶媒、イオン性液体、これらの混合溶媒などが挙げられ、水系溶媒、アルコール系溶媒、エステル系溶媒、スルホキシド系溶媒またはアミド系溶媒が好ましく、水系溶媒、スルホキシド系溶媒またはアミド系溶媒がより好ましく、スルホキシド系溶媒またはアミド系溶媒が特に好ましい。
アミド系溶媒としては、例えば、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。スルホキシド系溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ヘキサメチレンスルホキシド、スルホランなどが挙げられる。
また、良溶媒に有機材料を溶解した有機材料溶液の濃度としては、溶解時の条件における有機材料の良溶媒に対する飽和濃度乃至これの1/100程度の範囲が望ましく、用いられる有機材料にもよるが、例えば0.5〜12質量%が好ましい。
有機材料溶液の調製条件は、有機材料溶液の調製条件に特に制約はなく、常圧から亜臨界、超臨界条件の範囲を選択できる。常圧での温度は−10〜150℃が好ましく、−5〜130℃がより好ましく、0〜100℃が特に好ましい。
Next, a good solvent that dissolves the organic material will be described.
The good solvent is not particularly limited as long as it can dissolve the organic material to be used and is compatible with or uniformly mixed with the poor solvent used in the preparation of the organic particles. The solubility of the organic pigment in a good solvent is such that the solubility of the organic material is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more. This solubility may be the solubility when dissolved in the presence of an acid or alkali. The preferred range of the compatibility or uniform mixing property between the poor solvent and the good solvent is as described above.
Examples of good solvents include aqueous solvents (eg, water, hydrochloric acid, aqueous sodium hydroxide), alcohol solvents, amide solvents, ketone solvents, ether solvents, aromatic solvents, carbon disulfide, and aliphatic solvents. Solvents, nitrile solvents, sulfoxide solvents, halogen solvents, ester solvents, ionic liquids, mixed solvents thereof, and the like, aqueous solvents, alcohol solvents, ester solvents, sulfoxide solvents or amide solvents. Are preferred, aqueous solvents, sulfoxide solvents or amide solvents are more preferred, and sulfoxide solvents or amide solvents are particularly preferred.
Examples of amide solvents include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like. Examples of the sulfoxide solvent include dimethyl sulfoxide, diethyl sulfoxide, hexamethylene sulfoxide, sulfolane and the like.
Further, the concentration of the organic material solution in which the organic material is dissolved in the good solvent is preferably a saturated concentration of the organic material with respect to the good solvent in the dissolving condition or a range of about 1/100 of this, depending on the organic material used. However, 0.5-12 mass% is preferable, for example.
The conditions for preparing the organic material solution are not particularly limited, and a range from normal pressure to subcritical and supercritical conditions can be selected. The temperature at normal pressure is preferably −10 to 150 ° C., more preferably −5 to 130 ° C., and particularly preferably 0 to 100 ° C.

有機粒子作製時の貧溶媒の条件に特に制約はなく、常圧から亜臨界、超臨界条件の範囲を選択できる。常圧での温度は−30〜100℃が好ましく、−10〜60℃がより好ましく、0〜30℃が特に好ましい。
有機顔料溶液と貧溶媒との混合方法に特に制約はないが、一方を撹拌しておき、そこに他方を添加することが好ましく、有機顔料溶液を撹拌された貧溶媒に添加することが特に好ましい。添加にはポンプ等を用いることもできるし、用いなくてもよい。また、液中添加でも液外添加でもよいが、液中添加がより好ましい。
一方を撹拌する際の撹拌速度は100〜10000rpmが好ましく150〜8000rpmがより好ましく、200〜6000rpmが特に好ましい。
有機材料溶液と貧溶媒の比(良溶媒/貧溶媒)は体積比で1/50〜2/3が好ましく、1/40〜1/2がより好ましく、1/20〜3/8が特に好ましい。
有機粒子調製後の分散液の濃度は有機粒子を分散させることができれば特に制約されないが、分散溶媒1000mlに対して粒子が10〜40000mgの範囲であることが好ましく、より好ましくは20〜30000mgの範囲であり、特に好ましくは50〜25000mgの範囲である。
There are no particular restrictions on the conditions of the poor solvent during the preparation of the organic particles, and a range from normal pressure to subcritical and supercritical conditions can be selected. The temperature at normal pressure is preferably −30 to 100 ° C., more preferably −10 to 60 ° C., and particularly preferably 0 to 30 ° C.
The mixing method of the organic pigment solution and the poor solvent is not particularly limited, but it is preferable to stir one and add the other to it, and it is particularly preferable to add the organic pigment solution to the stirred poor solvent. . A pump or the like may be used for the addition, or it may not be used. Moreover, although addition in a liquid or addition outside a liquid may be sufficient, addition in a liquid is more preferable.
The stirring speed for stirring one is preferably 100 to 10000 rpm, more preferably 150 to 8000 rpm, and particularly preferably 200 to 6000 rpm.
The ratio of the organic material solution to the poor solvent (good solvent / poor solvent) is preferably 1/50 to 2/3 in volume ratio, more preferably 1/40 to 1/2, and particularly preferably 1/20 to 3/8. .
The concentration of the dispersion liquid after the preparation of the organic particles is not particularly limited as long as the organic particles can be dispersed, but the particle is preferably in the range of 10 to 40000 mg, more preferably in the range of 20 to 30000 mg with respect to 1000 ml of the dispersion solvent. And particularly preferably in the range of 50 to 25000 mg.

本発明の有機粒子の濃縮方法では分散剤を用いてもよく、例えば、アニオン性分散剤、カチオン性分散剤、両イオン性分散剤、ノニオン性分散剤を添加することも可能である。   In the method for concentrating organic particles of the present invention, a dispersant may be used. For example, an anionic dispersant, a cationic dispersant, an amphoteric dispersant, and a nonionic dispersant may be added.

次に、有機粒子を抽出する方法について説明する。
有機粒子の抽出に用いられる抽出溶媒は、分散液中の有機粒子を抽出できるものであれば特に制限はないが、分散溶媒と実質的に混じり合わず(本発明において、実質的に混じり合わずとは、相溶性が小さいことをいい、溶解量50質量%以下が好ましく、30質量%以下がより好ましい。)混合後、静置すると界面を形成する溶媒であることが好ましい。
抽出溶媒としてはエステル系溶媒、アルコール系溶媒、芳香族系溶媒、脂肪族系溶媒が好ましく、エステル系溶媒、芳香族系溶媒または脂肪族系溶媒がより好ましく、エステル系溶媒が特に好ましい。
エステル系溶媒としては、例えば、2−(1−メトキシ)プロピルアセテート、酢酸エチル、乳酸エチルなどが挙げられる。アルコール系溶媒としては、例えば、n−ブタノール、イソブタノールなどが挙げられる。芳香族系溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。脂肪族系溶媒としては、例えば、n−ヘキサン、シクロヘキサンなどが挙げられる。また、抽出溶媒は上記の好ましい溶媒による純溶媒であっても、複数の溶媒による混合溶媒であってもよい。
Next, a method for extracting organic particles will be described.
The extraction solvent used for extraction of the organic particles is not particularly limited as long as it can extract the organic particles in the dispersion, but is not substantially mixed with the dispersion solvent (in the present invention, it is not substantially mixed). Means that the compatibility is small, the dissolution amount is preferably 50% by mass or less, and more preferably 30% by mass or less.) After mixing, it is preferably a solvent that forms an interface when allowed to stand.
The extraction solvent is preferably an ester solvent, an alcohol solvent, an aromatic solvent or an aliphatic solvent, more preferably an ester solvent, an aromatic solvent or an aliphatic solvent, and particularly preferably an ester solvent.
Examples of the ester solvent include 2- (1-methoxy) propyl acetate, ethyl acetate, and ethyl lactate. Examples of the alcohol solvent include n-butanol and isobutanol. Examples of the aromatic solvent include benzene, toluene, xylene and the like. Examples of the aliphatic solvent include n-hexane and cyclohexane. Further, the extraction solvent may be a pure solvent based on the above preferred solvent or a mixed solvent composed of a plurality of solvents.

抽出溶媒の量は有機粒子を抽出できれば特に制限されないが、濃縮して抽出することを考慮して有機粒子分散液より少量であることが好ましい。これを体積比で示すと、有機粒子分散液を100としたとき、添加される抽出溶媒は1〜100の範囲であることが好ましく、より好ましくは10〜90の範囲であり、20〜80の範囲が特に好ましい。多すぎると濃縮化に多大な時間を要し、少なすぎると抽出が不十分で分散溶媒中に粒子が残存する。
抽出溶媒を添加した後、分散液と十分に接触するように攪拌混合することが好ましい。攪拌混合は常用の方法を用いることができる。抽出溶媒を添加し混合するときの温度に特に制約はないが、1〜100℃であることが好ましく、5〜60℃であることがより好ましい。抽出溶媒の添加、混合はそれぞれの工程を好ましく実施できるものであればどのような装置を用いてもよいが、例えば、分液ロート型の装置を用いて実施できる。
The amount of the extraction solvent is not particularly limited as long as the organic particles can be extracted, but is preferably smaller than the organic particle dispersion in consideration of concentration and extraction. When this is represented by volume ratio, when the organic particle dispersion is 100, the added extraction solvent is preferably in the range of 1 to 100, more preferably in the range of 10 to 90, and 20 to 80. A range is particularly preferred. If it is too much, it will take a lot of time for concentration, and if it is too little, extraction will be insufficient and particles will remain in the dispersion solvent.
After adding the extraction solvent, it is preferable to stir and mix so as to be in sufficient contact with the dispersion. Conventional methods can be used for stirring and mixing. Although there is no restriction | limiting in particular in the temperature when adding and mixing an extraction solvent, It is preferable that it is 1-100 degreeC, and it is more preferable that it is 5-60 degreeC. Any device may be used for adding and mixing the extraction solvent as long as each step can be preferably performed. For example, a separation funnel type device can be used.

本発明の有機粒子の濃縮方法において、好ましい態様は、有機粒子分散液もしくはその抽出液を遠心分離により濃縮するものである。
用いられる遠心分離機は有機粒子分散液および有機粒子濃縮抽出液中の有機粒子を沈降させることができればどのような装置を用いてもよい。遠心分離機としては、例えば、汎用の装置の他にもスキミング機能(回転中に上澄み層を吸引し、系外に排出する機能)付きのものや、連続的に固形物を排出する連続遠心分離機などが挙げられる。
遠心分離条件は、遠心力(重力加速度の何倍の遠心加速度がかかるかを表す値)で50〜10000が好ましく、100〜8000がより好ましく、150〜6000が特に好ましい。遠心分離時の温度は、分散液の溶剤種によるが、−10〜80℃が好ましく、−5〜70℃がより好ましく、0〜60℃が特に好ましい。遠心分離による濃縮後、上澄み液中に含有される有機材料は、遠心分離前に分散液または抽出液に含有される有機材料の質量を100とした時、15以下が好ましく、10以下がより好ましい。また、遠心分離により沈降するペースト状の固形分中の有機材料濃度は、1〜60%が好ましく、2〜50%がより好ましい。
In the organic particle concentration method of the present invention, a preferred embodiment is to concentrate the organic particle dispersion or the extract thereof by centrifugation.
As the centrifuge used, any device may be used as long as it can precipitate the organic particles in the organic particle dispersion and the organic particle concentrated extract. As a centrifuge, for example, in addition to a general-purpose device, a device with a skimming function (a function of sucking the supernatant layer during rotation and discharging it out of the system) or continuous centrifugation for continuously discharging solid matter Machine.
Centrifugation conditions are preferably 50 to 10000, more preferably 100 to 8000, and particularly preferably 150 to 6000 in terms of centrifugal force (a value representing how many times the gravitational acceleration is applied). Although the temperature at the time of centrifugation is based on the solvent seed | species of a dispersion liquid, -10-80 degreeC is preferable, -5-70 degreeC is more preferable, 0-60 degreeC is especially preferable. After concentration by centrifugation, the organic material contained in the supernatant is preferably 15 or less, more preferably 10 or less, when the mass of the organic material contained in the dispersion or the extract before centrifugation is 100. . Moreover, 1-60% is preferable and, as for the organic material density | concentration in the paste-form solid content settled by centrifugation, 2-50% is more preferable.

本発明の有機粒子の濃縮方法において、別の好ましい態様は、有機粒子分散液もしくはその抽出液を減圧乾燥により濃縮するものである。
減圧乾燥による有機粒子の濃縮に用いられる装置は有機粒子分散液および有機粒子濃縮抽出液の溶媒を蒸発させることができれば特に制限はない。例えば、汎用の真空乾燥器およびロータリーポンプや、液を撹拌しながら加熱減圧乾燥できる装置、液を加熱減圧した管中に通すことによって連続的に乾燥ができる装置等が挙げられる。
加熱減圧乾燥温度は30〜230℃が好ましく、35〜200℃がより好ましく、40〜180℃が特に好ましい。減圧時の圧力は、100〜100000Paが好ましく、300〜90000Paがより好ましく、500〜80000Paが特に好ましい。加熱減圧乾燥後のペースト状の固形分の有機顔料濃度は、質量比で10〜80%が好ましく、15〜75%がより好ましい。
In the organic particle concentration method of the present invention, another preferred embodiment is to concentrate the organic particle dispersion or the extract thereof under reduced pressure.
The apparatus used for concentration of organic particles by drying under reduced pressure is not particularly limited as long as the solvent of the organic particle dispersion and the organic particle concentrated extract can be evaporated. For example, a general-purpose vacuum dryer and a rotary pump, an apparatus that can be heated and reduced in pressure while stirring the liquid, and an apparatus that can be continuously dried by passing the liquid through a heated and reduced pressure tube.
The heating and drying temperature is preferably 30 to 230 ° C, more preferably 35 to 200 ° C, and particularly preferably 40 to 180 ° C. The pressure during decompression is preferably 100 to 100,000 Pa, more preferably 300 to 90,000 Pa, and particularly preferably 500 to 80,000 Pa. The organic pigment concentration of the paste-like solid content after drying under reduced pressure by heating is preferably 10 to 80%, more preferably 15 to 75% by mass ratio.

本発明の有機粒子の濃縮方法によれば、濃縮により粒子が凝集しても、超音波照射などにより再分散化することで、一次粒子に微細分散化することができ、粒径を好ましくは1〜200nmとすることができ、より好ましくは2〜100nmとすることができ、特に好ましくは5〜80nmとすることができる。また、再分散後の粒子のMv/Mnを、好ましくは1.0〜2.0とすることができ、より好ましくは1.0〜1.8とすることができ、特に好ましくは1.0〜1.5とすることができる。
この再分散性について、有機粒子の凝集体の粒径(以下、この粒径を「凝集粒径」ともいう。)と、凝集体中の一次粒子の粒径(以下、この粒径を「一次粒径」ともいう。)とに基づいて示せば、凝集粒径を一次粒径で除した値(以下、この値を「再分散指数」ともいう。)で評価することができる。本発明の有機粒子の濃縮方法によれば、得られた濃縮液中の有機粒子の再分散指数を、好ましくは1.0〜2.0とすることができ、より好ましくは1.0〜1.9とすることができる。再分散指数は、粒子の凝集の度合いを表しており、粒子が一次粒径に近い状態で分散されているほど、再分散指数の値は小さくなり、1に近づく。
本発明の有機粒子の濃縮方法によれば、有機粒子分散液から効率よく有機粒子を濃縮することができる。濃縮倍率に関しては、例えば、原料となる有機粒子分散液中の粒子の密度を1とすると、濃縮有機粒子ペーストにおける密度を好ましくは100〜3000倍程度、より好ましくは500〜2000倍程度まで濃縮することができる。
According to the organic particle concentration method of the present invention, even if the particles aggregate due to concentration, they can be finely dispersed into primary particles by redispersion by ultrasonic irradiation or the like, and the particle size is preferably 1 It can be set to ˜200 nm, more preferably 2 to 100 nm, and particularly preferably 5 to 80 nm. Further, the Mv / Mn of the re-dispersed particles can be preferably 1.0 to 2.0, more preferably 1.0 to 1.8, and particularly preferably 1.0. -1.5.
Regarding the redispersibility, the particle size of the aggregate of organic particles (hereinafter, this particle size is also referred to as “aggregated particle size”) and the particle size of the primary particles in the aggregate (hereinafter referred to as “primary particle size”). The value can be evaluated by a value obtained by dividing the aggregated particle size by the primary particle size (hereinafter, this value is also referred to as “redispersion index”). According to the organic particle concentration method of the present invention, the redispersion index of the organic particles in the obtained concentrated liquid can be preferably 1.0 to 2.0, more preferably 1.0 to 1. .9. The redispersion index represents the degree of aggregation of the particles. The more the particles are dispersed in a state close to the primary particle size, the smaller the value of the redispersion index becomes and approaches 1.
According to the organic particle concentration method of the present invention, organic particles can be efficiently concentrated from an organic particle dispersion. Regarding the concentration ratio, for example, when the density of the particles in the organic particle dispersion as a raw material is 1, the density in the concentrated organic particle paste is preferably about 100 to 3000 times, more preferably about 500 to 2000 times. be able to.

本発明の有機粒子の濃縮方法によれば、ナノメートルサイズ(例えば、10〜100nm)という微小な粒径にもかかわらず、目的とした粒子サイズで有機粒子を濃縮することができる。このため、インクジェット用のインクとしたとき、光学濃度が高く、画像表面の均一性に優れ、彩度が高く鮮明なインクとすることができる。さらに、カラーフィルターに用いたときには、光学濃度が高く、フィルター表面の均一性に優れ、コントラストが高く、かつ画像のノイズを少なくすることができる。   According to the method for concentrating organic particles of the present invention, the organic particles can be concentrated with a target particle size regardless of the minute particle size of nanometer size (for example, 10 to 100 nm). For this reason, when it is set as the ink for inkjet, it can be made a clear ink with high optical density, excellent image surface uniformity, and high chroma. Furthermore, when used in a color filter, the optical density is high, the filter surface is excellent in uniformity, the contrast is high, and image noise can be reduced.

以下に本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
なお、有機顔料粒子の粒径は、分散液をろ紙上で乾燥させた後、走査型電子顕微鏡で測定し、100個の粒子の数平均粒径として求めた。また、単分散性の指標としてのMv/Mnは、日機装社製ナノトラックUPA−EX150を用いて測定した。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
The particle diameter of the organic pigment particles was measured as a number average particle diameter of 100 particles by measuring with a scanning electron microscope after drying the dispersion on a filter paper. Further, Mv / Mn as an index of monodispersity was measured using Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd.

(分散液の調製)
[分散液(1)]
顔料溶液と貧溶媒の比(良溶媒/貧溶媒)が1/10の有機顔料粒子分散液1100mlを作製するため、顔料(ピグメントレッド254)530mgおよび1mol/l水酸化ナトリウム8mlを1−メチル−2−ピロリドン100mlに溶解した顔料溶液を調製した。これとは別に貧溶媒として、1mol/l塩酸8mlを含有した水1000mlを用意した。
ここで、1℃に温度コントロールし、藤沢薬品工業社製GK−0222−10型ラモンドスターラーにより500rpmで攪拌した貧溶媒に、顔料溶液を、日本精密化学社製NP−KX−500型大容量無脈流ポンプを用いて流速50ml/minで貧溶媒中に全量注入することにより、有機顔料粒子分散液を調製した。これを分散液(1)とした。調製直後の粒径およびMv/Mnを測定した。
(Preparation of dispersion)
[Dispersion (1)]
In order to prepare 1100 ml of an organic pigment particle dispersion having a ratio of pigment solution to poor solvent (good solvent / poor solvent) of 1/10, 530 mg of pigment (Pigment Red 254) and 8 ml of 1 mol / l sodium hydroxide were added to 1-methyl- A pigment solution dissolved in 100 ml of 2-pyrrolidone was prepared. Separately, 1000 ml of water containing 8 ml of 1 mol / l hydrochloric acid was prepared as a poor solvent.
Here, the temperature of the solution was controlled at 1 ° C., and the pigment solution was added to the poor solvent stirred at 500 rpm with a GK-0222-10 type Lamond Stirrer manufactured by Fujisawa Pharmaceutical Co., Ltd. NP-KX-500 type large capacity manufactured by Nippon Seimitsu Chemical An organic pigment particle dispersion was prepared by injecting the entire amount into a poor solvent at a flow rate of 50 ml / min using a non-pulsating pump. This was designated as dispersion (1). The particle size and Mv / Mn immediately after preparation were measured.

[分散液(2)]
また、顔料溶液と貧溶媒の比(良溶媒/貧溶媒)が3/10の有機顔料粒子分散液1300mlを作製するため、顔料(ピグメントレッド254)1590mgおよび1mol/l水酸化ナトリウム24mlを1−メチル−2−ピロリドン300mlに溶解した顔料溶液を調製した。これとは別に貧溶媒として、1mol/l塩酸24mlを含有した水1000mlを用意した。ここで、分散液(1)と同様の方法で有機顔料粒子分散液を調製した。これを分散液(2)とした。調製直後の粒径およびMv/Mnを測定した。
[Dispersion (2)]
Further, in order to prepare 1300 ml of an organic pigment particle dispersion having a pigment solution to poor solvent ratio (good solvent / poor solvent) of 3/10, 1590 mg of pigment (Pigment Red 254) and 24 ml of 1 mol / l sodium hydroxide A pigment solution dissolved in 300 ml of methyl-2-pyrrolidone was prepared. Separately, 1000 ml of water containing 24 ml of 1 mol / l hydrochloric acid was prepared as a poor solvent. Here, an organic pigment particle dispersion was prepared in the same manner as in the dispersion (1). This was designated as dispersion (2). The particle size and Mv / Mn immediately after preparation were measured.

[分散液(3)]
また、顔料溶液と貧溶媒の比(良溶媒/貧溶媒)が1/10の有機顔料粒子分散液3300mlを作製するため、顔料(ピグメントレッド254)1590mgおよび1mol/l水酸化ナトリウム24mlを1−メチル−2−ピロリドン(NMP)300mlに溶解した顔料溶液を調製した。これとは別に貧溶媒として、1mol/l塩酸24mlを含有した水3000mlを用意した。ここで、分散液(1)と同様の方法で有機顔料粒子分散液を調製した。これを分散液(3)とした。調製直後の粒径およびMv/Mnを測定した。
[Dispersion (3)]
In order to prepare 3300 ml of an organic pigment particle dispersion having a pigment solution / poor solvent ratio (good solvent / poor solvent) of 1/10, 1590 mg of pigment (Pigment Red 254) and 24 ml of 1 mol / l sodium hydroxide A pigment solution dissolved in 300 ml of methyl-2-pyrrolidone (NMP) was prepared. Separately, 3000 ml of water containing 24 ml of 1 mol / l hydrochloric acid was prepared as a poor solvent. Here, an organic pigment particle dispersion was prepared in the same manner as in the dispersion (1). This was designated as dispersion (3). The particle size and Mv / Mn immediately after preparation were measured.

[分散液(4)]
また、顔料溶液と貧溶媒の比(良溶媒/貧溶媒)が3/10の有機顔料粒子分散液3900mlを作製するため、顔料(ピグメントレッド254)4770mgおよび1mol/l水酸化ナトリウム72mlを1−メチル−2−ピロリドン900mlに溶解した顔料溶液を調製した。これとは別に貧溶媒として、1mol/l塩酸72mlを含有した水3000mlを用意した。ここで、分散液(1)と同様の方法で有機顔料粒子分散液を調製した。これを分散液(4)とした。調製直後の粒径およびMv/Mnを、分散液(1)と同様の方法で測定した。
[Dispersion (4)]
Further, in order to prepare 3900 ml of an organic pigment particle dispersion having a pigment solution / poor solvent ratio (good solvent / poor solvent) of 3/10, 4770 mg of pigment (Pigment Red 254) and 72 ml of 1 mol / l sodium hydroxide were added to 1- A pigment solution dissolved in 900 ml of methyl-2-pyrrolidone was prepared. Separately, 3000 ml of water containing 72 ml of 1 mol / l hydrochloric acid was prepared as a poor solvent. Here, an organic pigment particle dispersion was prepared in the same manner as in the dispersion (1). This was designated as dispersion (4). The particle size and Mv / Mn immediately after preparation were measured by the same method as in the dispersion (1).

[分散液(5)]
また、顔料溶液と貧溶媒の比(良溶媒/貧溶媒)が1/10の有機顔料粒子分散液9900mlを作製するため、顔料(ピグメントレッド254)4770mgおよび1mol/l水酸化ナトリウム72mlを1−メチル−2−ピロリドン(NMP)900mlに溶解した顔料溶液を調製した。これとは別に貧溶媒として、1mol/l塩酸72mlを含有した水9000mlを用意した。ここで、分散液(1)と同様の方法で有機顔料粒子分散液を調製した。これを分散液(5)とした。調製直後の粒径およびMv/Mnを測定した。
[Dispersion (5)]
In order to prepare 9900 ml of an organic pigment particle dispersion having a pigment solution / poor solvent ratio (good solvent / poor solvent) of 1/10, 4770 mg of pigment (Pigment Red 254) and 72 ml of 1 mol / l sodium hydroxide were added to 1- A pigment solution dissolved in 900 ml of methyl-2-pyrrolidone (NMP) was prepared. Separately, 9000 ml of water containing 72 ml of 1 mol / l hydrochloric acid was prepared as a poor solvent. Here, an organic pigment particle dispersion was prepared in the same manner as in the dispersion (1). This was designated as Dispersion (5). The particle size and Mv / Mn immediately after preparation were measured.

[分散液(6)]
また、顔料溶液と貧溶媒の比(良溶媒/貧溶媒)が3/10の有機顔料粒子分散液11700mlを作製するため、顔料(ピグメントレッド254)14310mgおよび1mol/l水酸化ナトリウム216mlを1−メチル−2−ピロリドン2700mlに溶解した顔料溶液を調製した。これとは別に貧溶媒として、1mol/l塩酸216mlを含有した水9000mlを用意した。ここで、分散液(1)と同様の方法で有機顔料粒子分散液を調製した。これを分散液(6)とした。調製直後の粒径およびMv/Mnを測定した。
[Dispersion (6)]
Further, in order to prepare 11700 ml of an organic pigment particle dispersion having a pigment solution / poor solvent ratio (good solvent / poor solvent) of 3/10, 14310 mg of pigment (Pigment Red 254) and 216 ml of 1 mol / l sodium hydroxide were added to 1- A pigment solution dissolved in 2700 ml of methyl-2-pyrrolidone was prepared. Separately, 9000 ml of water containing 216 ml of 1 mol / l hydrochloric acid was prepared as a poor solvent. Here, an organic pigment particle dispersion was prepared in the same manner as in the dispersion (1). This was designated as Dispersion (6). The particle size and Mv / Mn immediately after preparation were measured.

[分散液(7)]
また、顔料(ピグメントレッド254)を、ジメチルスルホキシド(DMSO)と8mol/l−水酸化カリウム水溶液を重量比6:1で混合した溶液に、150mmol/L溶解した顔料溶液300mlを調製した。これとは別に、貧溶媒として水3000mlを準備した。ここで、分散液(1)と同様の方法で有機顔料粒子分散液を調製した。これを分散液(7)とした。調製直後の粒径およびMv/Mnを測定した。
[Dispersion (7)]
In addition, a pigment solution (300 ml) was prepared by dissolving 150 mmol / L of the pigment (Pigment Red 254) in a solution obtained by mixing dimethylsulfoxide (DMSO) and 8 mol / l-potassium hydroxide aqueous solution at a weight ratio of 6: 1. Separately, 3000 ml of water was prepared as a poor solvent. Here, an organic pigment particle dispersion was prepared in the same manner as in the dispersion (1). This was designated as Dispersion Liquid (7). The particle size and Mv / Mn immediately after preparation were measured.

(実施例1)
調製した有機顔料粒子分散液(1)〜(7)を、それぞれ日立工機(株)社製高速遠心冷却機HIMAC SCR20Bで、3500rpm(重力加速度の2000倍の遠心力)、1時間の条件で遠心分離し、上澄みを捨てて沈降した本発明の有機顔料粒子濃縮ペースト(a1)〜(a7)を回収した。ペーストの顔料含率をアジレント(Agilent)社製8453型分光光度計を用いて測定したところ、濃縮ペースト(a1)、(a2)、(a3)、(a4)、(a5)、(a6)、及び(a7)について、それぞれ28、27、27、28、29、27、30質量%であった。
濃縮ペースト中の有機顔料粒子の一次粒径を上記と同様に走査型電子顕微鏡観察により求め(各表中、「濃縮後一次粒径」の項に示した)、また顔料重量の20倍の水をペーストに添加した後、日機装社製ナノトラックUPA−EX150で凝集粒径を測定し、凝集粒径と一次粒径とから再分散指数を求めた(各表中、「再分散指数」の項に示した)。
その後さらにブランソン社製モデル(Model)200bdc−h 40:0.8型超音波ホモジナイザーを用いて1時間超音波を照射して凝集顔料粒子を一次粒子まで分散した後、再度日機装社製ナノトラックUPA−EX150を用いてMv/Mnを測定した(各表中、「濃縮後Mv/Mn」の項に示した)。
Example 1
The prepared organic pigment particle dispersions (1) to (7) were each subjected to a high speed centrifugal cooler HIMAC SCR20B manufactured by Hitachi Koki Co., Ltd. at 3500 rpm (2000 times the gravitational acceleration) for 1 hour. Centrifugation was performed, the supernatant was discarded, and the organic pigment particle concentrated pastes (a1) to (a7) of the present invention that had settled were collected. When the pigment content of the paste was measured using an Agilent 8453 type spectrophotometer, the concentrated paste (a1), (a2), (a3), (a4), (a5), (a6), And (a7) were 28, 27, 27, 28, 29, 27, and 30% by mass, respectively.
The primary particle size of the organic pigment particles in the concentrated paste was determined by observation with a scanning electron microscope in the same manner as described above (shown in the section of “Primary particle size after concentration” in each table), and 20 times the pigment weight of water. Was added to the paste, and the agglomerated particle size was measured with Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., and the redispersion index was determined from the agglomerated particle size and the primary particle size (in each table, the term “redispersion index” Pointing out toungue).
Thereafter, the aggregated pigment particles were dispersed to primary particles by irradiating ultrasonic waves for 1 hour using a Branson model (Model) 200bdc-h 40: 0.8 type ultrasonic homogenizer, and then again Nanotrack UPA manufactured by Nikkiso Co., Ltd. -Mv / Mn was measured using EX150 (shown in the "Mv / Mn after concentration" section in each table).

(実施例2)
有機顔料粒子分散液(1)〜(7)を、ヤマト科学社製、真空乾燥機DP−32型を用いて、分散液(1)及び(2)については120℃、10分、分散液(3)、(4)、及び(7)については120℃、30分、分散液(5)、(6)については120℃、90分の条件でそれぞれのペーストを減圧乾燥することにより濃縮し、有機顔料粒子濃縮ペースト(b1)〜(b7)を得た。ペーストの顔料含率を実施例1と同様に測定したところ、濃縮ペースト(b1)、(b2)、(b3)、(b4)、(b5)、(b6)、及び(b7)について、それぞれ32、32、30、30、30、31、34質量%であった。濃縮ペースト(b1)〜(b7)について「濃縮後一次粒径」、「濃縮後Mv/Mn」、「再分散指数」を実施例1と同様の方法で測定した結果を表1〜7にそれぞれ記載した。
(Example 2)
The organic pigment particle dispersion liquids (1) to (7) were manufactured by using a vacuum dryer DP-32 type manufactured by Yamato Kagaku Co., and the dispersion liquids (1) and (2) were at 120 ° C. for 10 minutes. 3), (4), and (7) were 120 ° C. for 30 minutes, and the dispersions (5) and (6) were concentrated by drying each paste under reduced pressure at 120 ° C. for 90 minutes, Organic pigment particle concentrated pastes (b1) to (b7) were obtained. When the pigment content of the paste was measured in the same manner as in Example 1, it was 32 for each of the concentrated pastes (b1), (b2), (b3), (b4), (b5), (b6), and (b7). 32, 30, 30, 30, 31, 34 mass%. For the concentrated pastes (b1) to (b7), “primary particle size after concentration”, “Mv / Mn after concentration”, and “redispersion index” were measured in the same manner as in Example 1, and the results are shown in Tables 1 to 7, respectively. Described.

(実施例3)
有機顔料粒子分散液(1)〜(7)を作製した後、分散液(1)に500ml、分散液(2)に590ml、分散液(3)に1500ml、分散液(4)に1770ml、分散液(5)に4500ml、分散液(6)に5320ml、分散液(7)に1500mlの2−(1−メトキシ)プロピルアセテートを加えて20℃で10分間、100rpmで攪拌することにより、有機顔料粒子を2−(1−メトキシ)プロピルアセテート相に抽出し、濃縮抽出液(c1)〜(c7)とした。抽出後に残された分散溶媒に含まれる有機顔料粒子はほぼ5質量%以下まで低減されていた。
濃縮抽出液(c1)〜(c7)を実施例1と同様の条件で遠心分離し、有機顔料粒子濃縮ペースト(d1)〜(d7)を得た。ペーストの顔料含率を実施例1と同様に測定したところ、濃縮ペースト(d1)、(d2)、(d3)、(d4)、(d5)、(d6)、及び(d7)について、それぞれ30、29、28、29、27、27、30質量%であった。濃縮ペースト(d1)〜(d7)について「濃縮後一次粒径」、「濃縮後Mv/Mn」、「再分散指数」を実施例1と同様の方法で測定した結果を表1〜7にそれぞれ記載した。
(Example 3)
After preparing the organic pigment particle dispersion liquids (1) to (7), the dispersion liquid (1) is 500 ml, the dispersion liquid (2) is 590 ml, the dispersion liquid (3) is 1500 ml, and the dispersion liquid (4) is 1770 ml. By adding 4500 ml of liquid (5), 5320 ml of dispersion (6), and 1500 ml of 2- (1-methoxy) propyl acetate to dispersion (7) and stirring at 20 ° C. for 10 minutes at 100 rpm, an organic pigment is obtained. The particles were extracted into a 2- (1-methoxy) propyl acetate phase to obtain concentrated extracts (c1) to (c7). The organic pigment particles contained in the dispersion solvent left after the extraction were reduced to approximately 5% by mass or less.
The concentrated extracts (c1) to (c7) were centrifuged under the same conditions as in Example 1 to obtain organic pigment particle concentrated pastes (d1) to (d7). When the pigment content of the paste was measured in the same manner as in Example 1, it was 30 for each of the concentrated pastes (d1), (d2), (d3), (d4), (d5), (d6), and (d7). 29, 28, 29, 27, 27, and 30% by mass. For the concentrated pastes (d1) to (d7), “primary particle size after concentration”, “Mv / Mn after concentration”, and “redispersion index” were measured in the same manner as in Example 1, and the results are shown in Tables 1 to 7, respectively. Described.

(実施例4)
実施例3と同様の方法で有機顔料粒子濃縮抽出液(c1)〜(c7)を作製した後、実施例2と同様の条件で減圧乾燥を行い、有機顔料粒子濃縮ペースト(e1)〜(e7)を得た。ペーストの顔料含率を実施例1と同様に測定したところ、分散液(e1)、(e2)、(e3)、(e4)、(e5)、(e6)、及び(e7)について、それぞれ36、36、36、34、33、34、37質量%であった。濃縮ペースト(e1)〜(e7)について「濃縮後一次粒径」、「濃縮後Mv/Mn」、「再分散指数」を実施例1と同様の方法で測定した結果を表1〜7にそれぞれ記載した。
Example 4
Organic pigment particle concentrated extracts (c1) to (c7) were prepared in the same manner as in Example 3, and then dried under reduced pressure under the same conditions as in Example 2 to obtain organic pigment particle concentrated pastes (e1) to (e7). ) The pigment content of the paste was measured in the same manner as in Example 1. The dispersions (e1), (e2), (e3), (e4), (e5), (e6), and (e7) were each 36%. 36, 36, 34, 33, 34, 37% by mass. With respect to the concentrated pastes (e1) to (e7), “primary particle size after concentration”, “Mv / Mn after concentration”, and “redispersion index” were measured in the same manner as in Example 1, and the results are shown in Tables 1 to 7, respectively. Described.

(比較例1)
有機顔料粒子分散液(1)〜(7)を作製した。これをそれぞれ住友電エファインポリマ社製FP010型フィルターを用いてろ過することにより、有機顔料粒子濃縮ペースト(f1)〜(f7)を得た。ペーストの顔料含率を実施例1と同様に測定したところ、分散液(f1)、(f2)、(f3)、(f4)、(f5)、(f6)、及び(f7)について、それぞれ33、31、33、34、31、30、34質量%であった。濃縮ペースト(f1)〜(f7)について「濃縮後一次粒径」、「濃縮後Mv/Mn」、「再分散指数」を実施例1と同様の方法で測定した結果を表1〜7にそれぞれ記載した。
(Comparative Example 1)
Organic pigment particle dispersions (1) to (7) were prepared. This was filtered using a FP010 type filter manufactured by Sumitomo Electric Fine Polymer, respectively, to obtain organic pigment particle concentrated pastes (f1) to (f7). The pigment content of the paste was measured in the same manner as in Example 1. The dispersions (f1), (f2), (f3), (f4), (f5), (f6), and (f7) were each 33. 31, 33, 34, 31, 30, 34 mass%. For the concentrated pastes (f1) to (f7), “primary particle size after concentration”, “Mv / Mn after concentration”, and “redispersion index” were measured in the same manner as in Example 1, and the results are shown in Tables 1 to 7, respectively. Described.

(比較例2)
実施例3と同様の方法で有機顔料粒子濃縮抽出液(c1)〜(c7)を作製した。作製した有機顔料粒子濃縮抽出液を比較例1と同様の方法でろ過することにより、有機顔料粒子濃縮ペースト(g1)〜(g7)を得た。ペーストの顔料含率を実施例1と同様に測定したところ、濃縮ペースト(g1)、(g2)、(g3)、(g4)、(g5)、(g6)、及び(g7)について、それぞれ34、35、32、32、31、30、31質量%であった。濃縮ペースト(g1)〜(g7)について「濃縮後一次粒径」、「濃縮後Mv/Mn」、「再分散指数」を実施例1と同様の方法で測定した。結果を表1〜7にそれぞれ記載した。
(Comparative Example 2)
Organic pigment particle concentrated extracts (c1) to (c7) were prepared in the same manner as in Example 3. The prepared organic pigment particle concentrated extract was filtered by the same method as in Comparative Example 1 to obtain organic pigment particle concentrated pastes (g1) to (g7). When the pigment content of the paste was measured in the same manner as in Example 1, each of the concentrated pastes (g1), (g2), (g3), (g4), (g5), (g6), and (g7) was 34. , 35, 32, 32, 31, 30, 31 mass%. With respect to the concentrated pastes (g1) to (g7), “primary particle size after concentration”, “Mv / Mn after concentration”, and “redispersion index” were measured in the same manner as in Example 1. The results are shown in Tables 1 to 7, respectively.

(比較例3)
有機顔料粒子分散液(1)〜(7)を作製した。ヤマト科学製真空乾燥機DP−32型を用いて、分散液(1)及び(2)については120℃、60分、分散液(3)、(4)及び(7)については120℃、180分、分散液(6)、(7)については120℃、540分の条件で、減圧を行わず、加熱のみで乾燥することにより濃縮し、有機顔料粒子濃縮ペースト(h1)〜(h7)を得た。ペーストの顔料含率を実施例1と同様に測定したところ、分散液(h1)、(h2)、(h3)、(h4)、(h5)、(h6)及び(h7)について、それぞれ28、27、25、26、25、25、28質量%であった。濃縮ペースト(h1)〜(h7)について「濃縮後一次粒径」、「濃縮後Mv/Mn」、「再分散指数」を実施例1と同様の方法で測定した。結果を表1〜7にそれぞれ記載した。
(Comparative Example 3)
Organic pigment particle dispersions (1) to (7) were prepared. Using a vacuum dryer DP-32 manufactured by Yamato Scientific, the dispersions (1) and (2) were 120 ° C. for 60 minutes, and the dispersions (3), (4) and (7) were 120 ° C. and 180 ° C. The dispersions (6) and (7) were concentrated by drying only by heating under reduced pressure at 120 ° C. for 540 minutes to obtain organic pigment particle concentrated pastes (h1) to (h7). Obtained. The pigment content of the paste was measured in the same manner as in Example 1. The dispersions (h1), (h2), (h3), (h4), (h5), (h6), and (h7) were 28, 27, 25, 26, 25, 25, and 28% by mass. For the concentrated pastes (h1) to (h7), “primary particle size after concentration”, “Mv / Mn after concentration”, and “redispersion index” were measured in the same manner as in Example 1. The results are shown in Tables 1 to 7, respectively.

なお、作製直後の分散液(1)〜(7)に含まれる有機顔料粒子は、いずれもほぼ粒径20nm、Mv/Mn1.4であった。   Note that the organic pigment particles contained in the dispersions (1) to (7) immediately after the production had a particle size of approximately 20 nm and Mv / Mn 1.4.

Figure 2006342316
Figure 2006342316

Figure 2006342316
Figure 2006342316

Figure 2006342316
Figure 2006342316

Figure 2006342316
Figure 2006342316

Figure 2006342316
Figure 2006342316

Figure 2006342316
Figure 2006342316

Figure 2006342316
Figure 2006342316

遠心分離または加熱減圧乾燥を用いることにより、有機顔料粒子の粒径および単分散性を変化させることなく濃縮し、再分散性の良い有機顔料粒子濃縮ペーストが得られた。また、良溶媒と貧溶媒の体積比(良溶媒/貧溶媒)や濃縮する分散液量を増やした際に、フィルターろ過濃縮及び加熱乾燥では濃縮中の粒径増加及び単分散性、再分散性の悪化が顕著になったが、遠心分離濃縮または加熱減圧濃縮では粒径、単分散性及び再分散性に大きな変化はなかった。良溶媒/貧溶媒を増加させることは、それにより分散液濃度が増加するため、粒子作製の効率上昇に重要である。
本発明の濃縮方法によれば、高い良溶媒/貧溶媒で粒径、単分散性及び再分散性を保ったまま濃縮可能であり、効率のよい有機粒子の作製が可能となる。また、本発明の濃縮方法によれば、分散液の量を3倍、9倍と増やした際も粒径、単分散性及び再分散性のスケール依存性は見られず、これらを保ったまま濃縮可能であり、有機粒子の大量製造が可能となる。また、表7に記載の例は表3に記載の例より顔料溶液濃度を約10倍に上げた際の例であるが、フィルターろ過では濃度の上昇により粒径増加及び単分散性、再分散性の悪化が顕著になったが、遠心分離濃縮または加熱減圧濃縮では粒径、単分散性及び再分散性に大きな変化はなかった。
良溶媒の濃度を増加させることは、それにより分散液濃度が増加するため、粒子作製の効率上昇に重要である。本発明の濃縮方法によれば、高い溶液濃度で粒径、単分散性及び再分散性を保ったまま濃縮可能であり、効率のよい有機粒子の作製が可能となる。
By using centrifugal separation or heating under reduced pressure, the organic pigment particles were concentrated without changing the particle size and monodispersity of the organic pigment particles, and an organic pigment particle concentrated paste with good redispersibility was obtained. In addition, when increasing the volume ratio of good solvent to poor solvent (good solvent / poor solvent) and the amount of dispersion to be concentrated, filter filtration concentration and heat drying increase particle size during concentration, monodispersity, and redispersibility. However, there was no significant change in particle size, monodispersibility, and redispersibility in centrifugal concentration or heating under reduced pressure. Increasing the good solvent / poor solvent is important for increasing the efficiency of particle production because the dispersion concentration thereby increases.
According to the concentration method of the present invention, it is possible to concentrate while maintaining the particle size, monodispersibility and redispersibility with a high good solvent / poor solvent, and it is possible to produce organic particles efficiently. In addition, according to the concentration method of the present invention, even when the amount of the dispersion is increased to 3 times or 9 times, the particle size, the monodispersibility, and the redispersibility are not dependent on the scale, and these are maintained. Concentration is possible, and mass production of organic particles becomes possible. The example shown in Table 7 is an example when the pigment solution concentration is increased about 10 times from the example shown in Table 3. In filter filtration, the particle size increases, monodispersity and redispersion with increasing concentration. However, there was no significant change in particle size, monodispersibility, and redispersibility in centrifugal concentration or heating under reduced pressure.
Increasing the concentration of the good solvent is important for increasing the efficiency of particle production because the concentration of the dispersion increases thereby. According to the concentration method of the present invention, it is possible to concentrate at a high solution concentration while maintaining the particle size, monodispersibility and redispersibility, and it becomes possible to produce organic particles efficiently.

なお、用いた試薬の詳細は下記のとおりである。
試薬 製造元
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ピグメントレッド254(イルガフォアレッド) チバ・スペシャルティ・
ケミカルズ社製
1−メチル−2−ピロリドン 和光純薬社製
ジメチルスルホキシド 和光純薬社製
2−(1−メトキシ)プロピルアセテート 和光純薬社製
1mol/l 水酸化ナトリウム水溶液 和光純薬社製
1mol/l 塩酸水溶液 和光純薬社製
8mol/l 水酸化カリウム水溶液 和光純薬社製
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Details of the reagents used are as follows.
Reagent Manufacturer -------------------------------------- Pigment Red 254 (Irgafore Red) Chiba Specialty
Chemicals 1-methyl-2-pyrrolidone Wako Pure Chemical Industries dimethyl sulfoxide Wako Pure Chemicals 2- (1-methoxy) propyl acetate Wako Pure Chemicals 1 mol / l Sodium hydroxide aqueous solution Wako Pure Chemicals 1 mol / l Hydrochloric acid aqueous solution Wako Pure Chemical Industries, Ltd. 8 mol / l Potassium hydroxide aqueous solution Wako Pure Chemical Industries, Ltd. ---------------------------- -----------

Claims (6)

良溶媒に溶解した有機材料の溶液と、該溶媒と相溶する前記有機材料の貧溶媒とを混合し、該有機材料を粒子として形成した有機粒子の濃縮方法であって、前記有機粒子を含む有機粒子分散液の溶媒または該有機粒子を抽出溶媒により濃縮抽出した濃縮抽出液の溶媒を、遠心分離および加熱減圧乾燥から選ばれる少なくとも一つの方法によって除去することを特徴とする有機粒子の濃縮方法。   A method of concentrating organic particles formed by mixing a solution of an organic material dissolved in a good solvent and a poor solvent of the organic material compatible with the solvent, and forming the organic material as particles, the method including the organic particles A method for concentrating organic particles, wherein the solvent of the organic particle dispersion or the solvent of the concentrated extract obtained by concentrating and extracting the organic particles with an extraction solvent is removed by at least one method selected from centrifugation and heating under reduced pressure. . 前記有機粒子の数平均粒径が1μm以下であることを特徴とする、請求項1に記載の有機粒子の濃縮方法。   The method for concentrating organic particles according to claim 1, wherein the number average particle diameter of the organic particles is 1 μm or less. 前記有機材料の貧溶媒が、水系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、またはこれらの混合物であることを特徴とする請求項1または2に記載の有機粒子の濃縮方法。   The organic solvent concentration according to claim 1 or 2, wherein the poor solvent of the organic material is an aqueous solvent, an alcohol solvent, a ketone solvent, an ether solvent, an ester solvent, or a mixture thereof. Method. 前記有機材料の良溶媒が、水系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、またはこれらの混合物であることを特徴とする請求項1〜3のいずれか1項に記載の有機粒子の濃縮方法。   The good solvent of the organic material is an aqueous solvent, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent, an amide solvent, or a mixture thereof. 4. The method for concentrating organic particles according to any one of 3 above. 前記抽出溶媒が、エステル系溶媒であることを特徴とする請求項1〜4のいずれか1項に記載の有機粒子の濃縮方法。   The method for concentrating organic particles according to claim 1, wherein the extraction solvent is an ester solvent. 前記有機材料が、有機顔料であることを特徴とする請求項1〜5のいずれか1項に記載の有機粒子の濃縮方法。

The method for concentrating organic particles according to any one of claims 1 to 5, wherein the organic material is an organic pigment.

JP2005213121A 2005-05-09 2005-07-22 Process for concentrating organic particle Pending JP2006342316A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005213121A JP2006342316A (en) 2005-05-09 2005-07-22 Process for concentrating organic particle
PCT/JP2006/309270 WO2006121018A1 (en) 2005-05-09 2006-05-08 Process for production of organic particles and unit for production thereof
US11/920,082 US20090045535A1 (en) 2005-05-09 2006-05-08 Method of producing organic particles and production apparatus usable for the same
KR1020077028498A KR100967335B1 (en) 2005-05-09 2006-05-08 Process for production of organic particles and unit for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005136751 2005-05-09
JP2005213121A JP2006342316A (en) 2005-05-09 2005-07-22 Process for concentrating organic particle

Publications (1)

Publication Number Publication Date
JP2006342316A true JP2006342316A (en) 2006-12-21

Family

ID=37639504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213121A Pending JP2006342316A (en) 2005-05-09 2005-07-22 Process for concentrating organic particle

Country Status (1)

Country Link
JP (1) JP2006342316A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291193A (en) * 2007-05-28 2008-12-04 Fujifilm Corp Organic pigment powder and its manufacturing method, organic pigment dispersion composition comprising same and its manufacturing method, inkjet ink, inkjet ink for color filter, photoresist having pigment dispersed therein and its manufacturing method, color filter for liquid crystal display device and its manufacturing method, as well as liquid crystal display device and its manufacturing method
JP2009074073A (en) * 2007-08-31 2009-04-09 Tohoku Univ Method for producing functional polymer fine particle using ionic liquid
EP2055751A2 (en) 2007-10-30 2009-05-06 Fujifilm Corporation Aqueous dispersion; recording liquid, image-forming method, and image-forming apparatus, using the same; and production method of the aqueous dispersion, and inkjet ink obtained from the method
EP2055752A2 (en) 2007-10-30 2009-05-06 Fujifilm Corporation Dispersion of a water-insoluble colorant, production method thereof, recording, liquid, ink-set, printed article, image-forming method and image-forming apparatus using the same
EP2100928A1 (en) 2008-03-10 2009-09-16 Fujifilm Corporation Water-insoluble colorant dispersion, production method thereof, and recording liquid, ink set, image-forming method and image-forming apparatus using the same
EP2107090A2 (en) 2008-03-31 2009-10-07 Fujifilm Corporation Water-insoluble colorant dispersion, production method thereof, and recording liquid, image-forming method and image-forming apparatus using the same
EP2110416A2 (en) 2008-03-26 2009-10-21 Fujifilm Corporation Dispersion of water-insoluble colorant, method of producing substance containing water-insoluble colorant, fine particles of water-insoluble colorant, dispersing agent for water-insoluble colorant, and recording liquid, ink set, printed article, method of forming image and image forming apparatus using the same
EP2112190A1 (en) 2008-04-21 2009-10-28 Fujifilm Corporation Water-insoluble colorant dispersion and production method thereof, and recording liquid, ink set, printed article, image-forming method and image-forming apparatus using the same
EP2216376A1 (en) 2009-01-29 2010-08-11 Fujifilm Corporation Water-insoluble colorant dispersion and production method thereof, and recording liquid, printed article, image-forming method and image-forming apparatus using the same
CN103566842A (en) * 2013-11-21 2014-02-12 山东大学 Self-repairing folic acid gel with multiple responses and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291193A (en) * 2007-05-28 2008-12-04 Fujifilm Corp Organic pigment powder and its manufacturing method, organic pigment dispersion composition comprising same and its manufacturing method, inkjet ink, inkjet ink for color filter, photoresist having pigment dispersed therein and its manufacturing method, color filter for liquid crystal display device and its manufacturing method, as well as liquid crystal display device and its manufacturing method
JP2009074073A (en) * 2007-08-31 2009-04-09 Tohoku Univ Method for producing functional polymer fine particle using ionic liquid
US8133312B2 (en) 2007-10-30 2012-03-13 Fujifilm Corporation Dispersion of a water-insoluble colorant, production method thereof, recording liquid, ink set, printed article, image-forming method and image-forming apparatus using the same
EP2055752A2 (en) 2007-10-30 2009-05-06 Fujifilm Corporation Dispersion of a water-insoluble colorant, production method thereof, recording, liquid, ink-set, printed article, image-forming method and image-forming apparatus using the same
EP2055751A2 (en) 2007-10-30 2009-05-06 Fujifilm Corporation Aqueous dispersion; recording liquid, image-forming method, and image-forming apparatus, using the same; and production method of the aqueous dispersion, and inkjet ink obtained from the method
US8299130B2 (en) 2007-10-30 2012-10-30 Fujifilm Corporation Aqueous dispersion; recording liquid, image-forming method, and image-forming apparatus, using the same; and production method of the aqueous dispersion, and inkjet ink obtained from the method
EP2100928A1 (en) 2008-03-10 2009-09-16 Fujifilm Corporation Water-insoluble colorant dispersion, production method thereof, and recording liquid, ink set, image-forming method and image-forming apparatus using the same
EP2110416A2 (en) 2008-03-26 2009-10-21 Fujifilm Corporation Dispersion of water-insoluble colorant, method of producing substance containing water-insoluble colorant, fine particles of water-insoluble colorant, dispersing agent for water-insoluble colorant, and recording liquid, ink set, printed article, method of forming image and image forming apparatus using the same
EP2107090A2 (en) 2008-03-31 2009-10-07 Fujifilm Corporation Water-insoluble colorant dispersion, production method thereof, and recording liquid, image-forming method and image-forming apparatus using the same
EP2112190A1 (en) 2008-04-21 2009-10-28 Fujifilm Corporation Water-insoluble colorant dispersion and production method thereof, and recording liquid, ink set, printed article, image-forming method and image-forming apparatus using the same
EP2216376A1 (en) 2009-01-29 2010-08-11 Fujifilm Corporation Water-insoluble colorant dispersion and production method thereof, and recording liquid, printed article, image-forming method and image-forming apparatus using the same
US8362138B2 (en) 2009-01-29 2013-01-29 Fujifilm Corporation Water-insoluble colorant dispersion and production method thereof, and recording liquid, printed article, image-forming method and image-forming apparatus using the same
CN103566842A (en) * 2013-11-21 2014-02-12 山东大学 Self-repairing folic acid gel with multiple responses and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006342316A (en) Process for concentrating organic particle
JP5118850B2 (en) Method for producing organic pigment dispersion
US20090045535A1 (en) Method of producing organic particles and production apparatus usable for the same
JP5026080B2 (en) Method for producing organic particles
JP4326197B2 (en) Novel process for producing pigment nanoparticles
JP2007023169A (en) Method for producing organic pigment particle
JP5074698B2 (en) Liquid composition, pigment fine particle production method, and ink composition for ink jet recording
CN103249781B (en) High heat resistance phthalocyanine
US8679341B2 (en) Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
JP4870383B2 (en) Method for concentrating nanoparticles
CN112143255B (en) Composite phthalocyanine microparticles and process for producing same
TW200951185A (en) Organic pigment composition and producing method thereof, and colored photosensitive resin composition, color filter using the same
JP2006341242A (en) Manufacturing method of organic particles, and manufacturing apparatus for use therein
JP2006342314A (en) Process for production of organic particles and unit for production thereof
JP4993875B2 (en) Method for dispersing aggregated nanoparticles
JP2006342315A (en) Method for production of organic particles and unit for production thereof
CN114525041A (en) Pigment composition for green filter and method for producing same
JP2008222936A (en) Non-aqueous dispersion of organic pigment nanoparticles, and organic pigment composition
JP2008201960A (en) Organic pigment nanoparticle dispersion and its manufacturing method
JP5605976B2 (en) Method for producing polymer nanodispersion
CN101213013A (en) Process for production of organic particles and unit for production thereof
JP2007321106A (en) Method for producing pigment nano particle
JP2011042736A (en) Method for producing pigment dispersion composition and apparatus for producing the same
CN101193697A (en) Method for preparing organic particle
EP2675809A1 (en) Process for preparing silica particles containing a phthalocyanine derivative by microwave irradiation, said particles and uses thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061207

Free format text: JAPANESE INTERMEDIATE CODE: A712