JP2006342173A - Anti-cd40 monoclonal antibody - Google Patents

Anti-cd40 monoclonal antibody Download PDF

Info

Publication number
JP2006342173A
JP2006342173A JP2006189847A JP2006189847A JP2006342173A JP 2006342173 A JP2006342173 A JP 2006342173A JP 2006189847 A JP2006189847 A JP 2006189847A JP 2006189847 A JP2006189847 A JP 2006189847A JP 2006342173 A JP2006342173 A JP 2006342173A
Authority
JP
Japan
Prior art keywords
antibody
cells
variable region
chain variable
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006189847A
Other languages
Japanese (ja)
Other versions
JP4025881B2 (en
Inventor
Toshibumi Mikoyama
俊文 三箇山
Hitoshi Yoshida
均 吉田
Walker R Force
ウォーカー アール フォース
Xingjie Chen
シンジエ チェン
Nobuaki Takahashi
信明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2001/013672 external-priority patent/WO2001083755A2/en
Priority claimed from US10/040,244 external-priority patent/US20030059427A1/en
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP2006189847A priority Critical patent/JP4025881B2/en
Publication of JP2006342173A publication Critical patent/JP2006342173A/en
Application granted granted Critical
Publication of JP4025881B2 publication Critical patent/JP4025881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-human CD40 antibody or a functional fragment thereof substantially antagonistic even to a human CD40 antigen on the surface of a DC (a dendritic cell) by adopting an evaluation system using the DC cell and to provide an agonistic anti-human CD40 antibody expected to have higher therapeutic effects than those of conventional anti-human CD40 antibodies. <P>SOLUTION: The antibody or functional fragment thereof agonistically or antagonistically acting on the CD40 is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒトのB細胞、樹状細胞(DC)等の表面に存在するヒトCD40抗原を認識する抗体又はその機能的断片に関する。具体的には、本発明は樹状細胞(DC)表面のヒトCD40抗原に対して実質的にアンタゴニスティックである抗ヒトCD40抗体又はその機能的断片、および従来の抗ヒトCD40抗体に比べてより治療効果の高いことが期待されるアゴニスティックな抗ヒトCD40抗体又はその機能的断片に関する。   The present invention relates to an antibody or a functional fragment thereof that recognizes human CD40 antigen present on the surface of human B cells, dendritic cells (DCs) and the like. Specifically, the present invention provides an anti-human CD40 antibody or functional fragment thereof that is substantially antagonistic to human CD40 antigen on the surface of dendritic cells (DC), and compared to conventional anti-human CD40 antibodies. The present invention relates to an agonistic anti-human CD40 antibody or a functional fragment thereof that is expected to have a higher therapeutic effect.

1. CD40
CD40は分子量50kDaの細胞膜表面に存在する抗原であり、B細胞、樹状細胞(DC)、ある種の癌細胞、そして胸腺上皮細胞に発現している。CD40はB細胞やDCの増殖、分化に重要な働きをしていることが知られている。CD40は、ヒトB細胞表面に発現する抗原として同定され(非特許文献1及び2を参照)、アミノ酸配列の相同性から、CD40は、低親和性NGFレセプターやTNFレセプター、CD27、OX40、CD30などが属しているTNFレセプターファミリーの1つのメンバーとして考えられている。ヒトおよびマウスのCD40に対するリガンド(CD40L)は、近年遺伝子クローニングされ、II型膜蛋白質であること、及び活性化したCD4+T細胞に発現していることが分かった。CD40Lは、強力な活性化シグナルをヒトおよびマウスのB細胞に導入することも分かっている。
1. CD40
CD40 is an antigen present on the surface of a cell membrane having a molecular weight of 50 kDa, and is expressed on B cells, dendritic cells (DC), certain cancer cells, and thymic epithelial cells. CD40 is known to play an important role in the proliferation and differentiation of B cells and DCs. CD40 has been identified as an antigen expressed on the surface of human B cells (see Non-Patent Documents 1 and 2). From the homology of amino acid sequences, CD40 is a low affinity NGF receptor, TNF receptor, CD27, OX40, CD30, etc. Is considered as a member of the TNF receptor family to which it belongs. A ligand for human and mouse CD40 (CD40L) has recently been genetically cloned and found to be a type II membrane protein and expressed on activated CD4 + T cells. CD40L has also been shown to introduce strong activation signals into human and mouse B cells.

また、樹状細胞にはB細胞よりも多くのCD40発現が確認されており、重要な役割を担っていることが明らかとなってきた。CD40がCD40Lと結合すると、抗原提示細胞(APC)の活性化、すなわちCD80(B7-1)やCD86(B7-2)などの補助刺激分子の発現、あるいはIL-12の産生が増強される(非特許文献3及び4を参照)。樹状細胞は強い抗原提示能を有し、強力なヘルパーT(Th)細胞活性化能を持っている。また、ナイーブ(naive) Th細胞のTh1又はTh2細胞への分化を樹状細胞が制御していると考えられている。ミエロイド系樹状細胞である末梢血単球をGM-CSF及びIL-4とともに培養してCD40Lにより成熟させた樹状細胞(DC1)はin vitroにおいて、IL-12産生能を有し、異系naive Th細胞を刺激活性化し、IFNγ産生T細胞を誘導する(すなわちTh1への分化を促す)。この作用は抗IL-12抗体により阻害されることから、IL-12を介した反応と考えられる。一方リンパ組織T領域や、末梢血に存在するplasmacytoid T 細胞をIL-3、CD40リガンドとともに培養したリンパ球系樹状細胞(DC2)は、IL-12産生能は有さず、そして異系naive Th細胞を刺激活性化し、IL-4産生T細胞を誘導し、Th2への分化を促進することが示されている。Th1細胞は細胞性免疫の活性化にかかわり、Th2細胞は液性免疫能を高めると同時に細胞性免疫能の抑制に関与すると考えられている。Th1細胞のヘルプで活性化された細胞傷害性T細胞(CTL)は、細胞質内で増殖する病原体(多くのウィルス、リステリア菌、結核菌、およびトキソプラズマ原虫など)や腫瘍細胞を除去することができる。   In addition, dendritic cells have been confirmed to play an important role because more CD40 expression has been confirmed than B cells. When CD40 binds to CD40L, antigen-presenting cell (APC) activation, ie, expression of costimulatory molecules such as CD80 (B7-1) and CD86 (B7-2), or IL-12 production is enhanced ( (See Non-Patent Documents 3 and 4). Dendritic cells have a strong antigen-presenting ability and a strong helper T (Th) cell activation ability. In addition, it is considered that dendritic cells control the differentiation of naive Th cells into Th1 or Th2 cells. Dendritic cells (DC1) obtained by culturing peripheral blood monocytes, which are myeloid dendritic cells, with GM-CSF and IL-4 and matured with CD40L have IL-12 production ability in vitro and are allogeneic. It stimulates naive Th cells and induces IFNγ-producing T cells (ie, promotes differentiation into Th1). Since this action is inhibited by anti-IL-12 antibody, it is considered to be a reaction mediated by IL-12. On the other hand, lymphoid dendritic cells (DC2) obtained by culturing plasmacytoid T cells present in lymphoid tissue T region and peripheral blood with IL-3 and CD40 ligands do not have IL-12 production ability and It has been shown to stimulate and activate Th cells, induce IL-4 producing T cells, and promote differentiation into Th2. Th1 cells are involved in the activation of cellular immunity, and Th2 cells are thought to increase humoral immunity and at the same time suppress cellular immunity. Cytotoxic T cells (CTL) activated with the help of Th1 cells can remove pathogens (such as many viruses, Listeria monocytogenes, Mycobacterium tuberculosis, and Toxoplasma gondii) and tumor cells that grow in the cytoplasm .

膜表面に発現したCD40を認識する抗CD40モノクローナル抗体が、B細胞に対していろいろな生物活性を示すことは示されてきた。抗CD40モノクローナル抗体は、CD40とCD40Lとの相互作用に対してアゴニスティックなものと、アンタゴニスティックなものとに大別される。   It has been shown that anti-CD40 monoclonal antibodies that recognize CD40 expressed on the membrane surface exhibit various biological activities against B cells. Anti-CD40 monoclonal antibodies are roughly classified into those that are agonistic and those that are antagonistic for the interaction between CD40 and CD40L.

2. アゴニスティック抗体
アゴニスティック抗体の作用として、B細胞の活性化が知られている。たとえば、抗CD40抗体が細胞接着を誘導する(非特許文献5及び6を参照)、細胞の大きさを増進する(非特許文献6及び7を参照)、抗IgM抗体、抗CD20抗体またはphorbol esterのみで活性化されたB細胞の分裂を誘導する(非特許文献8〜10を参照)、IL4存在下でB細胞の分裂を誘導する(非特許文献7及び11を参照)、IL-4刺激、T細胞除去培養細胞のIgE(非特許文献12及び13を参照)、IgG、IgM(非特許文献13を参照)の発現を誘導する、IL-4によるB細胞からの可溶性CD23/FceRIIの分泌と(非特許文献14及び15を参照)細胞上の発現増強(非特許文献16を参照)をする、IL-6の生産を促進する(非特許文献17を参照)ことが報告されている。さらには、CDw32+接着細胞存在下で、IL-4及び抗CD40抗体を添加することにより、ヒト初代培養B細胞から、B細胞クローンを樹立することや(非特許文献18を参照)、胚中心の中心細胞のアポトーシスが、抗原レセプターの働きにかかわらず、CD40を介して阻害されること(非特許文献19を参照)が報告されている。以上のようにCD40は、ヒトB細胞表面に発現する抗原として同定されたため、単離された抗体の多くは、主にヒトB細胞に対する増殖分化誘導機能、癌細胞における細胞死誘導活性を指標に評価されてきた(非特許文献20〜22を参照)。
2. Agonistic antibody The activation of B cells is known as the action of an agonistic antibody. For example, anti-CD40 antibody induces cell adhesion (see Non-Patent Documents 5 and 6), increases cell size (see Non-Patent Documents 6 and 7), anti-IgM antibody, anti-CD20 antibody or phorbol ester Induces the division of B cells activated only by (see Non-Patent Documents 8 to 10), induces the division of B cells in the presence of IL4 (see Non-Patent Documents 7 and 11), IL-4 stimulation Secretion of soluble CD23 / FceRII from B cells induced by IL-4 that induces the expression of IgE (see Non-patent Documents 12 and 13), IgG, and IgM (see Non-patent Document 13) of cultured cells from which T cells have been removed (See Non-Patent Documents 14 and 15), which enhances expression on cells (see Non-Patent Document 16) and promotes IL-6 production (see Non-Patent Document 17). Furthermore, by adding IL-4 and anti-CD40 antibody in the presence of CDw32 + adherent cells, B cell clones can be established from human primary cultured B cells (see Non-Patent Document 18), It has been reported that apoptosis of central cells is inhibited through CD40 regardless of the action of the antigen receptor (see Non-Patent Document 19). As described above, since CD40 was identified as an antigen expressed on the surface of human B cells, many of the isolated antibodies mainly use the function of inducing proliferation and differentiation of human B cells and the activity of inducing cell death in cancer cells. Have been evaluated (see Non-Patent Documents 20-22).

抗CD40抗体がDCを成熟させることが示された(非特許文献23を参照)。さらに、抗原特異的CD8T細胞プライミングにおけるCD4T細胞の役割は、CD40-CD40Lシグナリングを介したDCの活性化にあることが報告され、抗CD40モノクローナル抗体(mAb)により、樹状細胞(DC)の活性化におけるCD4ヘルパーT細胞の役割を代替できることが示された(非特許文献24を参照)。また、マウスにおいて抗CD40抗体の投与によりCD40を発現する腫瘍細胞のみならず非発現腫瘍細胞からも生体を防御可能であることが示された(非特許文献25を参照)。   It has been shown that anti-CD40 antibodies mature DCs (see Non-Patent Document 23). Furthermore, the role of CD4T cells in antigen-specific CD8T cell priming was reported to be DC activation through CD40-CD40L signaling, and the activity of dendritic cells (DCs) by anti-CD40 monoclonal antibody (mAb) was reported. It has been shown that the role of CD4 helper T cells can be replaced in the process (see Non-Patent Document 24). Moreover, it was shown that the living body can be protected not only from tumor cells expressing CD40 but also from non-expressing tumor cells by administration of an anti-CD40 antibody in mice (see Non-patent Document 25).

今まで報告されてきた抗体はDC細胞に対する効果を指標に単離されているものは少ない。しかしDC細胞の機能修飾という点からは、B細胞に作用する抗体を選別したのでは、治療薬としては不充分である可能性が高い。マウスCD40に対する抗体のモノクローナル抗体では、抗体の認識するエピトープによって、DCには反応するが血管内皮細胞には反応しないクローンと、逆にDCには反応しないが血管内皮細胞には反応するクローンとが存在すると報告されている(非特許文献26を参照)。ヒトCD40抗体に関してもエピトープによってDCへの結合や作用の異なることが推測される。   There are few antibodies that have been reported so far, with the effect on DC cells as an index. However, from the point of functional modification of DC cells, selecting antibodies that act on B cells is likely to be insufficient as a therapeutic agent. In the monoclonal antibody of the antibody against mouse CD40, depending on the epitope recognized by the antibody, there are clones that react with DC but do not react with vascular endothelial cells, and conversely clones that do not react with DC but react with vascular endothelial cells. It is reported to exist (see Non-Patent Document 26). It is speculated that human CD40 antibodies also have different DC binding and action depending on the epitope.

抗CD40抗体又はCD40リガンドによりCD40を発現するリンパ腫細胞株の増殖を抑制し、細胞死を誘導できることが分かっている(非特許文献23及び27〜29を参照)。アゴニスティック抗体において興味深いことは、抗体の働きがCD40Lの機能と必ずしも一致しないことである。B細胞に対する活性化作用とB細胞腫瘍に対する増殖抑制作用も、必ずしも一致しない。DC活性化能と腫瘍細胞増殖抑制作用を併せ持つ抗体の開発が望ましい。また、アゴニスティック抗体の中には、CD40LのCD40への結合を、阻害するものも、しないものも存在する(非特許文献30を参照)。例えば、G28-5(ATCC No.HB-9110)の生産する抗体はCD40Lと競合するため、CD40Lとの併用効果はない。抗体によってCD40発現細胞の活性化の程度にも差がある。単独で弱いアゴニスティック活性を示す抗体でも、CD40リガンドと併用することによって、CD40リガンド単独による活性よりも、抗体存在下で活性が著しく促進する場合がある。逆に、単独でアゴニスティック活性を示す抗体でも、CD40リガンドを阻害することによって、CD40リガンド単独による活性よりも、抗体存在下での活性を低下させてしまう場合がある(非特許文献31を参照)。CD40リガンドと競合しない抗体では、それ自身による腫瘍細胞の増殖抑制作用は弱くとも、CD40リガンド存在下ではより強い増殖抑制ができることが示されている(非特許文献29を参照)。このことから、CD40に結合し、それ自身で細胞増殖を抑制する抗体でありながら、CD40リガンドのCD40に対する結合は阻害しないような抗体を開発することが望ましい。このような特徴を生かすことにより、可溶性CD40Lよりも有効な治療薬を開発できる可能性がある。たとえば、可溶性CD40LはCD40と結合し活性化するが、同時に生体内に存在しているCD40Lの働きを抑制する。CD40Lと競合しない抗体ならば、このようなことは起こらず、相乗効果により、より良い治療効果が期待できる。   It has been found that anti-CD40 antibody or CD40 ligand can suppress the proliferation of lymphoma cell lines expressing CD40 and induce cell death (see Non-Patent Documents 23 and 27-29). What is interesting about agonistic antibodies is that the action of the antibody does not necessarily match the function of CD40L. The activation effect on B cells and the growth inhibitory effect on B cell tumors are not necessarily consistent. It is desirable to develop an antibody having both DC activation ability and tumor cell growth inhibitory action. Further, among agonistic antibodies, there are those that inhibit or do not inhibit the binding of CD40L to CD40 (see Non-Patent Document 30). For example, since the antibody produced by G28-5 (ATCC No. HB-9110) competes with CD40L, there is no combined effect with CD40L. There are also differences in the degree of activation of CD40-expressing cells depending on the antibody. Even in the case of an antibody that exhibits weak agonistic activity alone, when used in combination with CD40 ligand, the activity may be significantly promoted in the presence of the antibody than the activity of CD40 ligand alone. Conversely, even an antibody that exhibits agonistic activity alone may inhibit the activity in the presence of the antibody by inhibiting CD40 ligand (see Non-Patent Document 31). ). It has been shown that an antibody that does not compete with CD40 ligand can suppress growth of tumor cells by itself, but can suppress growth more strongly in the presence of CD40 ligand (see Non-Patent Document 29). Therefore, it is desirable to develop an antibody that binds to CD40 and suppresses cell proliferation by itself but does not inhibit the binding of CD40 ligand to CD40. By taking advantage of these characteristics, it is possible to develop therapeutic agents that are more effective than soluble CD40L. For example, soluble CD40L binds to CD40 and activates it, but at the same time suppresses the action of CD40L present in the living body. For antibodies that do not compete with CD40L, this does not happen and a better therapeutic effect can be expected due to synergistic effects.

3. アンタゴニスティック抗体
一方、上記のように、CD40が免疫反応において重要な役割を担っていることから、CD40とそのリガンドの結合を阻害することで、臓器移植時の免疫抑制や自己免疫疾患の治療薬が開発できると期待される。Sawada-Haseらは、クローン病患者の末梢血中の単球ではCD40を強く発現する細胞の割合が上昇していることを報告している。しかしながら、CD40とそのリガンドの結合を阻害する抗体については、まだ良く分かっていない。そのような阻害性抗体は、たとえば、CD40の機能解析や、CD40の活性化が必要な疾患の治療に有効である可能性がある。また、CD40リガンドに対する阻害抗体も、CD40とCD40リガンドとの結合が関与する疾患薬として有効である可能性が示されている。しかしながら、CD40Lは活性化した血小板に発現するという報告(非特許文献32を参照)があるため、抗CD40L抗体を治療薬として使った場合、血栓を引き起こす危険性が存在することが報告されている(非特許文献33を参照)。このような観点から、CD40とそのリガンドの結合を阻害する抗体治療薬としては、抗CD40L抗体よりも、むしろCD40に対する抗体の方が安全性に優れると期待できる。抗CD40抗体としてはCD40LのCD40への結合を抑制し、なおかつ、抗体自身がCD40を活性化しないことが必要とされる。
3. Antagonistic antibody On the other hand, as mentioned above, CD40 plays an important role in the immune response, so it inhibits the binding of CD40 and its ligand, thereby suppressing immunosuppression and autoimmune diseases during organ transplantation. It is expected that a new therapeutic drug can be developed. Sawada-Hase et al. Reported that the proportion of cells that strongly express CD40 is increased in monocytes in the peripheral blood of Crohn's disease patients. However, the antibody that inhibits the binding of CD40 and its ligand is still not well understood. Such an inhibitory antibody may be effective in, for example, functional analysis of CD40 and treatment of diseases that require CD40 activation. Inhibitory antibodies against CD40 ligand have also been shown to be effective as disease drugs involving the binding of CD40 and CD40 ligand. However, since there is a report that CD40L is expressed in activated platelets (see Non-Patent Document 32), it has been reported that when anti-CD40L antibody is used as a therapeutic agent, there is a risk of causing thrombus. (See Non-Patent Document 33). From this point of view, it can be expected that an antibody against CD40 is superior in safety to an antibody therapeutic agent that inhibits the binding between CD40 and its ligand rather than an anti-CD40L antibody. The anti-CD40 antibody is required to suppress the binding of CD40L to CD40, and the antibody itself does not activate CD40.

ヒトCD40に特異的に結合し、CD40LのCD40への結合を抑制し、なおかつ、CD40を活性化しない抗体についての報告は、過去に膨大な量の研究がなされてきたにもかかわらず、5D12と命名されたマウス抗ヒトCD40抗体のわずか1例のみである(非特許文献34を参照)。まして、B細胞に対して中和活性を示す抗体が、DC細胞に対しても同様に、CD40リガンドの作用を中和できるかどうかは知られていなかった。さらに、ビオチン化した抗マウスCD40抗体の作用が、アビジンでの架橋によって増強されることが報告されている(非特許文献35を参照)。本発明者は可溶性リガンドに予め遺伝子工学的に付与された、タグ(FLAG)に対する抗体(M2)を用いて、可溶性CD40リガンドのB細胞株(Ramos細胞)に対する作用を増強し、その中和活性を測定したところ、5D12(ATCC No.HB-11339)がわずかにしか中和活性を示さないことを確認した。   A report on an antibody that specifically binds to human CD40, suppresses the binding of CD40L to CD40, and does not activate CD40 has been reported in spite of a huge amount of research in the past. There is only one example of the named mouse anti-human CD40 antibody (see Non-Patent Document 34). Furthermore, it has not been known whether an antibody showing neutralizing activity against B cells can neutralize the action of CD40 ligand on DC cells as well. Furthermore, it has been reported that the action of a biotinylated anti-mouse CD40 antibody is enhanced by cross-linking with avidin (see Non-Patent Document 35). The present inventor enhanced the action of soluble CD40 ligand on B cell line (Ramos cell) by using antibody (M2) against tag (FLAG), which was previously genetically engineered to soluble ligand, and neutralizing activity thereof. As a result, it was confirmed that 5D12 (ATCC No. HB-11339) showed only a slight neutralizing activity.

本発明者は新たに、アンタゴニスト抗体である5D12が架橋によって、CD40Lの非存在下であっても、抗体単独でアゴニスト活性を持つことを見出した。従来、マウスCD40抗体の作用がビオチンとアビジン架橋によって増強されることが報告されている(非特許文献35を参照)。また、プレートに固相化した抗免疫グロブリン抗体を用いて、CD40抗体を固相化することで、腫瘍細胞の増殖抑制活性が増加することが知られていたが、これは固相化による効果と考えられていた。しかし、培養液中に抗免疫グロブリン抗体を添加し、抗CD40抗体を架橋することによって、アンタゴニスティック抗体であってもアゴニスティック活性を示す可能性があることは知られていなかった。治療に用いる抗体に抗原性があれば、ヒトの体内でCD40抗体に結合する抗体が生じ、CD40抗体が架橋されることによって、あたかもCD40リガンドのような活性を生じる、全く逆の作用が懸念される。したがって治療薬の安全性の点から、抗体の抗原性を低く押さえることが非常に重要であると考えられる。マウス抗体の可変領域の配列をもとに、ヒト化技術により、治療薬として開発する場合、ヒト化抗体は免疫原性があることが知られているため、投与後に抗ヒト化抗CD40抗体ができる可能性があり、アゴニスティック抗体となる危険がある。また抗原性が低くとも、抗体レセプター(FcR)によって抗CD40抗体が架橋される可能性もある。これらの点から、アンタゴニスティック抗体は、CD40に特異的に結合し、CD40Lの結合を抑制し、かつ、架橋によってもCD40を活性化しないヒト抗体であって、FcRへの結合が弱いことが望ましいと考えられる。   The present inventor has newly found that the antagonist antibody 5D12 has an agonistic activity due to cross-linking even in the absence of CD40L. Conventionally, it has been reported that the action of a mouse CD40 antibody is enhanced by cross-linking of biotin and avidin (see Non-Patent Document 35). In addition, it was known that the anti-immunoglobulin antibody immobilized on the plate and the CD40 antibody were immobilized, the tumor cell growth inhibitory activity was increased. It was thought. However, it has not been known that an anti-immunoglobulin antibody may be added to the culture medium and the anti-CD40 antibody may be cross-linked to show agonistic activity even with an antagonistic antibody. If the antibody used for the treatment has antigenicity, an antibody that binds to the CD40 antibody is produced in the human body, and the CD40 antibody is cross-linked. The Therefore, it is considered very important to keep the antigenicity of the antibody low from the viewpoint of the safety of the therapeutic agent. It is known that humanized antibodies are immunogenic when developed as therapeutic agents by humanization technology based on the murine antibody variable region sequences. There is a risk that it may become an agonistic antibody. Even if the antigenicity is low, the anti-CD40 antibody may be cross-linked by the antibody receptor (FcR). From these points, the antagonistic antibody is a human antibody that specifically binds to CD40, suppresses the binding of CD40L, and does not activate CD40 even by cross-linking, and has a weak binding to FcR. It is considered desirable.

E. A. Clark et. al., Proc. Natl.Acad. Sci. USA 83: 4494, 1986E. A. Clark et. Al., Proc. Natl. Acad. Sci. USA 83: 4494, 1986 I. Stamenkovic et. al., EMBO J. 8:1403, 1989I. Stamenkovic et. Al., EMBO J. 8: 1403, 1989 Caux, C., et al., J.Exp.Med., 180:1263,1994Caux, C., et al., J. Exp. Med., 180: 1263,1994 Shu, U.,et al., Eur.J.Immunol.,25:1125,1995Shu, U., et al., Eur. J. Immunol., 25: 1125, 1995 Barrett et al., J. Immunol. 146: 1722, 1991Barrett et al., J. Immunol. 146: 1722, 1991 Gordon et al., J. Immunol. 140: 1425, 1988Gordon et al., J. Immunol. 140: 1425, 1988 Valle et al., Eur. J. Immunol. 19: 1463, 1989Valle et al., Eur. J. Immunol. 19: 1463, 1989 Clark and Ledbetter, Proc. Natl. Acad. Sci. USA 83: 4494, 1986Clark and Ledbetter, Proc. Natl. Acad. Sci. USA 83: 4494, 1986 Gordon et al., LEUCOCYTE TYPING III. A. J. McMicheal ed. Oxford University Press. Oxford, p.426Gordon et al., LEUCOCYTE TYPING III. A. J. McMicheal ed. Oxford University Press. Oxford, p.426 Paulie et al., J. Immunol.142: 590,1989Paulie et al., J. Immunol. 142: 590,1989 Gordon et al., Eur. J. Immunol. 17: 1535, 1987Gordon et al., Eur. J. Immunol. 17: 1535, 1987 Jabara et al., J. Exp. Med. 172: 1861, 1990Jabara et al., J. Exp. Med. 172: 1861, 1990 Gascan et al., J Immunol. 147:8,1991Gascan et al., J Immunol. 147: 8,1991 Gordon and Guy, Immunol. Today 8:339, 1987Gordon and Guy, Immunol. Today 8: 339, 1987 Cairns et al., Eur. J. Immunol. 18: 349, 1988Cairns et al., Eur. J. Immunol. 18: 349, 1988 Challa A, Allergy, 54: 576, 1999Challa A, Allergy, 54: 576, 1999 Clark and Shu, J. Immunol. 145: 1400, 1990Clark and Shu, J. Immunol. 145: 1400, 1990 Bancherauet al., Science 241:70,1991Bancherauet al., Science 241: 70,1991 Liu et al., Nature 342: 929,1989Liu et al., Nature 342: 929,1989 Katira, A. et. al., LEUKOCYTE TYPING V. S. F. Schlossossman, et. al. eds.p.547. Oxford University Press. OxfordKatira, A. et. Al., LEUKOCYTE TYPING V. S. F. Schlossossman, et. Al. Eds.p.547. Oxford University Press. Oxford W. C. Flansow et. al., LEUKOCYTE TYPING V. S. F. Schlossossman, et. al. eds.p.555. Oxford University Press. OxfordW. C. Flansow et. Al., LEUKOCYTE TYPING V. S. F. Schlossossman, et. Al. Eds.p. 555. Oxford University Press. Oxford J. D. Pound et. al., International Immunology, 11: 11, 1999J. D. Pound et.al., International Immunology, 11: 11, 1999 Z. H. Zhou et. al., Hybridoma, 18:471 1999Z. H. Zhou et.al., Hybridoma, 18: 471 1999 Shoenberger, S.P., et.al., Nature, 480,1998Shoenberger, S.P., et.al., Nature, 480,1998 French,R.R., et.al., Nature Medicine, 5,1999French, R.R., et.al., Nature Medicine, 5,1999 Van Den Berg, TK, et.al., Immunology, 88:294, 1996Van Den Berg, TK, et.al., Immunology, 88: 294, 1996 Funakoshi S et al., Blood, 83: 2782, 1994Funakoshi S et al., Blood, 83: 2782, 1994 Funakoshi S et al., Journal of Immunotherapy, 19,93,1996Funakoshi S et al., Journal of Immunotherapy, 19,93,1996 Joseph A et al., Cancer Research, 60: 3225, 2000Joseph A et al., Cancer Research, 60: 3225, 2000 Challa A et al., Allergy, 54: 576, 1999Challa A et al., Allergy, 54: 576, 1999 Pound et al.,International Immunology, 11:11,1999Pound et al., International Immunology, 11: 11,1999 V. Henn et. al., Nature 391: 591, 1998V. Henn et. Al., Nature 391: 591, 1998 T. Kawai et. al., Nat. Medi. 6: 114, 2000T. Kawai et. Al., Nat. Medi. 6: 114, 2000 J. Kwekkeboom et. Al., Immunology 79: 439, 1993J. Kwekkeboom et. Al., Immunology 79: 439, 1993 Johnson et al., Eur J Immunol, 24,: 1835, 1994Johnson et al., Eur J Immunol, 24 ,: 1835, 1994

上述のように、近年DC細胞の機能解析が進み、CD40はDC細胞の働きを制御する、重要な遺伝子として認識され始めた。このような背景から、本発明は、DC細胞を用いた評価系を採用することにより、樹状細胞(DC)表面のヒトCD40抗原に対しても実質的にアンタゴニスティックである抗ヒトCD40抗体又はその機能的断片、および従来の抗ヒトCD40抗体に比べてより治療効果の高いことが期待されるアゴニスティックな抗ヒトCD40抗体又はその機能的断片を提供することを目的とする。   As described above, functional analysis of DC cells has progressed in recent years, and CD40 has started to be recognized as an important gene that controls the function of DC cells. From such a background, the present invention adopts an evaluation system using DC cells, whereby an anti-human CD40 antibody that is substantially antagonistic to human CD40 antigen on the surface of dendritic cells (DC). Alternatively, an object thereof is to provide a functional fragment thereof, and an agonistic anti-human CD40 antibody or a functional fragment thereof that is expected to have a higher therapeutic effect than a conventional anti-human CD40 antibody.

本発明者らは、ヒトCD40に対する抗体の作製に関して鋭意研究した結果、従来知られている抗CD40抗体に比して、より疾患への治療効果が高いと考えられる新規なアゴニスティック抗体、及びアンタゴニスティック抗体を作製することに成功し、本発明を完成した。すなわち、本発明は以下の通りである。   As a result of diligent research on the production of antibodies against human CD40, the present inventors have found that novel agonistic antibodies and antagonists, which are considered to have a higher therapeutic effect on diseases, compared to conventionally known anti-CD40 antibodies. The present invention was completed by successfully producing a gonistic antibody. That is, the present invention is as follows.

(1)以下の(a)〜(f)から選ばれる少なくとも1つの性質を有する、ヒトCD40に対する抗体又はその機能的断片。
(a) 樹状細胞に作用し、LPS及びIFNγの存在下でIL-12を生産させる
(b) 樹状細胞に作用し、該樹状細胞を成熟させる活性がG28-5抗体よりも高い
(c) B細胞樹立細胞株に対して、CD95の発現を促進する活性がG28-5抗体よりも高い
(d) B細胞樹立細胞株に対して増殖を抑制する活性がG28-5抗体よりも高い
(e) B細胞樹立細胞株に対して細胞死を誘導する
(f) CD40リガンドのCD40に対する結合を阻害しない
(2)上記本発明の抗体又はその機能的断片は、樹状細胞の成熟が、20μg/ml以下の濃度で行われるものである。また、B細胞樹立細胞株に対してCD95の発現の促進は、20μg/ml以下の抗体濃度で行われる。B細胞樹立細胞株としては、例えばRamos又はHS-Sultonが挙げられる。
(1) An antibody against human CD40 or a functional fragment thereof having at least one property selected from the following (a) to (f):
(a) Acts on dendritic cells to produce IL-12 in the presence of LPS and IFNγ
(b) Acts on dendritic cells and has higher maturation activity than G28-5 antibody
(c) B95 cell line has higher activity to promote CD95 expression than G28-5 antibody
(d) The activity of inhibiting the growth of B cell established cell line is higher than that of G28-5 antibody
(e) Inducing cell death against B cell line
(f) Does not inhibit the binding of CD40 ligand to CD40 (2) The antibody of the present invention or the functional fragment thereof is one in which maturation of dendritic cells is performed at a concentration of 20 μg / ml or less. In addition, CD95 expression is promoted at an antibody concentration of 20 μg / ml or less for B cell established cell lines. Examples of B cell established cell lines include Ramos and HS-Sulton.

(3)また、上記本発明の抗体又はその機能的断片は、1x106個/mlの濃度の樹状細胞に、0.1μg/ml以上の濃度の抗体が添加された場合は、100pg/ml以上のIL-12の生産をもたらすものであり、1μg/ml以上の濃度の抗体が添加された場合は、1000pg/ml以上、好ましくは10000pg/ml以上のIL-12の生産をもたらすものである。 (3) The antibody of the present invention or a functional fragment thereof is 100 pg / ml or more when an antibody having a concentration of 0.1 μg / ml or more is added to dendritic cells having a concentration of 1 × 10 6 cells / ml. IL-12 is produced, and when an antibody having a concentration of 1 μg / ml or more is added, it produces 1000 pg / ml or more, preferably 10,000 pg / ml or more of IL-12.

(4)さらに、上記本発明の抗体又はその機能的断片は、B細胞樹立細胞株(Ramos細胞)に対するCD95の発現促進が、抗体濃度0.01μg/mlから10μg/mlの範囲において、対照であるG28-5抗体の約2倍から3倍以上となるものである。例えば、抗体濃度0.01μg/mlでは、対照であるG28-5抗体の約2倍から6倍以上であり、抗体濃度0.1μg/mlでは、対照であるG28-5抗体の約2倍から7倍以上であり、抗体濃度1μg/mlでは、対照であるG28-5抗体の約2倍から7倍以上であり、そして抗体濃度10μg/mlでは、対照であるG28-5抗体の約2倍から6倍以上である。 (4) Further, the antibody of the present invention or a functional fragment thereof is a control in which the expression promotion of CD95 against a B cell established cell line (Ramos cell) is within the antibody concentration range of 0.01 μg / ml to 10 μg / ml. It is about 2 to 3 times more than G28-5 antibody. For example, at an antibody concentration of 0.01 μg / ml, it is about 2 to 6 times or more than the control G28-5 antibody, and at an antibody concentration of 0.1 μg / ml, it is about 2 to 7 times that of the control G28-5 antibody. When the antibody concentration is 1 μg / ml, it is about 2 to 7 times or more of the control G28-5 antibody, and at the antibody concentration of 10 μg / ml, it is about 2 to 6 times that of the control G28-5 antibody. It is more than double.

(5)ハイブリドーマKM302-1(受託番号FERM BP-7578)、KM341-1-19(受託番号FERM BP-7759)、2105(受託番号FERM BP-8024)またはF1-102(受託番号ATCC PTA-3337)により生産される抗体の重鎖可変領域および軽鎖可変領域のアミノ酸配列を有する抗体又はその機能的断片。

Figure 2006342173
(5) Hybridoma KM302-1 (Accession No. FERM BP-7578), KM341-1-19 (Accession No. FERM BP-7759), 2105 (Accession No. FERM BP-8024) or F1-102 (Accession No. ATCC PTA-3337) The antibody or the functional fragment thereof having the amino acid sequences of the heavy chain variable region and the light chain variable region of the antibody produced by (1).
Figure 2006342173

(6)受託番号ATCC PTA-3302およびATCC PTA-3303であるプラスミドDNAにそれぞれコードされる、ハイブリドーマF2-103の産生する抗体の重鎖可変領域および軽鎖可変領域、受託番号ATCC PTA-3304およびATCC PTA-3305であるプラスミドDNAにそれぞれコードされる、ハイブリドーマF5-77の産生する抗体の重鎖可変領域および軽鎖可変領域、または受託番号ATCC PTA-3306およびATCC PTA-3307であるプラスミドDNAにそれぞれコードされる、ハイブリドーマF5-157の産生する抗体の重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。

Figure 2006342173
(6) the heavy chain variable region and light chain variable region of the antibody produced by hybridoma F2-103, encoded by plasmid DNAs having accession numbers ATCC PTA-3302 and ATCC PTA-3303, accession numbers ATCC PTA-3304 and The heavy chain variable region and light chain variable region of the antibody produced by hybridoma F5-77, respectively encoded by the plasmid DNA that is ATCC PTA-3305, or the plasmid DNA that is the accession numbers ATCC PTA-3306 and ATCC PTA-3307 An antibody or functional fragment thereof having the amino acid sequence of the mature part of the heavy chain variable region and light chain variable region of the antibody produced by hybridoma F5-157, respectively encoded.
Figure 2006342173

(7)配列番号28および30にそれぞれ示される、ハイブリドーマKM341-1-19の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号32および34にそれぞれ示される、ハイブリドーマ2105の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号36および38にそれぞれ示される、ハイブリドーマ110の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号40および42にそれぞれ示される、ハイブリドーマ115の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号52および54にそれぞれ示される、ハイブリドーマKM643-4-11の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号60および62にそれぞれ示される、ハイブリドーマF2-103の産生する抗体の重鎖可変領域および軽鎖可変領域、または配列番号64および66にそれぞれ示される、ハイブリドーマF5−77の産生する抗体の重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。 (7) Heavy chain variable region and light chain variable region of the antibody produced by hybridoma KM341-1-19 shown in SEQ ID NOs: 28 and 30, respectively, and the antibody produced by hybridoma 2105 shown in SEQ ID NOs: 32 and 34, respectively The heavy chain variable region and the light chain variable region of the antibody produced by the hybridoma 110 shown in SEQ ID NOs: 36 and 38, respectively, and the hybridoma 115 shown in the heavy chain variable region and the light chain variable region of the antibody produced by the hybridoma 110, respectively. The heavy chain variable region and light chain variable region of the antibody produced by the hybridoma KM643-4-11, shown in SEQ ID NOs: 52 and 54, SEQ ID NO: 60 and The heavy chain variable region and light chain variable region of the antibody produced by hybridoma F2-103, or SEQ ID NO: Respectively 64 and 66 shown, of the heavy and light chain variable regions of an antibody produced by hybridoma F5-77, antibody or functional fragment thereof having the amino acid sequence of the mature part.

(8)配列番号27および29にそれぞれ示される、ハイブリドーマKM341-1-19から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号31および33にそれぞれ示される、ハイブリドーマ2105から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号35および37にそれぞれ示される、ハイブリドーマ110から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号39および41にそれぞれ示される、ハイブリドーマ115から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号51および53にそれぞれ示される、ハイブリドーマKM643-4-11から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号59および61にそれぞれ示される、ハイブリドーマF2-103から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、または配列番号63および65にそれぞれ示される、ハイブリドーマF5−77から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。 (8) heavy chain variable region and light chain variable region encoded by the nucleic acid sequence isolated from hybridoma KM341-1-19 shown in SEQ ID NOs: 27 and 29, respectively, shown in SEQ ID NOs: 31 and 33, respectively Heavy chain variable region and light chain variable region encoded by nucleic acid sequence isolated from hybridoma 2105, heavy chain variable region encoded by nucleic acid sequence isolated from hybridoma 110, shown in SEQ ID NOs: 35 and 37, respectively And a light chain variable region, a heavy chain variable region and a light chain variable region encoded by a nucleic acid sequence isolated from hybridoma 115, shown in SEQ ID NOs: 39 and 41, respectively, and a hybridoma shown in SEQ ID NOs: 51 and 53, respectively. Heavy and light chain variable regions encoded by nucleic acid sequences isolated from KM643-4-11, SEQ ID NOs: 59 and 6 A heavy chain variable region and a light chain variable region encoded by a nucleic acid sequence isolated from hybridoma F2-103, respectively, or isolated from hybridoma F5-77, shown in SEQ ID NOs: 63 and 65, respectively. An antibody having a mature amino acid sequence of a heavy chain variable region and a light chain variable region encoded by a nucleic acid sequence, or a functional fragment thereof.

(9)以下の(g)〜(j)から選ばれる少なくとも1つの性質を有する、ヒトCD40に対する抗体又はその機能的断片。
(g) CD40に対するリガンドの作用を中和する
(h) B細胞樹立細胞株上のCD40に対するリガンドがCD40発現細胞に与える影響の1つ以上を中和又は緩和し、かつ、抗免疫グロブリン抗体による架橋によって前記B細胞樹立細胞株上のCD40に対するアゴニスティックな作用が5D12より弱い
(i) B細胞樹立細胞株に対して、CD40リガンドが、CD95の発現を増加させる作用を緩和又は中和する
(j) 樹状細胞に発現するCD40に対してアンタゴニスティックな作用を有する
(9) An antibody against human CD40 or a functional fragment thereof having at least one property selected from the following (g) to (j).
(g) Neutralize ligand action on CD40
(h) neutralizing or mitigating one or more of the effects of a ligand for CD40 on a B cell established cell line on CD40 expressing cells, and against CD40 on the B cell established cell line by cross-linking with an anti-immunoglobulin antibody Agonistic action is weaker than 5D12
(i) CD40 ligand mitigates or neutralizes the effect of increasing CD95 expression on B cell established cell lines
(j) Has an antagonistic effect on CD40 expressed in dendritic cells

(10) 上記(9)の抗体又はその機能的断片は、飽和量のCD40L発現細胞を添加した1x106個/mlの濃度のRamos細胞に、0.1 μg/mlの濃度の抗体が添加された場合は、Ramos細胞のCD95の発現を対照の約10%以下に抑制しうるものであり、 1 μg/mlの濃度の抗体が添加された場合は、Ramos細胞のCD95の発現が陰性コントロールと同レベルまで抑制されるものであり、10μg/mlの濃度の抗体が添加された場合は、Ramos細胞のCD95の発現が陰性コントロールと同レベルまで抑制されるものである。 (10) The antibody or functional fragment of (9) above is obtained when an antibody at a concentration of 0.1 μg / ml is added to Ramos cells at a concentration of 1 × 10 6 cells / ml to which a saturated amount of CD40L-expressing cells are added. Can suppress the expression of CD95 in Ramos cells to about 10% or less of the control. When 1 μg / ml antibody is added, CD95 expression in Ramos cells is the same level as the negative control. When an antibody having a concentration of 10 μg / ml is added, CD95 expression of Ramos cells is suppressed to the same level as the negative control.

(11)上記(9)の抗体又はその機能的断片は、インビトロにおいて、可溶性CD40L(1μg/ml)を添加した1x105個の扁桃腺B細胞に、0.001μg/mlから10μg/mlの濃度の抗体が添加された場合に、扁桃腺B細胞の増殖が約80から95%以上抑制されるものである。例えば、0.01μg/mlから10μg/mlの濃度の抗体が添加された場合は、扁桃腺B細胞の増殖が約95%以上抑制されるものであり、特に、0.001μg/mlの濃度の抗体が添加された場合は、扁桃腺B細胞の増殖が約80%以上抑制されるものである。 (11) The antibody of (9) or a functional fragment thereof is added in vitro to 1 × 10 5 tonsil B cells supplemented with soluble CD40L (1 μg / ml) at a concentration of 0.001 μg / ml to 10 μg / ml. When an antibody is added, proliferation of tonsil B cells is suppressed by about 80 to 95% or more. For example, when an antibody having a concentration of 0.01 μg / ml to 10 μg / ml is added, proliferation of tonsillar B cells is suppressed by about 95% or more, and in particular, an antibody having a concentration of 0.001 μg / ml When added, the proliferation of tonsil B cells is suppressed by about 80% or more.

(12)ハイブリドーマKM281-1-10(受託番号FERM BP-7579)、4D11(受託番号FERM BP-7758)またはF4-465(受託番号ATCC PTA-3338)により生産される抗体の重鎖可変領域および軽鎖可変領域のアミノ酸配列を有する抗体又はその機能的断片。

Figure 2006342173
(12) the heavy chain variable region of an antibody produced by hybridoma KM281-1-10 (Accession No. FERM BP-7579), 4D11 (Accession No. FERM BP-7758) or F4-465 (Accession No. ATCC PTA-3338) and An antibody having a light chain variable region amino acid sequence or a functional fragment thereof.
Figure 2006342173

(13)配列番号44および46にそれぞれ示される、ハイブリドーマKM281-1-10の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号48および50にそれぞれ示される、ハイブリドーマ4D11の産生する抗体の重鎖可変領域および軽鎖可変領域、または配列番号56および58にそれぞれ示される、ハイブリドーマF4-465の産生する抗体の重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。 (13) The heavy chain variable region and light chain variable region of the antibody produced by hybridoma KM281-1-10 shown in SEQ ID NOs: 44 and 46, respectively, and the antibody produced by hybridoma 4D11 shown in SEQ ID NOs: 48 and 50, respectively Antibody having the amino acid sequence of the mature part of the heavy chain variable region and the light chain variable region of the antibody produced by the hybridoma F4-465 shown in SEQ ID NOs: 56 and 58, respectively, Or a functional fragment thereof.

(14)配列番号43および45にそれぞれ示される、ハイブリドーマKM281-1-10から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号47および49にそれぞれ示される、ハイブリドーマ4D11の産生する抗体の重鎖可変領域および軽鎖可変領域、または配列番号55および57にそれぞれ示される、ハイブリドーマF4-465から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。
(15)上記(1)〜(14)の抗体又はその機能的断片としては、ヒト抗体のものが挙げられる。
(16)上記(1)〜(15)のいずれかの抗体又はその機能的断片を有効成分として含む医薬組成物。
(17)上記(1)〜(8)のいずれかに記載の抗体又はその機能的断片を有効成分として含む、免疫賦活化剤、抗腫瘍剤又は自己免疫疾患治療剤。
(18)上記(9)〜(14)のいずれかに記載の抗体又はその機能的断片を有効成分として含む、免疫抑制剤、自己免疫疾患治療剤、アレルギー治療剤又は血液凝固第VIII因子阻害症候群治療剤。
(14) heavy chain variable region and light chain variable region encoded by nucleic acid sequences isolated from hybridoma KM281-1-10 shown in SEQ ID NOs: 43 and 45, respectively, shown in SEQ ID NOs: 47 and 49, respectively Heavy chain variable region and light chain variable region of antibody produced by hybridoma 4D11, or heavy chain variable region and light chain encoded by nucleic acid sequence isolated from hybridoma F4-465 shown in SEQ ID NOs: 55 and 57, respectively An antibody having a mature region amino acid sequence of a variable region or a functional fragment thereof.
(15) Examples of the antibodies (1) to (14) or functional fragments thereof include human antibodies.
(16) A pharmaceutical composition comprising the antibody or functional fragment thereof according to any one of (1) to (15) above as an active ingredient.
(17) An immunostimulatory agent, antitumor agent or autoimmune disease therapeutic agent comprising the antibody or functional fragment thereof according to any one of (1) to (8) as an active ingredient.
(18) An immunosuppressive agent, an autoimmune disease therapeutic agent, an allergy therapeutic agent or a blood coagulation factor VIII inhibition syndrome comprising the antibody or functional fragment thereof according to any one of (9) to (14) as an active ingredient Therapeutic agent.

(19)ここで、本発明のモノクローナル抗体の認識するヒトCD40のエピトープは、ヒトCD40の一次アミノ酸配列から得られたオーバーラップする合成オリゴペプチドへの結合を調べるなどの周知の方法によって決定することができる(例えばEd Harlow and David Lane(eds.), Antibodies: A Laboratory Manual, 1988 Cold Spring Harbor Laboratory Press; US Patent No. 4708871)。ファージディスプレイによるペプチドライブラリーキット(New England Biolabs)をエピトープマッピングに用いることもできる。本発明は、上述した個々のハイブリドーマによって産生される抗体又はその機能的断片の認識するヒトCD40の新規なエピトープを認識する抗体又はその機能的断片をも包含する。 (19) Here, the epitope of human CD40 recognized by the monoclonal antibody of the present invention is determined by a known method such as examining the binding to an overlapping synthetic oligopeptide obtained from the primary amino acid sequence of human CD40. (Eg, Ed Harlow and David Lane (eds.), Antibodies: A Laboratory Manual , 1988 Cold Spring Harbor Laboratory Press; US Patent No. 4708871). A peptide library kit by phage display (New England Biolabs) can also be used for epitope mapping. The present invention also includes an antibody or a functional fragment thereof that recognizes a novel epitope of human CD40 that recognizes an antibody produced by the above-mentioned individual hybridoma or a functional fragment thereof.

(20)本発明はさらに、上述した個々のハイブリドーマから単離された、抗体の重鎖および/または軽鎖の少なくとも可変領域をコードする核酸(RNAまたはcDNA)、該核酸を含むベクター、該核酸を保持する宿主細胞を提供する。 (20) The present invention further includes a nucleic acid (RNA or cDNA) encoding at least the variable region of the heavy chain and / or light chain of an antibody isolated from the individual hybridomas described above, a vector containing the nucleic acid, the nucleic acid A host cell is provided.

本発明により、CD40に対する抗体が提供される。本発明の抗体は、CD40に対してアゴニスティックに作用するもの及びアンタゴニスティックに作用するものの両者が含まれるため、それぞれ、免疫賦活剤、免疫抑制剤等として有用である。   According to the present invention, an antibody against CD40 is provided. The antibodies of the present invention include both those acting on CD40 in an agonistic manner and those acting on an antagonistic one, and are therefore useful as immunostimulators, immunosuppressants, etc., respectively.

以下、本発明を詳細に説明する。本明細書は、本願の優先権の基礎であるPCT出願PCT/US01/13672(2001年4月27日出願)、日本国特許出願2001-142482号(2001年5月11日出願)、日本国特許出願2001-310535号(2001年10月5日出願)及び米国特許出願USSN 10/040,244(2001年10月26日出願)の明細書及び/又は図面に記載される内容を包含する。   Hereinafter, the present invention will be described in detail. This specification includes PCT application PCT / US01 / 13672 (filed on April 27, 2001), Japanese patent application 2001-142482 (filed on May 11, 2001), Japan It includes the contents described in the specification and / or drawings of patent application 2001-310535 (filed October 5, 2001) and US patent application USSN 10 / 040,244 (filed October 26, 2001).

発明者らは、後述するように、B細胞上のCD40に対してアンタゴニスティックである公知のモノクローナル抗体5D12(ATCC No.HB-11339)が、DC細胞上のCD40に対してはアンタゴニスティックではなかったという知見を得た。さらに発明者は、CD40Lの作用をブロックするアンタゴニスティック抗体であっても、多くのモノクローナル抗体が抗免疫グロブリン抗体による架橋によって、それ自身がアゴニスティック活性を示してしまうことを見出した。   As described below, the inventors have disclosed that the known monoclonal antibody 5D12 (ATCC No. HB-11339), which is antagonistic against CD40 on B cells, is antagonistic against CD40 on DC cells. I got the knowledge that it was not. Furthermore, the inventor has found that even if an antagonistic antibody blocks the action of CD40L, many monoclonal antibodies themselves exhibit agonistic activity by cross-linking with an anti-immunoglobulin antibody.

1.定義
本明細書で使用する用語の定義は以下のとおりである。
本発明でいう「ヒトCD40」とは、クラークら(E. A. Clark et. al., Proc. Natl. Acad. Sci. USA 83: 4494, 1986)又はスタメンコビックら(I. Stamenkovic et. al., EMBO J. 8:1403, 1989)により示されているアミノ酸配列を有するポリペプチドを意味し、特にB細胞、DC、マクロファージ、内皮細胞、上皮細胞、あるいはそれらの腫瘍細胞表面に発現する抗原ポリペプチドである。
「抗CD40モノクローナル抗体」とは、細胞発現CD40、全長CD40又は部分長CD40に対するモノクローナル抗体のいずれをも意味するが、より好ましくはCD40の細胞外部分に結合し、CD40を発現している細胞にアゴニスティックまたはアンタゴニスティックな作用をもたらすモノクローナル抗体を意味する。
1. Definitions The terms used in this specification are defined as follows.
As used herein, “human CD40” refers to Clark et al. (EA Clark et. Al., Proc. Natl. Acad. Sci. USA 83: 4494, 1986) or Stamenkovic et al. (I. Stamenkovic et. Al., EMBO). J. 8: 1403, 1989), and particularly an antigen polypeptide expressed on the surface of B cells, DCs, macrophages, endothelial cells, epithelial cells, or their tumor cells. is there.
“Anti-CD40 monoclonal antibody” means any of the monoclonal antibodies against cell-expressed CD40, full-length CD40 or partial-length CD40, but more preferably binds to the extracellular portion of CD40 and binds to cells expressing CD40. It means a monoclonal antibody that provides an agonistic or antagonistic action.

さらに、本発明で「抗体」とは、イムノグロブリンを構成する重鎖可変領域及び重鎖定常領域並びに軽鎖の可変領域及び軽鎖の定常領域をコードする遺伝子(「抗体遺伝子」と総称する)に由来するものである。本発明の抗体には、いずれのイムノグロブリンクラス及びアイソタイプを有する抗体をも包含する。本発明における抗体の「機能的断片」とは、前記で定義した抗体の一部分(部分断片)であって、抗体の抗原への作用を1つ以上保持するものを意味し、具体的にはF(ab')2、Fab'、Fab、Fv、ジスルフィド結合FV、一本鎖FV(scFV)、およびこれらの重合体等が挙げられる(D.J.King., Applications and Engineering of Monoclonal Antibodies., 1998 T.J.International Ltd)。 Further, in the present invention, “antibody” refers to genes encoding heavy chain variable region and heavy chain constant region, and light chain variable region and light chain constant region constituting immunoglobulin (collectively referred to as “antibody gene”). It is derived from. The antibodies of the present invention include antibodies having any immunoglobulin class and isotype. The “functional fragment” of an antibody in the present invention means a part (partial fragment) of an antibody as defined above, which retains one or more actions of an antibody on an antigen, specifically F (ab ′) 2 , Fab ′, Fab, Fv, disulfide bond FV, single chain FV (scFV), and polymers thereof (DJKing., Applications and Engineering of Monoclonal Antibodies., 1998 TJ International Ltd) .

本発明で「ヒト抗体」とは、ヒト由来の抗体遺伝子の発現産物である抗体を意味する。
「アゴニスティック」とは、B細胞、腫瘍細胞又は樹状細胞などの細胞表面上に発現するCD40に、そのリガンドが結合することを促進する作用、あるいは、CD40リガンドがCD40発現細胞に与える影響の1つ以上を、CD40を発現する細胞に与える作用を意味し、「アゴニスティック抗体」とは、そのようなアゴニスティック作用を有する抗体を意味する。
In the present invention, “human antibody” means an antibody that is an expression product of a human-derived antibody gene.
“Agonistic” refers to the effect of promoting the binding of the ligand to CD40 expressed on the surface of cells such as B cells, tumor cells or dendritic cells, or the effect of CD40 ligand on CD40-expressing cells. The term “agonistic antibody” refers to an antibody having such an agonistic effect.

「アンタゴニスティック」とは、B細胞、腫瘍細胞又は樹状細胞などの細胞表面上に発現するCD40にそのリガンドが結合することを阻害する作用、あるいは、CD40リガンドがCD40発現細胞に与える影響の1つ以上を中和する作用を意味し、「アンタゴニスティック抗体」とはそのような作用を有する抗体を意味する。   “Antagonic” refers to the effect of inhibiting the binding of the ligand to CD40 expressed on the surface of cells such as B cells, tumor cells or dendritic cells, or the effect of CD40 ligand on CD40-expressing cells. The term “antagonistic antibody” means an antibody having such an effect.

本発明で言う「樹状細胞(DC)」とは、樹状白血球とも呼ばれ、強力な抗原提示機能を有する細胞の一群を指す。用いる樹状細胞は、例えば骨髄、さい帯血又は末梢血中に含まれるCD34陽性前駆細胞を培養することによって誘導される。あるいは、末梢血中のCD14陽性単球をGM-CSF及びIL-4の存在下で培養することにより得られる。   The “dendritic cell (DC)” referred to in the present invention is also called a dendritic leukocyte and refers to a group of cells having a strong antigen-presenting function. The dendritic cells to be used are induced by culturing CD34 positive progenitor cells contained in, for example, bone marrow, umbilical cord blood or peripheral blood. Alternatively, it can be obtained by culturing CD14 positive monocytes in peripheral blood in the presence of GM-CSF and IL-4.

「未熟なDC」(Immmature DC)とは、CD14陰性、CD1a強陽性、CD83,CD86陽性、MHCクラスII陽性であるDCを意味する。   “Immmature DC” means CD14 negative, CD1a strong positive, CD83, CD86 positive, MHC class II positive DC.

「成熟DC」とは、CD14陰性、CD1a陽性でCD83、CD86、MHCクラスII強陽性となったものを意味する。   “Mature DC” means CD14 negative, CD1a positive, CD83, CD86, MHC class II strong positive.

本発明で「DCを活性化する」とは、CD40による刺激に応答してDCが起こす変化を意味し、例えば 未成熟DCを成熟化させ、CD80、CD86、HLA-ClassIIを高発現させる、さらにはIL-12の産生を増強する、あるいはT細胞が共存する場合には、T細胞に刺激を与え、増殖を促すことを意味する。   In the present invention, `` activate DC '' means a change caused by DC in response to stimulation by CD40, for example, mature immature DC and highly express CD80, CD86, HLA-Class II, Means to enhance the production of IL-12, or, when T cells coexist, to stimulate T cells and promote proliferation.

本発明でB細胞、B細胞株を活性化するとは、CD40による刺激に応答して細胞が起こす変化を意味し、例えばDNA合成を生じ、チミジン取り込みを促進し、CD95の発現量を増加させることをいう。   In the present invention, activating B cells and B cell lines means changes caused by cells in response to stimulation by CD40, for example, causing DNA synthesis, promoting thymidine incorporation, and increasing the expression level of CD95. Say.

2.抗体の取得
本件発明の抗体を取得するためには、抗原として組換え体で生産・精製した可溶性ヒトCD40、又はヒトCD40を発現する遺伝子組換えマウス細胞株をマウスに免疫することが好適である。免疫に使用するマウスはヒト抗体を産生するマウス(Tomizuka. et al., Proc Natl Acad Sci USA., 2000 Vol97:722)であることが望ましい。組換え体で生産・精製した可溶性ヒトCD40に結合するモノクローナル抗体を選別することで、B細胞特異的に反応するクローンを選抜するよりも、B細胞以外の細胞に発現するCD40にも反応する抗体を得やすいと考えられる。免疫したマウスのリンパ節の細胞や脾細胞を使用し、モノクローナル抗体の製造において慣用されているケーラー及びミルシュタインらの方法(Nature., 1975 Vol.256:495)を用いてハイブリドーマの作製を行うことができる。
2. Acquisition of antibody In order to acquire the antibody of the present invention, it is preferable to immunize mice with soluble human CD40 produced and purified in recombinant form as an antigen, or a transgenic mouse cell line expressing human CD40. . The mouse used for immunization is preferably a mouse producing a human antibody (Tomizuka. Et al., Proc Natl Acad Sci USA., 2000 Vol97: 722). Rather than selecting clones that react specifically with B cells by selecting monoclonal antibodies that bind to recombinant human-produced and purified soluble human CD40, antibodies that also react with CD40 expressed in cells other than B cells It is thought that it is easy to obtain. Hybridomas are prepared using the lymph node cells and spleen cells of immunized mice using the method of Köhler and Milstein et al. (Nature., 1975 Vol. 256: 495) commonly used in the production of monoclonal antibodies. be able to.

また、BIAcore 2000(ビアコア社)などの表面プラズモン共鳴測定装置を用いて可溶性CD40LのCD40への結合を解析し、CD40Lと競合しない抗体を選別する。またBリンパ腫の細胞増殖抑制を抗体単独で抑制する抗体を選別した。さらに抗体の選別をDCに作用するか否かを指標として行うことにより、CD40Lと競合せず、樹状細胞又はB細胞に働き、かつCD40発現癌細胞の増殖を抑制するという利点を備えた抗体を作製・選別しうる。   In addition, the binding of soluble CD40L to CD40 is analyzed using a surface plasmon resonance measuring apparatus such as BIAcore 2000 (Biacore) to select antibodies that do not compete with CD40L. In addition, antibodies that suppress cell growth inhibition of B lymphoma with antibodies alone were selected. In addition, antibodies that have the advantage of suppressing the proliferation of CD40-expressing cancer cells by acting on dendritic cells or B cells without competing with CD40L by performing antibody selection using DC as an indicator Can be produced and sorted.

本発明の抗体は、取得されたハイブリドーマを培養することによって得られる。また、B細胞やハイブリドーマ等の抗体産生細胞からヒトモノクローナル抗体又はその可変領域をコードする遺伝子をクローニングし、適当なベクターに組み込んで、これを宿主(例えば哺乳類細胞株、大腸菌、酵母細胞、昆虫細胞、植物細胞など)に導入し、遺伝子組換え技術を用いて産生させた組換型抗体を調製することができる(P.J.Delves., ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY、P.Shepherd and C.Dean., Monoclonal Antibodies., 2000 OXFORD UNIVERSITY PRESS, J.W.Goding., Monoclonal Antibodies: principles and practice., 1993 ACADEMIC PRESS)。さらに、トランスジェニック動物作製技術を用いて目的抗体の遺伝子が内在性遺伝子に組み込まれたトランスジェニックなウシ、ヤギ、ヒツジまたはブタを作製し、そのトランスジェニック動物のミルク中からその抗体遺伝子に由来するモノクローナル抗体を大量に取得することも可能である。ハイブリドーマをインビトロで培養する場合には、培養する細胞種の特性、試験研究の目的及び培養方法等の種々条件に合わせて、ハイブリドーマを増殖、維持及び保存させ、培養上清中にモノクローナル抗体を産生させるために用いられるような既知栄養培地又は既知の基本培地から誘導調製されるあらゆる栄養培地を用いて実施することが可能である。   The antibody of the present invention can be obtained by culturing the obtained hybridoma. In addition, a gene encoding a human monoclonal antibody or its variable region is cloned from an antibody-producing cell such as a B cell or a hybridoma, and incorporated into an appropriate vector, which is then used as a host (eg, mammalian cell line, E. coli, yeast cell, insect cell). Recombinant antibodies produced by gene recombination technology can be prepared (PJDelves., ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY, P. Shepherd and C. Dean) Monoclonal Antibodies., 2000 OXFORD UNIVERSITY PRESS, JWGoding., Monoclonal Antibodies: principles and practice., 1993 ACADEMIC PRESS). Furthermore, a transgenic bovine, goat, sheep or pig in which the gene of the target antibody is incorporated into the endogenous gene is produced using a transgenic animal production technique, and the antibody gene is derived from the milk of the transgenic animal. It is also possible to obtain a large amount of monoclonal antibodies. When hybridomas are cultured in vitro, the hybridomas are grown, maintained and stored according to various characteristics such as the characteristics of the cell type to be cultured, the purpose of the test study and the culture method, and monoclonal antibodies are produced in the culture supernatant. It can be carried out using any nutrient medium that is derived from a known nutrient medium or a known basal medium, such as that used for the preparation.

3.スクリーニング
アゴニスティック抗体の選抜には、ヒトBリンフォーマを用いた解析によって行い、CD95発現を促進する抗体の選別が可能である。さらに純化したDCの培養液に抗体を添加し、成熟させる抗体を選ぶ。あるいは、未熟なDC細胞を用いた混合リンパ球反応でT細胞増殖活性を示す抗体を選ぶ。さらに成熟したDCに添加しIL-12生産促進作用のある抗体を選ぶ。また、CD40を発現する腫瘍細胞の増殖を抑制もしくは細胞死誘導活性を持つ抗体を選ぶ。CD40Lとの競合はBIACoreのような表面プラズモン共鳴測定装置を用いて、可溶性CD40と可溶性CD40リガンドの結合を抗体が阻害するかどうかで判別できる。あるいは、B細胞株に対するCD40リガンドの作用を増強するかどうかで判別する。
3. Screening Agonistic antibodies can be selected by analysis using human B lymphoma, and antibodies that promote CD95 expression can be selected. Add antibodies to the purified DC culture and select the antibodies to be matured. Alternatively, an antibody that exhibits T cell proliferation activity in a mixed lymphocyte reaction using immature DC cells is selected. Select antibodies that are added to mature DCs and promote IL-12 production. In addition, an antibody that suppresses the growth of tumor cells expressing CD40 or has an activity of inducing cell death is selected. Competition with CD40L can be determined by using a surface plasmon resonance measuring apparatus such as BIACore based on whether the antibody inhibits the binding of soluble CD40 and soluble CD40 ligand. Or it discriminate | determines by whether the effect | action of the CD40 ligand with respect to a B cell strain is enhanced.

アンタゴニスティック抗体の選抜には、ヒトBリンフォーマを用いた解析によって行い、さらにFLAGをタグとして有する可溶性CD40Lを抗FLAG抗体存在下で添加することで、可溶性CD40Lの、ヒトBリンフォーマ細胞上のCD40への結合をより強力に阻害する抗体の選別が可能である。可溶性CD40Lの代りに、CD40Lをコードする遺伝子の導入により、細胞表面に多くのCD40Lを発現している組換え細胞を用いることも可能である。次いでヒト抗体を抗ヒトIgG抗体で架橋することで、架橋によってBリンパ腫を活性化してしまうクローンを除外する。さらに純化し成熟させたDC細胞を用いた混合リンパ球反応でT細胞増殖抑制活性を示す抗体や、あるいは成熟したDCにCD40リガンドを添加した場合にIL-12生産抑制作用のある抗体を選ぶ。   Antagonistic antibodies are selected by analysis using human B lymphoma, and soluble CD40L with FLAG as a tag is added in the presence of anti-FLAG antibody, so that soluble CD40L can be added to human B lymphoma cells. It is possible to screen for antibodies that more strongly inhibit the binding of CD40 to CD40. Instead of soluble CD40L, it is also possible to use a recombinant cell expressing a large amount of CD40L on the cell surface by introducing a gene encoding CD40L. The human antibody is then cross-linked with an anti-human IgG antibody to exclude clones that activate B-lymphoma by cross-linking. Furthermore, an antibody that exhibits T cell proliferation inhibitory activity in a mixed lymphocyte reaction using purified and matured DC cells, or an antibody that suppresses IL-12 production when CD40 ligand is added to mature DC is selected.

以上のようにして得られた抗体は、少なくとも以下のいずれかの治療効果上有用と考えられる性質を有するものである。   The antibody obtained as described above has a property considered to be useful for at least one of the following therapeutic effects.

(1) アゴニスティック抗体の場合
(a) 樹状細胞に作用し、LPS(リポポリサッカライド)及びIFNγの存在化でIL-12を生産させる。この場合のLPS濃度は10pg/mlから10ng/mlであり、IFNγの濃度は10-4Mから10-2Mである。1μg/ml以上の抗体濃度、好ましくは0.1μg/ml以上の抗体濃度において、公知のアゴニスティック抗CD40抗体であるG28-5抗体を対照とした試験よりもIL-12の生産量が多い。1x106個/mlの濃度の樹状細胞に抗体濃度0.1μg/ml以上が添加された場合に100pg/ml以上のIL-12が生産され、あるいは1μg/ml以上が添加された場合に1000pg/ml以上の、好ましくは10000pg/ml以上のIL-12が生産される(実施例9、実施例13を参照のこと)。
(1) For agonistic antibodies
(a) Acts on dendritic cells to produce IL-12 in the presence of LPS (lipopolysaccharide) and IFNγ. In this case, the LPS concentration is 10 pg / ml to 10 ng / ml, and the IFNγ concentration is 10 −4 M to 10 −2 M. At an antibody concentration of 1 μg / ml or higher, preferably at an antibody concentration of 0.1 μg / ml or higher, IL-12 is produced in a larger amount than the test using G28-5 antibody, which is a known agonistic anti-CD40 antibody, as a control. IL-12 of 100 pg / ml or more is produced when dendritic cells with a concentration of 1 × 10 6 cells / ml are added at an antibody concentration of 0.1 μg / ml or more, or 1000 pg / ml when 1 μg / ml or more is added. IL-12 of greater than or equal to ml, preferably greater than or equal to 10000 pg / ml is produced (see Example 9, Example 13).

(b) 樹状細胞に結合し、樹状細胞を成熟させる作用を有する。しかも、20μg/ml以下の濃度、好ましくは0.1〜15μg/ml、さらに好ましくは5〜15μg/mlの濃度で抗体を樹状細胞とともに培養すると、その成熟させる活性はG28-5抗体よりも高い結果が得られる(実施例9を参照のこと)。   (b) It has an action to bind to dendritic cells and mature dendritic cells. Moreover, when the antibody is cultured with dendritic cells at a concentration of 20 μg / ml or less, preferably 0.1 to 15 μg / ml, more preferably 5 to 15 μg / ml, the maturation activity is higher than that of the G28-5 antibody. (See Example 9).

(c) B細胞樹立細胞株に対して、CD95の発現を促進する活性がG28-5抗体よりも高い。この場合、10μg/ml以上、好ましくは1μg/ml以上、さらに好ましくは0.1μg/ml以上、より好ましくは0.01μg/ml以上、最も好ましくは0.001μg/mlを超える抗体濃度において、G28-5抗体を対照とした試験よりもCD95の発現を促進する活性がG28-5抗体よりも高い。CD95の発現を促進する活性について、抗体濃度10μg/ml、1μg/ml、0.1μg/ml、0.01μg/mlにおいてG28-5抗体を対照とした試験の倍率は以下の通りである(表1)。   (c) The activity of promoting the expression of CD95 is higher than that of the G28-5 antibody against the B cell established cell line. In this case, at an antibody concentration of 10 μg / ml or more, preferably 1 μg / ml or more, more preferably 0.1 μg / ml or more, more preferably 0.01 μg / ml or more, and most preferably 0.001 μg / ml, the G28-5 antibody The activity of promoting the expression of CD95 is higher than that of the G28-5 antibody than in the test using. Regarding the activity to promote the expression of CD95, the magnification of the test using the G28-5 antibody as a control at antibody concentrations of 10 μg / ml, 1 μg / ml, 0.1 μg / ml, and 0.01 μg / ml is as follows (Table 1). .

Figure 2006342173
Figure 2006342173

CD95の発現が促進するということは、抗体がB細胞樹立細胞株を活性化したことを意味する。ここで、B細胞樹立細胞株としては、Ramos細胞、HS-Sulton細胞が挙げられる。なお、Ramos細胞はバーキットリンパ腫であり、ヒトの胚中心のB細胞のモデル細胞である。HS-Sulton細胞はバーキットリンパ腫である(実施例6、実施例12を参照のこと)。   The enhanced expression of CD95 means that the antibody activated the B cell established cell line. Here, examples of the B cell established cell line include Ramos cells and HS-Sulton cells. Ramos cells are Burkitt's lymphoma and are model cells of human germinal center B cells. HS-Sulton cells are Burkitt lymphoma (see Example 6, Example 12).

(d) B細胞樹立細胞株(Ramos細胞又はHS-Sulton細胞)に対してDNA合成、チミジン取り込み、増殖を抑制する活性がG28-5抗体よりも高い。この場合の抗体濃度は、少なくとも0.05μg/ml、好ましくは0.1〜15μg/mlである(実施例8を参照のこと)。   (d) The activity to suppress DNA synthesis, thymidine incorporation, and proliferation is higher than that of the G28-5 antibody against B cell established cell lines (Ramos cells or HS-Sulton cells). The antibody concentration in this case is at least 0.05 μg / ml, preferably 0.1 to 15 μg / ml (see Example 8).

(e) B細胞樹立細胞株に対して細胞死を誘導する(実施例16を参照のこと)。
(f) CD40リガンドのCD40に対する結合を阻害しない。「阻害しない」とは、CD40に予め抗体が結合した状態であっても(つまり抗体が存在する場合であっても)、該抗体が存在しない場合と同程度に、CD40LがCD40に結合できることを意味する。CD40リガンドとCD40はいずれかあるいは双方が膜発現型あるいは可溶性タンパクであっても良い(実施例11を参照のこと)。
(e) Inducing cell death against B cell established cell lines (see Example 16).
(f) Does not inhibit the binding of CD40 ligand to CD40. “Do not inhibit” means that CD40L can bind to CD40 to the same extent as in the absence of the antibody even when the antibody is bound to CD40 in advance (that is, even in the presence of the antibody). means. Either or both of the CD40 ligand and CD40 may be membrane expressed or soluble proteins (see Example 11).

上記性質を有する抗体は、例えば、ハイブリドーマKM302-1(FERM BP-7578)、ハイブリドーマKM341-1-19(FERM BP-7759)により産生される。   Antibodies having the above properties are produced, for example, by hybridoma KM302-1 (FERM BP-7578) and hybridoma KM341-1-19 (FERM BP-7759).

ハイブリドーマKM341-1-19により産生されるモノクローナル抗体の重鎖(H鎖)および軽鎖(L鎖)可変領域の塩基配列およびアミノ酸配列が決定された(実施例17)。本発明はハイブリドーマKM341-1-19の生産するモノクローナル抗体の少なくとも重鎖可変領域、もしくは重鎖全長をコードするDNA、ならびに軽鎖可変領域をコードするDNAを提供する。当該DNAは実施例17において記載されたものの他、コドン縮重により同じアミノ酸配列をコードする他のDNAをも包含する。また、本発明は、実施例17において開示された少なくとも重鎖可変領域のアミノ酸配列、もしくは重鎖全長のアミノ酸配列と、軽鎖可変領域のアミノ酸配列によって規定されるモノクローナル抗体もしくはその機能的断片を提供する。   The base sequence and amino acid sequence of the heavy chain (H chain) and light chain (L chain) variable regions of the monoclonal antibody produced by the hybridoma KM341-1-19 were determined (Example 17). The present invention provides DNA encoding at least the heavy chain variable region or the full length of the heavy chain of the monoclonal antibody produced by the hybridoma KM341-1-19, and DNA encoding the light chain variable region. The DNA includes those described in Example 17 and other DNAs that encode the same amino acid sequence due to codon degeneracy. The present invention also provides a monoclonal antibody or a functional fragment thereof defined by at least the amino acid sequence of the heavy chain variable region or the amino acid sequence of the full length of the heavy chain and the amino acid sequence of the light chain variable region disclosed in Example 17. provide.

(2) アンタゴニスティック抗体の場合
(g) CD40に対するリガンドの作用を中和する。ここで、「リガンドの作用」とは、T細胞又は他の細胞上に発現するリガンドの作用、及びCD40に対する遊離のリガンドの作用のいずれをも意味する(実施例7、実施例14を参照のこと)。
(2) Antagonistic antibody
(g) Neutralize ligand action on CD40. Here, “ligand action” means both the action of a ligand expressed on T cells or other cells, and the action of a free ligand on CD40 (see Examples 7 and 14). thing).

(h) B細胞樹立細胞株上のCD40に対するリガンドがCD40発現細胞に与える影響の1つ以上を中和し、かつ、抗免疫グロブリン抗体による架橋によって前記B細胞樹立細胞株上のCD40に対するアゴニスティックな作用を示さない。その作用は5D12よりも弱い。「CD40発現細胞に与える影響」とは、発現細胞の活性化を意味し、B細胞においてはチミジン取り込み、増殖を、B細胞樹立細胞株においてはCD95の発現増強などを意味する。また、DCにおいては成熟化、CD86、HLA-DR発現増強、共存するT細胞のチミジン取り込み、増殖の促進、IL-12やIL-10の生産などを意味する。抗免疫グロブリン抗体による架橋は、培養液中に0.1μg/ml以上の抗免疫グロブリン抗体を存在させることにより行われる。(実施例7を参照のこと)   (h) Neutralizing one or more effects of a ligand for CD40 on a B cell established cell line on CD40 expressing cells, and agonistic to CD40 on the B cell established cell line by cross-linking with an anti-immunoglobulin antibody Does not show any effect. Its action is weaker than 5D12. “Influence on CD40-expressing cells” means activation of expressing cells, and means thymidine uptake and proliferation in B cells, and enhanced expression of CD95 in B cell established cell lines. In DC, it means maturation, enhanced expression of CD86 and HLA-DR, thymidine incorporation by coexisting T cells, promotion of proliferation, production of IL-12 and IL-10, and the like. Crosslinking with an anti-immunoglobulin antibody is carried out by allowing 0.1 μg / ml or more of the anti-immunoglobulin antibody to be present in the culture medium. (See Example 7)

(i) B細胞樹立細胞株に対して、架橋したCD40Lあるいは、細胞に発現させたCD40LがCD95の発現を増加させる活性を緩和又は中和する。タグに対する抗体などで架橋し、作用が増強されたCD40Lに対しても、活性を緩和あるいは中和する。CD40に対するリガンド(遊離のリガンド、特定の細胞に発現するリガンドの両者を含む)が、CD40発現細胞に結合すると、細胞内でシグナル伝達を起こして、最終的に細胞表面上にCD95(Fas)を発現する。従って、本発明のアンタゴニスティック抗体は、CD40に結合することにより、上記シグナル伝達を阻害してCD95の発現を中和する。この場合の抗体濃度は、1μg/ml以上、好ましくは0.1μg/ml以上である(実施例7、実施例14を参照のこと)。   (i) For a B cell established cell line, cross-linked CD40L or CD40L expressed in cells alleviates or neutralizes the activity of increasing CD95 expression. CD40L, which is cross-linked with an antibody against the tag and has an enhanced action, also reduces or neutralizes the activity. When ligands for CD40 (including both free ligands and ligands expressed in specific cells) bind to CD40-expressing cells, signal transduction occurs in the cells, and finally CD95 (Fas) is put on the cell surface. To express. Accordingly, the antagonistic antibody of the present invention neutralizes CD95 expression by binding to CD40, thereby inhibiting the above signal transduction. In this case, the antibody concentration is 1 μg / ml or more, preferably 0.1 μg / ml or more (see Examples 7 and 14).

(j) DC上のCD40に対してアンタゴニスティックである。すなわち、CD40LがDCを活性化する活性を緩和又は中和する。DCが共存するT細胞上のリガンドによって刺激されると、T細胞を活性化し、チミジン取り込みなどを促進させる。異なった個体由来のDCとT細胞とを共存させる混合リンパ球反応では、DCとT細胞が相互作用を起こすことで、T細胞の活性化が起こる。本発明のアンタゴニスティック抗体は、CD40に結合することにより、上記相互作用を阻害し、結果としてチミジンの取り込みが抑制される。この場合の抗体濃度は、少なくとも0.001μg/mlであり、好ましくは0.1〜10μg/mlである(実施例10を参照のこと)。   (j) Antagonistic to CD40 on DC. That is, CD40L relaxes or neutralizes the activity of activating DC. When stimulated by a ligand on a T cell in which DC coexists, it activates the T cell and promotes thymidine incorporation. In a mixed lymphocyte reaction in which DCs and T cells derived from different individuals coexist, activation of T cells occurs when DCs and T cells interact. The antagonistic antibody of the present invention inhibits the above interaction by binding to CD40, and as a result, thymidine incorporation is suppressed. The antibody concentration in this case is at least 0.001 μg / ml, preferably 0.1 to 10 μg / ml (see Example 10).

上記アンタゴニスティック抗体は、例えば、ハイブリドーマKM281-1-10(FERM BP-7579)、KM281-2-10-1-2(FERM BP-7580)(2001年5月9日付、独立行政法人産業技術総合研究所 特許生物寄託センター(茨城県つくば市東1丁目1番地1中央第6))、4D11(FERM BP-7758)により産生される。   The above antagonistic antibodies are, for example, hybridomas KM281-1-10 (FERM BP-7579), KM281-2-10-1-2 (FERM BP-7580) (incorporated administrative agency industrial technology dated May 9, 2001) Produced by 4D11 (FERM BP-7758), Research Center for Biological Biology (1st, 1st East, 1st Street, Tsukuba, Ibaraki).

(3) 本発明の抗体は、当業者に周知である遺伝子工学的改変、すなわち抗体重鎖のサブクラスを規定する領域を他のサブクラスを規定する領域に置換することにより、異なるサブクラスのものに変換しうる(例えば、EP 314161公報を参照のこと)。重鎖(heavy chain)の可変領域を、そのまま他のサブクラスの定常領域(constant region)につなげることができる。例えば、本件発明の抗体のサブクラスをIgG2あるいはIgG4に変換することにより、Fcレセプターに対する結合度を低下させることが可能である。具体的には、Kabatら(Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institute of Health, Bethesda, Md.(1991))による、ヒト抗体重鎖、EU index 118(Ala),119(Ser)部位にNheI site(GCTAGC)を導入し、この制限酵素を使って消化することにより、アミノ酸を変えずに、他のサブクラスのIgGとつなぎかえることができる。さらに、定常領域のアミノ酸配列を人為的に改変すること、あるいはそのような配列を有する定常領域配列と本発明の抗体の可変領域とを結合することにより、Fcレセプターに対する結合度を低下させるこや(Lund J., et al., J. Immunol. 1991 vol147:2657-2662 )、CDC活性を増加または減少することも可能である(Tao M., et. Al., J. Exp. Med. 1991 vol 1025-1028, Idusogie E E., et. Al., J. Immunol. 2001 vol166:2571-5) 。また、ADCCやCDCなどの作用を避けるために、予めサブクラスがIgG2やIgG4の抗体のみを選別することも可能である。また、本件発明の抗体に、放射性核種、細菌毒素、化学療法剤、プロドラッグなどを結合させることにより癌などの疾患の治療効果をさらに増強することも可能である。 (3) The antibodies of the present invention can be converted into those of different subclasses by genetic engineering modifications well known to those skilled in the art, that is, by substituting regions that define subclasses of antibody heavy chains with regions that define other subclasses. (See, for example, EP 314161). The variable region of the heavy chain can be directly connected to the constant region of another subclass. For example, the degree of binding to the Fc receptor can be reduced by converting the antibody subclass of the present invention into IgG2 or IgG4. Specifically, Kabat et al. (Sequences of Proteins of Immunological Interest, 5th Ed.Public Health Service, National Institute of Health, Bethesda, Md. (1991)), human antibody heavy chain, EU index 118 (Ala), 119 By introducing an NheI site (GCTAGC) into the (Ser) site and digesting with this restriction enzyme, it can be connected to other subclass IgG without changing the amino acid. Furthermore, by artificially modifying the amino acid sequence of the constant region, or by binding the constant region sequence having such a sequence to the variable region of the antibody of the present invention, the degree of binding to the Fc receptor may be reduced. (Lund J., et al., J. Immunol. 1991 vol147: 2657-2662), it is also possible to increase or decrease CDC activity (Tao M., et. Al., J. Exp. Med. 1991 vol 1025-1028, Idusogie E E., et. Al., J. Immunol. 2001 vol166: 2571-5). In addition, in order to avoid the action of ADCC, CDC, etc., it is possible to select only antibodies having subclass IgG2 or IgG4 in advance. In addition, the therapeutic effect of diseases such as cancer can be further enhanced by binding a radionuclide, a bacterial toxin, a chemotherapeutic agent, a prodrug or the like to the antibody of the present invention.

4.医薬組成物
また、本発明の抗体の精製された製剤を含有する医薬組成物もまた、本発明の範囲内に含まれる。このような医薬組成物は、好ましくは、抗体に加えて、生理学的に許容され得る希釈剤またはキャリアを含んでおり、他の抗体または抗生物質のような他の薬剤との混合物であってもよい。適切なキャリアには、生理的食塩水、リン酸緩衝生理食塩水、リン酸緩衝生理食塩水グルコース液、および緩衝生理食塩水が含まれるが、これらに限定されるものではない。或いは、抗体は凍結乾燥(フリーズドライ)し、必要とされるときに上記のような緩衝水溶液を添加することにより再構成して使用してもよい。投与経路は、経口ルート、並びに静脈内、筋肉内、皮下および腹腔内の注射または配薬を含む非経腸的ルートである。
4). Pharmaceutical composition A pharmaceutical composition containing a purified preparation of the antibody of the present invention is also included in the scope of the present invention. Such a pharmaceutical composition preferably includes a physiologically acceptable diluent or carrier in addition to the antibody, and may be a mixture with other agents such as other antibodies or antibiotics. Good. Suitable carriers include, but are not limited to, physiological saline, phosphate buffered saline, phosphate buffered saline glucose solution, and buffered saline. Alternatively, the antibody may be lyophilized (freeze-dried) and reconstituted by adding a buffered aqueous solution as described above when needed. The routes of administration are oral routes and parenteral routes including intravenous, intramuscular, subcutaneous and intraperitoneal injection or delivery.

この場合、本発明の抗体の有効量と適切な希釈剤及び薬理学的に使用し得るキャリアとの組合せとして投与される有効量は、1回につき体重1kgあたり0.1mg〜100mgであり、2日から8週間間隔で投与される。   In this case, the effective amount administered as a combination of an effective amount of the antibody of the present invention and an appropriate diluent and a pharmacologically usable carrier is 0.1 mg to 100 mg per kg body weight at a time, and 2 days From 8 weeks.

本発明の抗体を含む医薬組成物を使用する場合は、アゴニスティック抗体については、免疫賦活化剤(抗ウィルス剤、抗感染症剤)、抗腫瘍剤、自己免疫疾患治療剤であり、これらの疾患が複数併発してもよい。あるいは、ガン特異的ペプチドなどのワクチンとアジュバントとして併用することもできる。また、アンタゴニスティック抗体については、臓器移植時における免疫抑制剤(膵島移植や腎臓などの移植時における拒絶反応、GVHDの予防又は治療剤)として、あるいは自己免疫疾患(例えば、リウマチ、動脈硬化治療薬、多発性硬化症、全身性エリトマトーデス、特発性血小板減少症、クローン病など)治療剤、喘息などアレルギー治療剤、血液凝固第VIII因子阻害症候群の治療薬として有用であり、これらの疾患が複数併発してもよい。   When the pharmaceutical composition containing the antibody of the present invention is used, the agonistic antibody is an immunostimulating agent (antiviral agent, anti-infective agent), antitumor agent, autoimmune disease therapeutic agent, Multiple diseases may occur. Alternatively, a vaccine such as a cancer-specific peptide can be used in combination as an adjuvant. Antagonistic antibodies can be used as immunosuppressants at the time of organ transplantation (rejection at the time of islet transplantation or kidney transplantation, preventive or therapeutic agents for GVHD), or autoimmune diseases (eg, rheumatism, arteriosclerosis treatment). Drugs, multiple sclerosis, systemic lupus erythematosus, idiopathic thrombocytopenia, Crohn's disease, etc.), useful as therapeutic agents for allergies such as asthma, and blood coagulation factor VIII inhibition syndrome. May be combined.

CD40が関与する疾患の治療手段として、抗CD40抗体を用いる場合、DC細胞の機能を指標に、抗体を選択することにより、より良い治療効果をもたらす抗体が得られると期待できる。   When an anti-CD40 antibody is used as a treatment for a disease involving CD40, it can be expected that an antibody having a better therapeutic effect can be obtained by selecting the antibody using the function of DC cells as an index.

アゴニスティック抗体では、よりDCの活性化ができる抗体を選抜することにより、免疫増強の作用の強い抗体が得られることが期待される。さらに成熟DCのIL-12の生産促進を指標とすることで、CTL誘導作用の強い抗体が得られる。CTL誘導により、ウィルス感染細胞や腫瘍細胞を除去する効果の高い抗体が得られる。また、相乗効果が期待できることからCD40に結合する抗体でありながら、CD40リガンドのCD40に対する結合は阻害しないような抗体が望ましい。癌治療を考えた場合、CD40を発現する癌細胞に直接細胞死を誘導あるいは増殖を抑制し、かつDC細胞を効率的に活性化する抗体があれば、相乗的な効果が期待され、CD40を発現しない腫瘍にも使用可能な治療薬となると考えられる。この抗体はウィルス感染症の治療薬や抗腫瘍薬として有用と考えられる。   As for an agonistic antibody, it is expected that an antibody having a strong immunity enhancing effect can be obtained by selecting an antibody that can activate DC more. Furthermore, by using IL-12 production promotion of mature DC as an index, an antibody having a strong CTL-inducing action can be obtained. By CTL induction, an antibody having a high effect of removing virus-infected cells and tumor cells can be obtained. In addition, since a synergistic effect can be expected, an antibody that binds to CD40 but does not inhibit binding of CD40 ligand to CD40 is desirable. When considering cancer treatment, if there is an antibody that directly induces cell death or suppresses proliferation of cancer cells expressing CD40 and efficiently activates DC cells, a synergistic effect is expected. It is considered to be a therapeutic agent that can be used for tumors that do not develop. This antibody is considered useful as a therapeutic agent for viral infections and an antitumor agent.

一方、CD40に特異的に結合し、CD40Lの結合を抑制し、なおかつ、CD40を活性化しない抗体についても、B細胞に対するリガンドの作用を抑制するのみならず、DC細胞への作用を抑制できることが望まれる。しかし、今まで得られた、抗体はB細胞に対する効果を指標にとられてきたことから、樹状細胞にも強い抑制作用を持つ抗体を取得し、医薬品として開発することには大きな意義がある。さらに上述のように抗CD40抗体は架橋によって、全く逆の作用が懸念されるため、架橋によってもCD40を活性化しない抗体が必要とされる。これまでに報告されたヒトCD40に対する、マウス等の非ヒト哺乳動物由来のモノクローナル抗体、およびマウスモノクローナル抗体の可変領域とヒト免疫グロブリンの定常領域からなるキメラ抗体やCDRグラフティングによるヒト型化抗体は、抗原性を持つことが懸念されるため、CD40リガンドとの結合を阻害する抗体としてはヒト抗体が望ましい。   On the other hand, an antibody that specifically binds to CD40, suppresses binding of CD40L, and does not activate CD40 not only suppresses the action of the ligand on B cells but also can suppress the action on DC cells. desired. However, since the antibodies obtained so far have been taken with the effect on B cells as an index, it is of great significance to acquire antibodies with strong inhibitory action on dendritic cells and develop them as pharmaceuticals. . Furthermore, as described above, anti-CD40 antibodies are feared to have completely opposite effects due to cross-linking, and therefore antibodies that do not activate CD40 even by cross-linking are required. Monoclonal antibodies derived from non-human mammals such as mice, chimeric antibodies consisting of variable regions of mouse monoclonal antibodies and constant regions of human immunoglobulin, and humanized antibodies by CDR grafting to human CD40 reported so far Since there is a concern about having antigenicity, a human antibody is desirable as an antibody that inhibits the binding to CD40 ligand.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例に技術的範囲が限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

〔実施例1〕 抗原の作製
(1)細胞
EL-4細胞は、マウス由来のT細胞樹立株であり、容易に入手することができる(ATCC No.:TIB-39)。Ramos B 細胞(ATCC No.:CRL-1596)並びにマウス抗CD40抗体産生ハイブリドーマ G28-5(HB-9110)及び5D12(HB-11339)は、ATCCから購入した。
[Example 1] Production of antigen
(1) Cell
EL-4 cells are a mouse-derived T cell establishment strain and can be easily obtained (ATCC No .: TIB-39). Ramos B cells (ATCC No .: CRL-1596) and mouse anti-CD40 antibody-producing hybridomas G28-5 (HB-9110) and 5D12 (HB-11339) were purchased from ATCC.

(2) 抗原の発現と精製
ヒトCD40cDNA(Genbank Accession Number: NM_001250)を鋳型として、以下のプライマーを用いて、PCRにより(95℃ 5秒、55℃ 30秒、72℃ 30秒)×20サイクルの条件で細胞外領域を増幅した。
プライマー1:5'-CCCAGATCTGTCCATCCAGAACCACCCACTGCATGCAGAG-3'(配列番号1)
プライマー2:5'-ACAAGATCTGGGCTCTACGTATCTCAGCCGATCCTGGGGAC-3'(配列番号2)
(2) Expression and purification of antigen Using human CD40 cDNA (Genbank Accession Number: NM_001250) as a template and the following primers, PCR (95 ° C 5 seconds, 55 ° C 30 seconds, 72 ° C 30 seconds) × 20 cycles The extracellular region was amplified under conditions.
Primer 1: 5'-CCCAGATCTGTCCATCCAGAACCACCCACTGCATGCAGAG-3 '(SEQ ID NO: 1)
Primer 2: 5'-ACAAGATCTGGGCTCTACGTATCTCAGCCGATCCTGGGGAC-3 '(SEQ ID NO: 2)

増幅したcDNAは、pFastBacベクター(Gibco BRL)の、メリチンシグナル配列の後、ヒトIgG1由来FC又はマウスIgG2a由来FC領域の前に挿入した。CD40生産のため、組換えバキュロウィルスは、使用説明書にしたがって作成した。Tn5細胞を組替えウィルスで感染させた後、4日間培養した。上清は、0.22nmフィルターで処理した後、ProteinG sepharose(Amersham Pharmacia)を添加し、4℃で静かに振盪した。一晩後、sepharoseをカラムに移し、20倍容量のPBSで洗浄した。ヒトCD40 FC蛋白質は、20mMグリシン緩衝液(pH3.0)により溶出した。CD40を細胞表面に発現させるためのベクターは、Randolph J. Noelleから入手した(Inui, S et al.,EJI, 20,1747-1753,1990)。全長cDNAはXbaIにより酵素切断し、pCDNA3(INVITROGEN)に挿入した。ベクターをEL-4細胞に導入し、0.5mg/mlのG418(Gibco BRL)存在下で培養することにより安定発現株を得た。CD40の発現は、FITC-結合抗ヒトCD40抗体(Pharmingen)を使い、FACS解析により確認した。   The amplified cDNA was inserted into the pFastBac vector (Gibco BRL) after the melittin signal sequence and before the human IgG1-derived mouse or mouse IgG2a-derived FC region. For production of CD40, recombinant baculovirus was prepared according to the instructions for use. Tn5 cells were infected with the recombinant virus and then cultured for 4 days. The supernatant was treated with a 0.22 nm filter, Protein G sepharose (Amersham Pharmacia) was added, and the mixture was gently shaken at 4 ° C. After one night, sepharose was transferred to a column and washed with 20 volumes of PBS. Human CD40 FC protein was eluted with 20 mM glycine buffer (pH 3.0). A vector for expressing CD40 on the cell surface was obtained from Randolph J. Noelle (Inui, S et al., EJI, 20, 1747-1753, 1990). The full-length cDNA was digested with XbaI and inserted into pCDNA3 (INVITROGEN). The vector was introduced into EL-4 cells and cultured in the presence of 0.5 mg / ml G418 (Gibco BRL) to obtain a stable expression strain. Expression of CD40 was confirmed by FACS analysis using FITC-conjugated anti-human CD40 antibody (Pharmingen).

〔実施例2〕 免疫用マウスの作製
免疫に用いたマウスは、内因性Ig重鎖及びκ軽鎖破壊の両者についてホモ接合体の遺伝的背景を有しており、かつ、ヒトIg重鎖遺伝子座を含む14番染色体断片(SC20)及びヒトIgκ鎖トランスジーン(KCo5)を同時に保持する。このマウスはヒトIg重鎖遺伝子座を持つ系統Aのマウスと、ヒトIgκ鎖トランスジーンを持つ系統Bのマウスとの交配により作製した。系統Aは、内因性Ig重鎖及びκ軽鎖破壊の両者についてホモ接合体であり、子孫伝達可能な14番染色体断片 (SC20)を保持するマウス系統であり、例えば富塚らの報告(Tomizuka. et al., Proc Natl Acad Sci USA., 2000 Vol97:722)に記載されている。A系統マウスを免疫することによって、以下に示すハイブリドーマ、F2-103, F5-77を取得した。また、系統Bは内因性Ig重鎖及びκ軽鎖破壊の両者についてホモ接合体であり、ヒトIgκ鎖トランスジーン(KCo5)を保持するマウス系統(トランスジェニックマウス)であり、例えばFishwildらの報告(Nat Biotechnol., 1996 Vol14:845)に記載されている。
[Example 2] Preparation of mouse for immunization The mouse used for immunization has a genetic background of homozygote for both endogenous Ig heavy chain and κ light chain disruption, and the human Ig heavy chain gene The chromosome 14 fragment (SC20) containing the locus and the human Igκ chain transgene (KCo5) are simultaneously retained. This mouse was prepared by crossing a strain A mouse having a human Ig heavy chain locus with a strain B mouse having a human Ig kappa chain transgene. Strain A is a mouse strain that is homozygous for both endogenous Ig heavy chain and kappa light chain disruption and retains a chromosome 14 fragment (SC20) capable of offspring transmission. For example, Totsuka et al. (Tomizuka. et al., Proc Natl Acad Sci USA., 2000 Vol97: 722). The following hybridomas, F2-103 and F5-77, were obtained by immunizing strain A mice. Line B is a mouse line (transgenic mouse) that is homozygous for both endogenous Ig heavy chain and κ light chain disruption and carries the human Ig κ chain transgene (KCo5), as reported by Fishwild et al. (Nat Biotechnol., 1996 Vol 14: 845).

系統Aの雄マウスと系統Bの雌マウス、あるいは系統Aの雌マウスと系統Bの雄マウスの交配により得られた、血清中にヒトIg重鎖及びκ軽鎖が同時に検出される個体(Ishida&Lonberg, IBC's 11th Antibody Engineering, Abstract 2000)を、以下の免疫実験に用いた。なお、前記ヒト抗体産生マウスは、契約を結ぶことによって、麒麟麦酒株式会社より入手可能である。前記マウスを免疫することによって、以下に示すハイブリドーマ、KM302-1、KM341-1-19、KM643-4-11、2053、2105、3821、3822、285、110、115、 KM281-1-10、KM281-2-10-1-2、KM283-5、KM292-1-24、KM225-2-56、KM341-6-9、4D11、5H10、11E1、5G3、3811、3411、3417を取得した。また、Kuroiwaらが報告しているヒト抗体Lambda鎖を保持するキメラマウス(Kuroiwa et. Al., Nat Biotechnol., 2000 vol 18:1086)も以下の免疫実験に用いた。このマウスからはハイブリドーマF4-465を取得した。   Individuals with human Ig heavy chain and κ light chain detected simultaneously in serum obtained by mating of male mice of line A and female mice of line B, or female mice of line A and male mice of line B (Ishida & Lonberg , IBC's 11th Antibody Engineering, Abstract 2000) was used for the following immunization experiments. The human antibody-producing mouse can be obtained from Soba Co., Ltd. by signing a contract. By immunizing the mice, the following hybridomas, KM302-1, KM341-1-19, KM643-4-11, 2053, 2105, 3821, 3822, 285, 110, 115, KM281-1-10, KM281 -2-10-1-2, KM283-5, KM292-1-24, KM225-2-56, KM341-6-9, 4D11, 5H10, 11E1, 5G3, 3811, 3411, 3417 were obtained. A chimeric mouse (Kuroiwa et. Al., Nat Biotechnol., 2000 vol 18: 1086) carrying the human antibody Lambda chain reported by Kuroiwa et al. Was also used in the following immunization experiment. Hybridoma F4-465 was obtained from this mouse.

〔実施例3〕 ヒトCD40に対するヒトモノクローナル抗体の調製
本実施例におけるモノクローナル抗体の作製は、単クローン抗体実験操作入門(安東民衛ら著作、講談社発行 1991)に記載される一般的方法に従って調製した。免疫原としてのヒトCD40は、実施例1で調製したヒトCD40ヒトFCとCD40発現EL-4細胞を用いた。被免疫動物は、実施例2で作製したヒト免疫グロブリンを産生するヒト抗体産生マウスを用いた。
[Example 3] Preparation of human monoclonal antibody against human CD40 Preparation of monoclonal antibody in this example was prepared according to the general method described in the introduction to monoclonal antibody experimental procedures (authored by Ando Tamie et al., Kodansha 1991). . As human CD40 as an immunogen, human CD40 human FC and CD40-expressing EL-4 cells prepared in Example 1 were used. As the immunized animal, the human antibody-producing mouse producing human immunoglobulin prepared in Example 2 was used.

ヒト抗体産生マウスに、CD40:hFcを1個体当たり2から100μg/回で免疫した。抗原溶液は初回を除いて等量の不完全フロイントアジュバント(シグマ)と混合し、皮下に数カ所に分けて注入した。約10日から3週間ごとに3-4回免疫を行った。初回は不完全フロイントアジュバント(シグマ)を用いた。マウスの尾から採血し、血清中のCD40に対するヒト抗体γおよびκを、ELISAを用いて測定した。脾臓を摘出する3-4日前に尾静脈より、PBSに溶解したCD40:Fcを20μg注射し最終免疫した。   Human antibody-producing mice were immunized with CD40: hFc at 2 to 100 μg / dose per individual. The antigen solution was mixed with an equal volume of incomplete Freund's adjuvant (Sigma) except for the first time, and injected subcutaneously at several locations. Immunization was performed 3-4 times every 3 weeks from about 10 days. The first time, incomplete Freund's adjuvant (Sigma) was used. Blood was collected from the tail of the mouse, and human antibodies γ and κ against CD40 in the serum were measured using ELISA. The final immunization was performed by injecting 20 μg of CD40: Fc dissolved in PBS from the tail vein 3-4 days before excision of the spleen.

ヒト抗体産生マウスに、ヒトCD40を発現するマウスEL-4細胞を免疫した。EL-4細胞108個/mlでPBSに懸濁し、予めPBSでエマルジョン化した等量のRIBIアジュバントと緩やかに混合した。細胞は約10日から3週間ごとに3-5回免疫を行った。アジュバントを用いない場合は、8000radでX線照射し用いた。 Human antibody-producing mice were immunized with mouse EL-4 cells expressing human CD40. It was suspended in PBS at 10 8 EL-4 cells / ml and gently mixed with an equal amount of RIBI adjuvant pre-emulsified with PBS. Cells were immunized 3-5 times every 3 weeks from about 10 days. When no adjuvant was used, X-ray irradiation was performed at 8000 rad.

免疫されたマウスから脾臓を外科的に取得し、回収した脾臓細胞をマウスミエローマSP2/0(ATCC No.: CRL1581)と5:1で混合し、融合剤としてポリエチレングリコール1500(Boehringer Mannheim社製)を用いて細胞融合させることにより多数のハイブリドーマを作製した。ハイブリドーマの選択は、10%のウシ胎児血清(Fetal Calf Serum、FCS)とヒポキサンチン(H)、アミノプテリン(A)、チミジン(T)を含有するHAT含有DMEM培地(Gibco BRL社製)中で培養することにより行った。さらに、HT含有DMEM培地を用いて限界希釈法によりシングルクローンにした。培養は、96ウェルマイクロタイタープレート(ベクトンディッキンソン社製)中で行った。抗ヒトCD40ヒトモノクローナル抗体を産生するハイブリドーマクローンの選択(スクリーニング)は、実施例4で後述する酵素標識免疫吸着アッセイ(ELISA)および蛍光活性化セルソーター(FACS)により測定することにより行った。   The spleen was surgically obtained from the immunized mouse, and the collected spleen cells were mixed with mouse myeloma SP2 / 0 (ATCC No .: CRL1581) 5: 1, and polyethylene glycol 1500 (manufactured by Boehringer Mannheim) as a fusion agent A number of hybridomas were prepared by cell fusion using Hybridomas were selected in HAT-containing DMEM medium (Gibco BRL) containing 10% fetal calf serum (Fetal Calf Serum, FCS), hypoxanthine (H), aminopterin (A), and thymidine (T). This was done by culturing. Further, single clones were made by limiting dilution using HT-containing DMEM medium. The culture was performed in a 96-well microtiter plate (Becton Dickinson). Selection (screening) of a hybridoma clone producing an anti-human CD40 human monoclonal antibody was performed by measuring with an enzyme-labeled immunosorbent assay (ELISA) and a fluorescence activated cell sorter (FACS) described later in Example 4.

ヒトモノクローナル抗体産生ハイブリドーマのELISAによるスクリーニングは、以下に述べる3種類のELISAおよびFACS解析により、ヒト免疫グロブリンγ鎖(hIgγ)及びヒト免疫グロブリン軽鎖κを有し、かつヒトCD40に特異的な反応性を有するヒトモノクローナル抗体を産生する多数のハイブリドーマを得た。なお、本実施例を含め以下のいずれの実施例中、並びに実施例における試験結果として示した表または図中においては、各々の本発明のヒト抗ヒトCD40モノクローナル抗体を産生するハイブリドーマクローンは記号を用いて命名した。また、当該記号の次に「抗体」を付したものは、それぞれのハイブリドーマにより産生される抗体、または当該ハイブリドーマから単離された抗体遺伝子(全長あるいは可変領域)を保持する宿主細胞により生産された組換え抗体を意味する。また文脈上明らかな範囲において、ハイブリドーマクローンの名称が抗体の名称をあらわす場合がある。   Screening of human monoclonal antibody-producing hybridomas by ELISA is based on the following three types of ELISA and FACS analysis, and has human immunoglobulin gamma chain (hIgγ) and human immunoglobulin light chain kappa and is specific to human CD40 A number of hybridomas producing human monoclonal antibodies with sex were obtained. In any of the following examples including this example, as well as in the tables or figures shown as test results in the examples, each hybridoma clone producing the human anti-human CD40 monoclonal antibody of the present invention has a symbol. Named. In addition, the ones with “antibodies” next to the symbols were produced by the host cells carrying the antibodies produced by the respective hybridomas or antibody genes (full length or variable regions) isolated from the hybridomas. Recombinant antibody is meant. In addition, the name of the hybridoma clone may represent the name of an antibody within a range that is clear from the context.

以下のハイブリドーマクローンはシングルクローンを表わす。
アゴニスティック抗体:
KM302-1、KM341-1-19、KM643-4-11、2053、2105、3821、3822、285、110、115、F1-102、F2-103、F5-77、F5-157
アンタゴニスティック抗体:
KM281-1-10、KM281-2-10-1-2、KM283-5、KM292-1-24、KM225-2-56、KM341-6-9、4D11、5H10、11E1、5G3、3811、3411、3417、F4-465
The following hybridoma clones represent single clones.
Agonistic antibodies:
KM302-1, KM341-1-19, KM643-4-11, 2053, 2105, 3821, 3822, 285, 110, 115, F1-102, F2-103, F5-77, F5-157
Antagonistic antibodies:
KM281-1-10, KM281-2-10-1-2, KM283-5, KM292-1-24, KM225-2-56, KM341-6-9, 4D11, 5H10, 11E1, 5G3, 3811, 3411, 3417, F4-465

それらの内3つのハイブリドーマクローンKM 302-1、KM 281-1-10およびKM 281-2-10-1-2を平成13年(2001年)5月9日付で、クローンKM341-1-19および4D11を平成13年(2001年)9月27日付で、クローン2105を平成14年(2002年)4月17日付で独立行政法人産業技術総合研究所 特許生物寄託センター(茨城県つくば市東1丁目1番地1中央第6)にブダペスト条約に基づき国際寄託した。F2-103、F5-77およびF5-157の重鎖および軽鎖の可変領域を有するプラスミドを2001年4月19日付で, ハイブリドーマクローンF1-102およびF4-465を2001年4月24日付でATCC (American Type Culture Collection, 10801 University Blvd., Manassas, Virginia,USA)(アメリカ国立菌培養収集所、アメリカ合衆国 ヴァージニア州 20110-2209 マナサス 10801 ユニバーシティブルバード)にブダペスト条約に基づき国際寄託した(表2)。   Three of these hybridoma clones, KM 302-1, KM 281-1-10 and KM 281-2-10-1-2, were cloned on May 9, 2001, with clones KM341-1-19 and 4D11 dated September 27, 2001, and clone 2105 dated April 17, 2002, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st East, Tsukuba City, Ibaraki) Deposited internationally at address 1 center 6) under the Budapest Treaty. Plasmids with F2-103, F5-77 and F5-157 heavy and light chain variable regions dated April 19, 2001, and hybridoma clones F1-102 and F4-465 dated April 24, 2001. (American Type Culture Collection, 10801 University Blvd., Manassas, Virginia, USA) (American National Culture Collection, Virginia 20110-2209 Manassas 10801 University Boulevard) was deposited internationally under the Budapest Treaty (Table 2).

Figure 2006342173
Figure 2006342173

〔実施例4〕 ハイブリドーマのスクリーニング
ヒト免疫グロブリンγ鎖を有するモノクローナル抗体の検出
実施例1で作製したヒトCD40マウスFC(1μg/ml) 50μl/ウェルを、ELISA用96穴マイクロプレート(Maxisorp、Nunc社製)の各ウェルに加え、4℃でインキュベートし、ヒトCD40マウスFCをマイクロプレートに吸着させた。次いで、上清を捨て、各ウェルにブロッキング試薬(ブロックエース、 大日本製薬)を加え室温でインキュベートしブロックした。各ウェルに、各々のハイブリドーマの培養上清(50μl)を加え、反応させた後、各ウェルを、0.1%Tween20含有リン酸緩衝液(PBS-T)で洗浄した。次いで、過酸化酵素で標識されたヤギ抗ヒトIgG(γ)抗体(シグマ、A0170)を1%FBS含有PBS-Tで5,000倍に希釈した溶液(50μl/ウェル)を、各ウェルに加え、インキュベートした。マイクロプレートを、PBS-Tで3回洗浄後、発色基質液(TMB、50μl/ウェル、住友ベークライト社製)を各ウェルに加え、室温下で30分間インキュベートした。各ウェルに、停止液(50μl/ウェル)を加え、反応を止めた。波長450nmでの吸光度をマイクロプレートリ−ダ−で測定した。陽性wellの培養上清をFACSにて解析し,Ramos細胞を染色するwellを選び、その細胞を限界希釈法でクローニングし、1wellについて1クローンの細胞を得た。ヒトCD40マウスFCを用いたELISAでhκ陽性を確認した。その結果、20個体のマウスから173クローンの抗ヒトCD40抗体が取得できた。その一部を表3(アゴニスティック抗体)及び表4(アンタゴニスティック抗体)に示す。アゴニスティック抗体のうち、少なくともKM341-1-19と2105は、CD40Lが発現している細胞、CD40が発現している細胞および抗体を用いた競合試験でリガンドとの顕著な競合を示さなかった。
[Example 4] Screening of hybridomas Detection of monoclonal antibody having human immunoglobulin γ chain 50 μl / well of human CD40 mouse FC (1 μg / ml) prepared in Example 1 was added to a 96-well microplate for ELISA (Maxisorp, Nunc) And CD4 mouse FC were adsorbed on a microplate. Next, the supernatant was discarded, and a blocking reagent (Block Ace, Dainippon Pharmaceutical) was added to each well and incubated at room temperature for blocking. The culture supernatant (50 μl) of each hybridoma was added to each well and reacted, and then each well was washed with a phosphate buffer solution (PBS-T) containing 0.1% Tween20. Next, a solution (50 μl / well) of a goat anti-human IgG (γ) antibody labeled with peroxidase (Sigma, A0170) diluted 5,000 times with PBS-T containing 1% FBS (50 μl / well) was added to each well and incubated. did. After the microplate was washed 3 times with PBS-T, a chromogenic substrate solution (TMB, 50 μl / well, manufactured by Sumitomo Bakelite) was added to each well and incubated at room temperature for 30 minutes. Stop solution (50 μl / well) was added to each well to stop the reaction. Absorbance at a wavelength of 450 nm was measured with a microplate reader. The culture supernatant of positive wells was analyzed by FACS, the wells that stained Ramos cells were selected, and the cells were cloned by the limiting dilution method to obtain one clone of cells per well. Hκ positive was confirmed by ELISA using human CD40 mouse FC. As a result, 173 clones of anti-human CD40 antibody were obtained from 20 mice. A part thereof is shown in Table 3 (agonistic antibody) and Table 4 (antagonistic antibody). Among the agonistic antibodies, at least KM341-1-19 and 2105 did not show significant competition with ligands in competition tests using cells expressing CD40L, cells expressing CD40 and antibodies.

Figure 2006342173
Figure 2006342173

Figure 2006342173
Figure 2006342173

ヒト免疫グロブリン軽鎖κ(Igκ)を有するモノクローナル抗体の検出は、過酸化酵素で標識したヤギ抗ヒトIgκ抗体(1,000倍希釈、50μl/ウェル、Southern Biotechnology社製)を用いた他は、上述したヒト免疫グロブリンγ鎖のELISAと同様に行った。   The detection of the monoclonal antibody having human immunoglobulin light chain κ (Igκ) was described above except that a goat anti-human Igκ antibody labeled with peroxidase (1,000-fold dilution, 50 μl / well, manufactured by Southern Biotechnology) was used. The same as ELISA for human immunoglobulin γ chain.

各モノクローナル抗体のサブクラス同定は、それぞれ過酸化酵素で標識したヒツジ抗ヒトIgG1抗体、ヒツジ抗ヒトIgG2抗体、ヒツジ抗ヒトIgG3抗体又はヒツジ抗ヒトIgG4抗体(各2,000倍希釈、50μl/ウェル、The Binding Site社製)を用いた他は、上述したヒト免疫グロブリンγ鎖のELISAと同様に行った。   The subclass identification of each monoclonal antibody was carried out by using a sheep anti-human IgG1 antibody, a sheep anti-human IgG2 antibody, a sheep anti-human IgG3 antibody or a sheep anti-human IgG4 antibody labeled with peroxidase (diluted 2,000 times each, 50 μl / well, The Binding) The same procedure as described above for the human immunoglobulin γ chain ELISA was performed except that Site Co.) was used.

ヒトCD40発現細胞に対する各モノクローナル抗体の反応試験
CD40が発現していると報告されているRamos細胞株に対する各モノクローナル抗体の反応性の検討をFACS解析で行った。
2x106/mlの濃度でRamos細胞株を0.1%NaN3、2%FCS含有PBSの染色バッファー(SB)に浮遊させた。細胞浮遊液(100μl/ウェル)を96-well 丸底プレート(ベクトンディッキンソン社製)に分注した。各々のハイブリドーマの培養上清(50μl)を加え、氷温下30分間インキュベートした。陰性コントロールとしてヒト血清アルブミンに対するヒトIgG1抗体を用い、ハイブリドーマ培養培地で2μg/mlの濃度に調製し、50μl添加後氷温下15分間インキュベートした。SBで洗浄した後、250倍希釈したR-PE蛍光標識抗ヒト抗体(Southern Biotechnology社製)50μl を加え、氷温下15分間インキュベートした。SBで2回洗浄した後、300-500μlのFACS緩衝液に懸濁し、FACS(FACSort、FACScan、ベクトンディッキンソン社製)で各細胞の蛍光強度を測定した。その結果、Ramos細胞株に結合活性を有する抗体を選別した。
Reaction test of each monoclonal antibody against human CD40 expressing cells
FACS analysis was conducted to examine the reactivity of each monoclonal antibody against the Ramos cell line that is reported to express CD40.
The Ramos cell line was suspended in a staining buffer (SB) containing PBS containing 0.1% NaN 3 and 2% FCS at a concentration of 2 × 10 6 / ml. The cell suspension (100 μl / well) was dispensed into a 96-well round bottom plate (Becton Dickinson). Culture supernatant (50 μl) of each hybridoma was added and incubated at ice temperature for 30 minutes. As a negative control, a human IgG1 antibody against human serum albumin was used, adjusted to a concentration of 2 μg / ml in a hybridoma culture medium, added with 50 μl, and incubated at ice temperature for 15 minutes. After washing with SB, 50 μl of R-PE fluorescently labeled anti-human antibody (manufactured by Southern Biotechnology) diluted 250-fold was added and incubated at ice temperature for 15 minutes. After washing twice with SB, the suspension was suspended in 300-500 μl of FACS buffer, and the fluorescence intensity of each cell was measured with FACS (FACSort, FACScan, Becton Dickinson). As a result, antibodies having binding activity to the Ramos cell line were selected.

〔実施例5〕 各抗体の調製
モノクローナル抗体を含む培養上清の調製は以下の方法にて行った。
G28-5抗体生産ハイブリドーマはATCCより入手した(ATCC No.HB-9110)。抗CD40抗体産生ハイブリドーマをウシインシュリン(5μg/ml、Gibco BRL社製)、ヒトトランスフェリン(5μg/ml、Gibco BRL社製)、エタノールアミン(0.01mM、シグマ社製)、亜セレン酸ナトリウム(2.5x10-5 nM、シグマ社製)含有eRDF培地(極東製薬社製)に馴化した。スピナ−フラスコにて培養し、ハイブリドーマの生細胞率が90%になった時点で培養上清を回収した。回収した上清は、10μm と0.2μmのフィルター(ゲルマンサイエンス社製)に供し、ハイブリドーマ等の雑排物を除去した。
[Example 5] Preparation of each antibody A culture supernatant containing a monoclonal antibody was prepared by the following method.
A G28-5 antibody-producing hybridoma was obtained from ATCC (ATCC No. HB-9110). Anti-CD40 antibody-producing hybridomas were bovine insulin (5 μg / ml, Gibco BRL), human transferrin (5 μg / ml, Gibco BRL), ethanolamine (0.01 mM, Sigma), sodium selenite (2.5 × 10 -5 nM, Sigma) -containing eRDF medium (Kyokuto Pharmaceutical Co., Ltd.). After culturing in a spinner flask, the culture supernatant was recovered when the viable cell rate of the hybridoma reached 90%. The collected supernatant was subjected to 10 μm and 0.2 μm filters (manufactured by Gelman Science) to remove miscellaneous wastes such as hybridomas.

上記培養上清からの抗CD40抗体の精製は以下の方法で行った。抗CD40抗体を含む培養上清をHyper D Protein A カラム(日本ガイシ製)あるいはマウスIgG1の精製にはProtein Gカラム(アマシャムファルマシアバイオテク)を用い、付属の説明書に従い吸着緩衝液としてPBS(-)、溶出緩衝液として0.1 M クエン酸ナトリウム緩衝液(pH 3)を用いてアフィニティー精製した。溶出画分は1 MTris-HCl (pH 8.0) あるいはNa2HPO4溶液を添加してpH7.2 付近に調整した。調製された抗体溶液は、透析膜(10000カット、Spectrum Laboratories社製)あるいはSPカラム(アマシャムファルマシアバイオテク)を用いてPBS(-)に置換し、孔径0.22μm のメンブランフィルターMILLEX-GV(MILLIPORE 製)でろ過滅菌した。精製抗体の濃度は280 nmの吸光度を測定し、1 mg/ml を1.45 OD として算出した。 Purification of the anti-CD40 antibody from the culture supernatant was performed by the following method. The culture supernatant containing anti-CD40 antibody is purified using Hyper D Protein A column (manufactured by NGK) or Protein G column (Amersham Pharmacia Biotech) for purification of mouse IgG1, and PBS (-) as an adsorption buffer according to the attached instructions. Then, affinity purification was performed using 0.1 M sodium citrate buffer (pH 3) as an elution buffer. The elution fraction was adjusted to around pH 7.2 by adding 1 MTris-HCl (pH 8.0) or Na 2 HPO 4 solution. The prepared antibody solution was replaced with PBS (-) using a dialysis membrane (10000 cut, manufactured by Spectrum Laboratories) or SP column (Amersham Pharmacia Biotech), and a membrane filter MILLEX-GV (manufactured by MILLIPORE) with a pore size of 0.22 μm. The solution was sterilized by filtration. The concentration of the purified antibody was calculated by measuring the absorbance at 280 nm and setting 1 mg / ml as 1.45 OD.

〔実施例6〕 Ramos細胞における抗CD40アゴニスティック抗体によるCD95発現促進
5.0x105個/mlのRamos細胞懸濁液を96ウエルプレートに100μl/wellで播種した(1ウェルあたり5x104個)。ハイブリドーマ培養上清又は精製抗体を20μg/mlに培地で希釈し、96ウエルプレートに100μl/wellの濃度で添加した。一晩培養後、細胞を集めR-PE標識抗CD95抗体(Pharmingen NJ)を用い、FACSCanあるいはFACSsort(ベクトンデッキンソン)を使って解析した。図1に結果を示す。図中横軸はCD95の発現強度を示す。抗体添加を太線、未添加を細線により示した。KM302-1抗体は、公知の抗体であるG28-5抗体に比して、CD95発現をより促進することが示された。すなわち、より効果の高いアゴニスティックであることが示された。
[Example 6] Promotion of CD95 expression by anti-CD40 agonistic antibody in Ramos cells
5.0 × 10 5 cells / ml Ramos cell suspension was seeded in a 96-well plate at 100 μl / well (5 × 10 4 cells per well). Hybridoma culture supernatant or purified antibody was diluted to 20 μg / ml with a medium and added to a 96-well plate at a concentration of 100 μl / well. After overnight culture, the cells were collected and analyzed using R-PE labeled anti-CD95 antibody (Pharmingen NJ) using FACSCan or FACSsort (Becton Dickinson). Figure 1 shows the results. In the figure, the horizontal axis represents the expression intensity of CD95. The addition of antibody is indicated by a bold line, and the absence of addition is indicated by a thin line. The KM302-1 antibody was shown to promote CD95 expression more than the known antibody G28-5 antibody. That is, it was shown that it is a more effective agonistic.

〔実施例7〕 Ramos細胞における抗CD40アンタゴニスティック抗体によるCD95発現抑制
1.0x106個/mlのRamos細胞懸濁液を96ウエルプレートに50μl/wellで播種した。ハイブリドーマ培養上清又は精製抗体を2μg/mlに培地で調整し、96ウエルプレートに100μl/well添加した。可溶性CD40リガンド(ALEXIS CORPORATION)を4μg/mlと抗FLAG抗体(M2、シグマ)4μg/mlとを培地に添加し、96ウエルプレートに50μl/well添加した。一晩培養後、細胞を集めR-PE標識抗CD95抗体(Pharmingen NJ)を用い、FACSを使って解析した。図2A、図2B、図3に結果を示す。図中横軸はCD95の発現強度を示す。KM281-1-10、KM281-2-10-1-2、KM283-5、KM292-1-24、KM225-2-56の各ハイブリドーマが生産した抗体では陰性コントロールと同程度までCD95の発現を抑制した。
[Example 7] Suppression of CD95 expression by anti-CD40 antagonistic antibody in Ramos cells
1.0 × 10 6 cells / ml Ramos cell suspension was seeded in a 96-well plate at 50 μl / well. Hybridoma culture supernatant or purified antibody was adjusted to 2 μg / ml with a medium, and added to a 96-well plate at 100 μl / well. 4 μg / ml of soluble CD40 ligand (ALEXIS CORPORATION) and 4 μg / ml of anti-FLAG antibody (M2, Sigma) were added to the medium, and 50 μl / well was added to a 96-well plate. After overnight culture, the cells were collected and analyzed using R-PE labeled anti-CD95 antibody (Pharmingen NJ) using FACS. The results are shown in FIG. 2A, FIG. 2B, and FIG. In the figure, the horizontal axis represents the expression intensity of CD95. The antibodies produced by the hybridomas KM281-1-10, KM281-2-10-1-2, KM283-5, KM292-1-24, and KM225-2-56 suppress the expression of CD95 to the same extent as the negative control. did.

図3において、KM281-1-10抗体(下パネル)は、公知の抗体である5D12抗体(中央パネル)がわずかにしかCD95発現を抑制しなかったのに比して、CD95発現をより抑制することが示された。すなわち、より効果の高いアンタゴニスティックであることが示された。これによってヒトモノクローナル抗体がアンタゴニスティック抗体であることが示された。   In FIG. 3, the KM281-1-10 antibody (lower panel) suppresses CD95 expression more than the known antibody 5D12 antibody (middle panel) suppresses CD95 expression only slightly. It was shown that. That is, it was shown that it is a more effective antagonistic. This indicated that the human monoclonal antibody is an antagonistic antibody.

抗免疫グロブリン抗体による架橋の影響
1.0x106個/mlのRamos細胞懸濁液を96ウエルプレートに50μl/wellで播種した。ハイブリドーマ培養上清又は精製抗体を2μg/mlに培地で調整し、96ウエルプレートに100μl/well添加した。抗ヒトIgG抗体(シグマ、I3382)あるいは抗マウスIgG抗体(Biosource、AMI3401)を4μg/mlとなるよう培地に添加し、96ウエルプレートに50μl/well添加した。一晩培養後、細胞を集めR-PE標識抗CD95抗体(Pharmingen NJ)を用い、FACSを使って解析した。図4、図5に結果を示す。図中横軸はCD95の発現強度を示す。KM281-1-10、KM281-2-10-1-2の各ハイブリドーマが生産した抗体ではCD95の発現を抑制した。しかし、5D12、KM283-5、KM292-1-24、KM225-2-56の各ハイブリドーマが生産した抗体ではCD95の発現を逆に増強した。
Effects of cross-linking with anti-immunoglobulin antibodies
1.0 × 10 6 cells / ml Ramos cell suspension was seeded in a 96-well plate at 50 μl / well. Hybridoma culture supernatant or purified antibody was adjusted to 2 μg / ml with a medium, and added to a 96-well plate at 100 μl / well. Anti-human IgG antibody (Sigma, I3382) or anti-mouse IgG antibody (Biosource, AMI3401) was added to the medium to 4 μg / ml, and 50 μl / well was added to a 96-well plate. After overnight culture, the cells were collected and analyzed using R-PE labeled anti-CD95 antibody (Pharmingen NJ) using FACS. The results are shown in FIGS. In the figure, the horizontal axis represents the expression intensity of CD95. The antibody produced by each of the hybridomas KM281-1-10 and KM281-2-10-1-2 suppressed the expression of CD95. However, the antibodies produced by the hybridomas 5D12, KM283-5, KM292-1-24, and KM225-2-56 enhanced CD95 expression on the contrary.

〔実施例8〕 Ramos細胞における抗CD40アゴニスティック抗体による増殖抑制
1.0x105個/mlのRamos細胞、HS-Sulton懸濁液を96ウエルプレートに100μl/wellで播種した。精製抗体あるいは可溶性CD40リガンドと抗FLAG抗体(M2)との等量混合物を培地に添加し、2日培養後、100μCi/mlの3H-Thymidine (Amersham Pharmacia)を10μl添加した。18時間後、Macro96 Harvester(SKATRON)を用いて、Printed Filtermat A(Wallac)にハーベストし、乾燥後Betap;Scint(Wallac)に良く浸し、パッケージング後、1205 BETAPLATE液体シンチレーションカウンターで活性測定した。図6に結果を示す。図中、縦軸は細胞による3Hチミジンの取り込み量を、横軸は培養液中の抗体あるいはCD40L濃度を示す。Ramos細胞、HS-Sulton細胞ともに、KM302-1抗体を添加した場合に、従来のG28-5抗体やCD40Lと比較して、チミジンの取り込みが低く、KM302-1抗体が腫瘍細胞の増殖を効果的に抑えられるアゴニスティック抗体であることが示された。
[Example 8] Growth inhibition by anti-CD40 agonistic antibody in Ramos cells
1.0 × 10 5 cells / ml Ramos cells and HS-Sulton suspension were seeded in a 96-well plate at 100 μl / well. A purified antibody or an equal mixture of soluble CD40 ligand and anti-FLAG antibody (M2) was added to the medium, and after 2 days of culture, 10 μl of 100 μCi / ml 3 H-Thymidine (Amersham Pharmacia) was added. 18 hours later, using Macro96 Harvester (SKATRON), harvested in Print Filter A (Wallac), dried, soaked well in Betap; Scint (Wallac), packaged, and activity was measured with a 1205 BETAPLATE liquid scintillation counter. Figure 6 shows the results. In the figure, the vertical axis the uptake of 3 H-thymidine by the cells, the abscissa shows the antibody or CD40L concentration in the culture solution. In both Ramos and HS-Sulton cells, when KM302-1 antibody is added, thymidine incorporation is lower than conventional G28-5 antibody and CD40L, and KM302-1 antibody is effective in tumor cell growth. It was shown to be an agonistic antibody that can be suppressed.

〔実施例9〕 CD40アゴニスティック抗体による樹状細胞の活性化
(1) 材料及び方法
組換え型ヒトIL-4はGenzyme techne社より購入した。抗ヒトCD14 MACS beadsはMiltenyi Biotech GmbH社より購入した。LymphoprepはNycomed Pharma ASより購入した。培養に用いた培地は、DC誘導時にはRPMI1640(Gibco BRL)に10% heat inactivated FCS(Cell Culture Technologies), 10mM HEPES(Sigma), 55μM 2-mercaptoethanol (Gibco BRL), 硫酸ストレプトマイシン(明治製菓)を加えて用いた。染色時の細胞洗浄には2% FCS (Cell Culture Technologies), 0.02% Azaid 添加PBS (Sigma)を用いた。細胞凍結時には日本全薬工業社製のセルバンカーを用いた。
[Example 9] Activation of dendritic cells by CD40 agonistic antibody
(1) Materials and Methods Recombinant human IL-4 was purchased from Genzyme techne. Anti-human CD14 MACS beads were purchased from Miltenyi Biotech GmbH. Lymphoprep was purchased from Nycomed Pharma AS. The medium used for the culture was 10% heat inactivated FCS (Cell Culture Technologies), 10 mM HEPES (Sigma), 55 μM 2-mercaptoethanol (Gibco BRL), streptomycin sulfate (Meiji Seika) when DC was induced. Used. For cell washing at the time of staining, 2% FCS (Cell Culture Technologies) and 0.02% Azaid added PBS (Sigma) were used. A cell banker manufactured by Nippon Zenyaku Kogyo Co., Ltd. was used during cell freezing.

(2) 単球由来DCの誘導
末梢血よりLymphoprepを用いた密度勾配遠心により単核球を調製した(PBMC)。これを抗ヒトCD14 MACS beadsでポジティブセレクションすることによりCD14陽性画分と陰性画分に分離した。陽性画分に組換え型ヒトGM-CSF (50ng/ml)と組換え型ヒトIL-4 (100ng/ml)を添加して、10%FCSを添加したRPMI1640培地にて6well プレートで培養した。培養開始時の細胞濃度は1×106/mlで1 wellに3mlずつで行った。培養中は2日に1度の培地交換を行った。培地交換は培養液の1割を遠心チューブにとり遠心し、上清を除去後、とった培養液の2倍容量の新しい培養液(サイトカインなどを上記濃度で含む)で懸濁し、各wellに戻した。培養6日目には細胞を回収し、細胞数を計算後、上記培地に1×106/mlの濃度で懸濁し、抗CD40抗体又はそのアイソタイプ対照を添加して24 wellプレートでさらに4日間の培養を行った。この間培地交換は行わなかった(1ウェルあたりの細胞数1x106個、細胞濃度1x106個/ml)。
(2) Induction of monocyte-derived DC Mononuclear cells were prepared from peripheral blood by density gradient centrifugation using Lymphoprep (PBMC). This was separated into a CD14 positive fraction and a negative fraction by positive selection with anti-human CD14 MACS beads. Recombinant human GM-CSF (50 ng / ml) and recombinant human IL-4 (100 ng / ml) were added to the positive fraction and cultured in a 6-well plate in RPMI1640 medium supplemented with 10% FCS. The cell concentration at the start of the culture was 1 × 10 6 / ml, and 3 ml per well. During the culture, the medium was changed once every two days. To change the medium, centrifuge 10% of the culture solution in a centrifuge tube, remove the supernatant, suspend in a new culture solution (containing cytokines, etc. at the above concentration) twice the volume of the collected culture solution, and return to each well. It was. On the 6th day of culture, cells are collected, the number of cells is calculated, suspended in the above medium at a concentration of 1 × 10 6 / ml, added with anti-CD40 antibody or its isotype control and further cultured in a 24-well plate for 4 days. Was cultured. During this period, the medium was not changed (number of cells per well: 1 × 10 6 cells, cell concentration: 1 × 10 6 cells / ml).

(3) 細胞染色及びフローサイトメーターによる解析
染色には抗HLA-DR抗体(アイソタイプ対照: rat IgG2a)、抗CD86 抗体(アイソタイプ対照:ラットIgG1)、抗CD83抗体(アイソタイプ対照:ラットIgG2b)を用いた。まず、抗体を加え30分、4℃でインキュベートした後、3回の洗浄し、Beckton Dickinson社製FACS Caliburを用いて解析を行った。
(3) Cell staining and analysis by flow cytometer Anti-HLA-DR antibody (isotype control: rat IgG2a), anti-CD86 antibody (isotype control: rat IgG1), anti-CD83 antibody (isotype control: rat IgG2b) are used for staining It was. First, the antibody was added and incubated for 30 minutes at 4 ° C., then washed three times, and analyzed using a FACS Calibur manufactured by Beckton Dickinson.

(4) Mature DCに対するIL-12 secretion能の亢進
上記のように未成熟 DCを得た後、LPS (400pg/ml)とIFNγ (10-3M)を加えさらに2日間の培養後成熟 DCを得た。これに抗CD40抗体またはアイソタイプ対照を10μg/ml加え、24時間後の上清についてIL-12の産生をELISA (Pharmingen社製)法にて測定した。
(4) Enhancement of IL-12 secretion ability against mature DC After obtaining immature DC as described above, LPS (400 pg / ml) and IFNγ (10 -3 M) were added and mature DC was further cultured for 2 days. Obtained. To this, 10 μg / ml of anti-CD40 antibody or isotype control was added, and IL-12 production of the supernatant after 24 hours was measured by ELISA (Pharmingen).

(5) 結果および考察
アゴニスティック抗体であるKM302-1抗体が、DCの成熟化に及ぼす抗体の影響を図7に、成熟DCのIL-12生産に及ぼす影響を図8に示す。G28-5抗体を対照として成熟の度合いを比べた。CD86、HLA-DRの発現を見た結果、G28-5抗体と比較して、KM302-1抗体ではさらに発現が上昇し、すなわち成熟度が亢進させることが示された。また、IL-12の分泌については成熟DCへのKM302-1抗体の処理によって亢進することが示された。以上よりKM302-1抗体が、DCに対するアゴニスティック抗体として作用することが示された。
(5) Results and Discussion FIG. 7 shows the effect of the KM302-1 antibody, which is an agonistic antibody, on DC maturation, and FIG. 8 shows the effect of mature DC on IL-12 production. The degree of maturation was compared using the G28-5 antibody as a control. As a result of observing the expression of CD86 and HLA-DR, it was shown that the KM302-1 antibody further increased the expression, that is, the maturity level was increased, as compared with the G28-5 antibody. It was also shown that IL-12 secretion was enhanced by treatment of mature DC with the KM302-1 antibody. From the above, it was shown that the KM302-1 antibody acts as an agonistic antibody against DC.

〔実施例10〕 DC-MLR
正常ヒトから採取した血液(末梢血)を、2000rpm 10分遠心し、血清を吸い取った。血球分画をPBSで再懸濁し、Ficoll(Amersham Pharmacia)の上に静かに載せた。2000rpm 30分遠心し、中間層のPBMC部分を回収する。PBSで2回洗浄した後、MACSを用い特定の細胞分離に使用した。
Example 10 DC-MLR
Blood collected from normal humans (peripheral blood) was centrifuged at 2000 rpm for 10 minutes, and the serum was sucked off. The blood cell fraction was resuspended in PBS and gently placed on Ficoll (Amersham Pharmacia). Centrifuge at 2000 rpm for 30 minutes to recover the PBMC part of the intermediate layer. After washing twice with PBS, it was used for specific cell separation using MACS.

DC培養のための単球の分離は、MACS(Miltenyi Biotec GmbH)を用い添付の説明書にしたがって行った。簡単に説明すると、PBMC 1x108個に対して、MACS Buffer 800μl,MACS CD14 (Miltenyi Biotec GmbH、502-01)200μlを添加し、4℃で15分処理した。MACS LS カラムに細胞を吸着させ、洗浄した。カラムに吸着した細胞を単球として回収した。カラムに吸着しなかった細胞に、MACS HLA-DR(Miltenyi Biotec GmbH、461-01)を添加し、BSカラムでHLR−DR陽性細胞を除去し、T細胞画分とした。FACSによりCD3陽性細胞の比率を計測し、T細胞画分全体の細胞数より実質的なT細胞数を算出した。得られた単球は、6ウエル培養皿に、1x106細胞/mlの濃度で100ng/mlのIL−4(R&D system), 50ng/ml のG-CSF(KIRIN), 10%のFCS(SIGMA)を含むR0培地(PPMI培地に、β-メルカプトエタノール(Gibco),HEPES(SIGMA)を添加したもの)で培養した。培養5日後に、10ng/mlのLPS(DIFCO)を添加し、成熟DCに分化させた。 Separation of monocytes for DC culture was performed using MACS (Miltenyi Biotec GmbH) according to the attached instructions. Briefly, 800 μl of MACS Buffer and 200 μl of MACS CD14 (Miltenyi Biotec GmbH, 502-01) were added to 1 × 10 8 PBMCs and treated at 4 ° C. for 15 minutes. Cells were adsorbed onto a MACS LS column and washed. Cells adsorbed on the column were collected as monocytes. MACS HLA-DR (Miltenyi Biotec GmbH, 461-01) was added to the cells that were not adsorbed on the column, and HLR-DR positive cells were removed with a BS column to obtain a T cell fraction. The ratio of CD3 positive cells was measured by FACS, and the substantial number of T cells was calculated from the number of cells in the entire T cell fraction. The resulting monocytes were placed in a 6-well culture dish at a concentration of 1 × 10 6 cells / ml, 100 ng / ml IL-4 (R & D system), 50 ng / ml G-CSF (KIRIN), 10% FCS (SIGMA ) Containing R0 medium (PPMI medium supplemented with β-mercaptoethanol (Gibco), HEPES (SIGMA)). After 5 days of culture, 10 ng / ml LPS (DIFCO) was added and differentiated into mature DCs.

MLRは、異なるヒトから分離した、T細胞と成熟DCを混合することにより行った。T細胞/DCの細胞比をそれぞれ、1:80とし、T細胞数は、2x105細胞/ウエルとする。まず最初に、DCに抗体を加え30分間反応させる。その後、T細胞を加え、4日培養した後に、100μCi/mlの3H-Thymidine (Amersham Pharmacia)を10μl添加した。14時間後、Macro96 Harvester(SKATRON)を用いて、Printed Filtermat A (Wallac)にハーベストし、乾燥後Betap;Scint (Wallac)に良く浸し、パッケージング後、1205 BETAPLATE液体シンチレーションカウンターで活性測定した。また未成熟DCを用いたMLRは、異なるヒトから分離した、T細胞と成熟DCを混合することにより行った。T細胞/DCの細胞比をそれぞれ、1:40として同様に行った。図9、図10に結果を示す。KM281-1-10抗体の添加によりチミジンの取り込みが低く、MLRが抑えられることが示された。また、図10においてKM283-5、5D12抗体はDC-MLRを抑制できず、すなわちKM281-1-10抗体のみがDCに対するCD40リガンドの働きを中和するアンタゴニスティック抗体であることが示された。さらに、アゴニスティック抗体であるKM302-1抗体が、未成熟DCを用いたMLRに及ぼす抗体の影響を調べた結果を図11に示す。DCが活性化することにより、T細胞との相互作用が促進され、チミジンの取り込みが増加している。これによりKM302-1は未成熟DCに作用するアゴニスティック抗体であることが示された。 MLR was performed by mixing T cells and mature DCs isolated from different humans. The cell ratio of T cells / DC is 1:80, respectively, and the number of T cells is 2 × 10 5 cells / well. First, add antibodies to DC and react for 30 minutes. Thereafter, T cells were added and cultured for 4 days, and then 10 μl of 100 μCi / ml 3 H-Thymidine (Amersham Pharmacia) was added. After 14 hours, using Macro96 Harvester (SKATRON), harvested on Print Filter A (Wallac), dried, soaked well in Betap; Scint (Wallac), and after packaging, activity was measured with a 1205 BETAPLATE liquid scintillation counter. In addition, MLR using immature DC was performed by mixing T cells and mature DC separated from different humans. The cell ratio of T cells / DC was set to 1:40, respectively. The results are shown in FIGS. The addition of KM281-1-10 antibody showed that thymidine incorporation was low and MLR was suppressed. Further, in FIG. 10, it was shown that the KM283-5 and 5D12 antibodies cannot suppress DC-MLR, that is, only the KM281-1-10 antibody is an antagonistic antibody that neutralizes the action of CD40 ligand on DC. . Furthermore, FIG. 11 shows the results of examining the effect of the antibody KM302-1 antibody, which is an agonistic antibody, on MLR using immature DC. Activation of DC promotes interaction with T cells and increases thymidine uptake. This showed that KM302-1 is an agonistic antibody that acts on immature DC.

〔実施例11〕 CD40抗体によるCD40LのCD40への結合に及ぼす影響
BIAcore 2000(ビアコア)を用いて、抗CD40抗体を、固定化されたCD40ヒトFCに結合させた後、可溶性CD40LのCD40への結合量の変化を測定した。装置に付属した説明書に従い、可溶性CD40ヒトFCをCMチップ(CM5,ビアコア)に固定化した。次いで25(μg/ml)の抗CD40抗体を添加し、CD40に結合させた。さらに10(μg/ml)の可溶性CD40Lを添加し結合させた。CD40L添加前後の結合量の差を測定した。コントロ−ルIgGを添加した場合、CD40Lの結合量は100RUとなった。KM302-1抗体添加後では、CD40Lの結合量は110RUとなり、KM283-5抗体添加後では、18RUとなった。これにより、KM302-1抗体はCD40LのCD40への結合を阻害しないことが示された。
[Example 11] Effect of CD40 antibody on binding of CD40L to CD40
BIAcore 2000 (Biacore) was used to bind the anti-CD40 antibody to immobilized CD40 human FC, and then the change in the amount of soluble CD40L bound to CD40 was measured. Soluble CD40 human FC was immobilized on a CM chip (CM5, Biacore) according to the instructions attached to the device. Then 25 (μg / ml) anti-CD40 antibody was added and allowed to bind to CD40. Further, 10 (μg / ml) soluble CD40L was added and bound. The difference in the amount of binding before and after the addition of CD40L was measured. When control IgG was added, the amount of CD40L bound was 100 RU. After the KM302-1 antibody was added, the binding amount of CD40L was 110 RU, and after the KM283-5 antibody was added, it was 18 RU. This showed that the KM302-1 antibody did not inhibit the binding of CD40L to CD40.

〔実施例12〕Ramos細胞における抗CD40アゴニスティック抗体によるCD95発現促進
実施例4で得られたハイブリドーマの精製抗体を実施例6の方法に従って解析し、アゴニスト抗体を生産するクローンを選別した(1ウェルあたりの細胞数5x104個、細胞濃度2.5x105個/ml)。図12に結果を示す。図中横軸は培養液中の抗体濃度を、縦軸は平均蛍光強度、すなわちCD95発現強度を示す。KM341-1-19,2105抗体は、0.01μg/ml以上の濃度で公知のマウス抗体であるG28-5抗体に比して、Ramos細胞に対してCD95発現をより促進することが示された。すなわち、より効果の高いアゴニスティックであることが示された。また、0.01μg/mlでKM341-1-19, 2105抗体のRamos細胞にCD95発現を増進するアゴニスト活性は10μg/mlのG28-5抗体の活性より高かった(図12)。それぞれの抗体濃度において、CD95の発現がG28-5抗体を添加した場合の何倍に相当するかを表5にまとめた。
[Example 12] Promotion of CD95 expression by anti-CD40 agonistic antibody in Ramos cells The purified hybridoma antibody obtained in Example 4 was analyzed according to the method of Example 6, and a clone producing an agonist antibody was selected (1 well). Per cell 5 × 10 4 cells concentration 2.5 × 10 5 cells / ml). The results are shown in FIG. In the figure, the horizontal axis represents the antibody concentration in the culture solution, and the vertical axis represents the average fluorescence intensity, that is, the CD95 expression intensity. It was shown that the KM341-1-19 and 2105 antibodies promote CD95 expression on Ramos cells more than the known mouse antibody G28-5 antibody at a concentration of 0.01 μg / ml or more. That is, it was shown that it is a more effective agonistic. In addition, the agonist activity to enhance CD95 expression in Ramos cells of KM341-1-19, 2105 antibody at 0.01 μg / ml was higher than that of 10 μg / ml G28-5 antibody (FIG. 12). Table 5 summarizes how many times the expression of CD95 corresponds to the addition of G28-5 antibody at each antibody concentration.

Figure 2006342173
Figure 2006342173

〔実施例13〕CD40アゴニスティック抗体による樹状細胞の活性化
実施例9の方法に従って、CD40アゴニスティック抗体による成熟DCのIL-12およびIL-10生産に及ぼす影響を調べた。IL-10はELISA (Pharmingen社製)法にて測定した。図13および図14に結果を示す。KM341-1-19抗体の処理によってIL-12の分泌が亢進することが示された。一方、5000radでX線照射した、CD40リガンド発現組換えL細胞を2x105個/ml共存させた場合でも、IL-12とIL-10の培養液中濃度は254、51pg/mlであり、KM341-1-19抗体を1μg/ml添加した場合より少なかった。
[Example 13] Activation of dendritic cells by CD40 agonistic antibody According to the method of Example 9, the effect of CD40 agonistic antibody on IL-12 and IL-10 production of mature DC was examined. IL-10 was measured by ELISA (Pharmingen). The results are shown in FIG. 13 and FIG. It was shown that IL-12 secretion was enhanced by treatment with the KM341-1-19 antibody. On the other hand, even when CD40 ligand-expressing recombinant L cells irradiated with X-rays at 5000 rads were present at 2 × 10 5 cells / ml, the concentrations of IL-12 and IL-10 in the culture medium were 254 and 51 pg / ml, and KM341 -1-19 antibody was less than when 1 μg / ml was added.

以上よりKM341-1-19抗体が、DCに対して効果的なアゴニスティック抗体として作用することが示された。0.1μg/mlでKM341-1-19抗体の成熟DCにIL-12を分泌させるアゴニスト活性は100μg/mlのG28-5抗体の活性より高く、1μg/mlでKM341-1-19抗体の成熟DCにIL-12を分泌させるアゴニスト活性は100μg/mlのG28-5抗体の活性より100倍以上高かった(図13)。また、1μg/mlでKM341-1-19抗体の成熟DCにIL-10を分泌させるアゴニスト活性は100μg/mlのG28-5抗体の活性より10倍以上高かった(図14)。また、KM341-1-19抗体は、サブクラスがIgG2であり、IgG1やIgG3よりFcレセプターへの結合性が低く、NK細胞のキラー活性の感作や補体系の活性化も弱い。このことから抗体によって、CD40発現細胞の機能あるいは細胞そのものが減少してしまうという危険性が低いと考えられる。またFcレセプターによる架橋を受けにくいことから、体内でのアゴニスト活性が、架橋によって大きく変動することがなく、薬効を制御し易いと期待される。   From the above, it was shown that the KM341-1-19 antibody acts as an effective agonistic antibody against DC. The agonist activity that secretes IL-12 into mature DC of KM341-1-19 antibody at 0.1 μg / ml is higher than that of G28-5 antibody at 100 μg / ml, and mature DC of KM341-1-19 antibody at 1 μg / ml The agonist activity for secreting IL-12 was more than 100 times higher than that of 100 μg / ml G28-5 antibody (FIG. 13). In addition, the agonist activity for secreting IL-10 into mature DC of KM341-1-19 antibody at 1 μg / ml was more than 10 times higher than that of 100 μg / ml G28-5 antibody (FIG. 14). In addition, the KM341-1-19 antibody has an IgG2 subclass, has a lower binding ability to Fc receptors than IgG1 and IgG3, and sensitizes NK cell killer activity and activates the complement system. From this, it is considered that the risk that the function of the CD40-expressing cell or the cell itself is decreased by the antibody is low. In addition, since it is difficult to undergo cross-linking by the Fc receptor, it is expected that the agonist activity in the body does not vary greatly due to cross-linking and the drug efficacy is easily controlled.

〔実施例14〕Ramos細胞における抗CD40アンタゴニスティック抗体によるCD95発現抑制
1.0x106個/mlのRamos細胞懸濁液を平底96ウェルプレートに50μl/wellで播種した(1ウェルあたり細胞数5x104個)。培地で希釈した精製抗体を96ウェルプレートに100μl/well添加した。ヒトCD40リガンドを発現する組換えマウスL細胞(Spriggs, M.K. et. al., J.Exp.Med., 176: 1543,1992; Garrone, P. et. al., J.Exp.Med., 182: 1265,1995などを参照のこと)を1.0x105個/mlに調製し、50μl/wellで添加した(1ウェルあたりRamos細胞の細胞数5x104個、細胞濃度2.5x105個/ml、1ウェルあたりマウスL細胞の細胞数5x103個、細胞濃度2.5x104個/ml)。一晩培養後、細胞を集めR-PE標識抗CD95抗体を用い、FACSを用いて解析した。図15に結果を示す。図中縦軸は平均蛍光強度、すなわちCD95の発現強度を示す。公知の抗体である5D12抗体がわずかにしか抑制しなかったのに比較して、4D11抗体では0.1μg/mlの濃度でもCD40L発現細胞を添加しない陰性コントロールと同程度までCD95の発現を抑制した。また、1μg/mlの濃度では,4D11,F4-465,KM281-1-10がCD40L発現細胞を添加しない陰性コントロールと同程度までCD95の発現を抑制した。これによって4D11、F4-465,KM281-1-10抗体が、より効果的なアンタゴニスティック抗体であることが示された。それぞれの抗体濃度において、アンタゴニスティック抗体無添加の対照を100とした平均蛍光強度の相対値を表6に示す。
[Example 14] Suppression of CD95 expression by anti-CD40 antagonistic antibody in Ramos cells
1.0 × 10 6 cells / ml Ramos cell suspension was seeded in a flat bottom 96-well plate at 50 μl / well (5 × 10 4 cells per well). The purified antibody diluted with the medium was added to a 96-well plate at 100 μl / well. Recombinant mouse L cells expressing human CD40 ligand (Spriggs, MK et. Al., J. Exp. Med., 176: 1543, 1992; Garrone, P. et. Al., J. Exp. Med., 182 : 1265,1995, etc.) was prepared at 1.0 × 10 5 cells / ml and added at 50 μl / well (5 × 10 4 Ramos cells per well, cell concentration 2.5 × 10 5 cells / ml, 1 5 × 10 3 mouse L cells per well, cell concentration 2.5 × 10 4 cells / ml). After overnight culture, cells were collected and analyzed using R-PE labeled anti-CD95 antibody using FACS. FIG. 15 shows the results. In the figure, the vertical axis represents the average fluorescence intensity, that is, the expression intensity of CD95. Compared to the 5D12 antibody, which is a known antibody, only slightly suppressed, the 4D11 antibody suppressed the expression of CD95 to the same extent as the negative control in which no CD40L-expressing cells were added even at a concentration of 0.1 μg / ml. At a concentration of 1 μg / ml, 4D11, F4-465, and KM281-1-10 suppressed the expression of CD95 to the same extent as the negative control without addition of CD40L-expressing cells. This indicated that the 4D11, F4-465, and KM281-1-10 antibodies are more effective antagonistic antibodies. Table 6 shows the relative values of the average fluorescence intensity at each antibody concentration, with 100 as the control to which no antagonistic antibody was added.

Figure 2006342173
Figure 2006342173

〔実施例15〕抗CD40アゴニスティック抗体によるRamos細胞移植モデルにおける抗腫瘍効果
生後5週齢のC.B.17/Icr-scidJc1マウス(日本クレア)に抗アシアロGM1抗体を静脈注射した。1日後に腫瘍細胞としてRamos細胞をマウス1匹当たり5x106個静脈注射した。1日後にKM302-1抗体あるいは陰性対照として抗ヒトアルブミンヒトIgG抗体を静脈注射した。投与量はKM302-1抗体をマウス1匹当たり1、10、100μg、陰性対照抗体100μgをそれぞれ5個体のマウスに1回投与した。結果を図16に示す。陰性対照投与群は移植34日後にすべて死亡したのに対して、KM302-1抗体10μg、100μgを投与された群では5匹すべて生存しており、KM302-1抗体の抗腫瘍効果が確認された。KM302-1抗体はIgG4サブクラスであり、Fcレセプターを介した抗体依存性細胞傷害機構(ADCC)や補体系の活性化が弱いにもかかわらず、10μg単回投与で担ガンマウスの生存期間の延長が見られた。
[Example 15] Antitumor effect in Ramos cell transplantation model with anti-CD40 agonistic antibody Anti-Asialo GM1 antibody was intravenously injected into CB17 / Icr-scidJc1 mice (CLEA Japan) 5 weeks old. One day later, 5 × 10 6 Ramos cells were injected intravenously per mouse as tumor cells. One day later, KM302-1 antibody or anti-human albumin human IgG antibody was injected intravenously as a negative control. The doses of KM302-1 antibody were 1, 10, 100 μg per mouse, and 100 μg of negative control antibody was administered once to each of 5 mice. The results are shown in FIG. In the negative control administration group, all died 34 days after transplantation, whereas in the group administered with 10 μg and 100 μg of KM302-1 antibody, all 5 animals survived, confirming the antitumor effect of KM302-1 antibody. . The KM302-1 antibody is an IgG4 subclass. Despite the weak activation of the antibody-dependent cytotoxicity mechanism (ADCC) and the complement system via Fc receptors, a single dose of 10 μg prolongs the survival of cancer-bearing mice. It was observed.

〔実施例16〕抗CD40アゴニスティック抗体によるRamos細胞の増殖抑制
10%FBS添加RPMI1640培地で1x104個/mlに調製したRamos細胞懸濁液100μlを96ウェルプレートに分注し、20μg/mlに培地を用いて調製したKM341-1-19抗体あるいは可溶性リガンド溶液を添加した。可溶性リガンドにはリガンドと同濃度(反応溶液中の濃度が10μg/ml)の抗FLAG抗体(M2)を共存させ活性を強めた。5日間培養後、各ウェルに20μlのMTS試薬(Promega)を加え2から3時間反応させた。波長490nmで細胞や抗体を含まない培地のみのウェルとの吸光度の差を測定し、生存している細胞数を測定した。また、同様に96ウェルU底プレートを用いてG28-5抗体と増殖抑制作用を比較した。2μg/mlに培地を用いて調製したKM341-1-19抗体あるいはG28-5抗体を添加した。結果を図17に示す。KM341-1-19抗体を添加したウェルでは死細胞が観察され、細胞数はG28-5抗体やリガンド添加のウェルに比較して顕著に少なく、吸光度も低くなり、腫瘍細胞の増殖が抑制され、細胞死が誘導されることが示された。
[Example 16] Inhibition of Ramos cell proliferation by anti-CD40 agonistic antibody
Distribute 100 μl of Ramos cell suspension prepared in RPMI1640 medium supplemented with 10% FBS to 1 × 10 4 cells / ml into a 96-well plate, and prepare KM341-1-19 antibody or soluble ligand solution prepared using 20 μg / ml medium. Was added. The soluble ligand coexisted with anti-FLAG antibody (M2) at the same concentration as the ligand (concentration in the reaction solution was 10 μg / ml) to enhance the activity. After culturing for 5 days, 20 μl of MTS reagent (Promega) was added to each well and allowed to react for 2 to 3 hours. The difference in absorbance with a well containing only medium containing no cells or antibodies at a wavelength of 490 nm was measured to determine the number of surviving cells. Similarly, the G28-5 antibody and growth inhibitory action were compared using a 96-well U-bottom plate. KM341-1-19 antibody or G28-5 antibody prepared using a medium was added to 2 μg / ml. The results are shown in FIG. Dead cells were observed in the wells to which the KM341-1-19 antibody was added, and the number of cells was significantly less than in the wells to which the G28-5 antibody or ligand was added, the absorbance was low, and the growth of tumor cells was suppressed, Cell death was shown to be induced.

〔実施例17〕抗体遺伝子のcDNAクローニング
KM341-1-19, 2105, 110, 115, KM281-1-10 ,4D11, KM643-4-11, F4-465、F2-103, F5-77抗体を生産するハイブリドーマを培養し、細胞を遠心によって集めた。これにTRIZOL(Gibco BRL)を添加し、取扱説明書にしたがってTotalRNAを抽出した。抗体cDNAの可変領域のクローニングは、CLONTECH社のSMART RACE cDNA amplification Kit を用い、添付の説明書にしたがって行った。5μgのtotal RNAを鋳型として1st Strand cDNAを作製した。KM341-1-19, 2105, 110, 115, KM281-1-10 ,4D11, KM643-4-11, F2-103, F5-77 重鎖(H鎖)の増幅には、Takara社のZ−Taqを用い,UMPとhh6プライマーで、98℃1秒、68℃30秒のサイクルを30回繰り返した。さらに、この反応液1μlを鋳型とし、NUMPとhh3プライマーを用いて、98℃1秒、68℃30秒のサイクルを20回繰り返した。F4-465重鎖の増幅には、UMPとhh2プライマーを用い、Advantage 2 PCR kit (Clonthech, cat#1910)を使って、94℃5秒、72℃3分 5サイクル、94℃5秒、70℃0秒、72℃3分、5サイクル、94℃5秒、68℃10秒、72℃3分、25サイクルで行った。
hh6プライマー:5'-GGT CCG GGA GAT CAT GAG GGT GTC CTT-3'(配列番号3)
hh3プライマー:5'-GTG CAC GCC GCT GGT CAG GGC GCC TG-3'(配列番号4)
hh2プライマー:5'-GCT GGA GGG CAC GGT CAC CAC GCT G-3' (配列番号5)
[Example 17] cDNA cloning of antibody gene
Cultivate hybridomas producing KM341-1-19, 2105, 110, 115, KM281-1-10, 4D11, KM643-4-11, F4-465, F2-103, F5-77 antibodies and centrifuge the cells collected. TRIZOL (Gibco BRL) was added to this, and TotalRNA was extracted according to the instruction manual. Cloning of the variable region of the antibody cDNA was performed using CLONTECH SMART RACE cDNA amplification Kit according to the attached instructions. 1 st Strand cDNA was prepared using 5 μg of total RNA as a template. KM341-1-19, 2105, 110, 115, KM281-1-10, 4D11, KM643-4-11, F2-103, F5-77 For heavy chain (H chain) amplification, Takara's Z-Taq The cycle of 98 ° C for 1 second and 68 ° C for 30 seconds was repeated 30 times with UMP and hh6 primer. Further, 1 μl of this reaction solution was used as a template, and a cycle of 98 ° C. for 1 second and 68 ° C. for 30 seconds was repeated 20 times using NNUM and hh3 primers. For amplification of F4-465 heavy chain, UMP and hh2 primers were used, and Advantage 2 PCR kit (Clonthech, cat # 1910) was used at 94 ° C for 5 seconds, 72 ° C for 3 minutes, 5 cycles, 94 ° C for 5 seconds, 70 The test was carried out at 0 ° C., 72 ° C. 3 minutes, 5 cycles, 94 ° C. 5 seconds, 68 ° C. 10 seconds, 72 ° C. 3 minutes, 25 cycles.
hh6 primer: 5'-GGT CCG GGA GAT CAT GAG GGT GTC CTT-3 '(SEQ ID NO: 3)
hh3 primer: 5'-GTG CAC GCC GCT GGT CAG GGC GCC TG-3 '(SEQ ID NO: 4)
hh2 primer: 5'-GCT GGA GGG CAC GGT CAC CAC GCT G-3 '(SEQ ID NO: 5)

この後、増幅したPCR産物をPCR purification kit(QIAGEN)により精製し、hh4をプライマーとして塩基配列の決定を行った。あるいは、PCRScript(Stratagene, Lajolla, CA)又はPCR−Blunt(Invitrogene, Carlsbad, CA)にサブクローニングし配列を決定した。配列情報を基に、抗体重鎖特異的プライマーを合成した。KM341-1-19の場合341Hプライマー、2105の場合は2105Hsalプライマー, 110,115の場合には110Hsalプライマー, KM281-1-10の場合には281Hsalプライマー,4D11の場合は4D11Salプライマー、 KM643-4-11の場合には643Hsalプライマー ,F4-465の場合はH11-9 5'プライマー、F2-103の場合はF2-103Hプライマー、F5-77の場合はF5-77Hプライマーを合成した。抗体重鎖特異的プライマーとhh4を用いて、1stStrandcDNAからcDNAを増幅し、これを鋳型として抗体特異的プライマーを使って逆方向からの配列を決定した。
hh4プライマー:5'-GGTGCCAGGGGGAAGACCGATGG-3’(配列番号6)
341Hプライマー:5'-atatgtcgacGCTGAATTCTGGCTGACCAGGGCAG-3’(配列番号7)
2105Hsal:atatgtcgacTCCCAGGTGTTTCCATTCAGTGATCAG (配列番号8)
110Hsal:atatgtcgacTTCCATTCGGTGATCAGCACTGAACAC (配列番号9)
281Hsal: atatgtcgacTTTGAGAGTCCTGGACCTCCTGTG (配列番号10)
4D11Sal: atatgtcgacGAGTCATGGATCTCATGTGCAAG (配列番号11)
643Hsal: atatgtcgacCCAGGGCAGTCACCAGAGCTCCAGAC (配列番号12)
H11-9 5':-ACC GTG TCG ACT ACG CGG GAG TGA CT (配列番号13)
F2-103H: accgtgtcgacgctgatcaggactgcaca(配列番号14)
F5-77H: accgtgtcgacggtgatcaggactgaacag(配列番号15)
Thereafter, the amplified PCR product was purified with a PCR purification kit (QIAGEN), and the nucleotide sequence was determined using hh4 as a primer. Alternatively, it was subcloned into PCRScript (Stratagene, Lajolla, CA) or PCR-Blunt (Invitrogene, Carlsbad, CA) and sequenced. Based on the sequence information, antibody heavy chain specific primers were synthesized. KM341-1-19 for 341H primer, 2105 for 2105Hsal primer, 110,115 for 110Hsal primer, KM281-1-10 for 281Hsal primer, 4D11 for 4D11Sal primer, KM643-4-11 In this case, 643Hsal primer was synthesized. In the case of F4-465, an H11-9 5 'primer was synthesized. In the case of F2-103, an F2-103H primer was synthesized. In the case of F5-77, an F5-77H primer was synthesized. CDNA was amplified from 1 st Strand cDNA using antibody heavy chain specific primer and hh4, and the sequence from the reverse direction was determined using antibody specific primer as a template.
hh4 primer: 5'-GGTGCCAGGGGGAAGACCGATGG-3 '(SEQ ID NO: 6)
341H primer: 5'-atatgtcgacGCTGAATTCTGGCTGACCAGGGCAG-3 '(SEQ ID NO: 7)
2105Hsal: atatgtcgacTCCCAGGTGTTTCCATTCAGTGATCAG (SEQ ID NO: 8)
110Hsal: atatgtcgacTTCCATTCGGTGATCAGCACTGAACAC (SEQ ID NO: 9)
281Hsal: atatgtcgacTTTGAGAGTCCTGGACCTCCTGTG (SEQ ID NO: 10)
4D11Sal: atatgtcgacGAGTCATGGATCTCATGTGCAAG (SEQ ID NO: 11)
643Hsal: atatgtcgacCCAGGGCAGTCACCAGAGCTCCAGAC (SEQ ID NO: 12)
H11-9 5 ': -ACC GTG TCG ACT ACG CGG GAG TGA CT (SEQ ID NO: 13)
F2-103H: accgtgtcgacgctgatcaggactgcaca (SEQ ID NO: 14)
F5-77H: accgtgtcgacggtgatcaggactgaacag (SEQ ID NO: 15)

KM341-1-19, 2105, 110, 115, KM281-1-10 ,4D11, KM643-4-11, F2-103, F5-77の軽鎖(L鎖)は、UMPとhk2プライマーを使って、98℃1秒、68℃30秒のサイクルを30回繰り返して増幅した。F4-465の軽鎖は、UMPとhL2プライマーを使って、98℃1秒、68℃30秒のサイクルを30回繰り返して増幅した。増幅したPCR産物を、PCR purification kitにより精製し、hk6もしくはhL2プライマーを用いて塩基配列を決定した。この配列を基に、軽鎖特異的プライマーを合成した。KM341-1-19の場合341Kプライマー、2105の場合は2053KBglプライマー, 110,115の場合には110KBglプライマー, KM281-1-10の場合には281KBglプライマー,4D11の場合は4D11KBgl、 KM643-4-11の場合には643KBglプライマー、 F4-465の場合はLamda 5'プライマー,F-103,F5-77の場合はF2-103Kプライマーを合成した。   KM341-1-19, 2105, 110, 115, KM281-1-10, 4D11, KM643-4-11, F2-103, F5-77 light chain (L chain) using UMP and hk2 primer, Amplification was performed by repeating 30 cycles of 98 ° C. for 1 second and 68 ° C. for 30 seconds. The light chain of F4-465 was amplified by repeating 30 cycles of 98 ° C for 1 second and 68 ° C for 30 seconds using UMP and hL2 primers. The amplified PCR product was purified using a PCR purification kit, and the nucleotide sequence was determined using hk6 or hL2 primers. Based on this sequence, a light chain specific primer was synthesized. KM341-1-19 for 341K primer, 2105 for 2053KBgl primer, 110,115 for 110KBgl primer, KM281-1-10 for 281KBgl primer, 4D11 for 4D11KBgl, KM643-4-11 For 643-KBgl primer, Lamda 5 'primer for F4-465 and F2-103K primer for F-103 and F5-77.

341−1−19、110, 115, KM643-4-11, KM281-1-10、4D11、2105の場合は、軽鎖特異的プライマーとhk6プライマーを使って1stStrand cDNAからcDNAを増幅し、これを鋳型として両方向からの配列を決定した。F4-465、F2-103,F5-77については、PCRScript(Stratagene, Lajolla, CA)又はPCR−Blunt(Invitrogene, Carlsbad, CA)にサブクローニングし配列を決定した。
hk2プライマー:5'-GTT GAA GCT CTT TGT GAC GGG CGA GC-3'(配列番号16)
hL2プライマー:5'- TCT TCT CCA CGG TGC TCC CTT CAT-3'(配列番号17)
341Kプライマー:5'-atatagatctGAACTGCTCAGTTAGGACCCAGAGG-3'(配列番号18)
2053KBgl: atatagatctCGCGGGGAAGGAGACTGCTCAGTT (配列番号19)
110KBgl: atatagatctAGTCAGACCCAGTCAGGACACAGC (配列番号20)
281KBgl: atatagatctGAGCTGCTCAGTTAGGACCCAGAGGG (配列番号21)
4D11KBgl: atatagatctTAAGCAAGTGTAACAACTCAGAGTAC (配列番号22)
643KBgl: atatagatctGAGGAACTGCTCAGTTAGGACCCAGAGG (配列番号23)
Lamda 5':-AACTCCAGATCTGCCTCAGGAAGCAGCATC (配列番号24)
F2-103K: aactccagatctagggcaagcagtggtaac(配列番号25)
hk6プライマー:5'-TGGCGGGAAGATGAAGACAGATGGTG-3'(配列番号26)
In the case of 341-1-19, 110, 115, KM643-4-11, KM281-1-10, 4D11, 2105, amplify cDNA from 1 st Strand cDNA using light chain specific primer and hk6 primer, Using this as a template, the sequence from both directions was determined. F4-465, F2-103, and F5-77 were subcloned into PCRScript (Stratagene, Lajolla, CA) or PCR-Blunt (Invitrogene, Carlsbad, CA) and sequenced.
hk2 primer: 5'-GTT GAA GCT CTT TGT GAC GGG CGA GC-3 '(SEQ ID NO: 16)
hL2 primer: 5'-TCT TCT CCA CGG TGC TCC CTT CAT-3 '(SEQ ID NO: 17)
341K primer: 5'-atatagatctGAACTGCTCAGTTAGGACCCAGAGG-3 '(SEQ ID NO: 18)
2053KBgl: atatagatctCGCGGGGAAGGAGACTGCTCAGTT (SEQ ID NO: 19)
110KBgl: atatagatctAGTCAGACCCAGTCAGGACACAGC (SEQ ID NO: 20)
281KBgl: atatagatctGAGCTGCTCAGTTAGGACCCAGAGGG (SEQ ID NO: 21)
4D11KBgl: atatagatctTAAGCAAGTGTAACAACTCAGAGTAC (SEQ ID NO: 22)
643KBgl: atatagatctGAGGAACTGCTCAGTTAGGACCCAGAGG (SEQ ID NO: 23)
Lamda 5 ':-AACTCCAGATCTGCCTCAGGAAGCAGCATC (SEQ ID NO: 24)
F2-103K: aactccagatctagggcaagcagtggtaac (SEQ ID NO: 25)
hk6 primer: 5'-TGGCGGGAAGATGAAGACAGATGGTG-3 '(SEQ ID NO: 26)

341−1−19 のH鎖全長、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。
H鎖DNAの翻訳開始点は、配列番号27の5'末端から50番目のアデニン(A)からはじまるATGコドンであり、終止コドンは1472番目のチミン(T)からはじまるTGAである。抗体可変領域と定常領域の境界は5'末端から493番目のアデニン(A)と494番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号28のN末端から148番目のセリン(S)残基までであり、149番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号28のN末端より20番目のセリン(S)までと予測された。成熟体のN末端は配列番号28の21番目のグルタミン(Q)であるものと考えられる。
The full length of the H chain of 341-1-19, the DNA encoding the L chain variable region, and the amino acid sequences of the H chain and L chain are shown below.
The translation start point of H chain DNA is an ATG codon starting from the 50th adenine (A) from the 5 ′ end of SEQ ID NO: 27, and the stop codon is TGA starting from the 1472th thymine (T). The boundary between the antibody variable region and the constant region is located between the 493rd adenine (A) and the 494th guanine (G) from the 5 ′ end. In the amino acid sequence, the H chain variable region is from the N-terminal of SEQ ID NO: 28 to the 148th serine (S) residue, and the 149th alanine (A) and subsequent are the constant regions. By the gene sequence prediction software (Signal P ver. 2), the signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 28 to the 20th serine (S). The N-terminus of the mature body is considered to be the 21st glutamine (Q) of SEQ ID NO: 28.

L鎖DNAの翻訳開始点は、配列番号29の5'末端から29番目のAからはじまるATGコドンであり、可変領域は5'末端から400番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号30のN末端から124番目のリジン(K)までである。精製されたL鎖蛋白質のN末端分析により、L鎖のシグナル配列は配列番号30のN末端より20番目のグリシン(G)までであり、成熟体のN末端は配列番号30の21番目のグルタミン酸(E)であることが明らかとなった。   The translation start point of the L chain DNA is an ATG codon starting from the 29th A from the 5 ′ end of SEQ ID NO: 29, and the variable region is from the 5 ′ end to the 400th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 30 to the 124th lysine (K). According to N-terminal analysis of the purified L chain protein, the signal sequence of the L chain is from the N terminus of SEQ ID NO: 30 to the 20th glycine (G), and the mature N terminus is the 21st glutamic acid of SEQ ID NO: 30. It became clear that (E).

341−1−19 H鎖(配列番号27):
GTCGACGCTGAATTCTGGCTGACCAGGGCAGCCACCAGAGCTCCAGACAATGTCTGTCTCCTTCCTCATCTTCCTGCCCGTGCTGGGCCTCCCATGGGGTGTCCTGTCACAGGTCCAACTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCTGTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTACTTGGAACTGGATCAGGCAGTCCCCATCGAGAGACCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATCGTGATTATGTAGGATCTGTGAAAAGTCGAATAATCATCAACCCAGACACATCCAACAACCAGTTCTCCCTGCAGCTGAACTCTGTGACTCCCGAGGACACGGCTATATATTACTGTACAAGAGCACAGTGGCTGGGAGGGGATTACCCCTACTACTACAGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCTTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGACAGTTGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGGGAGGAGCAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAACCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACACCTCCCATGCTGGACTCAGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGGATCC
341-1-19 H chain (SEQ ID NO: 27):
GTCGACGCTGAATTCTGGCTGACCAGGGCAGCCACCAGAGCTCCAGACAATGTCTGTCTCCTTCCTCATCTTCCTGCCCGTGCTGGGCCTCCCATGGGGTGTCCTGTCACAGGTCCAACTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCTGTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTACTTGGAACTGGATCAGGCAGTCCCCATCGAGAGACCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATCGTGATTATGTAGGATCTGTGAAAAGTCGAATAATCATCAACCCAGACACATCCAACAACCAGTTCTCCCTGCAGCTGAACTCTGTGACTCCCGAGGACACGGCTATATATTACTGTACAAGAGCACAGTGGCTGGGAGGGGATTACCCCTACTACTACAGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCTTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGACAGTTGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG CCACGGGAGGAGCAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAACCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACACCTCCCATGCTGGACTCAGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGGATCC

341−1−19 H鎖アミノ酸配列(配列番号28)
MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSPSRDLEWLGRTYYRSKWYRDYVGSVKSRIIINPDTSNNQFSLQLNSVTPEDTAIYYCTRAQWLGGDYPYYYSMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
341-1-19 H chain amino acid sequence (SEQ ID NO: 28)
MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSPSRDLEWLGRTYYRSKWYRDYVGSVKSRIIINPDTSNNQFSLQLNSVTPEDTAIYYCTRAQWLGGDYPYYYSMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

341−1−19 L鎖(配列番号29):
ACTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACG
341-1-19 L chain (SEQ ID NO: 29):
ACTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACG

341−1−19 L鎖アミノ酸配列(配列番号30)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNTFGPGTKVDIKRT
341-1-19 L chain amino acid sequence (SEQ ID NO: 30)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNTFGPGTKVDIKRT

2105のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding 2105 H chain variable region and L chain variable region, and the amino acid sequences of H chain and L chain are shown below.

H鎖DNAの翻訳開始点は、配列番号31の5'末端から70番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から495番目のアデニン(A)と496番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号32のN末端から142番目のセリン(S)残基までであり、149番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号32のN末端より19番目のcystein(C)までと予測された。成熟体のN末端は配列番号32の20番目のGlutamic acid(E)であるものと考えられる。   The translation start point of the H chain DNA is an ATG codon starting from the 70th adenine (A) from the 5 ′ end of SEQ ID NO: 31, and the boundary between the antibody variable region and the constant region is the 495th adenine (A ) And 496th guanine (G). In the amino acid sequence, the heavy chain variable region extends from the N-terminus of SEQ ID NO: 32 to the 142nd serine (S) residue, and the 149th alanine (A) and subsequent residues are constant regions. The signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 32 to the 19th cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 20th Glutamic acid (E) of SEQ ID NO: 32.

L鎖DNAの翻訳開始点は、配列番号33の5'末端から28番目のAからはじまるATGコドンであり、可変領域は5'末端から405番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号34のN末端から126番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号34のN末端より20番目のGlycine(G)までと予測された。成熟体のN末端は配列番号34の21番目のGlutamic acid(E)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 28th A from the 5 ′ end of SEQ ID NO: 33, and the variable region is from the 5 ′ end to the 405th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 34 to the 126th lysine (K). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 34 to the 20th Glycine (G) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 21st Glutamic acid (E) of SEQ ID NO: 34.

2105 H鎖(配列番号:31)
CTGAACACAGACCCGTCGACTCCCAGGTGTTTCCATTCAGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTGGGACTGAGCTGGATTTTCCTTTTGGCTATTTTAAAAGGTGTCCAGTGTGAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATTAGTTGGAATAGTGGTAGCTTGGTGCATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTGTATTACTGTGCAAGAGATAGGCTATTTCGGGGAGTTAGGTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAAGG
2105 H chain (SEQ ID NO: 31)
CTGAACACAGACCCGTCGACTCCCAGGTGTTTCCATTCAGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTGGGACTGAGCTGGATTTTCCTTTTGGCTATTTTAAAAGGTGTCCAGTGTGAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATTAGTTGGAATAGTGGTAGCTTGGTGCATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTGTATTACTGTGCAAGAGATAGGCTATTTCGGGGAGTTAGGTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAAGG

2105 H鎖アミノ酸配列(配列番号:32)
MELGLSWIFLLAILKGVQCEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSLVHADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCARDRLFRGVRYYGMDVWGQGTTVTVSSASTK
2105 H chain amino acid sequence (SEQ ID NO: 32)
MELGLSWIFLLAILKGVQCEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSLVHADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCARDRLFRGVRYYGMDVWGQGTTVTVSSASTK

2105 L鎖(配列番号:33)
CTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCCACTGGCTCACTTTCGGCGGGGGGACCAAGGTGGAGATCAAACGTACGGTG
2105 L chain (SEQ ID NO: 33)
CTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCCACTGGCTCACTTTCGGCGGGGGGACCAAGGTGGAGATCAAACGTACGGTG

2105 L鎖アミノ酸配列(配列番号:34)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSHWLTFGGGTKVEIKRTV
2105 L chain amino acid sequence (SEQ ID NO: 34)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSHWLTFGGGTKVEIKRTV

110のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNA encoding 110 H chain variable regions and L chain variable regions, and the amino acid sequences of H chain and L chain are shown below, respectively.

H鎖DNAの翻訳開始点は、配列番号35の5'末端から60番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から479番目のアデニン(A)と480番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号36のN末端から140番目のセリン(S)残基までであり、141番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号36のN末端より19番目のCystein(C)までと予測された。成熟体のN末端は配列番号36の20番目のグルタミン(Q)であるものと考えられる。   The translation start point of the H chain DNA is an ATG codon starting from the 60th adenine (A) from the 5 ′ end of SEQ ID NO: 35, and the boundary between the antibody variable region and the constant region is the 479th adenine (A ) And 480th guanine (G). In the amino acid sequence, the heavy chain variable region is from the N-terminus of SEQ ID NO: 36 to the 140th serine (S) residue, and the 141st alanine (A) and subsequent are the constant regions. With the gene sequence prediction software (Signal P ver. 2), the signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 36 to the 19th Cystein (C). The N-terminus of the mature body is considered to be the 20th glutamine (Q) of SEQ ID NO: 36.

L鎖DNAの翻訳開始点は、配列番号37の5'末端から35番目のAからはじまるATGコドンであり、可変領域は5'末端から421番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号38のN末端から129番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号38のN末端より22番目のCystein(C)までと予測された。成熟体のN末端は配列番号38の23番目のvaline(V)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 35th A from the 5 ′ end of SEQ ID NO: 37, and the variable region is from the 5 ′ end to the 421st adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 38 to the 129th lysine (K). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 38 to the 22nd Cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 23rd valine (V) of SEQ ID NO: 38.

110 H鎖(配列番号:35)
CTGAACACAGACCCGTCGACTTCCATTCGGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTCTTTTAAGAGGTGTCCAGTGTCAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTATTAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGGCTACAATATTTTGACTGGTTATTTTGGCTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGG
110 H chain (SEQ ID NO: 35)
CTGAACACAGACCCGTCGACTTCCATTCGGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTCTTTTAAGAGGTGTCCAGTGTCAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTATTAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGGCTACAATATTTTGACTGGTTATTTTGGCTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGG

110 H鎖アミノ酸配列(配列番号:36)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYNILTGYFGYWGQGTLVTVSSASTK
110 H chain amino acid sequence (SEQ ID NO: 36)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYNILTGYFGYWGQGTLVTVSSASTK

110 L鎖(配列番号:37)
TCACAGATCTAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGTCATCTGGATGACCCAGTCTCCATCCTTACTCTCTGCATCTACAGGAGACAGAGTCACCATCAGTTGTCGGATGAGTCAGGGCATTAGCAGTGATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTGAGCTCCTGATCTCTGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTTTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG
110 L chain (SEQ ID NO: 37)
TCACAGATCTAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGTCATCTGGATGACCCAGTCTCCATCCTTACTCTCTGCATCTACAGGAGACAGAGTCACCATCAGTTGTCGGATGAGTCAGGGCATTAGCAGTGATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTGAGCTCCTGATCTCTGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTTTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG

110 L鎖アミノ酸配列(配列番号:38)
MDMRVPAQLLGLLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGISSDLAWYQQKPGKAPELLISAASTLQSGVPSRFSGSGSGTDFTLTISCLQSEDFATYYCQQYYSFPWTFGQGTKVEIKRT
110 L chain amino acid sequence (SEQ ID NO: 38)
MDMRVPAQLLGLLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGISSDLAWYQQKPGKAPELLISAASTLQSGVPSRFSGSGSGTDFTLTISCLQSEDFATYYCQQYYSFPWTFGQGTKVEIKRT

115のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding 115 H chain variable regions and L chain variable regions, and the amino acid sequences of H chain and L chain are shown below, respectively.

H鎖DNAの翻訳開始点は、配列番号39の5'末端から60番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から479番目のアデニン(A)と480番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号40のN末端から140番目のセリン(S)残基までであり、141番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号40のN末端より19番目のCystein(C)までと予測された。成熟体のN末端は配列番号40の20番目のグルタミン(Q)であるものと考えられる。   The translation start point of the H chain DNA is an ATG codon starting from the 60th adenine (A) from the 5 ′ end of SEQ ID NO: 39, and the boundary between the antibody variable region and the constant region is the 479th adenine (A ) And 480th guanine (G). In the amino acid sequence, the H chain variable region is from the N-terminus of SEQ ID NO: 40 to the 140th serine (S) residue, and the 141st alanine (A) and subsequent are the constant regions. The signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 40 to the 19th Cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 20th glutamine (Q) of SEQ ID NO: 40.

L鎖DNAの翻訳開始点は、配列番号41の5'末端から35番目のAからはじまるATGコドンであり、可変領域は5'末端から421番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号42のN末端から129番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号42のN末端より22番目のCystein(C)までと予測された。成熟体のN末端は配列番号42の23番目のvaline(V)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 35th A from the 5 ′ end of SEQ ID NO: 41, and the variable region is from the 5 ′ end to the 421th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 42 to the 129th lysine (K). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 42 to the 22nd Cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 23rd valine (V) of SEQ ID NO: 42.

115 H鎖(配列番号:39)
CTGAACACAGACCCGTCGACTTCCATTCGGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTCTTTTAAGAGGTGTCCAGTGTCAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGAATGATGGAAGTATTAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGGCTACAATATTTTGACTGGTTATTTTGGCTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGG
115 H chain (SEQ ID NO: 39)
CTGAACACAGACCCGTCGACTTCCATTCGGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTCTTTTAAGAGGTGTCCAGTGTCAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGAATGATGGAAGTATTAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGGCTACAATATTTTGACTGGTTATTTTGGCTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGG

115 H鎖アミノ酸配列(配列番号:40)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWNDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYNILTGYFGYWGQGTLVTVSSASTK
115 H chain amino acid sequence (SEQ ID NO: 40)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWNDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYNILTGYFGYWGQGTLVTVSSASTK

115 L鎖(配列番号:41)
TCACAGATCTAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGTCATCTGGATGACCCAGTCTCCATCCTTACTCTCTGCATCTACAGGAGACAGAGTCACCATCAGTTGTCGGATGAGTCAGGGCATTAGCAGTGATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTGAGCTCCTGATCTCTGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTTTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG
115 L chain (SEQ ID NO: 41)
TCACAGATCTAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGTCATCTGGATGACCCAGTCTCCATCCTTACTCTCTGCATCTACAGGAGACAGAGTCACCATCAGTTGTCGGATGAGTCAGGGCATTAGCAGTGATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTGAGCTCCTGATCTCTGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTTTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG

115 L鎖アミノ酸配列(配列番号:42)
MDMRVPAQLLGLLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGISSDLAWYQQKPGKAPELLISAASTLQSGVPSRFSGSGSGTDFTLTISCLQSEDFATYYCQQYYSFPWTFGQGTKVEIKRT
115 L chain amino acid sequence (SEQ ID NO: 42)
MDMRVPAQLLGLLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGISSDLAWYQQKPGKAPELLISAASTLQSGVPSRFSGSGSGTDFTLTISCLQSEDFATYYCQQYYSFPWTFGQGTKVEIKRT

281−1−10のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNA encoding the H chain variable region and the L chain variable region of 281-1-10 and the amino acid sequences of the H chain and L chain are shown below.

H鎖DNAの翻訳開始点は、配列番号43の5'末端から52番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から468番目のアデニン(A)と469番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号44のN末端から139番目のセリン(S)残基までであり、140番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号44のN末端より19番目のセリン(S)までと予測された。成熟体のN末端は配列番号44の20番目のグルタミン(Q)であるものと考えられる。   The translation start point of the H chain DNA is an ATG codon starting from the 52nd adenine (A) of SEQ ID NO: 43, and the boundary between the antibody variable region and the constant region is the 468th adenine (A ) And 469th guanine (G). In the amino acid sequence, the H chain variable region extends from the N-terminus of SEQ ID NO: 44 to the 139th serine (S) residue, and the 140th alanine (A) and thereafter are constant regions. The signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 44 to the 19th serine (S) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 20th glutamine (Q) of SEQ ID NO: 44.

L鎖DNAの翻訳開始点は、配列番号45の5'末端から41番目のAからはじまるATGコドンであり、可変領域は5'末端から424番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号46のN末端から128番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号46のN末端より20番目のGlycine(G)までと予測された。成熟体のN末端は配列番号46の21番目のGlutamic acid(E)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 41st A from the 5 ′ end of SEQ ID NO: 45, and the variable region is from the 5 ′ end to the 424th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 46 to the lysine (K) at the 128th position. The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 46 to the 20th Glycine (G) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 21st Glutamic acid (E) of SEQ ID NO: 46.

281−1−10 H鎖(配列番号:43)
CTGAACACAGACCCGTCGACTTTGAGAGTCCTGGACCTCCTGTGCAAGAACATGAAACATCTGTGGTTCTTCCTTCTCCTGGTGGCAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCAACTACAATCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAATTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGCCCCCTTGCACGGTGACTACAAATGGTTCCACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGG
281-1-10 H chain (SEQ ID NO: 43)
CTGAACACAGACCCGTCGACTTTGAGAGTCCTGGACCTCCTGTGCAAGAACATGAAACATCTGTGGTTCTTCCTTCTCCTGGTGGCAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCAACTACAATCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAATTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGCCCCCTTGCACGGTGACTACAAATGGTTCCACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGG

281−1−10 H鎖アミノ酸配列(配列番号:44)
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLNSVTAADTAVYYCARAPLHGDYKWFHPWGQGTLVTVSSASTK
281-1-10 H chain amino acid sequence (SEQ ID NO: 44)
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLNSVTAADTAVYYCARAPLHGDYKWFHPWGQGTLVTVSSASTK

281−1−10 L鎖(配列番号:45)
TCACAGATCTGAGCTGCTCAGTTAGGACCCAGAGGGAACCATGGAAACCCCAGCGCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGATCACCTTCGGCCAAGGGACACGACTGGAGATCAAACGTACG
281-1-10 L chain (SEQ ID NO: 45)
TCACAGATCTGAGCTGCTCAGTTAGGACCCAGAGGGAACCATGGAAACCCCAGCGCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGATCACCTTCGGCCAAGGGACACGACTGGAGATCAAACGTACG

281−1−10 L鎖アミノ酸配列(配列番号:46)
METPAQLLFLLLLWLPDTTGEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPITFGQGTRLEIKRT
281-1-10 L chain amino acid sequence (SEQ ID NO: 46)
METPAQLLFLLLLWLPDTTGEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPITFGQGTRLEIKRT

4D11のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding 4D11 H chain variable region and L chain variable region, and the amino acid sequences of H chain and L chain are shown below.

H鎖DNAの翻訳開始点は、配列番号47の5'末端から16番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から456番目のアデニン(A)と457番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号48のN末端から147番目のセリン(S)残基までであり、148番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号48のN末端より26番目のセリン(S)までと予測された。成熟体のN末端は配列番号48の27番目のグルタミン(Q)であるものと考えられる。   The translation start point of the H chain DNA is the ATG codon starting from the 16th adenine (A) from the 5 ′ end of SEQ ID NO: 47, and the boundary between the antibody variable region and the constant region is the 456th adenine (A ) And 457th guanine (G). In the amino acid sequence, the H chain variable region is from the N-terminal of SEQ ID NO: 48 to the 147th serine (S) residue, and the 148th alanine (A) and subsequent are the constant regions. The signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 48 to the 26th serine (S) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 27th glutamine (Q) of SEQ ID NO: 48.

L鎖DNAの翻訳開始点は、配列番号49の5'末端から59番目のAからはじまるATGコドンであり、可変領域は5'末端から442番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号50のN末端から128番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号50のN末端より22番目のCystein(C)までと予測された。成熟体のN末端は配列番号50の23番目のAlanine(A)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 59th A from the 5 ′ end of SEQ ID NO: 49, and the variable region is from the 5 ′ end to the 442nd adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 50 to the 128th lysine (K). With the gene sequence prediction software (Signal P ver. 2), the signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 50 to the 22nd Cystein (C). The N-terminus of the mature body is considered to be the 23rd Alanine (A) of SEQ ID NO: 50.

4D11 H鎖(配列番号:47)
ATATGTCGACGAGTCATGGATCTCATGTGCAAGAAAATGAAGCACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTCCTGTCCCAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTACTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGCGGCTCCATCAGCAGTCCTGGTTACTACGGGGGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAGTATCTATAAAAGTGGGAGCACCTACCACAACCCGTCCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGCTGTGTATTACTGTACGAGACCTGTAGTACGATATTTTGGGTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGC
4D11 H chain (SEQ ID NO: 47)
ATATGTCGACGAGTCATGGATCTCATGTGCAAGAAAATGAAGCACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTCCTGTCCCAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTACTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGCGGCTCCATCAGCAGTCCTGGTTACTACGGGGGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAGTATCTATAAAAGTGGGAGCACCTACCACAACCCGTCCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGCTGTGTATTACTGTACGAGACCTGTAGTACGATATTTTGGGTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGC

4D11 H鎖アミノ酸配列(配列番号:48)
MDLMCKKMKHLWFFLLLVAAPRWVLSQLQLQESGPGLLKPSETLSLTCTVSGGSISSPGYYGGWIRQPPGKGLEWIGSIYKSGSTYHNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCTRPVVRYFGWFDPWGQGTLVTVSSAS
4D11 H chain amino acid sequence (SEQ ID NO: 48)
MDLMCKKMKHLWFFLLLVAAPRWVLSQLQLQESGPGLLKPSETLSLTCTVSGGSISSPGYYGGWIRQPPGKGLEWIGSIYKSGSTYHNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCTRPVVRYFGWFDPWGQGTLVTVSSAS

4D11 L鎖(配列番号:49)
AGATCTTAAGCAAGTGTAACAACTCAGAGTACGCGGGGAGACCCACTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTTCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCTGATCTATGATGCCTCCAATTTGGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAGTTACCCGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG
4D11 L chain (SEQ ID NO: 49)
AGATCTTAAGCAAGTGTAACAACTCAGAGTACGCGGGGAGACCCACTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTTCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCTGATCTATGATGCCTCCAATTTGGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAGTTACCCGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG

4D11 L鎖アミノ酸配列(配列番号:50)
MDMRVPAQLLGLLLLWLPGARCAIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPTFGQGTKVEIKRT
4D11 L chain amino acid sequence (SEQ ID NO: 50)
MDMRVPAQLLGLLLLWLPGARCAIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPTFGQGTKVEIKRT

KM643-4-11のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding the H chain variable region and L chain variable region of KM643-4-11 and the amino acid sequences of the H chain and L chain are shown below.

H鎖DNAの翻訳開始点は、配列番号51の5'末端から1番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から447番目のアデニン(A)と448番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号52のN末端から149番目のセリン(S)残基までであり、150番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号52のN末端より20番目のセリン(S)までと予測された。成熟体のN末端は配列番号52の21番目のグルタミン(Q)であるものと考えられる。   The translation start point of the H chain DNA is the ATG codon starting from the first adenine (A) from the 5 ′ end of SEQ ID NO: 51, and the boundary between the antibody variable region and the constant region is the 447th adenine (A ) And 448th guanine (G). In the amino acid sequence, the H chain variable region is from the N-terminal of SEQ ID NO: 52 to the 149th serine (S) residue, and the 150th alanine (A) and subsequent are the constant regions. With the gene sequence prediction software (Signal P ver. 2), the signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 52 to the 20th serine (S). The N-terminus of the mature body is considered to be the 21st glutamine (Q) of SEQ ID NO: 52.

L鎖DNAの翻訳開始点は、配列番号53の5'末端から38番目のAからはじまるATGコドンであり、可変領域は5'末端から409番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号54のN末端から124番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号54のN末端より20番目のGlycine(G)までと予測された。成熟体のN末端は配列番号54の21番目のGlutamic acid(E)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 38th A from the 5 ′ end of SEQ ID NO: 53, and the variable region is from the 5 ′ end to the 409th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 54 to the 124th lysine (K). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 54 to the 20th Glycine (G) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 21st Glutamic acid (E) of SEQ ID NO: 54.

KM643-4-11 H鎖(配列番号:51)
ATGTCTGTCTCCTTCCTCATCTTCCTGCCCGTGCTGGGCCTCCCATGGGGTGTCCTGTCACAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCATTCACCTGTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAAAGATTATGCAGTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGCTGAACTCTGTGACCCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGGGTATTACTATGGTTCGGGGAGCTATCCCTACTACTACCAAATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGC
KM643-4-11 H chain (SEQ ID NO: 51)
ATGTCTGTCTCCTTCCTCATCTTCCTGCCCGTGCTGGGCCTCCCATGGGGTGTCCTGTCACAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCATTCACCTGTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAAAGATTATGCAGTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGCTGAACTCTGTGACCCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGGGTATTACTATGGTTCGGGGAGCTATCCCTACTACTACCAAATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGC

KM643-4-11 H鎖アミノ酸配列(配列番号:52)
MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSFTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYKDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGYYYGSGSYPYYYQMDVWGQGTTVTVSSAS
KM643-4-11 H chain amino acid sequence (SEQ ID NO: 52)
MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSFTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYKDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGYYYGSGSYPYYYQMDVWGQGTTVTVSSAS

KM643-4-11 L鎖(配列番号:53)
AATTGAGGAACTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGTGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGAAC
KM643-4-11 L chain (SEQ ID NO: 53)
AATTGAGGAACTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGTGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGAAC

KM643-4-11 L鎖アミノ酸配列(配列番号:54)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGESATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNTFGGGTKVEIKR
KM643-4-11 L chain amino acid sequence (SEQ ID NO: 54)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGESATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNTFGGGTKVEIKR

F4-465のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding F4-465 H chain variable region and L chain variable region, and the amino acid sequences of H chain and L chain are shown below.

H鎖DNAの翻訳開始点は、配列番号55の5'末端から47番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から484番目のアデニン(A)と445番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号56のN末端から146番目のセリン(S)残基までであり、147番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号56のN末端より19番目のセリン(S)までと予測された。成熟体のN末端は配列番号56の20番目のグルタミン(Q)であるものと考えられる。   The translation start point of H chain DNA is the ATG codon starting from the 47th adenine (A) of SEQ ID NO: 55, and the boundary between the antibody variable region and the constant region is the 484th adenine (A ) And 445th guanine (G). In the amino acid sequence, the heavy chain variable region extends from the N-terminus of SEQ ID NO: 56 to the 146th serine (S) residue, and the 147th alanine (A) and subsequent residues are constant regions. The signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 56 to the 19th serine (S) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 20th glutamine (Q) of SEQ ID NO: 56.

L鎖DNAの翻訳開始点は、配列番号57の5'末端から81番目のAからはじまるATGコドンであり、可変領域は5'末端から440番目の(C)までである。アミノ酸配列において、可変領域は配列番号58のN末端から120番目のThreonine(T)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号58のN末端より19番目のAlanine(G)までと予測された。成熟体のN末端は配列番号58の20番目のSerine(S)であるものと考えられる。   The translation start point of the L-strand DNA is an ATG codon starting from the 81st A from the 5 'end of SEQ ID NO: 57, and the variable region is from the 5' end to the 440th (C). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 58 to the 120th Threonine (T). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 58 to the 19th Alanine (G) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 20th Serine (S) of SEQ ID NO: 58.

F4-465 H鎖(配列番号:55)
CTGAACACAGACCCGTCGACTACGCGGGAGACCACAGCTCCACACCATGGACTGGACCTGGAGGATCCTATTCTTGGTGGCAGCAGCAACAGGTGCCCACTCCCAGGTGCAGCTGGTGCAATCTGGGTCTGAGTTGAAGAAGCCTGGGGCCTCAGTGAAGGTCCCCTGCAAGGCTTCTGGATACACCTTCACTAGCTATGCTATGAATTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAACACCAACACTGGGAACCCAACGTATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCTTGGACACCTCTGTCAGCACGGCATATCTGCAGATCAGCAGCCTAAAGGCTGAGGACACTGCCGTGTATTACTGTGCGAGAGAGGTAGTACCAGTTGCTATGAGGGTAACTCACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAA
F4-465 H chain (SEQ ID NO: 55)
CTGAACACAGACCCGTCGACTACGCGGGAGACCACAGCTCCACACCATGGACTGGACCTGGAGGATCCTATTCTTGGTGGCAGCAGCAACAGGTGCCCACTCCCAGGTGCAGCTGGTGCAATCTGGGTCTGAGTTGAAGAAGCCTGGGGCCTCAGTGAAGGTCCCCTGCAAGGCTTCTGGATACACCTTCACTAGCTATGCTATGAATTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAACACCAACACTGGGAACCCAACGTATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCTTGGACACCTCTGTCAGCACGGCATATCTGCAGATCAGCAGCCTAAAGGCTGAGGACACTGCCGTGTATTACTGTGCGAGAGAGGTAGTACCAGTTGCTATGAGGGTAACTCACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAA

F4-465 H鎖アミノ酸配列(配列番号:56)
MDWTWRILFLVAAATGAHSQVQLVQSGSELKKPGASVKVPCKASGYTFTSYAMNWVRQAPGQGLEWMGWINTNTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCAREVVPVAMRVTHYYYGMDVWGQGTTVTVSSAST
F4-465 H chain amino acid sequence (SEQ ID NO: 56)
MDWTWRILFLVAAATGAHSQVQLVQSGSELKKPGASVKVPCKASGYTFTSYAMNWVRQAPGQGLEWMGWINTNTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCAREVVPVAMRVTHYYYGMDVWGQGTTVTVSSAST

F4-465 L鎖(配列番号:57)
CTGGGTACGGTAACCGTCAGATCGCCTGGAGACGCCATCACAGATCTGCCTCAGGAAGCAGCATCGGAGGTGCCTCAGCCATGGCATGGATCCCTCTCTTCCTCGGCGTCCTTGTTTACTGCACAGGATCCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGGCCCCAGGACAGACAGCCAGCATCACCTGTTCTGGAGATAAATTGGGGGATAATTTTACTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCATCTTTCAGGATTGGAAGCGGCGCCCAGGGATCCCTGCGCGATTCTCTGGCTCCAAGTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACATCAGCACTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGAATTCAGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGTGACCAACATA
F4-465 L chain (SEQ ID NO: 57)
CTGGGTACGGTAACCGTCAGATCGCCTGGAGACGCCATCACAGATCTGCCTCAGGAAGCAGCATCGGAGGTGCCTCAGCCATGGCATGGATCCCTCTCTTCCTCGGCGTCCTTGTTTACTGCACAGGATCCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGGCCCCAGGACAGACAGCCAGCATCACCTGTTCTGGAGATAAATTGGGGGATAATTTTACTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCATCTTTCAGGATTGGAAGCGGCGCCCAGGGATCCCTGCGCGATTCTCTGGCTCCAAGTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACATCAGCACTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGAATTCAGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGTGACCAACATA

F4-465 L鎖アミノ酸配列(配列番号:58)
MAWIPLFLGVLVYCTGSVASYELTQPPSVSVAPGQTASITCSGDKLGDNFTCWYQQKPGQSPVLVIFQDWKRRPGIPARFSGSKSGNTATLTISGTQAMDEADYYCQAWDISTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
F4-465 L chain amino acid sequence (SEQ ID NO: 58)
MAWIPLFLGVLVYCTGSVASYELTQPPSVSVAPGQTASITCSGDKLGDNFTCWYQQKPGQSPVLVIFQDWKRRPGIPARFSGSKSGNTATLTISGTQAMDEADYYCQAWDISTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEQQNKKATLVQSSVYPGAVTVAWQTPVSK

F2-103のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding the H-chain variable region and the L-chain variable region of F2-103, and the amino acid sequences of the H-chain and L-chain are shown below.

H鎖DNAの翻訳開始点は、配列番号59の5'末端から32番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から463番目のアデニン(A)と464番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号60のN末端から144番目のセリン(S)残基までであり、145番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号60のN末端より19番目のCystein(C)までと予測された。成熟体のN末端は配列番号60の20番目のGlutamic acid(E)であるものと考えられる。   The translation start point of the H chain DNA is an ATG codon starting from the 32nd adenine (A) of SEQ ID NO: 59, and the boundary between the antibody variable region and the constant region is the 463rd adenine (A ) And 464th guanine (G). In the amino acid sequence, the H chain variable region extends from the N-terminus of SEQ ID NO: 60 to the 144th serine (S) residue, and the 145th alanine (A) and subsequent residues are constant regions. The signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 60 to the 19th Cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 20th Glutamic acid (E) of SEQ ID NO: 60.

L鎖DNAの翻訳開始点は、配列番号61の5'末端から29番目のAからはじまるATGコドンであり、可変領域は5'末端から415番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号62のN末端から129番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号62のN末端より22番目のCystein(C)までと予測された。成熟体のN末端は配列番号62の23番目のAsp(D)であるものと考えられる。   The translation start point of the L chain DNA is an ATG codon starting from the 29th A from the 5 ′ end of SEQ ID NO: 61, and the variable region is from the 5 ′ end to the 415th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 62 to the 129th lysine (K). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 62 to the 22nd Cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 23rd Asp (D) of SEQ ID NO: 62.

F2-103 H鎖(配列番号:59)
GCTGATCAGGACTGCACACAGAGAACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTTGTTGCTATTTTAAAAGGTGTCCAGTGTGAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGTCTCTGGATTCACCTTCAGTACCTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTGTGGGTCTCACGTATTAATAGTGATGGGAGTAGCACAACCTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAGAGATAGAGTACTATGGATCGGGGAGTTATCCTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCT
F2-103 H chain (SEQ ID NO: 59)
GCTGATCAGGACTGCACACAGAGAACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTTGTTGCTATTTTAAAAGGTGTCCAGTGTGAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGTCTCTGGATTCACCTTCAGTACCTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTGTGGGTCTCACGTATTAATAGTGATGGGAGTAGCACAACCTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAGAGATAGAGTACTATGGATCGGGGAGTTATCCTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCT

F2-103 H鎖アミノ酸配列(配列番号:60)
MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAVSGFTFSTYWMHWVRQAPGKGLVWVSRINSDGSSTTYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARDRVLWIGELSYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTS
F2-103 H chain amino acid sequence (SEQ ID NO: 60)
MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAVSGFTFSTYWMHWVRQAPGKGLVWVSRINSDGSSTTYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARDRVLWIGELSYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTS

F2-103 L鎖(配列番号:61)
GGGGAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAACTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGCTCTATAAGGCATCTGGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAACAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTCTAATAGTTATTCGTGGACGTTCGGCCACGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA
F2-103 L chain (SEQ ID NO: 61)
GGGGAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAACTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGCTCTATAAGGCATCTGGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAACAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTCTAATAGTTATTCGTGGACGTTCGGCCACGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA

F2-103 L鎖アミノ酸配列(配列番号:62)
MDMRVPAQLLGLLLLWLPGAKCDIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWYQQKPGKAPKLLLYKASGLESGVPSRFSGSGSGTEFTLTINSLQPDDFATYYCQQSNSYSWTFGHGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGL
F2-103 L chain amino acid sequence (SEQ ID NO: 62)
MDMRVPAQLLGLLLLWLPGAKCDIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWYQQKPGKAPKLLLYKASGLESGVPSRFSGSGSGTEFTLTINSLQPDDFATYYCQQSNSYSWTFGHGTKVEIKRTVAAPSVFIFIPSPSQLKSGTASVVCLLNQYSG

F5-77のH鎖可変領域、及びL鎖可変領域をコードするDNA並びにH鎖及びL鎖のアミノ酸配列をそれぞれ以下に示す。   The DNAs encoding the F5-77 H chain variable region and L chain variable region, and the amino acid sequences of the H chain and L chain are shown below.

H鎖DNAの翻訳開始点は、配列番号63の5'末端から100番目のアデニン(A)からはじまるATGコドンであり、抗体可変領域と定常領域の境界は5'末端から528番目のアデニン(A)と529番目のグアニン(G)間に位置する。アミノ酸配列において、H鎖可変領域は配列番号64のN末端から143番目のセリン(S)残基までであり、144番目のアラニン(A)以降が定常領域である。遺伝子配列予測ソフトウェア(Signal P ver.2)により、H鎖のシグナル配列は配列番号64のN末端より19番目のCystein(C)までと予測された。成熟体のN末端は配列番号64の20番目のGlutamic acid(E)であるものと考えられる。   The translation start point of the H chain DNA is an ATG codon starting from the 100th adenine (A) from the 5 ′ end of SEQ ID NO: 63, and the boundary between the antibody variable region and the constant region is the 528th adenine (A ) And 529th guanine (G). In the amino acid sequence, the H chain variable region is from the N-terminal of SEQ ID NO: 64 to the 143rd serine (S) residue, and the 144th alanine (A) and subsequent are the constant regions. With the gene sequence prediction software (Signal P ver. 2), the signal sequence of the H chain was predicted from the N-terminus of SEQ ID NO: 64 to the 19th Cystein (C). The N-terminus of the mature body is considered to be the 20th Glutamic acid (E) of SEQ ID NO: 64.

L鎖DNAの翻訳開始点は、配列番号65の5'末端から59番目のAからはじまるATGコドンであり、可変領域は5'末端から445番目のアデニン(A)までである。アミノ酸配列において、可変領域は配列番号66のN末端から129番目のリジン(K)までである。遺伝子配列予測ソフトウェア(Signal P ver.2)により、L鎖のシグナル配列は配列番号66のN末端より22番目のCystein(C)までと予測された。成熟体のN末端は配列番号66の23番目のAsp(D)であるものと考えられる。   The translation start point of L-strand DNA is the ATG codon starting from the 59th A from the 5 ′ end of SEQ ID NO: 65, and the variable region is from the 5 ′ end to the 445th adenine (A). In the amino acid sequence, the variable region is from the N-terminus of SEQ ID NO: 66 to the 129th lysine (K). The signal sequence of the L chain was predicted from the N-terminus of SEQ ID NO: 66 to the 22nd Cystein (C) by the gene sequence prediction software (Signal P ver. 2). The N-terminus of the mature body is considered to be the 23rd Asp (D) of SEQ ID NO: 66.

F5-77 H鎖(配列番号:63)
GGTCTATATAAGCAGAGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGAACACAGACCCGTCGACGGTGATCAGGACTGAACAGAGAGAACTCACCATGGAGTTTGGGCTGAGCTGGCTTTTTCTTGTGGCTATTTTAAAAGGTGTCCAGTGTGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATGGGGGGTACTATGGTTCGGGGAGTTATGGGTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCC
F5-77 H chain (SEQ ID NO: 63)
GGTCTATATAAGCAGAGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGAACACAGACCCGTCGACGGTGATCAGGACTGAACAGAGAGAACTCACCATGGAGTTTGGGCTGAGCTGGCTTTTTCTTGTGGCTATTTTAAAAGGTGTCCAGTGTGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATGGGGGGTACTATGGTTCGGGGAGTTATGGGTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCC

F5-77 H鎖アミノ酸配列(配列番号:64)
MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGGYYGSGSYGYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP
F5-77 H chain amino acid sequence (SEQ ID NO: 64)
MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGGYYGSGSYGYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKFP

F5-77 L鎖(配列番号:65)
CAAGCAGTGGTAACAACGCAGAGTACGCGGGGGGAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGTTCCCAGGTTCCAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGGATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGGATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATTTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAGCAGTTTCCCTCGGACATTCGGCCAAGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA
F5-77 L chain (SEQ ID NO: 65)
CAAGCAGTGGTAACAACGCAGAGTACGCGGGGGGAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGTTCCCAGGTTCCAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGGATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGGATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATTTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAGCAGTTTCCCTCGGACATTCGGCCAAGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA

F5-77 L鎖アミノ酸配列(配列番号:66)
MDMRVPAQLLGLLLLWFPGSRCDIQMTQSPSSVSGSVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAGSSLQSGVPSRFSGSGFGTDFTLTISSLQPEDFATYYCQQASSFPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGL
F5-77 L chain amino acid sequence (SEQ ID NO: 66)
MDMRVPAQLLGLLLLWFPGSRCDIQMTQSPSSVSGSVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAGSSLQSGVPSRFSGSGFGTDFTLTISSLQPEDFATYYCQQASSFPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCTLNKAY

[実施例18]抗体たんぱく質の動物細胞における発現
前記で取得した抗体の可変領域を含むDNA断片をN5KG1(IDEC Pharmaceuticals, US patent6001358)などの適当なベクターに組み込むことにより、抗体発現ベクターを作製する。発現のための宿主細胞には、例えばCHO-Ras(Katakura Y., et al., Cytotechnology, 31: 103-109, 1999)が好適に用いられる。宿主細胞へのベクターの導入は例えばエレクトロポレーションにより実施できる。抗体発現ベクター約2μgを制限酵素で線状化し、Bio-Rad electrophoreterをもちいて350V、500μFの条件で、4x107個のCHO−Ras細胞に遺伝子を導入し、96well culture plateに播種する。発現ベクターの選択マーカーに対応した薬剤を添加して培養を継続する。コロニーが観察されたら、実施例4に示した方法によって、抗体発現株を選別する。選別した細胞からの抗体精製は、実施例5にしたがって行うことができる。
[Example 18] Expression of antibody protein in animal cells An antibody expression vector is prepared by incorporating the DNA fragment containing the antibody variable region obtained above into an appropriate vector such as N5KG1 (IDEC Pharmaceuticals, US patent 6001358). For example, CHO-Ras (Katakura Y., et al., Cytotechnology, 31: 103-109, 1999) is preferably used as a host cell for expression. Introduction of the vector into the host cell can be performed, for example, by electroporation. About 2 μg of the antibody expression vector is linearized with a restriction enzyme, and the gene is introduced into 4 × 10 7 CHO-Ras cells using a Bio-Rad electrophoreter under conditions of 350 V and 500 μF and seeded in a 96-well culture plate. The drug corresponding to the selection marker of the expression vector is added and the culture is continued. When colonies are observed, antibody-expressing strains are selected by the method shown in Example 4. Antibody purification from the sorted cells can be performed according to Example 5.

〔実施例19〕CD40アンタゴニスティック抗体による抗原特異的抗体産生抑制作用
マウス内因性CD40破壊についてホモ接合体の遺伝子背景を有し、かつ、ヒトCD40遺伝子のトランスジーンを有しているマウス(Yasui. et al. Int. Immunol. 2002 Vol14 : 319)に4-hydroxy-3-nitrophenylacetyl-chiken γ-globulin conjugates (NP-CGG:大阪大学微生物病研究所 菊谷 仁教授より分与)とアラム(ARAM: Antigen recognition activation motif)の複合体を100μg(NP-CGG量として)腹腔内注射することにより感作した。各モノクローナル抗体は抗原感作直前に30または100μgの量を尾静脈内投与した。陰性対照として抗ヒトアルブミンヒトIgG4抗体100μgを投与した。感作7日後、眼窩静脈叢より採血し、血清中のNP特異的IgG1およびIgM抗体量をELISA法により測定した。ELISA法はNPを結合した牛血清アルブミン(NP-BSA:2.5μg/ml)50μl/ウェルを、ELISA用96穴マイクロプレート(Maxisorp、Nunc社製)の各ウェルに加え、4℃でインキュベートし、NP-BSAを吸着させた。次いで、上清を捨て、各ウェルにブロッキング試薬(スーパーブロック、Pierce社製)を加え室温でインキュベートしブロックした後、各ウェルを0.1%Tween20含有リン酸緩衝液(PBS-T)で3回洗浄した。次いで、各ウェルに10%ブロックエース含有PBS-Tで希釈した各血清(50μl/ウェル)を加え、37℃で2時間インキュベートし反応させた。マイクロプレートをPBS-Tで3回洗浄後、アルカリフォスファターゼで標識されたヤギ抗マウスIgG1またはIgM抗体(コスモバイオ、1070-04または1020-04)を10%ブロックエース含有PBS-Tで1,000倍に希釈した溶液(50μl/ウェル)を、各ウェルに加え、37℃で2時間インキュベートした。次いで、マイクロプレートをPBS-Tで3回洗浄後、発色基質液(50μl/ウェル、Sigma104、phosphatase substrate)を各ウェルに加え、波長405nmでの吸光度をマイクロプレートリーダーで測定した。その結果を図18、図19に示す。図中縦軸はNP-CGGをC57BL/6マウスに2回注射した後採血してプールした血清について、IgG1抗体の場合は10,000倍希釈したものを、IgM抗体の場合は100倍したものをそれぞれ1ユニットとして換算した値を示す。F4-465、4D11およびKM281-1-10抗体は100μgの投与によりNP特異的なIgG1およびIgM抗体産生を強く抑制した。
[Example 19] Inhibition of antigen-specific antibody production by CD40 antagonistic antibody A mouse having a homozygous genetic background for mouse endogenous CD40 disruption and a human CD40 gene transgene (Yasui et al. Int. Immunol. 2002 Vol14: 319) and 4-hydroxy-3-nitrophenylacetyl-chiken γ-globulin conjugates (NP-CGG: distributed by Professor Hitoshi Kikutani, Osaka University Research Institute for Microbial Diseases) and Aram (ARAM: Antigen recognition activation motif) was sensitized by intraperitoneal injection of 100 μg (as NP-CGG amount). Each monoclonal antibody was administered into the tail vein in an amount of 30 or 100 μg immediately before antigen sensitization. As a negative control, 100 μg of anti-human albumin human IgG4 antibody was administered. Seven days after sensitization, blood was collected from the orbital venous plexus, and the amounts of NP-specific IgG1 and IgM antibodies in the serum were measured by ELISA. In ELISA method, 50 μl / well of bovine serum albumin (NP-BSA: 2.5 μg / ml) conjugated with NP was added to each well of a 96-well microplate for ELISA (Maxisorp, manufactured by Nunc), and incubated at 4 ° C. NP-BSA was adsorbed. Next, discard the supernatant, add blocking reagent (Super Block, manufactured by Pierce) to each well, incubate at room temperature to block, then wash each well 3 times with 0.1% Tween20-containing phosphate buffer (PBS-T) did. Next, each serum (50 μl / well) diluted with PBS-T containing 10% Block Ace was added to each well, and incubated at 37 ° C. for 2 hours to react. After washing the microplate 3 times with PBS-T, alkaline phosphatase-labeled goat anti-mouse IgG1 or IgM antibody (Cosmo Bio, 1070-04 or 1020-04) was added 1,000 times with PBS-T containing 10% Block Ace. Diluted solution (50 μl / well) was added to each well and incubated at 37 ° C. for 2 hours. Subsequently, the microplate was washed 3 times with PBS-T, and then a chromogenic substrate solution (50 μl / well, Sigma104, phosphatase substrate) was added to each well, and the absorbance at a wavelength of 405 nm was measured with a microplate reader. The results are shown in FIGS. In the figure, the vertical axis shows sera collected after two injections of NP-CGG into C57BL / 6 mice, diluted 10,000-fold for IgG1 antibody, and 100-fold for IgM antibody. The value converted as one unit is shown. F4-465, 4D11 and KM281-1-10 antibodies strongly suppressed NP-specific IgG1 and IgM antibody production by administration of 100 μg.

〔実施例20〕CD40アンタゴニスティック抗体による扁桃腺B細胞の増殖抑制
ヒト扁桃腺はチルドレンズ・ホスピタル(サン ディエゴ、米国カリフォルニア州)より入手した。扁桃腺を小片に裁断し、細かく刻み、70マイクロメーターのナイロンメッシュ細胞ストレーナーを通すことにより、細胞懸濁液を調製した。PBSにて数回洗浄の後、細胞数を計数し、90%ヒト血清(ICN)、10%DMSOで凍結保存した。細胞は融解の後、10%ヒト血清、2.5マイクログラム/mlのアンフォテリシン(ファンギゾン、ギブコ/BRL)を添加した標準的RPMI培地に再懸濁して使用した。
[Example 20] Inhibition of Tonsil B Cell Growth by CD40 Antagonistic Antibody Human tonsils were obtained from Children's Hospital (San Diego, Calif., USA). Cell suspensions were prepared by cutting the tonsils into small pieces, minced and passed through a 70 micrometer nylon mesh cell strainer. After washing several times with PBS, the number of cells was counted and stored frozen in 90% human serum (ICN) and 10% DMSO. Cells were used after thawing and resuspended in standard RPMI medium supplemented with 10% human serum, 2.5 microgram / ml amphotericin (fungizone, Gibco / BRL).

1x10個の細胞を96穴ウェルに加え、抗ヒトCD40抗体を0.01、0.1、1.0および10マイクログラム/mlの濃度で添加した。試験は各濃度につき三連で実施した。flag標識したCD40L(Alexis)1マイクログラム/ml、CD40Lエンハンサー抗体(Alexis)1マイクログラム/mlを各ウェルに添加して3日間培養の後、1マイクロCiの[H]チミジンを各ウェルに添加した。12〜15時間後に細胞を回収、液体シンチレーションカウンターにより扁桃腺B細胞の増殖を計測した。B細胞がCD40Lの刺激により増殖し、抗体を添加されなかった場合のカウントを100、CD40Lが添加されず、B細胞が刺激されなかった場合のカウントを0とした。例えば相対的なカウントの値として30が計測された場合、本実験では、70%の増殖阻害が起こったと表現することとした。 1 × 10 5 cells were added to 96 wells and anti-human CD40 antibody was added at concentrations of 0.01, 0.1, 1.0 and 10 microgram / ml. The test was performed in triplicate for each concentration. Flag-labeled CD40L (Alexis) 1 microgram / ml and CD40L enhancer antibody (Alexis) 1 microgram / ml were added to each well and cultured for 3 days. Then 1 microCi of [ 3 H] thymidine was added to each well. Added. Cells were collected after 12 to 15 hours, and proliferation of tonsillar B cells was measured by a liquid scintillation counter. The count when B cells proliferated by stimulation of CD40L and no antibody was added was 100, and the count when CD40L was not added and B cells were not stimulated was 0. For example, when 30 is measured as a relative count value, it is expressed in this experiment that 70% growth inhibition has occurred.

公知のアンタゴニスティック抗体である5D12は、抗体濃度100マイクログラム/mlでも50%を超える増殖抑制を示さなかった。
F4-465はわずか0.01マイクログラム/mlの濃度で約80%の増殖抑制を示し、0.1〜10マイクログラム/mlの濃度で約95%の増殖抑制を示した(図20)。
A known antagonistic antibody, 5D12, did not show growth inhibition exceeding 50% even at an antibody concentration of 100 microgram / ml.
F4-465 showed about 80% growth inhibition at a concentration of only 0.01 microgram / ml and about 95% growth inhibition at a concentration of 0.1-10 microgram / ml (FIG. 20).

本明細書で引用した全ての刊行物、特許及び特許出願は、そのまま参考として本明細書に取り入れるものとする。   All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

KM302-1抗体が、CD95発現を促進する結果を示す図である。It is a figure which shows the result that KM302-1 antibody promotes CD95 expression. アンタゴニスティック抗体がRamos細胞に対するCD40リガンドの働きを中和することを示す図である。It is a figure which shows that an antagonistic antibody neutralizes the function of CD40 ligand with respect to Ramos cell. アンタゴニスティック抗体がRamos細胞に対するCD40リガンドの働きを中和することを示す図である。It is a figure which shows that an antagonistic antibody neutralizes the function of CD40 ligand with respect to Ramos cell. KM281-1-10抗体がRamos細胞に対するCD40リガンドの働きを中和することを示す図である。It is a figure which shows that KM281-1-10 antibody neutralizes the function of CD40 ligand with respect to Ramos cell. 架橋されたKM281-1-10抗体がCD95発現を促進しない結果を示す図である。It is a figure which shows the result by which the cross-linked KM281-1-10 antibody does not promote CD95 expression. 架橋された5D12抗体が、CD95発現を促進する結果を示す図である。It is a figure which shows the result in which the cross-linked 5D12 antibody promotes CD95 expression. KM302-1抗体による腫瘍細胞に対する増殖抑制効果を示す図である。It is a figure which shows the growth inhibitory effect with respect to the tumor cell by KM302-1 antibody. KM302-1抗体が、DC細胞の成熟化を促進する結果を示す図である。It is a figure which shows the result in which KM302-1 antibody accelerates | stimulates maturation of DC cell. KM302-1抗体が、DC細胞にIL-12生産を促進する結果を示す図である。It is a figure which shows the result that KM302-1 antibody promotes IL-12 production to DC cells. KM281-1-10抗体による、DCに対するCD40リガンドの働きを中和することを示す図である。It is a figure which shows neutralizing the function of CD40 ligand with respect to DC by KM281-1-10 antibody. KM281-1-10抗体による、DCに対するCD40リガンドの働きを中和することを示す図である。It is a figure which shows neutralizing the function of CD40 ligand with respect to DC by KM281-1-10 antibody. KM302-1抗体による未成熟DC−MLRを活性化することを示す図である。It is a figure which shows that immature DC-MLR by a KM302-1 antibody is activated. KM341-1-19抗体等が、Ramos細胞のCD95発現を促進する結果を示す図である。It is a figure which shows the result that KM341-1-19 antibody etc. promote CD95 expression of Ramos cells. KM341-1-19抗体が、成熟DC細胞のIL-12生産を促進する結果を示す図である。It is a figure which shows the result that KM341-1-19 antibody promotes IL-12 production of mature DC cells. KM341-1-19抗体が、成熟DC細胞のIL-10生産を促進する結果を示す図である。It is a figure which shows the result that KM341-1-19 antibody promotes IL-10 production of mature DC cells. 4D11抗体等が、Ramos細胞に対するCD40リガンドの働きを中和することを示す図である。It is a figure which shows that 4D11 antibody etc. neutralize the function of CD40 ligand with respect to Ramos cell. KM302-1抗体が、ヒト腫瘍細胞移植マウスモデルにおいて抗腫瘍効果を示す図である。It is a figure in which KM302-1 antibody shows an antitumor effect in a human tumor cell transplant mouse model. KM341-1-19抗体が、腫瘍細胞に対して増殖抑制効果を示す図である。It is a figure in which KM341-1-19 antibody shows the growth inhibitory effect with respect to the tumor cell. F4-465, 4D11, KM281-1-10が抗原特異的IgGの産生を抑制することを示す図である。It is a figure which shows that F4-465, 4D11, and KM281-1-10 suppress the production of antigen-specific IgG. F4-465, 4D11, KM281-1-10が抗原特異的IgMの産生を抑制することを示す図である。It is a figure which shows that F4-465, 4D11, and KM281-1-10 suppress the production of antigen-specific IgM. F4-465が扁桃腺B細胞の増殖を抑制することを示す図である。It is a figure which shows that F4-465 suppresses the proliferation of tonsil B cell.

配列番号1〜26:合成DNA   Sequence number 1-26: Synthetic DNA

Claims (30)

以下の(a)〜(f)から選ばれる少なくとも1つの性質を有する、ヒトCD40に対する抗体又はその機能的断片。
(a) 樹状細胞に作用し、LPS及びIFNγの存在下でIL-12を生産させる
(b) 樹状細胞に作用し、該樹状細胞を成熟させる活性がG28-5抗体よりも高い
(c) B細胞樹立細胞株に対して、CD95の発現を促進する活性がG28-5抗体よりも高い
(d) B細胞樹立細胞株に対して増殖を抑制する活性がG28-5抗体よりも高い
(e) B細胞樹立細胞株に対して細胞死を誘導する
(f) CD40リガンドのCD40に対する結合を阻害しない
An antibody against human CD40 or a functional fragment thereof having at least one property selected from the following (a) to (f):
(a) Acts on dendritic cells to produce IL-12 in the presence of LPS and IFNγ
(b) Acts on dendritic cells and has higher maturation activity than G28-5 antibody
(c) B95 cell line has higher activity to promote CD95 expression than G28-5 antibody
(d) The activity of inhibiting the growth of B cell established cell line is higher than that of G28-5 antibody
(e) Inducing cell death against B cell line
(f) Does not inhibit the binding of CD40 ligand to CD40
樹状細胞の成熟が、20μg/ml以下の抗体濃度で行われるものである請求項1記載の抗体又はその機能的断片。   The antibody or the functional fragment thereof according to claim 1, wherein maturation of dendritic cells is carried out at an antibody concentration of 20 µg / ml or less. B細胞樹立細胞株に対してCD95の発現の促進が、20μg/ml以下の抗体濃度で行われるものである請求項1記載の抗体又はその機能的断片。   2. The antibody or functional fragment thereof according to claim 1, wherein the CD95 expression is promoted to a B cell established cell line at an antibody concentration of 20 μg / ml or less. B細胞樹立細胞株がRamos又はHS-Sultonである請求項1記載の抗体又はその機能的断片。   2. The antibody or functional fragment thereof according to claim 1, wherein the B cell established cell line is Ramos or HS-Sulton. 1x106個/mlの濃度の樹状細胞に、0.1μg/ml以上の濃度の抗体が添加された場合に、100pg/ml以上のIL-12の生産をもたらすものである、請求項1記載の抗体又はその機能的断片。 The production of IL-12 of 100 pg / ml or more is caused when an antibody having a concentration of 0.1 μg / ml or more is added to dendritic cells having a concentration of 1 × 10 6 cells / ml. An antibody or functional fragment thereof. 1x106個/mlの濃度の樹状細胞に、1μg/ml以上の濃度の抗体が添加された場合に、1000pg/ml以上のIL-12の生産をもたらすものである、請求項1記載の抗体又はその機能的断片。 The antibody according to claim 1, wherein when an antibody having a concentration of 1 µg / ml or more is added to a dendritic cell having a concentration of 1x10 6 cells / ml, the antibody produces IL-12 of 1000 pg / ml or more. Or a functional fragment thereof. 1x106個/mlの濃度の樹状細胞に、1μg/ml以上の濃度の抗体が添加された場合に、10000pg/ml以上のIL-12の生産をもたらすものである、請求項1記載の抗体又はその機能的断片。 The antibody according to claim 1, wherein when an antibody having a concentration of 1 µg / ml or more is added to dendritic cells having a concentration of 1x10 6 cells / ml, the antibody produces IL-12 of 10,000 pg / ml or more. Or a functional fragment thereof. B細胞樹立細胞株(Ramos細胞)に対するCD95の発現促進が、抗体濃度0.01μg/mlから10μg/mlの範囲において、対照であるG28-5抗体の約2倍から3倍以上である、請求項1記載の抗体又はその機能的断片。   The promotion of CD95 expression on a B cell established cell line (Ramos cells) is about 2 to 3 times or more of the control G28-5 antibody in an antibody concentration range of 0.01 μg / ml to 10 μg / ml. 2. The antibody or functional fragment thereof according to 1. B細胞樹立細胞株(Ramos細胞)に対するCD95の発現促進が、抗体濃度0.01μg/mlにおいて、対照であるG28-5抗体の約2倍から6倍以上である、請求項1記載の抗体又はその機能的断片。   The antibody according to claim 1, wherein the expression promotion of CD95 against a B cell established cell line (Ramos cell) is about 2 to 6 times or more that of the control G28-5 antibody at an antibody concentration of 0.01 µg / ml. Functional fragment. B細胞樹立細胞株(Ramos細胞)に対するCD95の発現促進が、抗体濃度0.1μg/mlにおいて、対照であるG28-5抗体の約2倍から7倍以上である、請求項1記載の抗体又はその機能的断片。   The antibody according to claim 1, wherein the expression promotion of CD95 against a B cell established cell line (Ramos cell) is about 2 to 7 times or more that of the control G28-5 antibody at an antibody concentration of 0.1 µg / ml. Functional fragment. B細胞樹立細胞株(Ramos細胞)に対するCD95の発現促進が、抗体濃度1μg/mlにおいて、対照であるG28-5抗体の約2倍から7倍以上である、請求項1記載の抗体又はその機能的断片。   The antibody or its function according to claim 1, wherein the CD95 expression promotion for B cell established cell line (Ramos cell) is about 2 to 7 times or more that of the control G28-5 antibody at an antibody concentration of 1 µg / ml. Fragment. B細胞樹立細胞株(Ramos細胞)に対するCD95の発現促進が、抗体濃度10μg/mlにおいて、対照であるG28-5抗体の約2倍から6倍以上である、請求項1記載の抗体又はその機能的断片。   The antibody or its function according to claim 1, wherein the CD95 expression promotion for the B cell established cell line (Ramos cell) is about 2 to 6 times or more that of the control G28-5 antibody at an antibody concentration of 10 µg / ml. Fragment. ハイブリドーマKM302-1(受託番号FERM BP-7578)、KM341-1-19(受託番号FERM BP-7759)、2105(受託番号FERM BP-8024)またはF1-102(受託番号ATCC PTA-3337)により生産される抗体の重鎖可変領域および軽鎖可変領域のアミノ酸配列を有する抗体又はその機能的断片。   Produced by hybridoma KM302-1 (Accession number FERM BP-7578), KM341-1-19 (Accession number FERM BP-7759), 2105 (Accession number FERM BP-8024) or F1-102 (Accession number ATCC PTA-3337) An antibody or a functional fragment thereof having the amino acid sequences of the heavy chain variable region and the light chain variable region of the antibody. 受託番号ATCC PTA-3302およびATCC PTA-3303であるプラスミドDNAにそれぞれコードされる、ハイブリドーマF2-103の産生する抗体の重鎖可変領域および軽鎖可変領域、受託番号ATCC PTA-3304およびATCC PTA-3305であるプラスミドDNAにそれぞれコードされる、ハイブリドーマF5-77の産生する抗体の重鎖可変領域および軽鎖可変領域、または受託番号ATCC PTA-3306およびATCC PTA-3307であるプラスミドDNAにそれぞれコードされる、ハイブリドーマF5-157の産生する抗体の重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。   The heavy chain variable region and light chain variable region of the antibody produced by hybridoma F2-103, encoded by plasmid DNAs having accession numbers ATCC PTA-3302 and ATCC PTA-3303, respectively, accession numbers ATCC PTA-3304 and ATCC PTA- The heavy chain variable region and light chain variable region of the antibody produced by hybridoma F5-77, respectively encoded by plasmid DNA 3305, or the plasmid DNAs having accession numbers ATCC PTA-3306 and ATCC PTA-3307, respectively. An antibody having a mature amino acid sequence of a heavy chain variable region and a light chain variable region of an antibody produced by hybridoma F5-157 or a functional fragment thereof. 配列番号28および30にそれぞれ示される、ハイブリドーマKM341-1-19の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号32および34にそれぞれ示される、ハイブリドーマ2105の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号36および38にそれぞれ示される、ハイブリドーマ110の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号40および42にそれぞれ示される、ハイブリドーマ115の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号52および54にそれぞれ示される、ハイブリドーマKM643-4-11の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号60および62にそれぞれ示される、ハイブリドーマF2-103の産生する抗体の重鎖可変領域および軽鎖可変領域、または配列番号64および66にそれぞれ示される、ハイブリドーマF5−77の産生する抗体の重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。   Heavy chain variable region and light chain variable region of antibody produced by hybridoma KM341-1-19 shown in SEQ ID NOs: 28 and 30, respectively, Heavy chain of antibody produced by hybridoma 2105 shown in SEQ ID NOs: 32 and 34, respectively Production of the hybridoma 115 shown in the variable region and the light chain variable region, shown in SEQ ID NOs: 36 and 38, respectively. Antibody heavy chain variable region and light chain variable region, shown in SEQ ID NOs: 52 and 54, respectively, heavy chain variable region and light chain variable region of antibody produced by hybridoma KM643-4-11, SEQ ID NOs: 60 and 62, respectively The heavy and light chain variable regions of the antibody produced by hybridoma F2-103, or SEQ ID NO: 64 Each preliminary 66 shown, of the heavy and light chain variable regions of an antibody produced by hybridoma F5-77, antibody or functional fragment thereof having the amino acid sequence of the mature part. 配列番号27および29にそれぞれ示される、ハイブリドーマKM341-1-19から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号31および33にそれぞれ示される、ハイブリドーマ2105から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号35および37にそれぞれ示される、ハイブリドーマ110から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号39および41にそれぞれ示される、ハイブリドーマ115から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号51および53にそれぞれ示される、ハイブリドーマKM643-4-11から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号59および61にそれぞれ示される、ハイブリドーマF2-103から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、または配列番号63および65にそれぞれ示される、ハイブリドーマF5−77から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。   Heavy chain variable region and light chain variable region encoded by nucleic acid sequences isolated from hybridoma KM341-1-19, shown in SEQ ID NOs: 27 and 29, respectively, from hybridoma 2105 shown in SEQ ID NOs: 31 and 33, respectively. Heavy chain variable region and light chain encoded by the nucleic acid sequence isolated from hybridoma 110, as shown in SEQ ID NOs: 35 and 37, respectively. Hybridoma KM643-4 shown in the variable region, heavy chain variable region and light chain variable region encoded by the nucleic acid sequence isolated from hybridoma 115, shown in SEQ ID NOs: 39 and 41, respectively, SEQ ID NOs: 51 and 53, respectively. Heavy chain variable region and light chain variable region encoded by the nucleic acid sequence isolated from -11, SEQ ID NOS: 59 and 61, respectively. Isolated from the hybridoma F5-77 shown in SEQ ID NO: 63 and 65, respectively, or the heavy and light chain variable regions encoded by the nucleic acid sequences isolated from the hybridoma F2-103 An antibody having a mature amino acid sequence of a heavy chain variable region and a light chain variable region encoded by a nucleic acid sequence, or a functional fragment thereof. 以下の(g)〜(j)から選ばれる少なくとも1つの性質を有する、ヒトCD40に対する抗体又はその機能的断片。
(g) CD40に対するリガンドの作用を中和する
(h) B細胞樹立細胞株上のCD40に対するリガンドがCD40発現細胞に与える影響の1つ以上を中和又は緩和し、かつ、抗免疫グロブリン抗体による架橋によって前記B細胞樹立細胞株上のCD40に対するアゴニスティックな作用が5D12より弱い
(i) B細胞樹立細胞株に対して、CD40リガンドが、CD95の発現を増加させる作用を緩和又は中和する
(j) 樹状細胞に発現するCD40に対してアンタゴニスティックな作用を有する
An antibody against human CD40 or a functional fragment thereof having at least one property selected from the following (g) to (j):
(g) Neutralize ligand action on CD40
(h) neutralizing or mitigating one or more of the effects of a ligand for CD40 on a B cell established cell line on CD40 expressing cells, and against CD40 on the B cell established cell line by cross-linking with an anti-immunoglobulin antibody Agonistic action is weaker than 5D12
(i) CD40 ligand mitigates or neutralizes the effect of increasing CD95 expression on B cell established cell lines
(j) Has an antagonistic effect on CD40 expressed in dendritic cells
飽和量のCD40L発現細胞を添加した1x106個/mlの濃度のRamos細胞に、0.1μg/mlの濃度の抗体が添加された場合に、Ramos細胞のCD95の発現を対照の約10%以下に抑制しうるものである、請求項17記載の抗体又はその機能的断片。 Ramos cells with a concentration of 1x10 6 cells / ml supplemented with a saturating amount of CD40L-expressing cells will have CD95 expression in Ramos cells less than about 10% of the control when 0.1 μg / ml of antibody is added. The antibody or the functional fragment thereof according to claim 17, which can be suppressed. 飽和量のCD40L発現細胞を添加した1x106個/mlの濃度のRamos細胞に、1μg/mlの濃度の抗体が添加された場合に、Ramos細胞のCD95の発現が陰性コントロールと同レベルまで抑制されるものである、請求項17記載の抗体又はその機能的断片。 When an antibody at a concentration of 1 μg / ml is added to Ramos cells at a concentration of 1 × 10 6 cells / ml supplemented with a saturating amount of CD40L-expressing cells, CD95 expression in Ramos cells is suppressed to the same level as the negative control. The antibody or the functional fragment thereof according to claim 17, wherein the antibody or the functional fragment thereof is. 飽和量のCD40L発現細胞を添加した1x106個/mlの濃度のRamos細胞に、10μg/mlの濃度の抗体が添加された場合に、Ramos細胞のCD95の発現が陰性コントロールと同レベルまで抑制されるものである、請求項17記載の抗体又はその機能的断片。 When 10 μg / ml concentration of antibody is added to 1 × 10 6 cells / ml of Ramos cells supplemented with saturating CD40L expressing cells, CD95 expression of Ramos cells is suppressed to the same level as the negative control. The antibody or the functional fragment thereof according to claim 17, wherein the antibody or the functional fragment thereof is. インビトロにおいて、可溶性CD40L(1μg/ml)を添加した1x105個の扁桃腺B細胞に、0.001μg/mlから10μg/mlの濃度の抗体が添加された場合に、扁桃腺B細胞の増殖が約80から95%以上抑制されるものである、請求項17記載の抗体又はその機能的断片。 In vitro, when 1 × 10 5 tonsillar B cells supplemented with soluble CD40L (1 μg / ml) were added with antibodies at a concentration of 0.001 μg / ml to 10 μg / ml, the proliferation of tonsillar B cells was approximately The antibody or the functional fragment thereof according to claim 17, which is suppressed by 80 to 95% or more. インビトロにおいて、可溶性CD40L(1μg/ml)を添加した1x105個の扁桃腺B細胞に、0.01μg/mlから10μg/mlの濃度の抗体が添加された場合に、扁桃腺B細胞の増殖が約95%以上抑制されるものである、請求項17記載の抗体又はその機能的断片。 In vitro, when 1 × 10 5 tonsillar B cells supplemented with soluble CD40L (1 μg / ml) were added with an antibody at a concentration of 0.01 μg / ml to 10 μg / ml, the proliferation of tonsillar B cells was about The antibody or functional fragment thereof according to claim 17, which is suppressed by 95% or more. インビトロにおいて、可溶性CD40L(1μg/ml)を添加した1x105個の扁桃腺B細胞に、0.001μg/mlの濃度の抗体が添加された場合に、扁桃腺B細胞の増殖が約80%以上抑制されるものである、請求項17記載の抗体又はその機能的断片。 In vitro, when an antibody at a concentration of 0.001 μg / ml is added to 1 × 10 5 tonsil B cells supplemented with soluble CD40L (1 μg / ml), the proliferation of tonsil B cells is suppressed by about 80% or more. 18. The antibody or the functional fragment thereof according to claim 17, wherein ハイブリドーマKM281-1-10(受託番号FERM BP-7579)、4D11(受託番号FERM BP-7758)またはF4-465(受託番号ATCC PTA-3338)により生産される抗体の重鎖可変領域および軽鎖可変領域のアミノ酸配列を有する抗体又はその機能的断片。   Heavy chain variable region and light chain variable of antibody produced by hybridoma KM281-1-10 (Accession No. FERM BP-7579), 4D11 (Accession No. FERM BP-7758) or F4-465 (Accession No. ATCC PTA-3338) An antibody having a region amino acid sequence or a functional fragment thereof. 配列番号44および46にそれぞれ示される、ハイブリドーマKM281-1-10の産生する抗体の重鎖可変領域および軽鎖可変領域、配列番号48および50にそれぞれ示される、ハイブリドーマ4D11の産生する抗体の重鎖可変領域および軽鎖可変領域、または配列番号56および58にそれぞれ示される、ハイブリドーマF4-465の産生する抗体の重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。   Heavy chain variable region and light chain variable region of antibody produced by hybridoma KM281-1-10 shown in SEQ ID NOs: 44 and 46, respectively, Heavy chain of antibody produced by hybridoma 4D11 shown in SEQ ID NOs: 48 and 50, respectively The antibody having the amino acid sequence of the mature part of the variable region and the light chain variable region, or the heavy chain variable region and the light chain variable region of the antibody produced by the hybridoma F4-465 shown in SEQ ID NOs: 56 and 58, respectively, or a function thereof Fragment. 配列番号43および45にそれぞれ示される、ハイブリドーマKM281-1-10から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域、配列番号47および49にそれぞれ示される、ハイブリドーマ4D11の産生する抗体の重鎖可変領域および軽鎖可変領域、または配列番号55および57にそれぞれ示される、ハイブリドーマF4-465から単離された核酸配列にコードされる重鎖可変領域および軽鎖可変領域の、マチュア部分のアミノ酸配列を有する抗体又はその機能的断片。   The heavy chain variable region and light chain variable region encoded by the nucleic acid sequence isolated from hybridoma KM281-1-10 shown in SEQ ID NOs: 43 and 45, respectively, and hybridoma 4D11 shown in SEQ ID NOs: 47 and 49, respectively. Of the heavy and light chain variable regions encoded by the nucleic acid sequence isolated from the hybridoma F4-465 shown in SEQ ID NOs: 55 and 57, respectively. An antibody having a mature portion amino acid sequence or a functional fragment thereof. ヒト抗体である、請求項1〜26のいずれかに記載の抗体又はその機能的断片。   The antibody or functional fragment thereof according to any one of claims 1 to 26, which is a human antibody. 請求項1〜26のいずれかに記載の抗体又はその機能的断片を有効成分として含む医薬組成物。   27. A pharmaceutical composition comprising the antibody or functional fragment thereof according to any one of claims 1 to 26 as an active ingredient. 請求項1〜16のいずれかに記載の抗体又はその機能的断片を有効成分として含む、免疫賦活化剤、抗腫瘍剤又は自己免疫疾患治療剤。   An immunostimulatory agent, an antitumor agent or an autoimmune disease therapeutic agent comprising the antibody according to any one of claims 1 to 16 or a functional fragment thereof as an active ingredient. 請求項17〜26のいずれかに記載の抗体又はその機能的断片を有効成分として含む、免疫抑制剤、自己免疫疾患治療剤、アレルギー治療剤又は血液凝固第VIII因子阻害症候群治療剤。   An immunosuppressant, an autoimmune disease therapeutic agent, an allergy therapeutic agent or a blood coagulation factor VIII inhibition syndrome therapeutic agent comprising the antibody or functional fragment thereof according to any one of claims 17 to 26 as an active ingredient.
JP2006189847A 2001-04-27 2006-07-10 Anti-CD40 monoclonal antibody Expired - Fee Related JP4025881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189847A JP4025881B2 (en) 2001-04-27 2006-07-10 Anti-CD40 monoclonal antibody

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/US2001/013672 WO2001083755A2 (en) 2000-04-28 2001-04-27 Human anti-cd40 antibodies and methods of making and using same
JP2001142482 2001-05-11
JP2001310535 2001-10-05
US10/040,244 US20030059427A1 (en) 2000-04-28 2001-10-26 Isolation and characterization of highly active anti-CD40 antibody
JP2006189847A JP4025881B2 (en) 2001-04-27 2006-07-10 Anti-CD40 monoclonal antibody

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002585483A Division JP3847715B2 (en) 2001-04-27 2002-04-26 Anti-CD40 monoclonal antibody

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007193819A Division JP4242437B2 (en) 2001-04-27 2007-07-25 Anti-CD40 monoclonal antibody

Publications (2)

Publication Number Publication Date
JP2006342173A true JP2006342173A (en) 2006-12-21
JP4025881B2 JP4025881B2 (en) 2007-12-26

Family

ID=37639383

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006189847A Expired - Fee Related JP4025881B2 (en) 2001-04-27 2006-07-10 Anti-CD40 monoclonal antibody
JP2007193819A Expired - Lifetime JP4242437B2 (en) 2001-04-27 2007-07-25 Anti-CD40 monoclonal antibody

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007193819A Expired - Lifetime JP4242437B2 (en) 2001-04-27 2007-07-25 Anti-CD40 monoclonal antibody

Country Status (1)

Country Link
JP (2) JP4025881B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728113B2 (en) 2003-09-10 2010-06-01 Amgen Fremont Inc. Methods of treating arthritic conditions with antibodies to M-CSF
JP2011504102A (en) * 2007-11-07 2011-02-03 ジェネンテック, インコーポレイテッド Methods and compositions for assessing B cell lymphoma responsiveness to treatment with anti-CD40 antibodies
JP2015028021A (en) * 2009-03-10 2015-02-12 ベイラー リサーチ インスティテュートBaylor Research Institute Anti-cd40 antibodies and use thereof
JP2015533853A (en) * 2012-10-30 2015-11-26 アペクシジェン, インコーポレイテッド Anti-CD40 antibodies and methods of use
US9617600B2 (en) 2009-04-18 2017-04-11 Genentech, Inc. Methods for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
JP2018520654A (en) * 2015-05-29 2018-08-02 アッヴィ・インコーポレイテッド Anti-CD40 antibodies and uses thereof
US10610585B2 (en) 2017-09-26 2020-04-07 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treating and preventing HIV
US10940195B2 (en) 2014-01-13 2021-03-09 Baylor Research Institute Vaccines against HPV and HPV-related diseases
US10980869B2 (en) 2009-03-10 2021-04-20 Baylor Research Institute Fusion proteins comprising an anti-CD40 antibody and cancer antigens
US11001637B2 (en) 2011-04-29 2021-05-11 Apexigen, Inc. Anti-CD40 antibodies

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718883B2 (en) 2003-09-10 2017-08-01 Amgen Fremont Inc. Antibodies to M-CSF
US8188249B2 (en) 2003-09-10 2012-05-29 Amgen Fremont Inc. Nucleic acid molecules encoding antibodies to M-CSF
US7728113B2 (en) 2003-09-10 2010-06-01 Amgen Fremont Inc. Methods of treating arthritic conditions with antibodies to M-CSF
US10280219B2 (en) 2003-09-10 2019-05-07 Amgen Fremont Inc. Antibodies to M-CSF
JP2011504102A (en) * 2007-11-07 2011-02-03 ジェネンテック, インコーポレイテッド Methods and compositions for assessing B cell lymphoma responsiveness to treatment with anti-CD40 antibodies
US9068230B2 (en) 2007-11-07 2015-06-30 Genentech, Inc. Methods and compositions for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
US11806390B2 (en) 2009-03-10 2023-11-07 Baylor Research Institute Fusion proteins comprising an anti-CD40 antibody and cancer antigens
US10087256B2 (en) 2009-03-10 2018-10-02 Baylor Research Institute Method of making an anti-CD40 antibody
JP2017061463A (en) * 2009-03-10 2017-03-30 ベイラー リサーチ インスティテュートBaylor Research Institute Anti-CD40 antibody and use thereof
US10980869B2 (en) 2009-03-10 2021-04-20 Baylor Research Institute Fusion proteins comprising an anti-CD40 antibody and cancer antigens
US9562104B2 (en) 2009-03-10 2017-02-07 Baylor Research Institute Anti-CD40 antibodies
JP2015028021A (en) * 2009-03-10 2015-02-12 ベイラー リサーチ インスティテュートBaylor Research Institute Anti-cd40 antibodies and use thereof
US11267895B2 (en) 2009-03-10 2022-03-08 Baylor Research Institute Nucleic acids encoding anti-CD40 antibodies
US9567401B2 (en) 2009-03-10 2017-02-14 Baylor Research Institute Anti-CD40 antibodies
US10683361B2 (en) 2009-03-10 2020-06-16 Baylor Research Institute Anti-CD40 antibodies
US9617600B2 (en) 2009-04-18 2017-04-11 Genentech, Inc. Methods for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
US11001637B2 (en) 2011-04-29 2021-05-11 Apexigen, Inc. Anti-CD40 antibodies
JP2015533853A (en) * 2012-10-30 2015-11-26 アペクシジェン, インコーポレイテッド Anti-CD40 antibodies and methods of use
JP7482184B2 (en) 2012-10-30 2024-05-13 アペクシジェン, インコーポレイテッド Anti-CD40 Antibodies and Methods of Use
US9994640B2 (en) 2012-10-30 2018-06-12 Apexigen, Inc. Anti-CD40 antibodies
US10940195B2 (en) 2014-01-13 2021-03-09 Baylor Research Institute Vaccines against HPV and HPV-related diseases
US11717567B2 (en) 2014-01-13 2023-08-08 Baylor Research Institute Vaccines against HPV and HPV-related diseases
JP2018520654A (en) * 2015-05-29 2018-08-02 アッヴィ・インコーポレイテッド Anti-CD40 antibodies and uses thereof
US11219683B2 (en) 2017-09-26 2022-01-11 INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE M{circumflex over (D)}DICALE (INSERM) Methods and compositions for treating and preventing HIV
US10722572B2 (en) 2017-09-26 2020-07-28 Institut National De La Sante Et De La Recherche Medicale Inserm Methods and compositions for treating and preventing HIV
US10610585B2 (en) 2017-09-26 2020-04-07 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treating and preventing HIV

Also Published As

Publication number Publication date
JP2007284450A (en) 2007-11-01
JP4025881B2 (en) 2007-12-26
JP4242437B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP3847715B2 (en) Anti-CD40 monoclonal antibody
EP2009027B1 (en) Anti-CD40 monoclonal antibody
JP2009079062A (en) Anti-cd40 monoclonal antibody
JP4242437B2 (en) Anti-CD40 monoclonal antibody
JP4242388B2 (en) Variant of anti-CD40 antibody
CA2447602C (en) Anti-trail-r antibodies
AU2006203620B2 (en) Anti-CD40 monoclonal anitbody
KR100937068B1 (en) Anti-CD40 Monoclonal Antibody

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees