JP2006341656A - Right and left independent drive vehicle - Google Patents

Right and left independent drive vehicle Download PDF

Info

Publication number
JP2006341656A
JP2006341656A JP2005167188A JP2005167188A JP2006341656A JP 2006341656 A JP2006341656 A JP 2006341656A JP 2005167188 A JP2005167188 A JP 2005167188A JP 2005167188 A JP2005167188 A JP 2005167188A JP 2006341656 A JP2006341656 A JP 2006341656A
Authority
JP
Japan
Prior art keywords
driving force
vehicle
turning
value
independent drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005167188A
Other languages
Japanese (ja)
Other versions
JP4622686B2 (en
Inventor
Yoshitaka Deguchi
欣高 出口
Ichiro Yamaguchi
一郎 山口
Katsunori Oshiage
勝憲 押上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005167188A priority Critical patent/JP4622686B2/en
Publication of JP2006341656A publication Critical patent/JP2006341656A/en
Application granted granted Critical
Publication of JP4622686B2 publication Critical patent/JP4622686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a right and left independent drive vehicle capable of achieving a robust vehicular action for road surface unevenness or a change in road surface coefficient of friction. <P>SOLUTION: This vehicle comprises rear wheels which are arranged at right and left of a vehicle, respectively and adjusts breaking and driving forces of the vehicle with a motor independently, a driving force control means for controlling a revolution outside driving force of the rear wheels to be a value bigger than a driving force of revolution inner side according to a revolution request (lateral acceleration target value tYG) from a driver Step S312, front wheels which are provided differently from the rear wheels and can be turned by a turning mechanism, a skid angle calculation means which calculates a target body skid angle βa at a front wheel lateral middle position based on a turning behavior of the vehicle which is achieved only by the rear wheels Step S310, and a turning angle adjusting means which matches the turning angle of the front wheels with the target body skid angle βa Step S311. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として左右の駆動力差によって旋回挙動を実現する左右独立駆動車用に関する。   The present invention relates to a left and right independent drive vehicle that realizes a turning behavior mainly by a left and right driving force difference.

従来の左右独立駆動車両では、左右後輪を回転キャスターとし、左右前輪にそれぞれモータを設け、前輪の左右駆動力差によって車両にヨーモーメントを発生させることで、車両を旋回させている(例えば、特許文献1参照)。
特開昭48−44914号公報
In a conventional left and right independent drive vehicle, the left and right rear wheels are rotating casters, motors are provided on the left and right front wheels, respectively, and the vehicle is turned by generating a yaw moment due to the difference in the left and right driving force between the front wheels (for example, Patent Document 1).
JP-A 48-44914

しかしながら、上記従来技術にあっては、後輪が回転キャスターであるため、路面の凸凹によりキャスターの回転角が乱れ、車両挙動に影響を与えるという問題があった。また、前輪の駆動力差のみにより旋回挙動を実現するため、たとえば前輪が鉄のマンホールを通過する状況のように、前輪位置の路面摩擦係数が突然変化した場合には、十分な路面反力を受けることができず、車両の旋回挙動が乱れる可能性があるという問題があった。   However, in the above prior art, since the rear wheel is a rotating caster, there is a problem that the rotation angle of the caster is disturbed by the unevenness of the road surface and affects the vehicle behavior. In addition, in order to realize turning behavior only by the difference in driving force of the front wheels, when the road surface friction coefficient at the front wheel position suddenly changes, for example, when the front wheels pass through an iron manhole, sufficient road surface reaction force is There was a problem that the turning behavior of the vehicle may be disturbed.

本発明は、上記従来技術が抱える問題に着目してなされたもので、その目的とするところは、路面凸凹や路面摩擦係数の変化に対してロバストな車両挙動を実現できる左右独立駆動車両を提供することにある。   The present invention has been made paying attention to the problems of the above-described conventional technology, and the object of the present invention is to provide a left and right independent drive vehicle capable of realizing a vehicle behavior that is robust against changes in road surface unevenness and road surface friction coefficient. There is to do.

上記目的を達成するため、本発明の左右独立駆動車両では、
車両の左右にそれぞれ配置され、モータで車両の制駆動力を独立に調整する駆動輪と、
運転者からの旋回要求に従い、前記駆動輪の旋回外側駆動力を旋回内側の駆動力よりも大きな値に制御する駆動力制御手段と、
前記駆動輪と別に設けられた転舵輪と、
前記駆動輪のみにより実現される車両の旋回挙動に基づいて、前記転舵輪位置での目標車体横滑り角を算出する目標車体横滑り角算出手段と、
前記転舵輪の転舵角を前記目標車体横滑り角に一致させる転舵角調整手段と、
を備えることを特徴とする。
In order to achieve the above object, in the left and right independent drive vehicle of the present invention,
Drive wheels that are respectively arranged on the left and right sides of the vehicle and independently adjust the braking / driving force of the vehicle with a motor;
In accordance with a turning request from the driver, driving force control means for controlling the driving force on the outside of the driving wheel to a value larger than the driving force on the inside of the turning,
Steered wheels provided separately from the drive wheels;
A target vehicle body side slip angle calculating means for calculating a target vehicle body side slip angle at the steered wheel position based on a turning behavior of the vehicle realized only by the drive wheels;
A turning angle adjusting means for making the turning angle of the steered wheel coincide with the target vehicle body side slip angle;
It is characterized by providing.

本発明にあっては、回転キャスターに代えて転舵可能な転舵輪を設け、この転舵輪の転舵角を、転舵輪位置での目標車体横滑り角に一致させるように転舵させるため、路面凸凹があっても転舵角が乱れず、車両挙動に影響を与えることがなくなる。また、路面摩擦係数の変化などにより駆動輪に十分な左右駆動力差を発生できない場合においても、それによる車両挙動の乱れを抑えるように転舵輪にタイヤ横力が発生するため、路面摩擦係数の変化に対してロバストな車両挙動を実現できる。   In the present invention, instead of a rotating caster, a steerable steered wheel is provided, and the steered wheel is steered so that the steered angle of the steered wheel matches the target vehicle body side slip angle at the steered wheel position. Even if there are irregularities, the turning angle is not disturbed and the vehicle behavior is not affected. In addition, even when a sufficient difference between the left and right driving forces cannot be generated on the drive wheels due to changes in the road friction coefficient, etc., tire lateral force is generated on the steered wheels so as to suppress the disturbance of vehicle behavior. A vehicle behavior that is robust against changes can be realized.

以下、本発明の左右独立駆動車両を実施するための形態を、図面に示す実施例1〜3に基づいて説明する。   EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the left-right independent drive vehicle of this invention is demonstrated based on Examples 1-3 shown in drawing.

まず、構成を説明する。図1は、実施例1の左右独立駆動車両の構成を示す構成図である。実施例1の車両は、図1に示すように、駆動力発生源としての電気モータ3RL,3RRを備えており、各々の電気モータ3RL,3RRの回転軸は、減速機4RL,4RRを介して、電動車両の後輪(駆動輪)2RL,2RRに連結されている。ここで、2つの電気モータ3RL,3RRの出力特性、2つの減速機4RL,4RRの減速比、および左右の2つの後輪2RL,2RRの半径は、いずれも同じである。   First, the configuration will be described. FIG. 1 is a configuration diagram illustrating a configuration of a left and right independent drive vehicle according to a first embodiment. As shown in FIG. 1, the vehicle according to the first embodiment includes electric motors 3RL and 3RR as driving force generation sources. The rotation shafts of the electric motors 3RL and 3RR are connected to the reduction gears 4RL and 4RR, respectively. The rear wheels (drive wheels) 2RL and 2RR are connected to the electric vehicle. Here, the output characteristics of the two electric motors 3RL and 3RR, the reduction ratios of the two reduction gears 4RL and 4RR, and the radii of the two left and right rear wheels 2RL and 2RR are all the same.

前記電気モータ3RL,3RRは、いずれも永久磁石をロータに埋め込んだ三相同期モータである。リチウムイオンバッテリ6との電力授受を制御する駆動回路5RL,5RRが、それらの電気モータ3RL,3RRの力行および回生トルクを、統合コントローラ30から受信するトルク指令値tTRL(左後輪)、tTRR(右後輪)とそれぞれ一致するように調整する。   Each of the electric motors 3RL and 3RR is a three-phase synchronous motor in which a permanent magnet is embedded in a rotor. Torque command values tTRL (left rear wheel), tTRR () in which the drive circuits 5RL and 5RR that control power transfer with the lithium ion battery 6 receive the power running and regenerative torque of the electric motors 3RL and 3RR from the integrated controller 30. Adjust to match the right rear wheel).

統合コントローラ30は、ステアリングハンドル11の回転角度などに応じて前輪(転舵輪)2FL,2FRの転舵角指令値tDFを演算し(演算方法は後述)、モータ12のトルクを調整するモータコントローラ13に送信する。モータコントローラ13は、前輪2FL,2FRの転舵角が、転舵角指令値tDFと一致するようにモータ12のトルクを調整し、操舵機構14を駆動する。このように、ステアリングハンドル11と操舵機構14とを電子的に接続することで、ステアリングハンドル11の操作量(操舵角)と前輪2FL,2FRの転舵量(転舵角)とを自在に関係付けることができるシステムは、詳細には、特開2003−19975号公報などに開示されている構成で実現できる。
前後輪2FL,2FR,2RL,2RRには、図外のディスクブレーキが備え付けられており、ブレーキペダルの踏み込みに応じて、各輪を制動させる。
The integrated controller 30 calculates the steering angle command value tDF of the front wheels (steered wheels) 2FL and 2FR according to the rotation angle of the steering handle 11 (the calculation method will be described later), and adjusts the torque of the motor 12. Send to. The motor controller 13 adjusts the torque of the motor 12 to drive the steering mechanism 14 so that the turning angles of the front wheels 2FL and 2FR coincide with the turning angle command value tDF. In this way, by electronically connecting the steering handle 11 and the steering mechanism 14, the operation amount (steering angle) of the steering handle 11 and the turning amount (steering angle) of the front wheels 2FL and 2FR can be freely related. In detail, the system that can be attached can be realized by a configuration disclosed in Japanese Patent Laid-Open No. 2003-19975.
The front and rear wheels 2FL, 2FR, 2RL, 2RR are provided with disc brakes (not shown), and each wheel is braked in response to depression of the brake pedal.

統合コントローラ30には、アクセルペダルセンサ23によって検出するアクセル開度信号と、ブレーキペダルセンサ22によって検出するブレーキ踏力信号と、ステアリングハンドル11の回転軸に取り付けられた操舵角センサ21によって検出するステアリングハンドル11の回転角信号と、ヨーレートセンサ8によって検出するヨーレート信号と、運転者によって操作されるシフトレバー25の状態信号と、各輪のサスペンションに備え付けられた輪荷重センサ9によって検出する各輪の輪荷重信号と、各輪の回転軸に備え付けられた回転角速度センサ7によって検出する各輪の回転角速度と、加速度センサ24によって検出する車両の加速度と、が入力される。ここで、前記シフトレバー25のシフト位置としては、車両停止時のみ選択可能でパーキング時に使用する位置「P」、通常前進走行時に使用する位置「D」がある。これらのシフト位置は、シフトレバー25の操作により運転者が選択する。   The integrated controller 30 includes an accelerator opening signal detected by the accelerator pedal sensor 23, a brake pedaling force signal detected by the brake pedal sensor 22, and a steering handle detected by a steering angle sensor 21 attached to the rotating shaft of the steering handle 11. 11, the yaw rate signal detected by the yaw rate sensor 8, the state signal of the shift lever 25 operated by the driver, and the wheel of each wheel detected by the wheel load sensor 9 provided to the suspension of each wheel. The load signal, the rotational angular velocity of each wheel detected by the rotational angular velocity sensor 7 provided on the rotational shaft of each wheel, and the vehicle acceleration detected by the acceleration sensor 24 are input. Here, the shift position of the shift lever 25 includes a position “P” that can be selected only when the vehicle is stopped and is used during parking, and a position “D” that is used during normal forward travel. These shift positions are selected by the driver by operating the shift lever 25.

統合コントローラ30は、入力されるこれらの信号に基づいて後左輪モータ3RLへのトルク指令値tTRL、後右輪モータ3RRへのトルク指令値tTRRをそれぞれ演算し、各モータ3RL,3RRの駆動回路5RL,5RRに送信する。また、前輪2FL,2FRの転舵角指令値tDFも演算し、モータコントローラ13に送信する。   The integrated controller 30 calculates the torque command value tTRL for the rear left wheel motor 3RL and the torque command value tTRR for the rear right wheel motor 3RR based on these signals, and drives the motors 3RL and 3RR for the drive circuit 5RL. , 5RR. Further, the steering angle command value tDF for the front wheels 2FL and 2FR is also calculated and transmitted to the motor controller 13.

ここで、後左輪モータ3RLへのトルク指令値tTRL、後右輪モータ3RRへのトルク指令値tTRRは、いずれも単位はNmで、車両を前向きに加速させる向きを正とする。また、前輪の転舵角指令値tDFは、単位はradで左に転舵する向きを正とする。   Here, the torque command value tTRL to the rear left wheel motor 3RL and the torque command value tTRR to the rear right wheel motor 3RR are both in units of Nm, and the direction in which the vehicle is accelerated forward is positive. Further, the front wheel turning angle command value tDF has a unit of rad and the direction of turning left is positive.

次に、作用を説明する。
統合コントローラ30で実行される演算処理について説明する。
[モード選択制御処理]
図2は、実施例1の統合コントローラ30にて実行されるモード選択制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、統合コントローラ30は、マイクロコンピュータのほかにRAM/ROMなどの周辺部品を備えており、図2のフローチャートを一定時間毎、例えば5ms毎に実行する。
Next, the operation will be described.
A calculation process executed by the integrated controller 30 will be described.
[Mode selection control processing]
FIG. 2 is a flowchart showing the flow of the mode selection control process executed by the integrated controller 30 according to the first embodiment. Each step will be described below. The integrated controller 30 includes peripheral components such as a RAM / ROM in addition to the microcomputer, and executes the flowchart of FIG. 2 at regular intervals, for example, every 5 ms.

ステップS201では、各センサ信号をRAM変数に格納する。具体的には、アクセル開度信号を変数APS(単位は%で、全開時を100%とする。)に格納し、ブレーキ踏力信号を変数BRK(単位はPa)に格納し、ステアリングハンドル11の回転角信号を変数δ(単位はradで、反時計回りを正とする。)に格納し、車体ヨーレート信号を変数γ(図1の左旋回時の向きを正にとる)に格納し、シフトレバー信号を変数SFTに格納する。回転角速度センサ7からの回転速度信号は、変数NFL(左前輪回転速度),NFR(右前輪回転速度),NRL(左後輪回転速度),NRR(右後輪回転速度)に格納する。回転角速度については、単位はrad/sで、車両が前進する向きを正とする。   In step S201, each sensor signal is stored in a RAM variable. Specifically, the accelerator opening signal is stored in a variable APS (unit is% and fully opened is 100%), the brake pedal force signal is stored in a variable BRK (unit is Pa), and the steering handle 11 The rotation angle signal is stored in the variable δ (unit is rad, counterclockwise is positive), the vehicle body yaw rate signal is stored in the variable γ (the direction when turning left in FIG. 1 is positive), and the shift is performed. Store the lever signal in the variable SFT. The rotational speed signal from the rotational angular velocity sensor 7 is stored in variables NFL (left front wheel rotational speed), NFR (right front wheel rotational speed), NRL (left rear wheel rotational speed), and NRR (right rear wheel rotational speed). As for the rotational angular velocity, the unit is rad / s, and the direction in which the vehicle moves forward is positive.

ステップS202では、車両の速度V(単位はm/sで、車両が前進する向きを正とする)を、下記の式(1)で演算し、ステップS203へ移行する。
V=(NFL*Rf+ NFR*Rf+ NRL*Rr+ NRR*Rr)/4 …(1)
ここで、Rfは前輪の半径、Rrは後輪の半径である。
In step S202, the vehicle speed V (unit is m / s, and the direction in which the vehicle moves forward is positive) is calculated by the following equation (1), and the process proceeds to step S203.
V = (NFL * Rf + NFR * Rf + NRL * Rr + NRR * Rr) / 4 (1)
Here, Rf is the radius of the front wheel, and Rr is the radius of the rear wheel.

ステップS203では、シフトレバー位置が「D」であるか否かを判定し、「D」である場合には、ステップS210へ移行し、後述のモードD時の演算ルーチンを実行して本ルーチンを終了する。   In step S203, it is determined whether or not the shift lever position is “D”. If it is “D”, the process proceeds to step S210, and a calculation routine in mode D described later is executed to execute this routine. finish.

シフトレバー位置が「D」で無い場合には、ステップS204へ移行し、ステップS204では、tTRL=tTRR=tDF=0とし、ステップS205へ移行する。   If the shift lever position is not “D”, the process proceeds to step S204. In step S204, tTRL = tTRR = tDF = 0 is set, and the process proceeds to step S205.

ステップS205では、輪荷重センサ9からの各輪輪荷重信号を、変数WFL(左前輪輪荷重),WFR(右前輪輪荷重),WRL(左後輪輪荷重),WRR(右後輪輪荷重)に格納する。それぞれ単位はNとする。   In step S205, each wheel load signal from the wheel load sensor 9 is changed to variables WFL (left front wheel load), WFR (right front wheel load), WRL (left rear wheel load), WRR (right rear wheel load). ). Each unit is N.

[モードD時の演算ルーチン]
次に、図2のステップS210で実行されるモードD時の演算処理の流れを、図3のフローチャートを用いて説明する。
[Calculation routine in mode D]
Next, the flow of calculation processing in mode D executed in step S210 of FIG. 2 will be described using the flowchart of FIG.

ステップS301では、車両の目標駆動力(要求駆動力)tTD(単位はN)を演算する。演算は、あらかじめROMに格納してあるマップMAP_tTD(V,APS)を表引きすることで行なう。マップMAP_tTD(V,APS)は、車速Vとアクセル開度APSとを軸とした特性データであり、例えば、図4に示すように、高車速時には小さく、かつアクセル開度APSが大きいほど大きくなるように設定しておく。   In step S301, a target driving force (required driving force) tTD (unit: N) of the vehicle is calculated. The calculation is performed by referring to the map MAP_tTD (V, APS) stored in advance in the ROM. The map MAP_tTD (V, APS) is characteristic data with the vehicle speed V and the accelerator opening APS as axes. For example, as shown in FIG. 4, the map MAP_tTD (V, APS) is small at high vehicle speeds and increases as the accelerator opening APS increases. Set as follows.

ステップS302では、運転者からの旋回要求値として車両の横加速度目標値tYG(単位は、m/s2であり、左旋回時の横加速度の向きを正にとる)を演算する。ステアリングハンドル11の操舵角δおよび車速Vに応じて、あらかじめROMに格納してあるマップMAP_tYG(V,δ)を表引きすることで行なう。マップMAP_tYG(V,δ)は、車速Vと操舵角δを軸とした特性データであり、例えば、図5のように設定しておく。 In step S302, the vehicle lateral acceleration target value tYG (unit is m / s 2 and the direction of the lateral acceleration when turning left) is calculated as a turning request value from the driver. The map MAP_tYG (V, δ) stored in advance in the ROM is tabulated in accordance with the steering angle δ of the steering wheel 11 and the vehicle speed V. The map MAP_tYG (V, δ) is characteristic data with the vehicle speed V and the steering angle δ as axes, and is set as shown in FIG. 5, for example.

ステップS303では、重心位置と後輪軸との車両前後距離Lr[m]、および車両の質量M[kg]を、下記の式(2),(3)から演算する(重心位置推定手段、質量推定手段に相当)。ここでWB[m]は車両のホイールベース長である。
Lr = (WFL+WFR)/(WFL+WFR+WRL+WRR) * WB …(2)
M = (WFL+WFR+WRL+WRR) / 9.8 …(3)
In step S303, the vehicle longitudinal distance Lr [m] between the center of gravity position and the rear wheel axle and the vehicle mass M [kg] are calculated from the following equations (2) and (3) (center of gravity position estimation means, mass estimation Equivalent to means). Here, WB [m] is the wheelbase length of the vehicle.
Lr = (WFL + WFR) / (WFL + WFR + WRL + WRR) * WB… (2)
M = (WFL + WFR + WRL + WRR) / 9.8… (3)

ステップS304では、左右後輪2RL,2RRの駆動力差指令値の暫定値tU0(単位はNであり、右輪駆動力を+tU0補正し、左駆動力を-tU0補正することに対応)を演算する。前輪2FL,2FRに横力を発生しないタイヤ(例えば回転キャスター)を用いた場合、同じ旋回横加速度を実現するためには、Lrが長いほど大きな左右駆動力差をつける必要があること、また、車両の質量Mが大きいほど左右駆動力差をつける必要があることを考慮し、下記の式(4)で演算を行なう。
tU0 = M*Lr/Lt*tYG (式:X1) …(4)
ここで、Lt[m]は後輪のトレッド長である。
In step S304, the provisional value tU0 (the unit is N, corresponding to correcting the right wheel driving force by + tU0 and correcting the left driving force by -tU0) of the driving force difference command values of the left and right rear wheels 2RL and 2RR. Calculate. When using tires that do not generate lateral force on the front wheels 2FL and 2FR (for example, rotating casters), in order to achieve the same turning lateral acceleration, it is necessary to increase the left / right driving force difference as Lr increases. Considering that the difference between the left and right driving force needs to be increased as the vehicle mass M increases, the calculation is performed using the following equation (4).
tU0 = M * Lr / Lt * tYG (Formula: X1) (4)
Here, Lt [m] is the tread length of the rear wheel.

ステップS305では、路面摩擦係数μを演算する(路面摩擦係数推定手段に相当)。路面摩擦係数を求める方法としては、特開平6−258196号公報に開示されている方法を用いる。左右前輪2FL,2FRの振動加速度Gを加速度センサ24により検出し、その結果に基づいて加速度Gのパワースペクトル密度PSDを算出し、そのPSD値のうち、路面摩擦係数が一方向に変化するのに対してPSD値も一方向に変化する関係が成立する周波数範囲内におけるものに基づき、路面摩擦係数μを検出する。   In step S305, a road surface friction coefficient μ is calculated (corresponding to road surface friction coefficient estimating means). As a method for obtaining the road surface friction coefficient, a method disclosed in Japanese Patent Laid-Open No. 6-258196 is used. The vibration acceleration G of the left and right front wheels 2FL and 2FR is detected by the acceleration sensor 24, and the power spectral density PSD of the acceleration G is calculated based on the result. Of the PSD values, the road surface friction coefficient changes in one direction. On the other hand, the road surface friction coefficient μ is detected based on the PSD value within a frequency range in which the relationship of changing in one direction is established.

ステップS306では、右後輪2RRで出し得る駆動力の最大値FRR_MAXおよび最小値FRR_MINを、下記の式(5),(6)で演算する。
FRR_MAX = min(TBL_FM(V)、μ* WRR ) …(5)
FRR_MIN = -FRR_MAX …(6)
ここで、テーブルTBL_FMは、後輪駆動モータ3RL,3RRの回転速度―トルク特性に応じて定まる最大駆動力特性であり、例えば、図6のように、車速Vを入力として表引きするテーブルである。μ* WRRは、右後輪2RRが路面から受けることができる駆動反力の最大値の意味合いをもつ。
In step S306, the maximum value FRR_MAX and the minimum value FRR_MIN of the driving force that can be output from the right rear wheel 2RR are calculated by the following equations (5) and (6).
FRR_MAX = min (TBL_FM (V), μ * WRR)… (5)
FRR_MIN = -FRR_MAX… (6)
Here, the table TBL_FM is a maximum driving force characteristic determined in accordance with the rotational speed-torque characteristics of the rear wheel drive motors 3RL and 3RR. For example, as shown in FIG. . μ * WRR means the maximum value of the driving reaction force that the right rear wheel 2RR can receive from the road surface.

同様に、ステップS307では、左後輪2RLで出し得る駆動力の最大値FRL_MAXおよび最小値FRL_MINを、下記の式(7),(8)で演算する。
FRL_MAX = min(TBL_FM(V)、μ* WRL ) …(7)
FRL_MIN = -FRL_MAX …(8)
Similarly, in step S307, the maximum value FRL_MAX and the minimum value FRL_MIN of the driving force that can be output from the left rear wheel 2RL are calculated by the following equations (7) and (8).
FRL_MAX = min (TBL_FM (V), μ * WRL)… (7)
FRL_MIN = -FRL_MAX… (8)

ステップS308では、ステップS306,S307で演算したFRR_MAX, FRR_MIN, FRL_MAX, FRL_MINを考慮し、車両の目標駆動力tTDを実現するという前提の上で、出し得る左右後輪2RL,2RRの駆動力差指令値の最大値tU_MAXおよび最小値tU_MINを、下記の式(9),(10)から演算する。tU_MAXおよびtU_MINが、旋回限界値に相当する。
tU_MIN=max(-FRL_MAX+tTD/2, FRR_MIN-TD/2) …(9)
tU_MAX=min(-FRL_MIN+tTD/2, FRR_MAX-TD/2) …(10)
そして、ステップS304で算出した左右後輪2RL,2RRの駆動力差指令値の暫定値 tU0が、最大値tU_MAXおよび最小値tU_MINの間に制限されるように、下記の式(11)から左右後輪2RL,2RRの駆動力差指令値(駆動力差旋回しきい値)tU(単位はN)を演算する。
tU = min(max(tU, tU_MIN), tU_MAX) …(11)
In step S308, driving force difference commands for the left and right rear wheels 2RL and 2RR that can be issued on the premise that the target driving force tTD of the vehicle is realized in consideration of FRR_MAX, FRR_MIN, FRL_MAX, and FRL_MIN calculated in steps S306 and S307. The maximum value tU_MAX and the minimum value tU_MIN are calculated from the following equations (9) and (10). tU_MAX and tU_MIN correspond to the turning limit value.
tU_MIN = max (-FRL_MAX + tTD / 2, FRR_MIN-TD / 2)… (9)
tU_MAX = min (-FRL_MIN + tTD / 2, FRR_MAX-TD / 2)… (10)
Then, the provisional value tU0 of the driving force difference command values of the left and right rear wheels 2RL and 2RR calculated in step S304 is determined from the following equation (11) so that the provisional value tU0 is limited between the maximum value tU_MAX and the minimum value tU_MIN. A driving force difference command value (driving force difference turning threshold) tU (unit: N) of the wheels 2RL and 2RR is calculated.
tU = min (max (tU, tU_MIN), tU_MAX)… (11)

このように演算したtUは、下記の式(12),(13)を満たし、したがって左右後輪2RL,2RRのみで出力可能な左右駆動力差に制限される。
FRR_MIN≦tTD/2+tU≦FRR_MAX …(11)
FRL_MIN≦tTD/2-tU≦FRL_MAX …(12)
The calculated tU satisfies the following equations (12) and (13), and is thus limited to the left / right driving force difference that can be output only by the left and right rear wheels 2RL and 2RR.
FRR_MIN ≦ tTD / 2 + tU ≦ FRR_MAX… (11)
FRL_MIN ≦ tTD / 2-tU ≦ FRL_MAX… (12)

ステップS309では、左右駆動力差tUで実現しきれない横加速度量cpstYGを転舵で補償する横加速度として、下記の式(13)で演算する。
cpstYG = (tU0-tU)/M/Lr*Lt …(13)
In step S309, the lateral acceleration amount cpstYG that cannot be realized with the left / right driving force difference tU is calculated as the lateral acceleration that is compensated by turning by the following equation (13).
cpstYG = (tU0-tU) / M / Lr * Lt… (13)

ステップS310では、前輪として横力を発生しないタイヤ(例えば回転キャスター)を用いた場合に、左右駆動力差tUで実現する前輪左右中央位置における目標車体横滑り角βaを演算する(目標車体横滑り角算出手段に相当)。   In step S310, when a tire that does not generate lateral force (for example, a rotating caster) is used as a front wheel, a target vehicle side slip angle βa at the front wheel left and right center position realized by the left and right driving force difference tU is calculated (target vehicle side slip angle calculation). Equivalent to means).

[目標車体横滑り角演算ロジック]
目標車体横滑り角βaの具体的演算方法を示す前に、まずその演算原理について説明する。「自動車の運動と制御」(山海堂)には、前輪舵角δf[rad]を操作量とし、車両のヨーレートγ[rad/s]および車体重心位置の車体滑り角β[rad]を状態量としたときの運動方程式が示されている。この運動方程式は、車速V[m/s]は一定(dV=0)かつV≠0かつ滑り角(β[rad])は微少(|β|<<1、sinβ≒β、cosβ≒1)などの前提で導出している。
[Target body side slip angle calculation logic]
Before showing a specific calculation method of the target vehicle body side slip angle βa, the calculation principle will be described first. In "Automobile motion and control" (Sankaido), the front wheel rudder angle δf [rad] is the manipulated variable, and the vehicle yaw rate γ [rad / s] and the vehicle body slip angle β [rad] at the center of gravity of the vehicle are state variables. The equation of motion is shown. This equation of motion shows that the vehicle speed V [m / s] is constant (dV = 0), V ≠ 0, and the slip angle (β [rad]) is very small (| β | << 1, sinβ ≒ β, cosβ ≒ 1) Derived on the premise of.

本運動方程式は、実施例1の車両にも拡張して適用できる。すなわち、右後輪2RRの駆動力tU [N]、左後輪2RLの駆動力- tU [N] を操作量とし、前輪2FL,2FRをキャスター形式とすることによる作用として、前輪2FL,2FRで発生する横力がほぼ0とすると、左右後輪2RL,2RRの駆動力差tUに対する、車体重心位置の車体滑り角β[rad]の伝達特性は、微分演算子sを用いて、下記の式(14)のように導出することができる。
β={-Lt(mV2−2LrKr)}/{mV2Iγs2+2VKr(mLr2+Iγ)s+2mV2LrKr}・tU …(14)
ここで、Lrは後輪軸と重心との前後距離[m]、Ltは後輪のトレッドベース距離[m]、mは車重[kg]、Iγはヨー慣性モーメント[Nmss]である。また、Krは後輪タイヤコーナリングスティッフネス[N/rad] であり、後輪ステアリング剛性の影響によるステアリング角に対するコーナリングパワーの低下分も加味した値である。Vは車速[m/s]である。
This equation of motion can be extended and applied to the vehicle of the first embodiment. That is, the driving force tU [N] of the right rear wheel 2RR and the driving force -tU [N] of the left rear wheel 2RL are manipulated and the front wheels 2FL and 2FR are caster-type. Assuming that the generated lateral force is almost zero, the transfer characteristic of the vehicle body slip angle β [rad] at the center of gravity of the vehicle body relative to the driving force difference tU between the left and right rear wheels 2RL and 2RR is expressed by the following equation: It can be derived as in (14).
β = {-Lt (mV 2 −2LrKr)} / {mV 2 I γ s 2 + 2VKr (mLr 2 + I γ ) s + 2 mV 2 LrKr} · tU (14)
Here, Lr is a longitudinal distance [m] between the rear wheel shaft and the center of gravity, Lt is a tread base distance [m] of the rear wheel, m is a vehicle weight [kg], and I γ is a yaw inertia moment [Nmss]. Kr is the rear wheel tire cornering stiffness [N / rad], which takes into account the decrease in cornering power with respect to the steering angle due to the influence of the rear wheel steering stiffness. V is the vehicle speed [m / s].

そして、車体重心位置の車体滑り角β[rad]と前輪左右中央位置における滑り角βaとの間には、下記の式(15)の関係がある。
βa = β + Lf/V*γ …(15)
Lfは前輪軸と重心との前後距離[m]である。
The following equation (15) is established between the vehicle body slip angle β [rad] at the center of gravity of the vehicle body and the slip angle βa at the front wheel left and right center position.
βa = β + Lf / V * γ (15)
Lf is the longitudinal distance [m] between the front wheel axle and the center of gravity.

以上の関係式を用い、前輪として横力を発生しないタイヤ(例えば回転キャスター)を用いた場合の、前輪左右中央位置における目標車体横滑り角βaを下記の式(16)から演算する。
βa = {-Lt(mV2−2LrKr)}/{mV2Iγs2+2VKr(mLr2+Iγ)s+2mV2LrKr}・tU
+ Lf/V*γ …(16)
Using the above relational expression, the target vehicle body side slip angle βa at the left and right center position of the front wheel when a tire that does not generate a lateral force (for example, a rotating caster) is used as the front wheel is calculated from the following expression (16).
βa = {-Lt (mV 2 −2LrKr)} / {mV 2 I γ s 2 + 2VKr (mLr 2 + I γ ) s + 2 mV 2 LrKr} · tU
+ Lf / V * γ (16)

ステップS311では、左右駆動力差tUで実現できない旋回横加速度量を実現するための転舵角目標値tDFを演算する(転舵角調整手段に相当)。tDFは、図8に示すテーブルTBL_TDF(cpstYG)の表引き値を用いて、下記の式(17)から演算する。
tDF =βa + TBL_TDF(cpstYG) …(17)
In step S311, a turning angle target value tDF for realizing a turning lateral acceleration amount that cannot be realized with the left / right driving force difference tU is calculated (corresponding to a turning angle adjusting means). tDF is calculated from the following equation (17) using the table lookup value of the table TBL_TDF (cpstYG) shown in FIG.
tDF = βa + TBL_TDF (cpstYG) (17)

ステップS312では、左右後輪2RL,2RRのモータトルク指令値tTRL(左後輪)、tTRR(右後輪)を、下記の式(18),(19)を用いて演算し、駆動回路5RL,5RRにそれぞれ送信する(駆動力制御手段に相当)。
tTRL = (tTD/2 - tU)*Rr/GG …(18)
tTRR = (tTD/2 + tU)*Rr/GG …(19)
ここでGGは、減速機4RL,4RRの減速比である。
In step S312, the motor torque command values tTRL (left rear wheel) and tTRR (right rear wheel) of the left and right rear wheels 2RL and 2RR are calculated using the following equations (18) and (19), and the drive circuit 5RL, Each is transmitted to 5RR (corresponding to driving force control means).
tTRL = (tTD / 2-tU) * Rr / GG… (18)
tTRR = (tTD / 2 + tU) * Rr / GG… (19)
Here, GG is a reduction ratio of the reducers 4RL and 4RR.

ステップS313では、前輪舵角指令値tDFをモータコントローラ13に送信し、本ルーチンを終了する。   In step S313, the front wheel steering angle command value tDF is transmitted to the motor controller 13, and this routine is terminated.

[キャスター付き左右独立駆動車両の特長]
主として左右の駆動力差によって旋回挙動を実現する車両としては、例えば、図9の形態のものが考えられる。前輪42FL,42FRは、左右ともに回転キャスターであり、車両横向きに力を発生させない。後輪2RL,2RRは、左右それぞれにモータ3RL,3RRで駆動できるようになっており、左右の駆動力差によって車両にヨーモーメントを発生させ、主にそのモーメントで車両を旋回させるというものである。
[Features of left and right independent drive vehicle with casters]
As a vehicle that realizes the turning behavior mainly by the difference between the left and right driving forces, for example, the vehicle shown in FIG. 9 can be considered. The front wheels 42FL and 42FR are rotating casters on both the left and right sides, and do not generate force in the lateral direction of the vehicle. The rear wheels 2RL and 2RR can be driven by motors 3RL and 3RR on the left and right sides, respectively, and a yaw moment is generated in the vehicle by the difference in driving force between the left and right, and the vehicle is mainly turned at that moment. .

図9の車両は、前輪操舵機構により旋回を実現する従来の車両に対し、優れた特性をもつ。その一つは、旋回時において、より車両旋回方向内側に車両姿勢が保たれることである。すなわち、同じ旋回横加速度で旋回する場合、前輪45FL,45FRが回転キャスターで後輪2RL,2RRの左右駆動力差で旋回する車両(図10(a))の車体滑り角βは、前輪操舵機構により旋回を実現する従来の車両(図10(b))の車体滑り角β'よりも旋回内向きに大きく保たれる。したがって、旋回時に、より前方視認性が良く、またドリフトフィーリングを実現でき運転の楽しさを演出できる等の特長を有する(特長1)。   The vehicle shown in FIG. 9 has superior characteristics to the conventional vehicle that achieves turning by the front wheel steering mechanism. One of them is that the vehicle posture is maintained more inside the vehicle turning direction during turning. That is, when turning with the same turning lateral acceleration, the vehicle body slip angle β of the vehicle (FIG. 10 (a)) that turns with the front wheels 45FL and 45FR turning on the casters and the left and right driving force difference between the rear wheels 2RL and 2RR is the front wheel steering mechanism. By this, the vehicle body slip angle β ′ of the conventional vehicle (FIG. 10 (b)) that realizes turning is kept larger inward of turning. Therefore, when turning, it has features such as better forward visibility, drift feeling, and the enjoyment of driving (feature 1).

さらに、前輪操舵機構により旋回を実現する従来の車両(図10(b))では、高速走行における操舵過渡時に車体滑り角β'がアンダーシュートを起こすことが知られているが、前輪が回転キャスターで後輪の左右駆動力差で旋回する車両(図10(a))では、どんな車速においても車体滑り角βがアンダーシュートせず、車両がより自然に挙動するという特長も有する(特長2)。   Further, in the conventional vehicle (FIG. 10 (b)) that realizes turning by the front wheel steering mechanism, it is known that the vehicle body slip angle β ′ causes an undershoot at the time of a steering transition in high speed traveling. The vehicle that turns with the difference between the left and right driving forces of the rear wheels (Fig. 10 (a)) has the feature that the vehicle slip angle β does not undershoot at any vehicle speed and the vehicle behaves more naturally (Feature 2). .

[キャスター付き左右独立駆動車両の問題点]
しかしながら、上記従来技術にあっては、前輪が回転キャスターであるため、路面の凸凹によりキャスターの回転角が乱れ、車両挙動に影響を与えるという課題があった。また、後輪の駆動力差のみにより旋回挙動を実現するため、たとえば後輪が鉄のマンホールを通過する状況のように、後輪位置の路面摩擦係数が突然変化した場合には、十分な路面反力を受けることができなくなり、車両の旋回挙動が乱れる可能性がある。
さらに、前輪で車両横力を発生させることができないため、車両が実現できる旋回横加速度の限界値が小さく、大きな旋回力を実現できないという課題があった。
[Problems of independent left and right vehicles with casters]
However, in the above prior art, since the front wheels are rotary casters, there is a problem that the rotation angle of the casters is disturbed by the unevenness of the road surface, which affects the vehicle behavior. Also, in order to achieve turning behavior only by the difference in driving force of the rear wheels, for example, when the road surface friction coefficient at the rear wheel position suddenly changes, such as when the rear wheels pass through an iron manhole, sufficient road surface The reaction force cannot be received, and the turning behavior of the vehicle may be disturbed.
Further, since the vehicle lateral force cannot be generated at the front wheels, there is a problem that the limit value of the turning lateral acceleration that can be realized by the vehicle is small and a large turning force cannot be realized.

[旋回要求値に応じた前輪転舵角制御作用]
これに対し、実施例1の左右独立駆動車両では、図1に示した構成を用い、図3に示した演算ルーチンを実行することで、以下のような作用効果を奏する。
[Front wheel turning angle control function according to turning required value]
On the other hand, in the left and right independent drive vehicle of the first embodiment, by using the configuration shown in FIG. 1 and executing the calculation routine shown in FIG.

1) 旋回要求値が小さく、tU=tU0である場合には、転舵により補償する横加速度量cpstYGは0となり、したがって、前輪舵角δfは、前輪として横力を発生しないタイヤ(例えば回転キャスター)を用いた車両の挙動における前輪左右中央位置の目標車体横滑り角βaに一致する。よって、基本的に前輪2FL,2FRではタイヤ横力を発生せず、上述した特長1,2の車両挙動を実現できる。ただし、路面摩擦係数μの変化などの影響で、左右駆動力差のみで実現しようとする車両挙動が実現できない場合には、その挙動乱れを抑える向きに前輪横力が発生し、車両挙動の乱れを抑制する効果がある。   1) When the required turning value is small and tU = tU0, the lateral acceleration amount cpstYG compensated by turning is 0, and therefore the front wheel steering angle δf is a tire that does not generate a lateral force as a front wheel (for example, a rotating caster). ) To match the target vehicle body side slip angle βa at the center position of the left and right front wheels in the behavior of the vehicle. Therefore, basically, the front wheels 2FL and 2FR do not generate tire lateral force, and the vehicle behavior of the above-described features 1 and 2 can be realized. However, if the vehicle behavior that is to be realized only by the difference between the left and right driving forces cannot be realized due to the change in the road surface friction coefficient μ, etc., the front wheel lateral force is generated in the direction to suppress the behavior disturbance, and the vehicle behavior is disturbed. There is an effect to suppress.

2) 旋回要求値が大きく、左右駆動力差で旋回要求値を実現できない場合にはtU<tU0となり、tU0とtUとの差に応じて前輪2FL,2FRが目標車体横滑り角βaに対して転舵し、前輪2FL,2FRで横力を発生するように作用するため、大きな旋回要求値を実現できるようになる。   2) When the required turning value is large and the required turning value cannot be realized due to the difference in the left and right driving force, tU <tU0, and the front wheels 2FL and 2FR will rotate with respect to the target vehicle side slip angle βa according to the difference between tU0 and tU. It steers and acts to generate a lateral force on the front wheels 2FL and 2FR, so that a large turning required value can be realized.

3) 特に、左右駆動力差を発生できる限界まで、cpstYGを0として前輪2FL,2FRで横力を発生させないようにしているため、できる限り多くの機会で特長1,2の車両挙動を実現できる。   3) Especially, since the cpstYG is set to 0 to prevent the lateral force from being generated on the front wheels 2FL and 2FR, the vehicle behavior of features 1 and 2 can be realized at as many opportunities as possible to the extent that the difference between the left and right driving force can be generated. .

4) 左右駆動力差の限界値は、モータ3RL,3RRの回転速度−最大トルク特性のほか、路面摩擦係数μ、前後重心位置(Lf,Lr)、車両質量M、制駆動力(-tTD)に応じて求めている。まず、式(4)にて、車両質量Mが多いほど、また、前後重心位置Ltが前寄りにあるほど、左右後輪2RL,2RRの駆動力差指令値の暫定値tU0を大きな値として演算するようにしている。本演算により、左右駆動力差の暫定値tU0が大きいほど、より小さな横加速度目標値tYGで制限値(式(9),式(10))に制限されることになるので、より小さい横加速度目標値から前輪2FL,2FRの転舵補正量TBL_TDF(cpstYG)が0でない値をもつ作用を実現している。また、路面摩擦係数μが小さいほど、左右駆動力差の暫定値tU0がより狭い範囲に制限される作用を、式(9),式(10)で実現している。さらに、要求駆動力tTDが大きいほど、式(9),式(10)における最大値制限の制約を受け易くなり、要求駆動力tTDが負に大きいほど、式(9),式(10)最小値制限の制約を受け易くなる作用を実現している。これらの作用により、路面摩擦経係数μが小さいほど、要求駆動力tTDが大きいほど、要求駆動力tTDが負に大きいほど(制動力が大きいほど)、より小さい横加速度目標値から前輪2FL,2FRの転舵補正量TBL_TDF(cpstYG)が0でない値をもつ作用を実現している。   4) In addition to the rotational speed-maximum torque characteristics of the motors 3RL and 3RR, the limit values of the left and right driving force difference include road surface friction coefficient μ, front and rear center of gravity (Lf, Lr), vehicle mass M, braking / driving force (-tTD) Depending on. First, in equation (4), the larger the vehicle mass M is, the larger the provisional value tU0 of the driving force difference command value for the left and right rear wheels 2RL, 2RR is calculated as the front / rear center of gravity position Lt is closer to the front. Like to do. As the provisional value tU0 for the left / right driving force difference increases, the lateral acceleration target value tYG is limited to the limit value (Equation (9), Equation (10)). From the target value, the steering correction amount TBL_TDF (cpstYG) of the front wheels 2FL and 2FR has a non-zero value. Further, as the road surface friction coefficient μ is smaller, the function that the provisional value tU0 of the left-right driving force difference is limited to a narrower range is realized by Expressions (9) and (10). Furthermore, the larger the required driving force tTD, the more likely it is subject to the maximum value restriction in Equations (9) and (10), and the smaller the required driving force tTD, the smaller It realizes the function that makes it easy to be restricted by the value restriction. By these actions, the smaller the road surface friction coefficient μ, the larger the required driving force tTD, and the negatively the required driving force tTD (the larger the braking force), the smaller the front acceleration 2FL, 2FR from the smaller lateral acceleration target value. The steering correction amount TBL_TDF (cpstYG) has a non-zero value.

次に、効果を説明する。
実施例1の左右独立駆動車両にあっては、以下に列挙する効果が得られる。
Next, the effect will be described.
In the left and right independent drive vehicle of the first embodiment, the effects listed below can be obtained.

(1) 車両の左右にそれぞれ配置され、モータ3RL,3RRで車両の制駆動力を独立に調整する後輪2RL,2RRと、運転者からの旋回要求(横加速度目標値tYG)に従い、後輪2RL,2RRの旋回外側駆動力を旋回内側の駆動力よりも大きな値に制御する駆動力制御手段(ステップS312)と、後輪2RL,2RRと別に設けられ、操舵機構14により転舵可能な前輪2FL,2FRと、後輪2RL,2RRのみにより実現される車両の旋回挙動に基づいて、前輪2FL,2FR左右中央位置での目標車体横滑り角βaを算出する目標車体横滑り角算出手段(ステップS310)と、前輪2FL,2FRの転舵角δfを目標車体横滑り角βaに一致させる転舵角調整手段(ステップS311)と、を備える。よって、路面凹凸があっても前輪2FL,2FRの転舵角δfが乱れず、車両挙動に影響を与えない。また、路面摩擦係数μの変化などにより後輪2RL,2RRに十分な左右駆動力差を発生できない場合においても、それによる車両挙動の乱れを抑えるように前輪2FL,2FRにタイヤ横力が発生するため、路面摩擦係数μの変化に対してロバストな車両挙動を実現できる。   (1) Rear wheels according to rear wheels 2RL, 2RR, which are arranged on the left and right sides of the vehicle, and independently adjust the braking / driving force of the vehicle with motors 3RL, 3RR, and the turning request from the driver (lateral acceleration target value tYG) Driving force control means (step S312) for controlling the outer driving force of 2RL, 2RR to be larger than the driving force of the inner turning side and the rear wheels 2RL, 2RR are provided separately from the front wheels that can be steered by the steering mechanism 14 Based on the turning behavior of the vehicle realized by only 2FL, 2FR and the rear wheels 2RL, 2RR, the target vehicle body side slip angle calculating means for calculating the target vehicle body side slip angle βa at the left and right center positions of the front wheels 2FL, 2FR (step S310) And a turning angle adjusting means (step S311) for matching the turning angle δf of the front wheels 2FL and 2FR to the target vehicle body side slip angle βa. Therefore, even if the road surface is uneven, the turning angle δf of the front wheels 2FL and 2FR is not disturbed and does not affect the vehicle behavior. In addition, even when a sufficient difference between the left and right driving forces cannot be generated on the rear wheels 2RL and 2RR due to changes in the road surface friction coefficient μ, tire lateral forces are generated on the front wheels 2FL and 2FR so as to suppress the disturbance of vehicle behavior caused by the difference. Therefore, a vehicle behavior that is robust against changes in the road surface friction coefficient μ can be realized.

(2) 転舵角調整手段は、旋回要求に応じた駆動力差指令値の暫定値tU0が駆動力差旋回しきい値tUを超える場合に、前輪2FL,2FRの転舵角δfを目標車体横滑り角βaよりも旋回内側へ補正するため、左右駆動力差のみにより実現できない旋回横加速度が要求された場合でも、前輪2FL,2FRの転舵角により旋回力を向上させることができる。   (2) The turning angle adjusting means determines the turning angle δf of the front wheels 2FL and 2FR when the provisional value tU0 of the driving force difference command value according to the turning request exceeds the driving force difference turning threshold value tU. Since correction is made inward of the turn rather than the side slip angle βa, the turning force can be improved by the turning angle of the front wheels 2FL and 2FR even when a turning lateral acceleration that cannot be realized only by the difference between the left and right driving forces is required.

(3) 転舵角調整手段は、後輪2RL,2RRの左右駆動力差のみで達成できる駆動力差指令値の最小値tU_MINおよび最大値tU_MAX(旋回限界値)に応じて駆動力差旋回しきい値tUを決定する。すなわち、左右駆動力差をつけられる限界まで、転舵により補償する横加速度量cpstYGを0として前輪2FL,2FRで横力を発生させないようにしているため、前輪2FL,2FRをキャスター特性とした場合の旋回挙動の特長を最大限保ちつつ、大きな旋回力が必要とされる場合には、その旋回力を実現できる。   (3) The turning angle adjusting means turns with a driving force difference according to the minimum value tU_MIN and the maximum value tU_MAX (turning limit value) of the driving force difference command value that can be achieved only with the left and right driving force difference between the rear wheels 2RL and 2RR. The threshold value tU is determined. That is, the lateral acceleration amount cpstYG compensated by steering is set to 0 to the extent that the difference in the left and right driving force can be applied, so that no lateral force is generated on the front wheels 2FL, 2FR, so the front wheels 2FL, 2FR have caster characteristics. When a large turning force is required while maintaining the features of the turning behavior to the maximum, the turning force can be realized.

(4) 転舵角調整手段は、要求駆動力tTDが大きいほど、駆動力差旋回しきい値tUをより小さな値とするため、要求駆動力tTDの大きさにかかわらず、かつ、駆動力に影響を与えることなく、要求駆動力tTDを旋回要求値に応じた旋回力が得られ、駆動力変化に対してロバストな車両挙動を実現できる。   (4) The steered angle adjusting means sets the driving force difference turning threshold value tU to a smaller value as the required driving force tTD is larger. A turning force corresponding to the turning required value can be obtained from the required driving force tTD without affecting the vehicle, and a vehicle behavior that is robust against changes in the driving force can be realized.

(5) 転舵角調整手段は、要求制動力(-tTDの絶対値)が大きいほど、駆動力差旋回しきい値tUをより小さな値とするため、要求制動力にかかわらず、かつ、制動力に影響を与えることなく、旋回要求値に応じた旋回力が得られ、制動力変化に対してロバストな車両挙動を実現できる。   (5) The turning angle adjustment means sets the driving force difference turning threshold value tU to a smaller value as the required braking force (absolute value of -tTD) is larger. A turning force corresponding to the turn request value can be obtained without affecting the power, and a vehicle behavior that is robust against changes in braking force can be realized.

(6) 路面摩擦係数を推定する路面摩擦係数推定手段(ステップS305)を備え、転舵角調整手段は、推定した路面摩擦係数μが小さいほど、駆動力差旋回しきい値tUをより小さな値とするため、路面摩擦係数μの値にかかわらず、旋回要求値に応じた旋回力が得られ、路面摩擦係数μの変化に対してロバストな車両挙動を実現できる。   (6) A road surface friction coefficient estimating means (step S305) for estimating the road surface friction coefficient is provided, and the turning angle adjusting means has a smaller value of the driving force difference turning threshold value tU as the estimated road surface friction coefficient μ is smaller. Therefore, regardless of the value of the road surface friction coefficient μ, a turning force corresponding to the required turning value can be obtained, and a vehicle behavior that is robust against changes in the road surface friction coefficient μ can be realized.

(7) 車両の前後重心位置を推定する重心位置推定手段(ステップS303)を備え、駆動力制御手段は、推定した重心位置が車両前寄りにあるほど、すなわち、重心位置と後輪軸との車両前後距離Lrが長いほど、旋回要求に応じた駆動力差指令値の暫定値tU0をより大きな値とする。よって、旋回要求に応じた駆動力差指令値の暫定値tU0が駆動力差旋回しきい値tU以下の場合には、重心位置にかかわらず、前輪2FL,2FRをキャスター特性とした場合の旋回挙動の特長が得られる。   (7) It is provided with center-of-gravity position estimation means (step S303) for estimating the front-rear center-of-gravity position of the vehicle. The longer the longitudinal distance Lr, the larger the provisional value tU0 of the driving force difference command value corresponding to the turning request. Therefore, when the provisional value tU0 of the driving force difference command value corresponding to the turning request is equal to or less than the driving force difference turning threshold value tU, the turning behavior when the front wheels 2FL and 2FR are caster characteristics regardless of the center of gravity position. The features of can be obtained.

(8) 車両の質量Mを推定する質量推定手段(ステップS303)を備え、駆動力制御手段は、推定した質量Mが大きいほど、旋回要求に応じた駆動力差指令値の暫定値tU0をより大きな値とする。よって、旋回要求に応じた駆動力差指令値の暫定値tU0が駆動力差旋回しきい値tU以下の場合には、車両の質量Mにかかわらず、前輪2FL,2FRをキャスター特性とした場合の旋回挙動の特長が得られる。   (8) Mass estimation means (step S303) for estimating the mass M of the vehicle is provided, and the driving force control means increases the driving force difference command value provisional value tU0 according to the turning request as the estimated mass M increases. Use a large value. Therefore, when the provisional value tU0 of the driving force difference command value corresponding to the turning request is equal to or less than the driving force difference turning threshold value tU, regardless of the vehicle mass M, the front wheels 2FL and 2FR are caster characteristics. Features of turning behavior.

図11は、実施例2の左右独立駆動車両を示す図である。実施例2の左右独立駆動車両は、実施例1と同様、左右後輪2RL,2RRをモータ3RL,3RRにて独立に駆動するが、前輪2Fを一輪だけ設けた点で実施例1と異なり、前輪2Fの舵角を図外のモータにより転舵することができる。
上記実施例2の構成に対し、実施例1に示した制御ロジックを適用することで、実施例1と同様の作用効果が得られる。
FIG. 11 is a diagram illustrating a left and right independent drive vehicle according to a second embodiment. The left and right independent drive vehicle of the second embodiment, like the first embodiment, drives the left and right rear wheels 2RL and 2RR independently by the motors 3RL and 3RR, but differs from the first embodiment in that only one front wheel 2F is provided. The steering angle of the front wheel 2F can be steered by a motor outside the figure.
By applying the control logic shown in the first embodiment to the configuration of the second embodiment, the same effects as those of the first embodiment can be obtained.

図12は、実施例3の左右独立駆動車両を示す図である。実施例3の左右独立駆動車両は、車輪がひし形に配置されたものであり、前輪2Fおよび後輪2Rを図外のモータにより転舵することができる。他の2輪2CL,2CRは、モータ3CL,3CRにて独立に駆動する。   FIG. 12 is a diagram illustrating a left and right independent drive vehicle according to a third embodiment. The left and right independent drive vehicle according to the third embodiment has wheels arranged in a diamond shape, and can steer the front wheels 2F and the rear wheels 2R by a motor (not shown). The other two wheels 2CL and 2CR are driven independently by motors 3CL and 3CR.

次に、作用を説明する。
実施例3では、図3のステップS310にて、後輪2Rの位置の目標車体横滑り角βa2を、下記の式(20)で演算する。
βa2= {-Lt(mV2−2LrKr)}/{mV2Iγs2+2VKr(mLr2+Iγ)s+2mV2LrKr}・tU
・ Lrb/V*γ …(20)
ここでLrbは、重心位置と後輪2Rとの前後距離である。
Next, the operation will be described.
In the third embodiment, in step S310 of FIG. 3, the target vehicle body side slip angle βa2 at the position of the rear wheel 2R is calculated by the following equation (20).
βa2 = {-Lt (mV 2 −2LrKr)} / {mV 2 I γ s 2 + 2VKr (mLr 2 + I γ ) s + 2 mV 2 LrKr} · tU
・ Lrb / V * γ (20)
Here, Lrb is the front-rear distance between the center of gravity position and the rear wheel 2R.

そして、下記の式(21)で求めた後輪舵角指令値tDRを、後輪転舵用のモータコントローラに送信し、モータコントローラで後輪舵角をtDRに一致させるようにすればよい。
tDR =βa2 + TBL_TDF(cpstYG) …(21)
このとき、前輪2Fおよび後輪2Rの転舵により横力を発生するため、その分を考慮してテーブルTBL_TDF(cpstYG)の特性を決めておく。
Then, the rear wheel steering angle command value tDR obtained by the following equation (21) may be transmitted to the rear wheel steering motor controller so that the rear wheel steering angle coincides with tDR.
tDR = βa2 + TBL_TDF (cpstYG)… (21)
At this time, since a lateral force is generated by turning the front wheel 2F and the rear wheel 2R, the characteristics of the table TBL_TDF (cpstYG) are determined in consideration of the amount.

実施例3にあっては、上記の制御ロジックにより前輪2Fと後輪2Rの転舵角を制御することで、実施例1と同様の作用効果が得られる。   In the third embodiment, the same effects as those of the first embodiment can be obtained by controlling the turning angles of the front wheels 2F and the rear wheels 2R by the control logic.

(他の実施例)
以上、本発明の左右独立駆動車両を、実施例1〜3に基づいて説明したが、本発明の具体的な構成は、実施例1〜3に限定されるものではなく、発明の要旨を逸脱しない設計変更や追加等も、本発明に含まれる。
(Other examples)
As mentioned above, although the left-right independent drive vehicle of this invention was demonstrated based on Examples 1-3, the specific structure of this invention is not limited to Examples 1-3, and deviates from the summary of invention. Design changes or additions that are not made are also included in the present invention.

実施例1の左右独立駆動車両の構成を示す構成図である。It is a block diagram which shows the structure of the left-right independent drive vehicle of Example 1. FIG. 実施例1の統合コントローラ30にて実行されるモード選択制御処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of mode selection control processing executed by the integrated controller 30 of the first embodiment. 実施例1でのモードD時の演算ルーチンを示すフローチャートである。6 is a flowchart illustrating a calculation routine in mode D according to the first embodiment. 実施例1でのモードD時の演算ルーチンにて使用する目標駆動力tTDのROMデータ特性図である。6 is a ROM data characteristic diagram of a target driving force tTD used in a calculation routine in mode D in Embodiment 1. FIG. 実施例1でのモードD時の演算ルーチンにて使用する横加速度目標値tYGのROMデータ特性図である。FIG. 6 is a ROM data characteristic diagram of a lateral acceleration target value tYG used in a calculation routine in mode D in the first embodiment. 実施例1でのモードD時の演算ルーチンにて使用する、モータにて実現できる最大駆動力のROMデータ特性図である。FIG. 6 is a ROM data characteristic diagram of a maximum driving force that can be realized by a motor used in a calculation routine in mode D in the first embodiment. 左右駆動力差と車体滑り角βとの関係について説明する図である。It is a figure explaining the relationship between the left-right driving force difference and the vehicle body slip angle β. 実施例1でのモードD時の演算ルーチンにて使用する目標前輪舵角指令値tDFのROMデータ特性図である。FIG. 6 is a ROM data characteristic diagram of a target front wheel steering angle command value tDF used in a calculation routine in mode D in the first embodiment. 回転キャスターを用いた従来技術の構成を説明する図である。It is a figure explaining the structure of the prior art using a rotation caster. 回転キャスターを用いた従来技術の特長を説明する図である。It is a figure explaining the feature of the prior art using a rotation caster. 実施例2の左右独立駆動車両の構成を示す構成図である。It is a block diagram which shows the structure of the left-right independent drive vehicle of Example 2. FIG. 実施例3の左右独立駆動車両の構成を示す構成図である。FIG. 10 is a configuration diagram illustrating a configuration of a left and right independent drive vehicle according to a third embodiment.

符号の説明Explanation of symbols

2RL,2RR 後輪
3RL,3RR 電気モータ
4RL,4RR 減速機
5RL,5RR 駆動回路
6 リチウムイオンバッテリ
7 回転角速度センサ
8 ヨーレートセンサ
9 輪荷重センサ
11 ステアリングハンドル
12 モータ
13 モータコントローラ
14 操舵機構
21 操舵角センサ
22 ブレーキペダルセンサ
23 アクセルペダルセンサ
24 加速度センサ
25 シフトレバー
30 統合コントローラ
2RL, 2RR Rear wheel 3RL, 3RR Electric motor 4RL, 4RR Reducer 5RL, 5RR Drive circuit 6 Lithium ion battery 7 Rotational angular velocity sensor 8 Yaw rate sensor 9 Wheel load sensor 11 Steering handle 12 Motor 13 Motor controller 14 Steering mechanism 21 Steering angle sensor 22 Brake pedal sensor 23 Accelerator pedal sensor 24 Acceleration sensor 25 Shift lever 30 Integrated controller

Claims (8)

車両の左右にそれぞれ配置され、モータで車両の制駆動力を独立に調整する駆動輪と、
運転者からの旋回要求に従い、前記駆動輪の旋回外側駆動力を旋回内側の駆動力よりも大きな値に制御する駆動力制御手段と、
前記駆動輪と別に設けられた転舵輪と、
前記駆動輪のみにより実現される車両の旋回挙動に基づいて、前記転舵輪位置での目標車体横滑り角を算出する目標車体横滑り角算出手段と、
前記転舵輪の転舵角を前記目標車体横滑り角に一致させる転舵角調整手段と、
を備えることを特徴とする左右独立駆動車両。
Drive wheels that are respectively arranged on the left and right sides of the vehicle and independently adjust the braking / driving force of the vehicle with a motor;
In accordance with a turning request from the driver, driving force control means for controlling the driving force on the outside of the driving wheel to a value larger than the driving force on the inside of the turning,
Steered wheels provided separately from the drive wheels;
A target vehicle body side slip angle calculating means for calculating a target vehicle body side slip angle at the steered wheel position based on a turning behavior of the vehicle realized only by the drive wheels;
A turning angle adjusting means for making the turning angle of the steered wheel coincide with the target vehicle body side slip angle;
A left and right independent drive vehicle comprising:
請求項1に記載の左右独立駆動車両において、
前記転舵角調整手段は、旋回要求に応じた駆動力差指令値が駆動力差旋回しきい値を超える場合に、前記転舵輪の転舵角を前記目標車体横滑り角よりも旋回内側へ補正することを特徴とする左右独立駆動車両。
The left and right independent drive vehicle according to claim 1,
The turning angle adjusting means corrects the turning angle of the steered wheels to the inside of the turn from the target vehicle body side slip angle when the driving force difference command value according to the turning request exceeds the driving force difference turning threshold value. A left-right independent drive vehicle characterized by:
請求項2に記載の左右独立駆動車両において、
前記転舵角調整手段は、前記駆動力差旋回しきい値を、左右駆動力差のみで実現可能な駆動力差の下限値と上限値とに応じて決定することを特徴とする左右独立駆動車両。
The left and right independent drive vehicle according to claim 2,
The turning angle adjusting means determines the driving force difference turning threshold according to a lower limit value and an upper limit value of a driving force difference that can be realized only by a left and right driving force difference. vehicle.
請求項2または請求項3に記載の左右独立駆動車両において、
前記転舵角調整手段は、要求駆動力が大きいほど、前記駆動力差旋回しきい値をより小さな値とすることを特徴とする左右独立駆動車両。
In the left-right independent drive vehicle according to claim 2 or 3,
The left and right independent drive vehicle characterized in that the turning angle adjusting means sets the driving force difference turning threshold value to a smaller value as the required driving force increases.
請求項2ないし請求項4のいずれか1項に記載の左右独立駆動車両において、
前記転舵角調整手段は、要求制動力が大きいほど、前記駆動力差旋回しきい値をより小さな値とすることを特徴とする、左右独立駆動車両。
In the left-right independent drive vehicle according to any one of claims 2 to 4,
The left and right independent drive vehicle characterized in that the turning angle adjusting means sets the driving force difference turning threshold value to a smaller value as the required braking force increases.
請求項2ないし請求項5のいずれか1項に記載の左右独立駆動車両において、
路面摩擦係数を推定する路面摩擦係数推定手段を備え、
前記転舵角調整手段は、推定した路面摩擦係数が小さいほど、前記駆動力差旋回しきい値をより小さな値とすることを特徴とする左右独立駆動車両。
In the left-right independent drive vehicle according to any one of claims 2 to 5,
A road surface friction coefficient estimating means for estimating a road surface friction coefficient;
The left and right independent drive vehicle characterized in that the turning angle adjusting means sets the driving force difference turning threshold value to a smaller value as the estimated road surface friction coefficient is smaller.
請求項2ないし請求項6のいずれか1項に記載の左右独立駆動車両において、
車両の前後重心位置を推定する重心位置推定手段を備え、
前記駆動力制御手段は、推定した重心位置が車両前寄りにあるほど、左右の駆動力差をより大きな値とすることを特徴とする左右独立駆動車両。
In the left-right independent drive vehicle according to any one of claims 2 to 6,
A center-of-gravity position estimating means for estimating the front-rear center of gravity position of the vehicle;
The left and right independent driving vehicle characterized in that the driving force control means sets the left and right driving force difference to a larger value as the estimated center of gravity position is closer to the front of the vehicle.
請求項2ないし請求項7のいずれか1項に記載の左右独立駆動車両において、
車両の質量を推定する質量推定手段を備え、
前記駆動力制御手段は、推定した質量が大きいほど、左右の駆動力差をより大きな値とすることを特徴とする左右独立駆動車両。
In the left-right independent drive vehicle according to any one of claims 2 to 7,
Comprising mass estimation means for estimating the mass of the vehicle;
The left and right independent driving vehicle characterized in that the driving force control means sets the left and right driving force difference to a larger value as the estimated mass is larger.
JP2005167188A 2005-06-07 2005-06-07 Left and right independent drive vehicle Expired - Fee Related JP4622686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167188A JP4622686B2 (en) 2005-06-07 2005-06-07 Left and right independent drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167188A JP4622686B2 (en) 2005-06-07 2005-06-07 Left and right independent drive vehicle

Publications (2)

Publication Number Publication Date
JP2006341656A true JP2006341656A (en) 2006-12-21
JP4622686B2 JP4622686B2 (en) 2011-02-02

Family

ID=37638942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167188A Expired - Fee Related JP4622686B2 (en) 2005-06-07 2005-06-07 Left and right independent drive vehicle

Country Status (1)

Country Link
JP (1) JP4622686B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529977A (en) * 2010-10-29 2012-07-04 株式会社爱德克斯 Vehicle motion control apparatus
JP2013252748A (en) * 2012-06-05 2013-12-19 Jtekt Corp Vehicle attitude control device
WO2014002129A1 (en) * 2012-06-25 2014-01-03 トヨタ自動車株式会社 Vehicle control apparatus
CN104057954A (en) * 2014-06-25 2014-09-24 徐州重型机械有限公司 Road condition self-adaptation system of crane and crane
JP2020501484A (en) * 2016-11-18 2020-01-16 ジン−ジン エレクトリック テクノロジーズ カンパニー リミテッド Coaxial multi-motor drive system and vehicle provided with coaxial multi-motor drive system
WO2023037869A1 (en) 2021-09-10 2023-03-16 株式会社デンソー Moving body and program
WO2023053862A1 (en) * 2021-09-29 2023-04-06 株式会社デンソー Moving body and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195033A (en) * 1987-02-06 1988-08-12 Aisin Warner Ltd Drive force controller for vehicle with electric motor
JPH03227762A (en) * 1990-01-31 1991-10-08 Toyota Motor Corp Yawing control system
JPH08133053A (en) * 1994-11-10 1996-05-28 Toyota Motor Corp Behavior control device for vehicle
JP2005073458A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Controller of vehicle
JP2005073457A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Controller of vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195033A (en) * 1987-02-06 1988-08-12 Aisin Warner Ltd Drive force controller for vehicle with electric motor
JPH03227762A (en) * 1990-01-31 1991-10-08 Toyota Motor Corp Yawing control system
JPH08133053A (en) * 1994-11-10 1996-05-28 Toyota Motor Corp Behavior control device for vehicle
JP2005073458A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Controller of vehicle
JP2005073457A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Controller of vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529977A (en) * 2010-10-29 2012-07-04 株式会社爱德克斯 Vehicle motion control apparatus
JP2013252748A (en) * 2012-06-05 2013-12-19 Jtekt Corp Vehicle attitude control device
WO2014002129A1 (en) * 2012-06-25 2014-01-03 トヨタ自動車株式会社 Vehicle control apparatus
CN104057954A (en) * 2014-06-25 2014-09-24 徐州重型机械有限公司 Road condition self-adaptation system of crane and crane
CN104057954B (en) * 2014-06-25 2017-01-11 徐州重型机械有限公司 Road condition self-adaptation system of crane and crane
JP2020501484A (en) * 2016-11-18 2020-01-16 ジン−ジン エレクトリック テクノロジーズ カンパニー リミテッド Coaxial multi-motor drive system and vehicle provided with coaxial multi-motor drive system
JP7249276B2 (en) 2016-11-18 2023-03-30 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Coaxial multi-motor drive system and vehicle provided with coaxial multi-motor drive system
WO2023037869A1 (en) 2021-09-10 2023-03-16 株式会社デンソー Moving body and program
WO2023053862A1 (en) * 2021-09-29 2023-04-06 株式会社デンソー Moving body and program

Also Published As

Publication number Publication date
JP4622686B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4661138B2 (en) Electric vehicle
JP4556775B2 (en) Vehicle steering system
KR950001231B1 (en) Electric vehicle
US6415212B2 (en) Steering device for vehicle
US7073621B2 (en) Vehicle steering control device
US7762562B2 (en) Vehicle attitude control apparatus
JP4622686B2 (en) Left and right independent drive vehicle
CN104619530A (en) Steering and control systems for a three-wheeled vehicle
JP2004345592A (en) Steering device of vehicle
JP2010081720A (en) Vehicular driving force controller
JP2002087310A (en) Action to vehicle track based on measurement of lateral force
JP3451912B2 (en) Drive control device for electric vehicles
JP4423961B2 (en) Motor output control device for electric vehicle
JP2021160398A (en) Vehicular steering system
JP4736402B2 (en) Motor built-in suspension device and electric vehicle equipped with the same
JP2010188918A (en) Behavior control device
JPH02262806A (en) Electromobile
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP3626388B2 (en) Vehicle attitude control device
JP3626654B2 (en) Vehicle attitude control device
JP4470481B2 (en) Electric vehicle
JP2006182050A (en) Braking force control device for four-wheel independent drive vehicle
JP2011161957A (en) Central controller
JP5068638B2 (en) Vehicle rear wheel toe angle control device and rear wheel toe angle control method
JP2008092682A (en) Electric cart

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees