JP2006341303A - Mixed sand for preventing burning - Google Patents

Mixed sand for preventing burning Download PDF

Info

Publication number
JP2006341303A
JP2006341303A JP2005194320A JP2005194320A JP2006341303A JP 2006341303 A JP2006341303 A JP 2006341303A JP 2005194320 A JP2005194320 A JP 2005194320A JP 2005194320 A JP2005194320 A JP 2005194320A JP 2006341303 A JP2006341303 A JP 2006341303A
Authority
JP
Japan
Prior art keywords
sand
mixed
ore
silica
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194320A
Other languages
Japanese (ja)
Inventor
Keiji Miyauchi
啓次 宮内
Yoshiaki Takemoto
義明 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MCT KK
Original Assignee
MCT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MCT KK filed Critical MCT KK
Priority to JP2005194320A priority Critical patent/JP2006341303A/en
Publication of JP2006341303A publication Critical patent/JP2006341303A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide simple and efficient supply sand in an aggregate for a mold and an organic self-hardening closed method capable of preventing burning at a low cost. <P>SOLUTION: Mixed sand obtained by mixing the predetermined amount of artificial sand mainly consisting of coarse 2MgO-SiO<SB>2</SB>obtained by air-granulating nickel refining slag in silica sand in advance is applied as special sand for preventing burning or supply sand for an organic self-hardening closed method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は、鋳物製造用の鋳型を形成する鋳物砂に関する。更に詳しくは、本発明は、従来使用されているクロマイト砂、ジルコン砂やムライトに代わって、焼着防止用として新しい構成の焼付防止用混合砂を提供し、これらの持つコスト高や廃棄物規制を改善できる新規の混合砂を提供する。  The present invention relates to foundry sand forming a casting mold. More specifically, the present invention provides a new structure of anti-seize mixed sand for preventing seizure in place of conventionally used chromite sand, zircon sand and mullite. Provide new mixed sand that can improve

一方、使用砂を回収して再利用する有機自硬性クローズド法においては、これらの特殊砂の蓄積を改善し、回収再生砂全体の焼着を軽減できる新規の補給用混合砂を提供する。  On the other hand, in the organic self-hardening closed method in which used sand is collected and reused, a new replenished mixed sand that improves the accumulation of these special sands and can reduce the seizure of the entire recovered and reclaimed sand is provided.

従来の技術及び発明が解決しようとする課題Problems to be solved by the prior art and the invention

従来の有機自硬性クローズド、世界的にもフラン自硬性法が最も一般的である。このフラン自硬性法においては、天然の珪砂が使用されてきているが、課題として珪砂の熱膨張が大きいために、熱的条件が厳しい部所に溶鉄が浸透して焼着が発生して砂落とし工数がかかる。その解決方法として、旧JIS6号〜7号の細粒のクロマイト砂やジルコン砂やムライト系人工砂のような高価で特殊な低膨張砂を別途混練して部分的に適用しているのが実状である。  Conventional organic self-hardening closed, the furan self-hardening method is the most common in the world. In this furan self-hardening method, natural silica sand has been used. However, due to the large thermal expansion of silica sand, molten iron penetrates into places where thermal conditions are severe and seizure occurs and sand is generated. It takes time to drop. As a solution to this problem, it is a fact that expensive special low expansion sand such as fine chromite sand, zircon sand and mullite artificial sand of old JIS Nos. 6 to 7 are separately kneaded and applied partially. It is.

また、このような特殊な低膨張砂は高価である一方、比重が大きいため、リサイクル法での回収砂中に蓄積しやすく、回収砂の性状が変化する。そのため多く使用出来ず、慎重な回収砂管理が必要となっている。  Further, such special low expansion sand is expensive, but has a large specific gravity, so that it easily accumulates in the collected sand by the recycling method, and the properties of the collected sand change. For this reason, it cannot be used much and careful management of the collected sand is required.

一方、フラン自硬性クローズド法においては、最近ニッケル鉱滓の熔融スラグから得られた2MgO・SiOを主成分とする人工砂が注目されている。粗目の人工砂を補給砂として使用して蓄積させて、持砂の約30〜40%に達するまで補充し、回収、再製砂の鋳型強度を向上させてコストダウンを計り、熱膨張を低下させて焼着等の品質向上を計るる方法が採用されてきている。On the other hand, in the furan self-hardening closed method, artificial sand mainly composed of 2MgO.SiO 2 obtained from a molten slag of nickel ore has recently attracted attention. Coarse artificial sand is accumulated as supplementary sand and replenished until it reaches about 30 to 40% of the retained sand, improving the mold strength of recovered and remanufactured sand, reducing costs and reducing thermal expansion. A method of improving quality such as baking has been adopted.

ただし、この方法においては、持砂全体に約30〜40%の粗目の人工砂が含有されることが必要である。一方、厳しい熱的条件の中子等には、持砂とは別に、粗目の人工砂の含有割合を更に増加させた焼着防止砂を別途混練する必要がある。なぜならば、そのために持砂全体の粗目の人工砂の含有割合を増加させることは、鋳型コストの上昇や鋳物肌不良を誘発するおそれがあるため、その対策を含めて非効率的であるからである。  However, in this method, it is necessary that about 30 to 40% coarse artificial sand is contained in the entire sand holding. On the other hand, for cores and the like having severe thermal conditions, it is necessary to separately knead seizure-preventing sand in which the content of coarse artificial sand is further increased in addition to the retained sand. This is because increasing the proportion of coarse artificial sand in the entire sand holding is likely to cause an increase in mold costs and casting skin defects, which is inefficient including countermeasures. is there.

また、同じフラン自硬性クローズド法においても、持砂にニッケル鉱滓の熔融スラグから得られた2MgO・SiOを主成分とする人工砂(以下Ni鉱滓砂と称す)を含有させないで操業している工場も多い。この場合は、焼着防止用にクロマイト砂やジルコン砂、ムライト系人工砂を別途混練して使用しているが、コストが高く持砂への蓄積を考慮して使用量を可能な限り制限しながら使用している。Further, even in the same furan self-hardening closed method, the sand is operated without containing artificial sand mainly composed of 2MgO · SiO 2 obtained from molten slag of nickel ore (hereinafter referred to as Ni ore sand). There are many factories. In this case, chromite sand, zircon sand, and mullite artificial sand are separately kneaded to prevent seizure, but the amount of use is limited as much as possible due to the high cost and consideration of accumulation in sand. While using.

この粗目のNi鉱滓砂をあらかじめ珪砂に混合して焼着防止砂として用いることは新しい方法であり、クロマイト砂やジルコン砂、ムライト系人工砂のように、そのまま使用出来るように、粗目のNi鉱滓砂が所定量配合された焼着防止砂は現在開発、市販されていないのが実情である。コストダウンのために、当方法を適用しようとするには、珪砂と粗目のNi鉱滓砂を別々に購入し、所定の配合となるように計量、混合して本発明の焼着防止砂を自ら製造しなければならないため、非効率である。  It is a new method to mix this coarse Ni ore sand in advance with silica sand and use it as an anti-caking sand. The actual situation is that no seizure prevention sand containing a predetermined amount of sand has been developed and marketed. In order to reduce the cost, this method can be applied by purchasing silica sand and coarse Ni ore sand separately and weighing and mixing them to obtain the prescribed composition. Inefficient because it must be manufactured.

この回収砂中のNi鉱滓砂の含有率を30〜40%に管理するためには、持砂を分析して含有率を算出し、補給する珪砂とNi鉱滓砂の量を決定して交互に補給する方法を取らざるを得ない。この方法では頻繁に分析作業が必要であるため、管理が複雑になる。また珪砂とNi鉱滓砂を別々に発注して在庫する必要があり、在庫管理と置き場の確保に苦労している。  In order to control the content of Ni ore slag in this recovered sand to 30-40%, the retained sand is analyzed to calculate the content, and the amount of silica sand and Ni slag is replenished alternately. I have to take a way to replenish. Since this method requires frequent analysis work, management is complicated. In addition, it is necessary to order and stock quartz sand and Ni ore sand separately, and it is difficult to manage inventory and secure a place for storage.

発明が解決しようとする手段Means to be Solved by the Invention

以上、これまで述べた課題を解決する方法として、単独では鋳型に適用できない粗目のNi鉱滓砂と従来より使用されている珪砂を予め所定の比率で混合した専用の混合砂を提供することにより、種々の課題を解決できることが長期間の実施結果により判明した。  As described above, as a method for solving the problems described so far, by providing a dedicated mixed sand in which coarse Ni ore sand that cannot be applied alone to a mold and silica sand that has been conventionally used are mixed in a predetermined ratio, It has been found from long-term implementation results that various problems can be solved.

例えば、予め所定の比率で混合された専用の混合砂を提供することにより、従来の焼着防止砂と同様な使用方法が可能となり、著しく低コストの焼着防止砂を提供できる。これは従来の焼着防止用の特殊砂に比べて、混合砂の単価が安く、カサ比重も小さいため二重のコスト低減が可能となるからである。比較例として市販のクロマイト砂と本発明によるクロマイト砂と同等の焼着防止効果を持つ混合砂のコスト比較を表1に示す。  For example, by providing dedicated mixed sand that has been mixed in advance at a predetermined ratio, it is possible to use the same method as conventional anti-seize sand, and it is possible to provide extremely low-cost anti-seize sand. This is because the unit price of the mixed sand is lower than that of the conventional special sand for preventing seizure and the specific gravity of the sand is small, so that double cost reduction is possible. As a comparative example, Table 1 shows a cost comparison between commercially available chromite sand and mixed sand having the same anti-seizure effect as chromite sand according to the present invention.

Figure 2006341303
Figure 2006341303

一方、有機自硬性クローズド法で持砂のNi鉱滓砂含有率を30〜40%で推移させながら管理してNi鉱滓砂を補給する場合、純度100%のNi鉱滓砂を補給するため、補給量を決定するために、持砂中のNi鉱滓砂の分析を頻繁に実施する必要がある。
したがって、珪砂とNi鉱滓砂の目減りを考慮した配合の補給砂を補給できれば管理値に近いNi鉱滓砂含有率を維持出来、確認のために数カ月に一度の分析で賄えることが出来る。
On the other hand, in the case of replenishing Ni ore sand with a purity of 100% when supplying the Ni ore sand with the organic self-hardening closed method while maintaining the Ni ore sand content of the retained sand at 30-40%, the replenishment amount Therefore, it is necessary to frequently carry out an analysis of Ni ore sand in the retained sand.
Therefore, if supplementary sand with a composition that takes into account the reduction of silica sand and Ni ore sand can be replenished, the Ni ore sand content rate close to the control value can be maintained, and can be covered by analysis once every several months for confirmation.

一方、Ni鉱滓砂を補給する場合、珪砂とNi鉱滓砂の2種類の砂を購入、在庫する必要があり、置き場倉庫や在庫数量のバランスに苦労する。  On the other hand, when replenishing Ni ore sand, it is necessary to purchase and stock two types of sand, silica sand and Ni ore sand, which makes it difficult to balance storage warehouses and inventory quantities.

また、Ni鉱滓砂を補給する場合、通常はバラシ場にて1tフレコンバッグの底口から一気にNi鉱滓砂を排出して補給するが、この場合Ni鉱滓砂が偏析しやすく、回収砂中のNi鉱滓砂含有率が変動しやすい。  In addition, when replenishing Ni ore sand, normally, Ni ore sand is discharged and replenished at a stroke from the bottom of the 1t flexible container bag. In this case, Ni ore sand tends to segregate, and Ni in the recovered sand is replenished. Mineral sand content is likely to fluctuate.

したがって、Ni鉱滓砂が適切に混合された専属の補給用混合砂が供給されれば、これらの課題が速やかに解決される。Therefore, if the exclusive replenishing mixed sand in which the Ni ore sand is appropriately mixed is supplied, these problems can be solved quickly.

かくして本発明によれば、従来の焼着防止のための特殊砂と有機自硬性クローズド法の補給砂の代わりに、課題を解決出来る新しい鋳物用耐火物骨材、即ち従来の鋳物用珪砂にあらかじめ粗目のNi鉱滓砂が所定の割合で混合された専用の混合砂からなることを特徴とする新しい鋳物用耐火物骨材が提供される。  Thus, according to the present invention, instead of the conventional special sand for preventing seizure and the supplementary sand of the organic self-hardening closed method, a new refractory aggregate for casting that can solve the problem, that is, the conventional silica sand for casting, is used in advance. There is provided a new refractory aggregate for castings, characterized in that it is composed of a special mixed sand in which coarse Ni ore sand is mixed at a predetermined ratio.

本発明の混合骨材は主に珪砂とNi鉱滓砂との混合物で構成される。珪砂の粒度としては旧JIS5号〜6号で構成されており、Ni鉱滓砂の粒度は通常単独では鋳物砂として適用出来ない旧JIS1号〜3号で構成される。表2に代表的な粒度分布を示す。  The mixed aggregate of the present invention is mainly composed of a mixture of silica sand and Ni ore sand. The grain size of silica sand is composed of old JIS Nos. 5 to 6, and the grain size of Ni ore sand is usually composed of old JIS Nos. 1 to 3 which cannot be applied as casting sand alone. Table 2 shows a typical particle size distribution.

Figure 2006341303
Figure 2006341303

本発明の重量混合比率としては、適用する製品により、旧JIS5号珪砂:旧3号Ni鉱滓砂=90:10〜30:70の割合で所定の課題を解決できるが、一般的には旧JIS5号珪砂:旧3号Ni鉱滓砂=70:30〜55:45が望ましい。  As the weight mixing ratio of the present invention, the predetermined problem can be solved at a ratio of old JIS No. 5 silica sand: old No. 3 Ni ore sand = 90:10 to 30:70 depending on the product to be applied. No. quartz sand: old No. 3 Ni ore sand = 70: 30 to 55:45 is desirable.

本発明の珪砂に混合する人工砂としては、Ni鉱滓砂以外にALを主成分とするムライト系の球状砂で同等の粒度構成を有する人工砂であれば同様に適用できる。The artificial sand mixed with the silica sand of the present invention can be similarly applied as long as it is artificial sand having an equivalent particle size structure made of mullite spherical sand mainly composed of AL 2 O 3 in addition to Ni ore sand.

本発明において、珪砂とNi鉱滓砂の混合砂及び珪砂とムライト砂の混合砂の熱膨張を測定すると、両者共に珪砂に対する混合割合が増加するほど熱膨張率は小さくなる。このことは有機自硬性砂に発生しやすいベイニングによる焼着欠陥の発生を軽減出来ることを示している。JACT試験法M−2に準拠して測定した急膨張率測定結果を表3に示す。  In the present invention, when the thermal expansion of the mixed sand of quartz sand and Ni ore sand and the mixed sand of quartz sand and mullite sand is measured, the thermal expansion coefficient decreases as the mixing ratio with respect to the quartz sand increases. This indicates that it is possible to reduce the occurrence of seizure defects due to baining that is likely to occur in organic self-hardening sand. Table 3 shows the results of the measurement of rapid expansion coefficient measured according to JACT test method M-2.

Figure 2006341303
Figure 2006341303

以下、実施例及び比較例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.

表4に示した配合砂を用いて楔型の中子試験片をフラン樹脂で硬化させて図1に示すような鋳込み形状で中子の焼着試験を実施した。鋳込み、冷却後、中子砂の焼着量の体積を測定し、焼着した砂の体積の量で優劣を評価した。尚、焼着砂体積の測定は、ショットブラストによる砂落し終了後、その凹部に新砂を充填し、その充填量の体積を算出して結果とした。  Using the blended sand shown in Table 4, a wedge-shaped core test piece was cured with a furan resin, and a core baking test was performed in a cast shape as shown in FIG. After casting and cooling, the volume of the core sand was measured, and the superiority or inferiority was evaluated by the volume of the sand deposited. The measurement of the deposited sand volume was obtained by filling the concave portion with fresh sand after the completion of sand removal by shot blasting and calculating the volume of the filling amount.

Figure 2006341303
Figure 2006341303

表5に示すように、100%のNi鉱滓砂と国産珪砂を補給砂として交互に補給し、持砂中のNi鉱滓砂の含有率を各々約30%、45%で管理しているA,B2社について約1年間試験した結果それぞれ特定の割合で混合された補給砂を補給すれば、作業性の向上、砂置き場の省略、コンテナバッグ処理の軽減、在庫量の低減等の合理化が達成された。その結果を表5に示す。  As shown in Table 5, 100% Ni ore sand and domestic silica sand are alternately replenished as supplementary sand, and the content of Ni ore sand in the retained sand is controlled at about 30% and 45%, respectively. As a result of testing for about 2 years for B2 company, if the replenishment sand mixed at a specific ratio is replenished, rationalization such as improvement of workability, omission of sand storage place, reduction of container bag processing, reduction of inventory, etc. is achieved. It was. The results are shown in Table 5.

Figure 2006341303
Figure 2006341303

以上の実績調査から、補給砂のに混合するNi鉱滓砂の割合は、鋳物工場がNi鉱滓砂の含有割合を決定した目標値の割合で補給砂の割合を設定すれば、自ずと目標値を維持できる。従って、頻繁な分析を実施してコストをかけずに管理できる。  From the above results survey, the ratio of Ni ores and sands to be mixed with the replenishment sands will be maintained if the foundry sets the ratio of replenishment sands at the ratio of the target values that determined the content ratio of Ni ores and sands. it can. Therefore, frequent analysis can be performed and managed without cost.

発明の効果The invention's effect

あらかじめ、所定量のNi鉱滓砂を珪砂に混合した混合砂を鋳物製造用の焼着防止砂や有機自硬性クローズド法の補給砂として用いることにより、次のような効果がある。
(1)クロマイト砂等の焼着防止砂のかわりに十分適用出来、著しいコストダウンが可能となる。
(2)有機自硬性クローズド法の補給砂として用いることにより、回収再生砂中のNi鉱滓砂含有量を略一定に維持出来るため、分析回数を大幅に減少出来る。
(3)有機自硬性クローズド法の補給砂として用いることにより、フレコンバッグの廃棄が大幅に低減でき、廃棄物処理の合理化が出来る。
(4)砂の在庫量が減少し砂置き場の縮小が可能となる。
By using mixed sand obtained by mixing a predetermined amount of Ni ore sand with silica sand in advance as anti-seizure sand for casting production or supplementary sand for organic self-hardening closed method, the following effects can be obtained.
(1) It can be adequately applied in place of seizing prevention sand such as chromite sand, and the cost can be significantly reduced.
(2) By using it as supplementary sand for the organic self-hardening closed method, the content of Ni ore dredged sand in the recovered recycled sand can be maintained substantially constant, so the number of analyzes can be greatly reduced.
(3) By using it as supplementary sand for the organic self-hardening closed method, the disposal of flexible container bags can be greatly reduced, and the waste treatment can be rationalized.
(4) The amount of sand stock decreases and the sand storage area can be reduced.

鋳込みによる焼着試験法案を示す。The draft test method for casting is shown. 焼着試験に供する中子の形状を示す。The shape of the core used for the seizure test is shown. 鋳込み試験結果の写真。Photograph of the casting test result.

符号の説明Explanation of symbols

1 焼着試験評価用中子
2 円柱状鋳物(FC300)
3 湯道
4 珪砂100%中子ショットプラスト後
5 珪砂90%:Ni鉱滓砂10%中子ショットブラスト後
6 珪砂70%:Ni鉱滓砂30%中子ショットブラスト後
7 珪砂50%:Ni鉱滓砂50%中子ショットブラスト後
1 Core for evaluation of seizure test 2 Cylindrical casting (FC300)
3 Runway 4 Silica sand 100% after core shot plasting 5 Silica sand 90%: Ni ore sand 10% after core shot blasting 6 Silica sand 70%: Ni ore sand 30% after core shot blasting 7 Silica sand 50%: Ni ore sand After 50% core shot blasting

Claims (3)

Ni精錬時に発生する、2MgO・SiOを主成分とする熔融スラグが風砕により製造された耐火物で、粒径が0.08〜3.50mmの範囲にあり、AFS粒度指数が8〜35の範囲で構成された球状の粗目の耐火物が、予め珪砂に重量割合で10〜70%混合され、そのまま鋳型の造型に適用できるように配合されていることを特徴とする焼着防止用混合砂。A molten slag composed mainly of 2MgO · SiO 2 generated during Ni refining is a refractory produced by air crushing, having a particle size in the range of 0.08 to 3.50 mm and an AFS particle size index of 8 to 35. Spherical coarse refractories composed in the range of 10 to 70% by weight in advance are mixed with silica sand in a weight ratio, and blended so that it can be applied to mold making as it is. sand. Alを主成分として風砕または焼結されて製造されたムライト系の球状の人工砂で、請求項1に記載された焼着防止用混合砂。The mixed sand for preventing seizure according to claim 1, which is a mullite-type spherical artificial sand produced by air crushing or sintering with Al 2 O 3 as a main component. 有機自硬性法における使用砂の回収、再生、再使用を繰り返すクローズド法において、補給砂として補給される請求項1及び請求項2に記載された混合砂。The mixed sand according to claim 1 or 2, which is replenished as supplementary sand in a closed method in which the sand used in the organic self-hardening method is repeatedly collected, regenerated and reused.
JP2005194320A 2005-06-07 2005-06-07 Mixed sand for preventing burning Pending JP2006341303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194320A JP2006341303A (en) 2005-06-07 2005-06-07 Mixed sand for preventing burning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194320A JP2006341303A (en) 2005-06-07 2005-06-07 Mixed sand for preventing burning

Publications (1)

Publication Number Publication Date
JP2006341303A true JP2006341303A (en) 2006-12-21

Family

ID=37638650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194320A Pending JP2006341303A (en) 2005-06-07 2005-06-07 Mixed sand for preventing burning

Country Status (1)

Country Link
JP (1) JP2006341303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985552A (en) * 2010-11-04 2011-03-16 哈尔滨鑫润工业有限公司 Method for removing defect of casting surface with spherical sand by sandblasting
CN111496177A (en) * 2020-06-03 2020-08-07 中车戚墅堰机车车辆工艺研究所有限公司 Furan resin self-hardening sand, manufacturing method thereof and casting sand mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985552A (en) * 2010-11-04 2011-03-16 哈尔滨鑫润工业有限公司 Method for removing defect of casting surface with spherical sand by sandblasting
CN101985552B (en) * 2010-11-04 2014-03-26 哈尔滨鑫润工业有限公司 Method for removing defect of casting surface with spherical sand by sandblasting
CN111496177A (en) * 2020-06-03 2020-08-07 中车戚墅堰机车车辆工艺研究所有限公司 Furan resin self-hardening sand, manufacturing method thereof and casting sand mold
CN111496177B (en) * 2020-06-03 2022-02-25 中车戚墅堰机车车辆工艺研究所有限公司 Furan resin self-hardening sand, manufacturing method thereof and casting sand mold

Similar Documents

Publication Publication Date Title
Brown Foseco Foundryman's Handbook: Facts, Figures and Formulae
JP6736680B2 (en) Curing agent for water glass casting, method for producing the same and use thereof
CN103889614A (en) Mold compositions and methods for casting titanium and titanium aluminide alloys
CN104968451A (en) Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN107206470A (en) Artificial sand and the foundry sand containing binding agent
JP6462347B2 (en) Mold sand and its manufacturing method
US20020165292A1 (en) Casting sand cores and expansion control methods therefor
JP2006341303A (en) Mixed sand for preventing burning
CN105960296A (en) Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN108500204A (en) Resin sand High Strength Casting magnesium iron traveling wheel technique
JP2014018851A (en) Method of producing core and core
JP4516024B2 (en) Casting core
JP2918180B2 (en) Use of crushed and graded ore, preferably magnetite ore, for mold and core making
JP6595688B2 (en) Mold sand and its manufacturing method
US10913104B2 (en) Nanoparticle based sand conditioner composition and a method of synthesizing the same
JP4271596B2 (en) Mold sand, mold and mold sand recycling equipment
CN109434008A (en) A kind of high alloy material steel-casting non-silicon precoated sand and preparation method thereof
US20240253107A1 (en) Inorganic binder system
JP6975380B2 (en) Resin-coated casting sand for shell molds, main molds and cores using it
JP2007136540A (en) Burning prevention sand and supply sand used in furan self-hardening closed method
Banganayi et al. Effects of South African silica sand properties on the strength development and collapsibility of single component sodium silicate binders
JP2003251436A (en) Method for manufacturing mold and mold composition
SU897752A1 (en) Refractory concrete mix
Reddy Structure and Morphology of Recycled Iron-Rich Al-Si Alloys Cast in Thin-Walled Investment Shell Moulds
Prabhushankar et al. Effective utilization of industrial and constructional solid waste materials in foundry mould making to prevent environment pollution and conserve natural silica sand