JP2006339378A - Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device - Google Patents

Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device Download PDF

Info

Publication number
JP2006339378A
JP2006339378A JP2005161755A JP2005161755A JP2006339378A JP 2006339378 A JP2006339378 A JP 2006339378A JP 2005161755 A JP2005161755 A JP 2005161755A JP 2005161755 A JP2005161755 A JP 2005161755A JP 2006339378 A JP2006339378 A JP 2006339378A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
oxide
fine particles
conversion material
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161755A
Other languages
Japanese (ja)
Inventor
Shuichi Hikiji
秀一 曳地
Yoshihiko Iijima
喜彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005161755A priority Critical patent/JP2006339378A/en
Publication of JP2006339378A publication Critical patent/JP2006339378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide thermoelectric material, and a thermoelectric conversion device which is a strong correlated thermoelectric material of a long life which allows efficient thermoelectric conversion by crystal generation processing by a complex polymerization method of the material. <P>SOLUTION: The manufacturing method of the thermoelectric conversion material composed of an oxide represented by a general formula Na<SB>x</SB>CoO<SB>y</SB>(0.5≤x≤1, 1≤y≤2) includes a process for forming a metal complex by a complex polymerization method, a thermal decomposition process for removing organics, and a process for baking thereafter. The manufacturing method of an oxide thermoelectric material is characterized by forming of fine particles on the particle surfaces before the baking process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な熱電変換材料の製造方法に関し、特に最近注目されている高効率で熱電変換が可能な強相関熱電材料のNaxCoOy系材料の新規な製造方法に関する。 The present invention relates to a novel method for producing a thermoelectric conversion material, and particularly relates to a novel method for producing a strongly correlated thermoelectric material Na x CoO y -based material capable of thermoelectric conversion with high efficiency, which has recently attracted attention.

近年、環境問題や化石燃料の代替エネルギーの問題が社会的に大きく注目されている。このような状況下において、例えば、二酸化炭素、窒素酸化物等の有害ガスを排出せずに排熱等の未利用熱エネルギーを有効に電気エネルギーに変換する熱電変換エネルギー技術や、有害なフロン系ガスを使わない熱伝令却技術等への期待が高まっている。これらの期待に応えるためには、高性能な熱電変換材料等の開発が不可欠である。   In recent years, environmental issues and the problem of alternative energy for fossil fuels have attracted much social attention. Under such circumstances, for example, thermoelectric conversion energy technology that effectively converts unused heat energy such as exhaust heat into electrical energy without discharging harmful gases such as carbon dioxide and nitrogen oxides, and harmful CFCs Expectations for heat transfer technology that does not use gas are increasing. In order to meet these expectations, development of high-performance thermoelectric conversion materials and the like is indispensable.

熱電変換材料は、熱エネルギーと電気エネルギーとを相互に変換できる材料であり、その性能指数(Z)は、次式で与えられる。
Z=S2/(ρκ)
式中、Sは熱起電力(ゼーベック係数)、ρは電気抵抗率、κは熱伝導率を示す。熱電変換効率を高めるには、Sの絶対値が大きく、ρおよびκがともに小さいことが必要となる。
The thermoelectric conversion material is a material that can mutually convert heat energy and electric energy, and the figure of merit (Z) is given by the following equation.
Z = S 2 / (ρκ)
In the formula, S represents a thermoelectromotive force (Seebeck coefficient), ρ represents an electrical resistivity, and κ represents a thermal conductivity. In order to increase the thermoelectric conversion efficiency, it is necessary that the absolute value of S is large and both ρ and κ are small.

熱電変換材料としては、これまでに種々のものが提案されている。たとえば、Bi2Te3系熱電変換材料は、室温から200℃の温度範囲において高い性能指数を示し、ペルチェ素子として熱電冷却等に用いられている。PbTe系熱電変換材料は、200〜500℃の温度範囲において高い性能指数を示し、発電装置として主に用いられている。 Various thermoelectric conversion materials have been proposed so far. For example, Bi 2 Te 3 -based thermoelectric conversion materials exhibit a high performance index in the temperature range from room temperature to 200 ° C., and are used for thermoelectric cooling and the like as Peltier elements. The PbTe-based thermoelectric conversion material exhibits a high performance index in a temperature range of 200 to 500 ° C., and is mainly used as a power generator.

ところが、これらは非酸化物系材料であるため、合成工程が複雑であるという問題がある。また、Teは資源として乏しく、しかも毒性があるため、環境への影響及び一般家庭での使用を考えた場合に問題がある。これらの理由により、合成工程が比較的簡単な酸化物系材料において、有害な元素を含まない新しい熱電材料の探索が進められている。   However, since these are non-oxide materials, there is a problem that the synthesis process is complicated. Moreover, since Te is scarce as a resource and is toxic, there is a problem when considering the influence on the environment and use in a general household. For these reasons, a search for a new thermoelectric material that does not contain harmful elements in an oxide material that is relatively easy to synthesize is underway.

このような状況下において、NaFeO2型結晶構造を有する酸化物であるNa0.5Co24が熱電変換材料として脚光を浴びている。即ち、
Nax-yyCoO2+d(0.6<x≦1.0、0≦y<0.28、−0.4<d≦0)であらわされ、AがMg,Ca,Sr,Li,Kならびに希土類元素の少なくとも一種である酸化物材料の前駆体を錯体重合法で合成し、その後、酸化性雰囲気で加熱し、結晶化を行い(仮焼成)、所定の形状にプレス成型した後、酸化性雰囲気で本焼成行い、高い熱電変換特性を得ている方法が提案されている(例えば、特許文献1参照)。
Under such circumstances, Na 0.5 Co 2 O 4 , which is an oxide having a NaFeO 2 type crystal structure, has attracted attention as a thermoelectric conversion material. That is,
Na xy A y CoO 2 + d (0.6 <x ≦ 1.0, 0 ≦ y <0.28, −0.4 <d ≦ 0), and A is Mg, Ca, Sr, Li, A precursor of an oxide material that is at least one of K and rare earth elements is synthesized by a complex polymerization method, then heated in an oxidizing atmosphere, crystallized (preliminary firing), and press-molded into a predetermined shape. There has been proposed a method in which main firing is performed in an oxidizing atmosphere to obtain high thermoelectric conversion characteristics (see, for example, Patent Document 1).

また、Na0.5CoO4が室温下で100μV/Kと言う大きな熱起電力を示し、かつ、200μΩmという低い電気抵抗を示すことが報告されている(例えば、非特許文献1参照)。Na0.5CoO4の出力因子はBi2Te3の出力因子を上回っており、新しい熱電変換材料として期待されている。しながら、本材料は大気中の水分と反応しやすいために、熱電特性が経時変化しやすいなどの問題があり。解決が望まれている。
特開2002−280623号公報 寺崎一郎、笹子佳孝、内野倉国光、Phys.Rev.B56(1997)12685
Further, it has been reported that Na 0.5 CoO 4 exhibits a large thermoelectromotive force of 100 μV / K at room temperature and a low electric resistance of 200 μΩm (for example, see Non-Patent Document 1). The output factor of Na 0.5 CoO 4 exceeds that of Bi 2 Te 3 and is expected as a new thermoelectric conversion material. However, since this material easily reacts with moisture in the atmosphere, there is a problem that the thermoelectric characteristics are likely to change with time. A solution is desired.
JP 2002-280623 A Ichiro Terasaki, Yoshitaka Saeko, Kunimitsu Uchinokura, Phys. Rev. B56 (1997) 12585

本発明は、上述した実情を考慮してなされたもので、酸化物熱電変換材料の錯体重合方法による結晶作成処理により高効率で熱電変換が可能な、長寿命の強相関熱電材料である酸化物熱電材料の製造方法および熱電変換装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is an oxide that is a long-lived strongly correlated thermoelectric material that can be thermoelectrically converted with high efficiency by crystal formation processing by a complex polymerization method of an oxide thermoelectric conversion material. It aims at providing the manufacturing method and thermoelectric conversion apparatus of a thermoelectric material.

上記の課題を解決するために、請求項1に記載の発明は、一般式NaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物から成る熱電変換材料の製造方法であって、錯体重合方法により金属錯体を形成する工程と、有機物を除去する熱分解工程と熱分解後に焼成する工程と、焼成工程前の粒子表面に微粒子を形成する酸化物熱電変換材料の製造方法を最も主要な特徴とする。 In order to solve the above problems, the invention described in claim 1 is a thermoelectric conversion comprising an oxide represented by the general formula Na x CoO y (where 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2). A method for producing a material, including a step of forming a metal complex by a complex polymerization method, a thermal decomposition step for removing organic substances, a step of firing after thermal decomposition, and an oxide thermoelectric that forms fine particles on the particle surface before the firing step. The manufacturing method of the conversion material is the main feature.

また、請求項2に記載の発明は、請求項1記載の発明であって、前記焼成工程が、少なくとも第一の焼成工程と、第二の焼成工程の複数焼成工程とからなり、第一の焼成工程後の粒子表面に前記微粒子が形成されている酸化物熱電変換材料の製造方法を主要な特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the firing step comprises at least a first firing step and a plurality of firing steps of the second firing step. The main feature is a method for producing an oxide thermoelectric conversion material in which the fine particles are formed on the particle surface after the firing step.

また、請求項3に記載の発明は、請求項1または2記載の発明であって、前記焼成工程前の粒子表面に形成された微粒子がNaもしくはNaからなる化合物である酸化物熱電変換材料の製造方法を主要な特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the oxide thermoelectric conversion material in which the fine particles formed on the particle surface before the firing step are Na or a compound made of Na. The manufacturing method is the main feature.

また、請求項4に記載の発明は、請求項2記載の発明であって、前記第一の焼成温度は、第二の焼成温度より低い酸化物熱電変換材料の製造方法を主要な特徴とする。   The invention according to claim 4 is the invention according to claim 2, wherein the first firing temperature is mainly characterized by a method for producing an oxide thermoelectric conversion material lower than the second firing temperature. .

また、請求項5に記載の発明は、請求項2記載の発明であって、前記第一の焼成後の粒子表面に形成されるNaもくしはNaからなる化合物微粒子は第一の焼成後の粒子より小さい酸化物熱電変換材料の製造方法を主要な特徴とする。   The invention according to claim 5 is the invention according to claim 2, wherein Na fine particles formed on the surface of the particles after the first firing are compound fine particles made of Na after the first firing. The main feature is a method for producing an oxide thermoelectric conversion material smaller than particles.

また、請求項6に記載の発明は、請求項2記載の発明であって、前記第一の焼成工程後の粒子表面に構成されるNaもしくはNaからなる化合物微粒子が水溶性である酸化物熱電変換材料の製造方法を主要な特徴とする。   The invention according to claim 6 is the invention according to claim 2, wherein the oxide thermoelectric element in which the fine particles of Na or Na formed on the particle surface after the first firing step are water-soluble. The manufacturing method of the conversion material is the main feature.

また、請求項7に記載の発明は、請求項3記載の発明であって、前記金属酸化物表面のNaもしくはNaからなる化合物微粒子は第二の焼成工程でNaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物のNaの供給源となる熱電変換材料の製造方法を主要な特徴とする。 The invention according to claim 7 is the invention according to claim 3, wherein Na or Co compound fine particles on the surface of the metal oxide are Na x CoO y (however, 0.00. The main feature is a method for producing a thermoelectric conversion material which is a supply source of oxide Na, represented by 5 ≦ x ≦ 1, 1 ≦ y ≦ 2.

また、請求項8に記載の発明は、請求項3記載の発明であって、前記金属酸化物表面のNaもしくはNaからなる化合物微粒子の有無と第二の焼成工程後のNaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物の結晶粒径増加と以下の関係にある熱電変換材料の製造方法を主要な特徴とする。
Δ1<Δ2
Δ1:化合物微粒子が無い場合の第二の焼成工程後の結晶粒径増加幅
Δ2:化合物微粒子が有る場合の第二の焼成工程後の結晶粒径増加幅
The invention according to claim 8 is the invention according to claim 3, wherein the presence or absence of Na or Na compound fine particles on the surface of the metal oxide and Na x CoO y after the second firing step (however, , 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2), the main feature is a method for producing a thermoelectric conversion material having the following relationship with an increase in the crystal grain size of the oxide.
Δ1 <Δ2
Δ1: Increase in crystal grain size after the second firing step in the absence of compound fine particles Δ2: Increase in the crystal grain size after the second firing step in the presence of compound fine particles

また、請求項9に記載の発明は、請求項7または8記載の発明であって、前記第二の焼成工程後の余剰NaもしくはNaからなる化合物を除去する工程を有する酸化物熱電変換材料の製造方法を主要な特徴とする。   The invention according to claim 9 is the invention according to claim 7 or 8, wherein the oxide thermoelectric conversion material has a step of removing excess Na or a compound comprising Na after the second baking step. The manufacturing method is the main feature.

また、請求項10に記載の発明は、請求項1から9のいずれか1項に記載の熱電変換素子に前記焼成工程で製造された酸化物熱電材料を用いた熱電変換装置を主要な特徴とする。   The invention described in claim 10 is characterized in that a thermoelectric conversion device using the thermoelectric conversion element manufactured in the firing step for the thermoelectric conversion element according to any one of claims 1 to 9 is a main feature. To do.

本発明によれば、一般式NaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物から成る熱電変換材料の製造方法であって、錯体重合方法により金属錯体を形成する工程と、有機物を除去する熱分解工程と熱分解後に焼成する工程と、焼成工程前の粒子表面に微粒子を形成することを特徴とする酸化物熱電材料の製造方法により、一般式NaxCo2y(但し、1≦x≦2、2≦y≦4)で示される酸化物から成る熱電変換材料を、錯体重合方法により金属錯体を形成する工程と、熱分解により有機物を除去する工程と、粒を結晶化する第一の焼成工程と、結晶粒径を増大する第二の焼成工程とし、第二の焼成工程前の粒子表面に微粒子を形成することにより結晶を大きくし、高効率で熱電変換が可能な、経年による特性変動を低減できる熱電変換を得ることが可能となる。 According to the present invention, there is provided a method for producing a thermoelectric conversion material comprising an oxide represented by the general formula Na x CoO y (where 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2), A process for forming a metal complex, a pyrolysis process for removing organic matter, a process for firing after pyrolysis, and a method for producing an oxide thermoelectric material characterized by forming fine particles on the particle surface before the firing process, A step of forming a metal complex by a complex polymerization method using a thermoelectric conversion material composed of an oxide represented by the formula Na x Co 2 O y (where 1 ≦ x ≦ 2, 2 ≦ y ≦ 4), and organic matter by thermal decomposition A first baking step for crystallizing grains, and a second baking step for increasing the crystal grain size, and by forming fine particles on the particle surface before the second baking step, the crystals are enlarged High-efficiency and thermoelectric conversion characteristics over time It becomes possible to obtain a thermoelectric conversion capable of reducing dynamic.

また、第二の焼成工程前の粒子表面に形成された微粒子をNaもしくはNaからなる化合物としたことで、第二の焼成工程でのNaの供給と結晶の増大を可能とした。   In addition, the fine particles formed on the particle surface before the second baking step are made of Na or a compound made of Na, so that Na can be supplied and crystals can be increased in the second baking step.

さらに、第二の焼成前の粒子表面に構成されるNaもしくはNaからなる化合物微粒子が水溶性であることで、除去工程設定の自由度が増しかつ、余剰のNaの除去コストの低減が可能となった。   Furthermore, Na or Na compound fine particles composed on the surface of the particles before the second firing are water-soluble, thereby increasing the degree of freedom in setting the removal process and reducing the cost of removing excess Na. became.

また、金属酸化物表面のNaもしくはNaからなる化合物微粒子量を制御することで結晶粒径の制御が可能となった。   Further, the crystal grain size can be controlled by controlling the amount of Na or Na compound fine particles on the surface of the metal oxide.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
これらNaxCoOy(但し、0.5≦x≦1、1≦y≦2)に代表される酸化物熱電材料の製造方法としては錯体重合法がある。錯体重合法の詳細は「粉体および粉末冶金」第40巻20号、1993年2月、p137に記述されているので、ここでは詳細を省くが、その概略は複数種の金属イオンとクエン酸との間で安定なキレート錯体を形成し、これをエチレングリコールに溶解分散させ、加熱重合エステル化させ、最終的に3次元のネットワーク構造を有する高分子ゲル(錯体重合体)を形成する。そしてこの錯体重合体を加熱しゲル中に残存する不要元素を除去するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As a manufacturing method of the oxide thermoelectric material represented by these Na x CoO y (where 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2), there is a complex polymerization method. The details of the complex polymerization method are described in “Powder and Powder Metallurgy”, Vol. 40, No. 20, February 1993, p137, and the details are omitted here. And a stable chelate complex is dissolved in and dispersed in ethylene glycol and subjected to thermal polymerization esterification to finally form a polymer gel (complex polymer) having a three-dimensional network structure. The complex polymer is heated to remove unnecessary elements remaining in the gel.

本発明は、この加熱分解して得たゲルを加熱し、粒子を結晶化する第一の焼成を行い、粒子表面に微小粒を形成し、その後、さらにより高い温度で結晶粒径を増大する第二の焼成を行い目的とする組成の酸化物熱電材料を得る点に特徴がある。具体的な実施形態を説明する。   The present invention heats the gel obtained by this thermal decomposition, performs the first firing to crystallize the particles, forms fine particles on the particle surface, and then increases the crystal grain size at a higher temperature. The second baking is characterized in that an oxide thermoelectric material having a target composition is obtained. A specific embodiment will be described.

図1は、本発明の熱電変換材料の製造プロセスのフローチャートである。出発材料としてパイレックス(登録商標)ガラス製の器に酢酸ナトリウム一水和物4.8gと酢酸コバルト四水和物8.98gをそれぞれ秤量した後、60mlの純水に投入し、マグネチックスターラーで攪拌溶解する(S1)。その後、クエン酸66.1gを溶液に加え(S2)、マグネチックスターラーで攪拌溶解し、錯体形成とゾルを作製する。   FIG. 1 is a flowchart of the manufacturing process of the thermoelectric conversion material of the present invention. As a starting material, 4.8 g of sodium acetate monohydrate and 8.98 g of cobalt acetate tetrahydrate were weighed into a Pyrex (registered trademark) glass vessel, respectively, and then poured into 60 ml of pure water. Dissolve with stirring (S1). Thereafter, 66.1 g of citric acid is added to the solution (S2), and stirred and dissolved with a magnetic stirrer to form a complex and a sol.

次に、ゾルにエチレングリコール4.85gを混合(S3)し、攪拌した後、本溶液をホットプレート(HP)上で80分まで200℃、その後250℃で40分、その後300℃で100分加熱し、ゲル化(S4)を行った。なお、温度はHPの表面温度を示す。その後、350℃で1時間加熱し、ゲルを加熱分解し(S5)、不要なクエン酸とエチレングリコール、酢酸基を燃焼した。次に、メノウ乳鉢で粉砕し、全体が均一になるように混合した(S6)。その後、粉砕・混合したゲル粒子をアルミナセラミックス製の器に移し、空気中もしくは酸素雰囲気中で800℃で5時間加熱し、第一の焼成を行った(S7)。   Next, 4.85 g of ethylene glycol was mixed with the sol (S3) and stirred, and then the solution was heated on a hot plate (HP) for up to 80 minutes at 200 ° C., then at 250 ° C. for 40 minutes, and then at 300 ° C. for 100 minutes. It heated and gelatinized (S4). In addition, temperature shows the surface temperature of HP. Then, it heated at 350 degreeC for 1 hour, the gel was thermally decomposed (S5), and the unnecessary citric acid, ethylene glycol, and the acetic acid group were burned. Next, it grind | pulverized with the agate mortar and mixed so that the whole might become uniform (S6). Thereafter, the crushed and mixed gel particles were transferred to an alumina ceramic vessel, and heated in air or in an oxygen atmosphere at 800 ° C. for 5 hours to perform first firing (S7).

ここで、ベースとなる粒子(母粒子と言う)の表面にこれより小さい粒子(微粒子と言う)を形成した後、メノウ乳鉢を用いて先ほど焼成した母粒子の粉砕(S8)と均一化を図った。この母粒子の表面を走査型電子顕微鏡で観察した結果、形状は鱗片状をしており、母粒子1個の平均的な大きさは2〜5μmで、母粒子表面に形成した微粒子1個の大きさは母粒子より小さく、その表面に分散して形成している。   Here, after forming smaller particles (referred to as fine particles) on the surface of the base particles (referred to as mother particles), the mother particles baked earlier using an agate mortar (S8) and homogenized. It was. As a result of observing the surface of the mother particle with a scanning electron microscope, the shape is scaly, the average size of one mother particle is 2 to 5 μm, and one fine particle formed on the mother particle surface. The size is smaller than that of the mother particle and is formed dispersed on the surface.

第一の焼成後の母粒子を洗浄しない場合と洗浄した場合のNa量をEPMA分析した結果を表1に示す。この結果から、明らかに、第一の焼成で母粒子表面にNaあるいはNa化合物が形成されている事がわかる。表中、洗浄しない場合のNa量を1として、洗浄した場合のNa量を表している。洗浄後のNa数値が0でないのは、第一の焼成で母粒子はすでにNaとCoとOの化合物ができており、ここからのNa信号を検出したためと考えられる。図示しないXRD測定結果でも第一の焼成で母粒子にNaとCoとOの化合物とCo34の回折パターンを確認している。 Table 1 shows the results of EPMA analysis of the amount of Na when the mother particles after the first firing are not washed and when washed. From this result, it is apparent that Na or Na compound is formed on the surface of the mother particle by the first firing. In the table, the amount of Na in the case of washing is shown by setting the amount of Na in the case of not washing as 1. The reason why the Na value after washing is not 0 is considered that the mother particles are already made of a compound of Na, Co and O in the first firing, and the Na signal from this was detected. Even in the XRD measurement result (not shown), the diffraction pattern of Na, Co, O compound and Co 3 O 4 is confirmed on the mother particles in the first firing.

Figure 2006339378
Figure 2006339378

また、この微粒子は水溶性であり、その溶解した液はアルカリ性を示すものである。粒子の表面写真を図2に、水洗前後の粒子表面写真を図3に示す。   The fine particles are water-soluble, and the dissolved liquid is alkaline. The surface photograph of the particles is shown in FIG. 2, and the particle surface photographs before and after washing with water are shown in FIG.

次に粉末を加圧成型金型で2.5×2.5×10mmに加圧成型した後、アルミナセラミックス製の器に移し、酸素を20〜200ml/分導入した電気炉で、900℃で20時間の間、第二の加熱焼成(S9)を行い、概略寸法2.5×2.5×10mmのp型の熱電素子を作製した。このように、第二の焼成温度を第一の焼成温度より高くしたことで、結晶粒の大形化が可能となった。   Next, after the powder was pressure-molded to 2.5 × 2.5 × 10 mm with a pressure-molding die, it was transferred to an alumina ceramic vessel and oxygen was introduced at 20 to 200 ml / min in an electric furnace at 900 ° C. The second heating and baking (S9) was performed for 20 hours to produce a p-type thermoelectric element having a schematic size of 2.5 × 2.5 × 10 mm. As described above, the second baking temperature is higher than the first baking temperature, so that the crystal grains can be enlarged.

表2に結晶粒の増大と第一の焼成温度と第二の焼成温度の関係を調べて結果を示す。
表中、△はほとんど変化がなかった、○はやや増大が見られた、◎大きな増大があった場合をそれぞれの記号で表した。
Table 2 shows the results of investigating the relationship between the increase in crystal grains, the first firing temperature, and the second firing temperature.
In the table, Δ indicates little change, ○ indicates a slight increase, and ◎ indicates a large increase by each symbol.

Figure 2006339378
Figure 2006339378

なお、本実施例では小型の素子を製造するに必要な量の実施例を示したが、この量に制約されるものではなく、多量の製造においても同様な効果が期待できる。
このように第一の焼成を行い、母粒子の表面にこれより小さい粒子(微粒子)を形成し第二の焼成を実施し、Na0.7CoO2単相を得た。また、結晶粒を大きくすることができた。これに対し、第一の焼成を行った後、水等で微粒子を除去して第二の焼成を行った場合、結晶粒が大きくならず、Na0.7CoO2とCo34複数の層ができてしまい、第一の焼成後に微粒子を水洗除去して、第二の焼成を実施した場合、目的とした組成にならない。
In this embodiment, an example of an amount necessary for manufacturing a small element is shown, but the amount is not limited to this example, and the same effect can be expected in a large amount of manufacturing.
Thus performed first firing, the surface of the mother particle to form particles smaller than (fine particles) which carried out the second fired to obtain a Na 0.7 CoO 2 single phase. Moreover, the crystal grain could be enlarged. On the other hand, when the second baking is performed after removing the fine particles with water or the like after the first baking, the crystal grains are not enlarged, and a plurality of layers of Na 0.7 CoO 2 and Co 3 O 4 are formed. If the fine particles are washed and removed after the first firing and the second firing is performed, the intended composition is not obtained.

図4は本発明の変換材料の微粒子有無と結晶粒径の関係の説明図である。
第一の焼成を行い、母粒子の表面にこれより小さい粒子(微粒子)を形成し第二の焼成を実施したことで結晶粒を大きくすることができた。これに対し、第一の焼成を行った後、水等で微粒子を除去して第二の焼成を行った場合、結晶粒が大きくなら無いことがわかる。
FIG. 4 is an explanatory diagram of the relationship between the presence or absence of fine particles and the crystal grain size of the conversion material of the present invention.
By performing the first firing, forming smaller particles (fine particles) on the surface of the mother particles and performing the second firing, the crystal grains can be enlarged. On the other hand, when the first baking is performed and then the fine particles are removed with water or the like and the second baking is performed, it is understood that the crystal grains do not increase.

このように、第一の焼成を行い、母粒子の表面にこれより小さい粒子(微粒子)を形成することで、第二の焼成での結晶の増大が可能となり、またNaの供給源として機能し、所望の組成とすることができた。   Thus, by performing the first firing and forming smaller particles (fine particles) on the surface of the mother particles, it is possible to increase the crystals in the second firing, and also function as a Na supply source. The desired composition could be obtained.

図5は、本発明の熱電変換材料の結晶作成工程のフローチャートである。実施例1と同様に、出発材料としてパイレックス(登録商標)ガラス製の器に酢酸ナトリウム一水和物3.8gと酢酸コバルト四水和物7.2gをそれぞれ秤量した後、48mlの純水に投入し、マグネチックスターラーで攪拌溶解(S1)した後、クエン酸52.9gを溶液に加え(S2)、マグネチックスターラーで攪拌溶解し、錯体形成とゾルを作製する。   FIG. 5 is a flowchart of the crystal production process of the thermoelectric conversion material of the present invention. As in Example 1, 3.8 g of sodium acetate monohydrate and 7.2 g of cobalt acetate tetrahydrate were weighed into a Pyrex (registered trademark) glass vessel as a starting material, respectively, and then poured into 48 ml of pure water. Then, after stirring and dissolving with a magnetic stirrer (S1), 52.9 g of citric acid is added to the solution (S2), and stirring and dissolving with a magnetic stirrer to form a complex and a sol.

次に、ゾルにエチレングリコール4.85gを混合(S3)し、攪拌した後、本溶液をホットプレート(HP)上で70分まで200℃、その後250℃で30分、その後300℃で100分加熱し、ゲル化(S4)を行った。その後、350℃で60分間加熱し、ゲルを加熱分解(S5)し、不要なクエン酸とエチレングリコール、酢酸基を燃焼した。次に、メノウ乳鉢で粉砕し、全体が均一になるように混合(S6)した。その後、粉砕・混合したゲル粒子をアルミナセラミックス製の器に移し、空気中もしくは酸素雰囲気中で800℃-5時間加熱し、第一の焼成(S7)を行い、母粒子の表面にこれより小さい粒子を形成した後、メノウ乳鉢を用いて焼成した母粒子の粉砕(S8)と均一化を図った。このときの母粒子1個の大きさは5μm以下、母粒子表面の微粒子1個の大きさは0.5μm以下であり、母材となる粒子より小さく、その表面に分散して形成している。   Next, 4.85 g of ethylene glycol was mixed with the sol (S3) and stirred, and then the solution was heated on a hot plate (HP) for 70 minutes at 200 ° C., then at 250 ° C. for 30 minutes, and then at 300 ° C. for 100 minutes. It heated and gelatinized (S4). Thereafter, the gel was heated at 350 ° C. for 60 minutes to thermally decompose (S5), and unnecessary citric acid, ethylene glycol, and acetic acid groups were burned. Next, it grind | pulverized with the agate mortar and mixed so that the whole might become uniform (S6). Thereafter, the crushed and mixed gel particles are transferred to an alumina ceramic vessel, heated in air or in an oxygen atmosphere at 800 ° C. for 5 hours, and subjected to a first firing (S7). After forming the particles, the mother particles baked using an agate mortar were pulverized (S8) and made uniform. At this time, the size of one mother particle is 5 μm or less, and the size of one fine particle on the surface of the mother particle is 0.5 μm or less, which is smaller than the particles serving as a base material, and is dispersed on the surface. .

次に、加圧成型金型を用い5×5×10mmに加圧成型(S9)した後、アルミナセラミックス製の器に移し、電気炉で酸素を20〜200ml/分導入し、900℃で20時間加熱焼成し、第二の焼成(S10)を行った後、水を分散材として用いた湿式のビーズミル法で粉砕と解砕(S11)を行い、結晶粒径の均一化と余剰NaおよびNa化合物成分の除去を行った。   Next, after press-molding to 5 × 5 × 10 mm using a press-molding mold (S9), it is transferred to an alumina ceramic vessel, and oxygen is introduced at 20 to 200 ml / min in an electric furnace, and 20 at 900 ° C. After heat baking for a second time and second baking (S10), pulverization and pulverization (S11) are performed by a wet bead mill method using water as a dispersing agent, and the crystal grain size is made uniform and surplus Na and Na Removal of compound components was performed.

その後、粉末のみを取り出し、再度2.5×2×10mmに加圧成型(S12)し、電気炉に酸素を20〜200ml/分導入し、900℃で20時間第三の加熱焼成(S13)を行った。このように粉砕と解砕工程を兼ねて実施することで、余剰成分元素であるNaおよびNa化合物の除去工程が短縮された。   After that, only the powder is taken out and pressure-molded again to 2.5 × 2 × 10 mm (S12), oxygen is introduced into the electric furnace at 20 to 200 ml / min, and the third baking is performed at 900 ° C. for 20 hours (S13). Went. Thus, the removal process of Na which is a surplus component element, and a Na compound was shortened by implementing as a grinding | pulverization and a crushing process.

実施例1と同様に出発材料としてパイレックス(登録商標)ガラス製の器に酢酸ナトリウム一水和物2.88gと酢酸コバルト四水和物5.38gをそれぞれ秤量した後、36mlの純水に投入し、マグネチックスターラーで攪拌溶解(S1)した後、クエン酸39.7gを溶液に加え(S2)、マグネチックスターラーで攪拌溶解し、錯体形成とゾルを作製する。次に、ゾルにエチレングリコール2.91gを混合(S3)し、攪拌した後、本溶液をホットプレート(HP)上で80分まで200℃、その後250℃で40分、その後300℃で100分加熱し、ゲル化(S4)を行った。その後、350℃で1時間加熱し、ゲルを加熱分解(S5)し、不要なクエン酸とエチレングリコール、酢酸基を燃焼した。   As in Example 1, 2.88 g of sodium acetate monohydrate and 5.38 g of cobalt acetate tetrahydrate were weighed into a Pyrex (registered trademark) glass vessel as starting materials, respectively, and then poured into 36 ml of pure water. After stirring and dissolving with a magnetic stirrer (S1), 39.7 g of citric acid is added to the solution (S2), and stirring and dissolving with a magnetic stirrer to form a complex and a sol. Next, 2.91 g of ethylene glycol was mixed with the sol (S3) and stirred, and then the solution was heated on a hot plate (HP) at 200 ° C. for 80 minutes, then at 250 ° C. for 40 minutes, and then at 300 ° C. for 100 minutes. It heated and gelatinized (S4). Then, it heated at 350 degreeC for 1 hour, the gel was thermally decomposed (S5), and the unnecessary citric acid, ethylene glycol, and the acetic acid group were burned.

次に、メノウ乳鉢で粉砕し、全体が均一になるように混合(S6)した。その後、アルミナセラミックス製の器に移し、粉砕・混合したゲル粒子を空気中もしくは酸素雰囲気中で800℃で5時間加熱し、第一の焼成(S7)を行い母粒子の表面にこれより小さい粒子を形成した後、φ5mmのジルコニアボールとφ50mm×120mmのジルコニアポットを用いて先ほど焼成した粒子を乾式法で粉砕・混合(S8)し均一化を図った。次に、ジルコニアポットから粉砕混合した粒子を回収し、加圧成型金型を用い2.5×2×10mmに加圧成型し、アルミナセラミックス製の器に移し、電気炉に酸素を20〜200ml/分導入し、900℃で20時間第二の焼成(S9)を行い、p型の熱電素子を作った。   Next, it grind | pulverized with the agate mortar and mixed so that the whole might become uniform (S6). Thereafter, the gel particles are transferred to an alumina ceramic vessel, and the crushed and mixed gel particles are heated in air or in an oxygen atmosphere at 800 ° C. for 5 hours, and subjected to first firing (S7). Then, the particles fired previously using a zirconia ball of φ5 mm and a zirconia pot of φ50 mm × 120 mm were pulverized and mixed by a dry method (S8) to make uniform. Next, the particles pulverized and mixed from the zirconia pot are collected, pressure-molded to 2.5 × 2 × 10 mm using a pressure mold, transferred to an alumina ceramic vessel, and oxygen is 20-200 ml in an electric furnace. / Min. And second baking (S9) was performed at 900 ° C. for 20 hours to produce a p-type thermoelectric element.

図6は本発明の熱電変換材料で構築した熱電変換装置の構成図である。図6に示すように、La−Bi−Ni−O系などのn型の熱電素子1を用い、本方法で作製したp型熱電素子2とペアーを組み熱電変換装置3として構築した。具体的な構成は0.5mm厚のアルミナセラミックス絶縁性基板4上に電極5を形成し、導電性接合材で前述のp、n型熱電素子端面を接合し、一方の面に同様に導電性接合材で電極を形成した0.5mm厚のアルミナセラミックス絶縁性基板7を接合した。その後、電力取り出し線8をp、n各熱電素子の電極と接続する。   FIG. 6 is a configuration diagram of a thermoelectric conversion device constructed with the thermoelectric conversion material of the present invention. As shown in FIG. 6, an n-type thermoelectric element 1 such as a La—Bi—Ni—O system was used, and a p-type thermoelectric element 2 and a pair produced by this method were combined to construct a thermoelectric conversion device 3. Specifically, an electrode 5 is formed on an alumina ceramic insulating substrate 4 having a thickness of 0.5 mm, the aforementioned p-type and n-type thermoelectric element end faces are joined with a conductive joining material, and one side is similarly conductive. An alumina ceramic insulating substrate 7 having a thickness of 0.5 mm, on which electrodes were formed with a bonding material, was bonded. Thereafter, the power lead-out line 8 is connected to the electrodes of the p and n thermoelectric elements.

上下のアルミナセラミックス絶縁性基板間に温度差を設けることで、電力を発生することが可能となった。さらに、Bi−Te系で用いられるような温度領域より高い温度領域の温度を熱電変換装置に印加でき、熱起電力を得ることが可能となった。なお、この一組のp、n型熱電素子をアルミナセラミックス絶縁性基板上に複数組構成することで大きな電力を得ることが可能である。また、この素子に電流を印加して冷却や加熱、いわゆるペルチェ素子として、各種温度制御が必要な機器に用いることも可能である。また、余剰のNaもしくはNa化合物を除去しているので、経年による特性変動を低減することが可能となった。   Electric power can be generated by providing a temperature difference between the upper and lower alumina ceramic insulating substrates. Furthermore, it is possible to apply a temperature in a temperature range higher than that used in the Bi-Te system to the thermoelectric conversion device, thereby obtaining a thermoelectromotive force. In addition, it is possible to obtain a large electric power by constituting a plurality of sets of this set of p and n type thermoelectric elements on an alumina ceramic insulating substrate. Moreover, it is also possible to apply a current to this element to cool or heat it, and use it as a so-called Peltier element for equipment that requires various temperature controls. Moreover, since excess Na or Na compound is removed, it became possible to reduce the characteristic fluctuation due to aging.

本発明の熱電変換材料の製造プロセスのフローチャートである。It is a flowchart of the manufacturing process of the thermoelectric conversion material of this invention. 本発明の熱電変換材料の粉砕後の母粒子の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface of the mother particle after pulverization of the thermoelectric conversion material of the present invention. 本発明の熱電変換材料の水洗処理後の粒子の表面写真である。It is the surface photograph of the particle | grains after the water washing process of the thermoelectric conversion material of this invention. 本発明の変換材料の微粒子有無と結晶粒径の関係の説明図である。It is explanatory drawing of the relationship between the presence or absence of the fine particle of the conversion material of this invention, and a crystal grain diameter. 本発明の熱電変換材料の結晶作成工程のフローチャートである。It is a flowchart of the crystal production process of the thermoelectric conversion material of this invention. 本発明の熱電変換材料で構築した熱電変換装置の構成図である。It is a block diagram of the thermoelectric conversion apparatus constructed | assembled with the thermoelectric conversion material of this invention.

符号の説明Explanation of symbols

1 n型熱電素子
2 p型熱電素子
3 熱電変換装置
4 アルミナセラミック絶縁性基板
5 電極(上側)
6 電極(下側)
7 アルミナセラミック絶縁性基板
8 電力取り出し線
1 n-type thermoelectric element 2 p-type thermoelectric element 3 thermoelectric conversion device 4 alumina ceramic insulating substrate 5 electrode (upper side)
6 Electrode (lower side)
7 Alumina ceramic insulating substrate 8 Power extraction line

Claims (10)

一般式NaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物から成る熱電変換材料の製造方法であって、
錯体重合方法により金属錯体を形成する工程と、
有機物を除去する熱分解工程と、
熱分解後に焼成する工程とを有し、
焼成工程前の粒子表面に微粒子を形成することを特徴とする酸化物熱電材料の製造方法。
A method for producing a thermoelectric conversion material comprising an oxide represented by the general formula Na x CoO y (where 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2),
Forming a metal complex by a complex polymerization method;
A pyrolysis process to remove organic matter;
A step of firing after pyrolysis,
A method for producing an oxide thermoelectric material, wherein fine particles are formed on a particle surface before a firing step.
前記焼成工程が、少なくとも第一の焼成工程と、第二の焼成工程の複数焼成工程とからなり、第一の焼成工程後の粒子表面に前記微粒子が形成されていることを特徴とする請求項1記載の酸化物熱電変換材料の製造方法。   The calcination step comprises at least a first calcination step and a plurality of calcination steps of a second calcination step, wherein the fine particles are formed on the particle surface after the first calcination step. A method for producing the oxide thermoelectric conversion material according to 1. 前記焼成工程前の粒子表面に形成された微粒子がNaもしくはNaからなる化合物であることを特徴とする請求項1または2記載の酸化物熱電変換材料の製造方法。   The method for producing an oxide thermoelectric conversion material according to claim 1 or 2, wherein the fine particles formed on the particle surface before the firing step are Na or a compound comprising Na. 前記第一の焼成工程における温度は、第二の焼成工程における温度より低いことを特徴とする請求項2記載の酸化物熱電変換材料の製造方法。   The temperature in said 1st baking process is lower than the temperature in a 2nd baking process, The manufacturing method of the oxide thermoelectric conversion material of Claim 2 characterized by the above-mentioned. 前記第一の焼成工程後の粒子表面に形成されるNaもしくはNaからなる化合物微粒子は第一の焼成後の粒子より小さいことを特徴とする請求項2記載の酸化物熱電変換材料の製造方法。   The method for producing an oxide thermoelectric conversion material according to claim 2, wherein the fine particles of Na or Na formed on the particle surface after the first firing step are smaller than the particles after the first firing. 前記第一の焼成工程後の粒子表面に構成されるNaもしくはNaからなる化合物微粒子が水溶性であることを特徴とする請求項2記載の酸化物熱電変換材料の製造方法。   3. The method for producing an oxide thermoelectric conversion material according to claim 2, wherein the fine particles of Na or Na composed on the particle surface after the first firing step are water-soluble. 前記金属酸化物表面のNaもしくはNaからなる化合物微粒子は第二の焼成工程でNaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物のNaの供給源となることを特徴とする請求項3記載の酸化物熱電変換材料の製造方法。 Na or Na compound fine particles on the surface of the metal oxide are supplied in the second firing step as Na x CoO y (where 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2). The method for producing an oxide thermoelectric conversion material according to claim 3, wherein the oxide thermoelectric conversion material is a source. 前記金属酸化物表面のNaもしくはNaからなる化合物微粒子の有無と第二の焼成工程後のNaxCoOy(但し、0.5≦x≦1、1≦y≦2)で示される酸化物の結晶粒径増加と以下の関係にあることを特徴とする請求項3記載の酸化物熱電変換材料の製造方法。
Δ1<Δ2
Δ1:化合物微粒子が無い場合の第二の焼成工程後の結晶粒径増加幅
Δ2:化合物微粒子が有る場合の第二の焼成工程後の結晶粒径増加幅
The presence or absence of Na or Na compound fine particles on the surface of the metal oxide and Na x CoO y after the second firing step (where 0.5 ≦ x ≦ 1, 1 ≦ y ≦ 2) 4. The method for producing an oxide thermoelectric conversion material according to claim 3, wherein the increase in crystal grain size is in the following relationship.
Δ1 <Δ2
Δ1: Increase in crystal grain size after the second firing step in the absence of compound fine particles Δ2: Increase in the crystal grain size after the second firing step in the presence of compound fine particles
前記第二の焼成工程後の余剰NaもしくはNaからなる化合物を除去する工程を有することを特徴とする請求項7または8記載の酸化物熱電変換材料の製造方法。   The method for producing an oxide thermoelectric conversion material according to claim 7 or 8, further comprising a step of removing surplus Na or a compound comprising Na after the second baking step. 請求項1から9のいずれか1項に記載の熱電変換素子に前記焼成工程で製造された酸化物熱電材料を用いたことを特徴とする熱電変換装置。   A thermoelectric conversion device using the oxide thermoelectric material manufactured in the firing step for the thermoelectric conversion element according to claim 1.
JP2005161755A 2005-06-01 2005-06-01 Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device Pending JP2006339378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161755A JP2006339378A (en) 2005-06-01 2005-06-01 Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161755A JP2006339378A (en) 2005-06-01 2005-06-01 Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2006339378A true JP2006339378A (en) 2006-12-14

Family

ID=37559676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161755A Pending JP2006339378A (en) 2005-06-01 2005-06-01 Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2006339378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160160A (en) * 2015-03-04 2016-09-05 国立研究開発法人物質・材料研究機構 Oxide sintered body, production method therefor, solid electrolyte using the same and lithium ion battery using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321346A (en) * 1996-05-29 1997-12-12 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Thermoelectric conversion material and thermoelectric converter
JP2001257385A (en) * 2000-03-13 2001-09-21 Univ Waseda Thermoelectric conversion material using alkali metal oxide and manufacturing method therefor
JP2002223011A (en) * 2001-01-29 2002-08-09 Tokyo Gas Co Ltd Manufacturing method of thermoelectric material
JP2002274943A (en) * 2001-03-19 2002-09-25 Tohoku Techno Arch Co Ltd Oxide thermoelectric material
JP2002280623A (en) * 2001-03-19 2002-09-27 Tohoku Techno Arch Co Ltd Method for manufacturing oxide thermoelectric material
JP2003048776A (en) * 2001-07-31 2003-02-21 Ishikawajima Harima Heavy Ind Co Ltd NaCo BASED OXIDE SINTERED COMPACT AND PRODUCTION METHOD THEREFOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321346A (en) * 1996-05-29 1997-12-12 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Thermoelectric conversion material and thermoelectric converter
JP2001257385A (en) * 2000-03-13 2001-09-21 Univ Waseda Thermoelectric conversion material using alkali metal oxide and manufacturing method therefor
JP2002223011A (en) * 2001-01-29 2002-08-09 Tokyo Gas Co Ltd Manufacturing method of thermoelectric material
JP2002274943A (en) * 2001-03-19 2002-09-25 Tohoku Techno Arch Co Ltd Oxide thermoelectric material
JP2002280623A (en) * 2001-03-19 2002-09-27 Tohoku Techno Arch Co Ltd Method for manufacturing oxide thermoelectric material
JP2003048776A (en) * 2001-07-31 2003-02-21 Ishikawajima Harima Heavy Ind Co Ltd NaCo BASED OXIDE SINTERED COMPACT AND PRODUCTION METHOD THEREFOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160160A (en) * 2015-03-04 2016-09-05 国立研究開発法人物質・材料研究機構 Oxide sintered body, production method therefor, solid electrolyte using the same and lithium ion battery using the same

Similar Documents

Publication Publication Date Title
JP4797148B2 (en) Conductive paste for thermoelectric conversion material connection
JPWO2006001154A1 (en) Method for producing perovskite complex oxide
CN104973621B (en) Niobium or niobium-lanthanum doped strontium titanate nano powder and preparation method and application thereof
JP2009302332A (en) Thermoelectric conversion element and conductive member for thermoelectric conversion element
JP2011035117A (en) Thermoelectric conversion material
JP5250762B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and manufacturing method
CN101913869B (en) Oxide thermoelectric material capable of being sintered at low temperature and preparation method thereof
JP2008028048A (en) Manufacturing method of thermoelectric material consisting of calcium/cobalt-layered oxide single crystal
WO2018212297A1 (en) Semiconductor sintered compact, electric/electronic member, and method for producing semiconductor sintered compact
JP5686417B2 (en) Thermoelectric conversion module manufacturing method and thermoelectric conversion module
JP2008078608A (en) Thermoelectric conversion material and method for producing the same
JP6315357B2 (en) Thermoelectric material manufacturing method and thermoelectric element
JP2006351754A (en) Thermoelectric conversion material and thermoelectric converter using the same
JP2009004542A (en) Thermoelectric material and manufacturing method thereof
JP3896479B2 (en) Method for producing composite oxide sintered body
JP2006339378A (en) Manufacturing method of oxide thermoelectric conversion material, and thermoelectric conversion device
JP3896480B2 (en) Method for producing composite oxide sintered body
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
JP2006261384A (en) Structure of oxide thermoelectric conversion material
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
CN109659426B (en) Thermal-function ceramic material with superlattice structure and preparation method and application thereof
JP2012069968A (en) MANUFACTURING METHOD OF n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
CN102460753A (en) Thermoelectric transducing material
JP2010228927A (en) Cobalt-manganese compound oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510