JP2006339094A - Sheet-like heating element - Google Patents

Sheet-like heating element Download PDF

Info

Publication number
JP2006339094A
JP2006339094A JP2005165119A JP2005165119A JP2006339094A JP 2006339094 A JP2006339094 A JP 2006339094A JP 2005165119 A JP2005165119 A JP 2005165119A JP 2005165119 A JP2005165119 A JP 2005165119A JP 2006339094 A JP2006339094 A JP 2006339094A
Authority
JP
Japan
Prior art keywords
heating element
electrode
electrodes
polymer
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165119A
Other languages
Japanese (ja)
Inventor
Takehiko Shigeoka
武彦 重岡
Masayuki Terakado
誠之 寺門
Takahito Ishii
隆仁 石井
Keizo Nakajima
啓造 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005165119A priority Critical patent/JP2006339094A/en
Publication of JP2006339094A publication Critical patent/JP2006339094A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability such as durability while maintaining heating characteristics of the whole heating element by effectively arranging electrodes in a sheet-like heating element which can be used as a heat source for warming, heating and drying. <P>SOLUTION: Since this sheet-like heating element has an electrically integrated structure wherein a plurality of polymer resistors 10, 13, 17 are connected with a lead wire, design constraint in arranging electrodes 6, 12, 16 of each heating part and resistors 7, 13, 17 can be reduced, the performance of the irregular shape sheet-like heating element can be sufficiently brought out, substrate waste loss can be abolished, and reliability such as durability can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、暖房、加熱、乾燥などの熱源として用いることのできる面状発熱体に関するものである。   The present invention relates to a planar heating element that can be used as a heat source for heating, heating, drying, and the like.

従来、この種の面状発熱体は、図3,図4に示したように、ポリエステルシートなどの電気絶縁性の基材50上に、導電性ペーストを印刷・乾燥して得られる一対の櫛形電極51、52とこれにより給電される位置に高分子抵抗体インクを印刷・乾燥して得られる高分子抵抗体53を設けて、さらに基材50と同様の材質の被覆材54で櫛形電極51、52及び高分子抵抗体53を被覆して保護する構成としたものである。   Conventionally, as shown in FIGS. 3 and 4, this type of planar heating element is a pair of combs obtained by printing and drying a conductive paste on an electrically insulating substrate 50 such as a polyester sheet. The electrodes 51 and 52 and the polymer resistor 53 obtained by printing and drying the polymer resistor ink are provided at positions where power is supplied by the electrodes 51 and 52, and the comb electrode 51 is further covered with a covering material 54 similar to the material of the substrate 50. , 52 and the polymer resistor 53 are covered and protected.

基材50及び被覆材54としてポリエステルフィルムを用いる場合には被覆材54に例えばポリエチレン系の熱融着性樹脂55をあらかじめ接着しておき、熱時加圧することにより、基材50と被覆材54とを熱融着性樹脂55を介して接合してなる。   When a polyester film is used as the base material 50 and the covering material 54, for example, a polyethylene-based heat-fusible resin 55 is bonded to the covering material 54 in advance, and the base material 50 and the covering material 54 are pressed by heating. Are bonded via a heat-fusible resin 55.

これにより、櫛形電極51、52及び高分子抵抗体53は外界から隔離され、長期信頼性を付与されるのである。前記した熱時加圧手段としては、図5に示すように、2本の加熱ロール56、57からなるラミネーター58を用いるものが一般的である。   As a result, the comb-shaped electrodes 51 and 52 and the polymer resistor 53 are isolated from the outside world and given long-term reliability. As the aforementioned hot pressurizing means, as shown in FIG. 5, a laminator 58 composed of two heating rolls 56 and 57 is generally used.

すなわち、櫛形電極51、52及び高分子抵抗体53が上面に形成された基材50を左方向より2本の加熱ロール56、57間に導入する。一方、被覆材54は熱融着性樹脂55面を下面にして、この場合は上部より加熱ロール56、57間に導入される。基材50と被覆材54の接着は加熱ロール56、57の熱及び加圧力で熱融着性樹脂55を融解してのちに冷却することで行われていた。   That is, the base material 50 on which the comb electrodes 51 and 52 and the polymer resistor 53 are formed on the upper surface is introduced between the two heating rolls 56 and 57 from the left direction. On the other hand, the covering material 54 is introduced between the heating rolls 56 and 57 from the upper part with the surface of the heat-fusible resin 55 as the lower surface. Adhesion between the base material 50 and the covering material 54 is performed by melting the heat-fusible resin 55 with the heat and pressure of the heating rolls 56 and 57 and then cooling it.

この高分子抵抗体53を形成する高分子抵抗体インクとしては、ベースポリマーと、カーボンブラック、金属粉末、グラファイトなどの導電性物質を溶媒に分散してなり、特にベースポリマーとして結晶性樹脂を用いてPTC特性を持たせたものが多い(例えば、特許文献1、2、3参照)。   As the polymer resistor ink forming the polymer resistor 53, a base polymer and a conductive material such as carbon black, metal powder, and graphite are dispersed in a solvent. In particular, a crystalline resin is used as the base polymer. Many of them have PTC characteristics (see, for example, Patent Documents 1, 2, and 3).

PTC特性とは、温度上昇によって抵抗値が上昇し、ある温度に達すると抵抗値が急激に増加する抵抗温度特性(抵抗が正の温度係数を有する意味のPositive Temperature Coefficientの頭文字を取っている)を意味しており、PTC特性を有する高分子抵抗体53は、自己温度調節機能を有する面状発熱体を提供できる。
特開昭56−13689号公報 特開平6−96843号公報 特開平8−120182号公報
The PTC characteristic is a resistance temperature characteristic in which the resistance value increases as the temperature rises, and the resistance value increases abruptly when reaching a certain temperature (Positive Temperature Coefficient, meaning that the resistance has a positive temperature coefficient) The polymer resistor 53 having PTC characteristics can provide a planar heating element having a self-temperature adjusting function.
Japanese Patent Laid-Open No. 56-13689 JP-A-6-96843 JP-A-8-120182

しかしながら、前記従来の構成では、ポリエステルシートなどの電気絶縁性の基材50に印刷した櫛形電極51・52及び高分子抵抗体53で面状発熱体を構成するため、面状発熱体の抵抗体53配設箇所が複数になる場合、例えば、メインの高分子抵抗体53の両サイドに補助の高分子抵抗体53が配設されるような袖付き形状の面状発熱体が必要となるサイド付座席に用いるシートヒータでは、面状発熱体の櫛形電極51,52及び高分子抵抗体53の配設が電圧ドロップや強度を考慮すると設計的に制約を生じ、面状発熱体の性能を損なう課題があった。   However, in the conventional configuration, since the sheet heating element is configured by the comb-shaped electrodes 51 and 52 and the polymer resistor 53 printed on the electrically insulating base material 50 such as a polyester sheet, the sheet heating element resistor is used. When there are a plurality of locations where the main polymer resistor 53 is provided, for example, the side where the sleeve-shaped planar heating element in which the auxiliary polymer resistor 53 is disposed on both sides of the main polymer resistor 53 is required. In the seat heater used for the seat, the arrangement of the comb-shaped electrodes 51 and 52 of the planar heating element and the polymer resistor 53 is limited in terms of design in consideration of voltage drop and strength, and the performance of the planar heating element is impaired. There was a problem.

つまり、図5のように、両サイドの高分子抵抗体53a、53dに挟まれ中央に位置する櫛形電極51,52及び高分子抵抗体53b、53cのどちらかの一方の櫛形電極51が、電気の供給を受ける部分とつぎの高分子抵抗体53cに電気の供給をする部分の2箇所がどうしても必要となり、どちらかの一方の櫛形電極51が長くなり、電圧ドロップすることにより、面状発熱体全体の温度が低下し発熱特性が劣化することに加え、櫛形電極51を配設する部分が電気の供給を受ける部分とつぎの高分子抵抗体53に電気の供給をする部分の2箇所となるために高分子抵抗体53b、53cの発熱面積が減少することにより、面状発熱体全体の暖房特性が得られなくなってしまう心配があった。   That is, as shown in FIG. 5, one of the comb-shaped electrodes 51 and 52 and the polymer resistors 53b and 53c located in the center between the polymer resistors 53a and 53d on both sides is electrically connected. Two portions, the portion for receiving the supply of electricity and the portion for supplying electricity to the next polymer resistor 53c, are absolutely necessary. When one of the comb-shaped electrodes 51 becomes longer and voltage is dropped, a planar heating element is formed. In addition to a decrease in the overall temperature and deterioration of the heat generation characteristics, the portion where the comb-shaped electrode 51 is disposed is a portion where electricity is supplied and a portion where electricity is supplied to the next polymer resistor 53. For this reason, there is a concern that the heating characteristics of the entire planar heating element cannot be obtained due to a decrease in the heat generation area of the polymer resistors 53b and 53c.

また、それに加え、高分子抵抗体53a,53b,53c,53d間の基材50はつなぐ部分を残して廃棄するために、高分子抵抗体53a,53b間、高分子抵抗体53b,53c間あるいは高分子抵抗体53c,53d間をつなぐ基材50部分は、細くなり強度的に弱くなってまい印刷した電極51,52の断線や劣化を生じ耐久的に劣化してしまう心配があった。   In addition, in order to discard the base material 50 between the polymer resistors 53a, 53b, 53c, and 53d while leaving a portion to be connected, between the polymer resistors 53a and 53b, between the polymer resistors 53b and 53c, or The base material 50 portion connecting the polymer resistors 53c and 53d becomes thin and weak in strength, and there is a concern that the printed electrodes 51 and 52 may be disconnected and deteriorated, resulting in durability deterioration.

本発明は、前記従来の課題を解決するもので、抵抗体間の電極をリード線で接続することにより、効果的に電極を配設出来るようにして発熱体全体の暖房特性を維持しつつ耐久性等の信頼性を向上することを目的とする。   The present invention solves the above-described conventional problems, and by connecting the electrodes between the resistors with lead wires, the electrodes can be effectively disposed, and the heating characteristics of the entire heating element are maintained while being durable. The purpose is to improve reliability such as reliability.

前記課題を解決するために、本発明の面状発熱体は、電気絶縁性基材上に印刷形成された電極及びこの電極により給電される高分子抵抗体と、片面に電極の給電部に給電するリード線を接続し、もう一方の面に導電性樹脂材料を形成して前記電極に面接合するように構成した端子部材と、前記電極と端子部材及び高分子抵抗体を覆い電気絶縁性基材と密着させて配設した被覆材とを備え、電気絶縁性基材上に高分子抵抗体と電極を複数配設するとともに、この複数配設した電極の所定位置に端子部材を配設し、それぞれの端子部材同士をリード線で接続して高分子抵抗体を電気的に一体化するようにしたものである。   In order to solve the above problems, the planar heating element of the present invention includes an electrode printed on an electrically insulating substrate, a polymer resistor fed by the electrode, and a feeding portion of the electrode on one side. A terminal member configured to connect a lead wire to be formed and to form a conductive resin material on the other surface and to be surface-bonded to the electrode, and to cover the electrode, the terminal member, and the polymer resistor, And a plurality of polymer resistors and electrodes on an electrically insulating substrate, and a terminal member is disposed at a predetermined position of the plurality of disposed electrodes. The terminal members are connected to each other by lead wires so that the polymer resistor is electrically integrated.

上記した構成によって、1つの電気絶縁性基材上に複数の抵抗体と電極を配設し、この電極の所定位置に端子部材を配設し、それぞれの端子同士をリード線で接続して複数の抵抗体を電気的に一体化した構成としてあるので、それぞれの電極及び抵抗体の配設における設計的な制約が低減され、異なる形状の抵抗体を効果的につなぎ合わせることができるなど、異形状の面状発熱体の性能を充分に引き出すことができるようになる。   With the above-described configuration, a plurality of resistors and electrodes are disposed on one electrically insulating substrate, a terminal member is disposed at a predetermined position of the electrode, and a plurality of terminals are connected to each other with lead wires. Since the resistors are electrically integrated, the design constraints on the arrangement of the respective electrodes and resistors are reduced, and differently shaped resistors can be effectively joined together. The performance of the planar heating element having the shape can be sufficiently extracted.

つまり、複数の抵抗体をリード線で接続して高分子抵抗体を電気的に一体化することで、それぞれの抵抗体は隣り合う抵抗体の電気の供給を電気絶縁性基材に印刷する電極で行わずにリード線でパラレルにあるいはシリーズに自由に接続できるようになり、設計的な制約が低減され、電極が長くなって電圧ドロップすることや、隣り合う抵抗体に電気の供給するために発熱面積が減少することの心配が無くなり、面状発熱体全体の暖房特性を引き出せるようになる。   That is, by connecting a plurality of resistors with lead wires and electrically integrating the polymer resistors, each resistor is an electrode that prints electricity supply of an adjacent resistor on an electrically insulating substrate In order to be able to connect freely in parallel or in series with lead wires without reducing the voltage, design constraints are reduced, voltage drops due to long electrodes, and electricity is supplied to adjacent resistors There is no need to worry about a decrease in the heat generation area, and the heating characteristics of the entire sheet heating element can be brought out.

また、抵抗体間をつなぐ部分の強度も、リード線で構成されるので、格段と強くすることができ、耐久的にも信頼性を向上することができるようになる。   Further, since the strength of the portion connecting the resistors is also constituted by the lead wire, it can be remarkably strengthened, and the reliability can be improved in terms of durability.

本発明の面状発熱体は、1つの電気絶縁性基材上に複数の抵抗体をリード線で接続して高分子抵抗体を電気的に一体化した構成としてあるので、それぞれの抵抗体の電極及び抵抗体の配設における設計的な制約が低減でき、異形状の面状発熱体の性能を充分に引き出すとともに、耐久性等の信頼性を向上することができるようになる。   Since the planar heating element of the present invention has a structure in which a plurality of resistors are connected by lead wires on one electrical insulating base material and the polymer resistors are electrically integrated, Design constraints in the arrangement of electrodes and resistors can be reduced, the performance of the irregularly shaped planar heating element can be fully exploited, and reliability such as durability can be improved.

第1の発明の面状発熱体は、電気絶縁性基材上に印刷形成された電極及びこの電極により給電される高分子抵抗体と、片面に電極の給電部に給電するリード線を接続しもう一方の面に導電性樹脂材料を形成し電極に面接合するように構成した端子部材と、電極と端子部材及び高分子抵抗体を覆い電気絶縁性基材と密着させて配設した被覆材とを備え、電気絶縁性基材上に高分子抵抗体と電極を複数配設するとともに、この複数配設した電極の所定位置に端子部材を配設し、それぞれの端子部材同士をリード線で接続して高分子抵抗体を電気的に一体化するように構成してある。   The planar heating element according to the first aspect of the present invention comprises an electrode printed on an electrically insulating substrate, a polymer resistor fed by this electrode, and a lead wire feeding a feeding portion of the electrode on one side. A terminal member configured to form a conductive resin material on the other surface and surface-bonded to the electrode, and a covering material disposed in close contact with the electrically insulating base material covering the electrode, the terminal member, and the polymer resistor A plurality of polymer resistors and electrodes are disposed on the electrically insulating substrate, and terminal members are disposed at predetermined positions of the plurality of disposed electrodes, and the respective terminal members are connected with lead wires. The polymer resistors are connected and electrically integrated.

そして、1つの電気絶縁性基材上に複数の抵抗体と電極を配設し、この電極の所定位置に端子部材を配設し、それぞれの端子部材同士をリード線で接続して複数の抵抗体を電気的に一体化した構成としてあるので、それぞれの電極及び抵抗体の配設における設計的な制約が低減され、異なる形状の抵抗体を効果的につなぎ合わせることができるなど、異形状の面状発熱体の性能を充分に引き出すことができるようになる。   Then, a plurality of resistors and electrodes are arranged on one electrical insulating base material, a terminal member is arranged at a predetermined position of the electrode, and each terminal member is connected by a lead wire to form a plurality of resistors. Since the body is electrically integrated, the design constraints on the arrangement of the electrodes and resistors are reduced, and differently shaped resistors can be effectively joined together. The performance of the planar heating element can be sufficiently extracted.

つまり、複数の抵抗体をリード線で接続して高分子抵抗体を電気的に一体化することで、それぞれの抵抗体は隣り合う抵抗体の電気の供給を電気絶縁性基材に印刷する電極で行わずにリード線でパラレルにあるいはシリーズに自由に接続できるようになり、設計的な制約が低減され、電極が長くなって電圧ドロップすることや、隣り合う抵抗体に電気の供給するために発熱面積が減少することの心配が無くなり、面状発熱体全体の暖房特性を引き出せるようになる。   That is, by connecting a plurality of resistors with lead wires and electrically integrating the polymer resistors, each resistor is an electrode that prints electricity supply of an adjacent resistor on an electrically insulating substrate In order to be able to connect freely in parallel or in series with lead wires without reducing the voltage, design constraints are reduced, voltage drops due to long electrodes, and electricity is supplied to adjacent resistors There is no need to worry about a decrease in the heat generation area, and the heating characteristics of the entire sheet heating element can be brought out.

また、抵抗体間をつなぐ部分の強度も、リード線で構成されるので、格段と強くすることができ、耐久的にも信頼性を向上することができるようになる。   Further, since the strength of the portion connecting the resistors is also constituted by the lead wire, it can be remarkably strengthened, and the reliability can be improved in terms of durability.

第2の発明の面状発熱体は、特に第1発明の電気絶縁性基材上に高分子抵抗体と電極を複数配設するとともに、この複数配設した電極の所定位置に端子部材を面接合し端子部材同士をリード線で接続して複数の抵抗体を電気的に一体化するように構成し、且つ、端子部材同士を接続するリード線の一部或いは全体を被覆材とは別の保護部材で覆うように構成としてある。   The planar heating element according to the second invention has a plurality of polymer resistors and electrodes arranged on the electrically insulating substrate of the first invention, and a terminal member is placed at a predetermined position of the arranged electrodes. The terminal members are connected to each other with lead wires so that the plurality of resistors are electrically integrated, and part or all of the lead wires for connecting the terminal members to each other are separated from the covering material. It is set as the structure so that it may cover with a protection member.

そして、第1発明の端子部材同士をリード線で接続して複数の抵抗体を電気的に一体化する効果に加え、端子部材同士を接続するリード線の一部或いは全体を被覆材とは別の保護部材で覆うように構成してあるので、さらに、抵抗体間をつなぐ部分の強度も、リード線で構成される上に保護部材で保護され、格段と強くすることができ、耐久的にも信頼性を向上することができるようになるとともに、電極同士を接続するリード線が露出することにより引っ掛かりやすくなって、面状発熱体を損ねたりする心配が無くなり、面状発熱体の生産性や施工性などを向上することができるようになる。   And in addition to the effect which connects the terminal members of 1st invention with a lead wire, and electrically integrates several resistors, a part or whole of the lead wire which connects terminal members is separated from a coating | covering material. In addition, the strength of the portion connecting the resistors is also protected by the protective member, and can be remarkably strengthened. In addition to improving the reliability, the lead wire connecting the electrodes becomes easy to be caught, and there is no risk of damaging the sheet heating element. And workability can be improved.

第3の発明の面状発熱体は、特に第1〜2の発明の面状発熱体に給電する電極のどちらか一方あるいは両方を閉回路となるように構成してある。   The planar heating element according to the third aspect of the invention is configured so that either one or both of the electrodes for supplying power to the planar heating element of the first and second inventions are in a closed circuit.

そして、面状発熱体に給電する電極のどちらか一方あるいは両方を閉回路のとなるように構成してあるので、電極に一部が何らかの理由で亀裂や断線状態となっても、電気が回り込んで供給されるために、面状発熱体の発熱に大きな支障を与えることなく使用出来るようになり、面状発熱体の耐久性を大幅に向上することができるようになる。   Since either or both of the electrodes that supply power to the planar heating element are configured as a closed circuit, even if a part of the electrode is cracked or disconnected for some reason, electricity does not rotate. Therefore, the sheet heating element can be used without significantly affecting the heat generation of the sheet heating element, and the durability of the sheet heating element can be greatly improved.

第4の発明は、特に第1〜3の発明の端子部材の導電性樹脂材料が電極に対して熱接着性を示すとともに熱硬化性とした構成としてある。   In the fourth invention, in particular, the conductive resin material of the terminal member of the first to third inventions has a thermosetting property with respect to the electrode.

そして、前記端子部材の導電性樹脂材料が電極に対して熱接着性を示すとともに熱硬化性とした構成としてあるので、端子部材の導電性樹脂材料が電極に接合される前は未硬化の状態とし、面接合時に熱をかけることで接着が可能となり、リード線の取り付け時等の電極に熱をかけた時に熱接着して硬化させることにより、その熱硬化の過程において、揮発分が除去されているので発泡せず、緻密な構造となり、十分な強度が得ら、導電性樹脂材料の本来の接着強度を発揮でき、簡単な構成で端子部材が電極に確実に面接合できるようになる。   And since the conductive resin material of the terminal member shows a thermoadhesiveness with respect to the electrode and has a thermosetting structure, it is in an uncured state before the conductive resin material of the terminal member is joined to the electrode. Adhesion is possible by applying heat at the time of surface bonding, and volatile components are removed in the process of thermosetting by heat-adhering and curing when applying heat to the electrode, such as when attaching lead wires. Therefore, it does not foam and becomes a dense structure, and sufficient strength can be obtained. The original adhesive strength of the conductive resin material can be exhibited, and the terminal member can be reliably bonded to the electrode with a simple configuration.

第5の発明は、特に第1〜4の発明のリード線の取り付け部に絶縁性保護処理を施した構成としてある。   The fifth aspect of the invention has a configuration in which an insulating protection treatment is applied to the lead wire attachment portion of the first to fourth aspects of the invention.

そして、リード線の取り付け部に絶縁性保護材を塗布した構成としてあるので、リード線の取り付け部から電極及び電極により給電される高分子抵抗体が絶縁性保護材に保護され、外気と遮断されて構成されるようになり、湿気や異物による汚染劣化や、電極のマイグレーションによるショートなどの不具合を防止でき、より性能の安定性や耐久性を向上させることができる。   In addition, since the insulating protective material is applied to the lead wire attachment portion, the electrode and the polymer resistor fed by the electrode from the lead wire attachment portion are protected by the insulating protective material and blocked from the outside air. Thus, it is possible to prevent problems such as contamination deterioration due to moisture and foreign matter, and short-circuiting due to electrode migration, thereby improving performance stability and durability.

そして、第6の発明は、特に第1〜5の発明の面状発熱体を暖房器具の熱源として搭載したものである。   And the 6th invention mounts the planar heating element of the 1st-5th invention especially as a heat source of a heating appliance.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1、図2において、面状発熱体は、電気絶縁性基材1上に配設したメイン発熱部2とその右および左へ配設される右サイド発熱部3と左サイド発熱部4で構成されている。
(Embodiment 1)
In FIG. 1 and FIG. 2, the sheet heating element includes a main heating part 2 disposed on the electrically insulating substrate 1, a right side heating part 3 and a left side heating part 4 disposed on the right and left sides thereof. It is configured.

メイン発熱部2は、ポリエステル不織布2aにラミネートされたポリエステルフィルム等の薄肉の電気絶縁性基材1上に銀ペーストの印刷・乾燥により形成した一対の電極6に重なるように高分子抵抗体インクを印刷・乾燥により形成した高分子抵抗体7を形成している。そして、上記電極6、高分子抵抗体7、及び電気絶縁性基材1と接着性を有するアクリル系接着剤等の接着性樹脂層8を予め形成されたポリエステルフィルム等の薄肉の電気絶縁性オーバコート材をラミネートした被覆材9を貼り合わせて形成される。   The main heat generating portion 2 is coated with a polymer resistor ink so as to overlap a pair of electrodes 6 formed by printing and drying a silver paste on a thin-walled electrically insulating substrate 1 such as a polyester film laminated on a polyester nonwoven fabric 2a. The polymer resistor 7 formed by printing and drying is formed. Then, a thin-walled electrically insulating overcoating film such as a polyester film in which an adhesive resin layer 8 such as an acrylic adhesive having adhesiveness with the electrode 6, the polymer resistor 7, and the electrically insulating substrate 1 is formed in advance. The covering material 9 laminated with the coating material is bonded together.

上記電極6は、対向するように幅が広い主電極6a,6bを配設し、それぞれの主電極6a,6bから交互に櫛形形状の複数の枝電極6c、6dを設けてあり、これに重なるように配設した高分子抵抗体10に枝電極6c、6dより給電することで、電流が流れ、発熱するようになる。   The electrode 6 is provided with wide main electrodes 6a and 6b so as to face each other, and a plurality of comb-shaped branch electrodes 6c and 6d are alternately provided from the respective main electrodes 6a and 6b, and overlap each other. By supplying power to the polymer resistor 10 arranged as described above from the branch electrodes 6c and 6d, current flows and heat is generated.

この高分子抵抗体10はPTC特性を有し、温度が上昇すると抵抗値が上昇し、所定の温度になるように自己温度調節機能を有するようになり、温度コントロールが不要で安全性の高い面状発熱体としての機能を有するようになる。   This polymer resistor 10 has PTC characteristics, and when the temperature rises, the resistance value rises and has a self-temperature adjusting function so as to reach a predetermined temperature. It has a function as a heating element.

この電極の配設パターンは、図1に示すように、中側に位置する主電極6bの中心から外に向けて配設した櫛形形状の複数の枝電極6dに交互に位置するように、中側に位置する主電極6bを周囲から包囲するように位置させた外側に位置する主電極6aから内側に向けて配設した櫛形形状の複数の枝電極6dが配設してあり、外側に位置する主電極6aは閉回路の構成としてある。   As shown in FIG. 1, the arrangement pattern of the electrodes is arranged so that the plurality of comb-shaped branch electrodes 6d are arranged alternately from the center of the main electrode 6b located on the middle side. A plurality of comb-shaped branch electrodes 6d arranged inward from the main electrode 6a located outside are positioned so as to surround the main electrode 6b located on the side from the periphery, and are located outside. The main electrode 6a is configured as a closed circuit.

また、メイン発熱部2の右および左へ配設される右サイド発熱部3と左サイド発熱部4は同様に構成されており、右サイド発熱部3は、電気絶縁性基材11上に銀ペーストの印刷・乾燥により形成した一対の電極12と、この電極12に重なるように高分子抵抗体インクを印刷・乾燥により形成した高分子抵抗体13を形成し、電気絶縁性オーバコート材をラミネートした被覆材14を貼り合わせて構成してある。   Further, the right side heat generating part 3 and the left side heat generating part 4 arranged to the right and left of the main heat generating part 2 are configured similarly, and the right side heat generating part 3 is silver on the electrically insulating base material 11. A pair of electrodes 12 formed by printing / drying a paste and a polymer resistor 13 formed by printing / drying a polymer resistor ink so as to overlap the electrodes 12 are formed, and an electrically insulating overcoat material is laminated. The covered covering material 14 is bonded together.

そして、左サイド発熱部4も、電気絶縁性基材15上に銀ペーストの印刷・乾燥により形成した一対の電極16と、この電極16に重なるように高分子抵抗体インクを印刷・乾燥により形成した高分子抵抗体17を形成し、電気絶縁性オーバコート材をラミネートした被覆材18を貼り合わせて構成してある。   The left side heat generating portion 4 is also formed by printing / drying a pair of electrodes 16 formed by printing / drying silver paste on the electrically insulating base material 15 and the electrode 16 so as to overlap the electrodes 16. The polymer resistor 17 is formed, and a covering material 18 laminated with an electrically insulating overcoat material is bonded together.

そしてまた、メイン発熱部2および右サイド発熱部3と左サイド発熱部4の主電極給電部分に端子部材19を面接合するとともに、それぞれの端子部材19にリード線20を接続し、これらのリード線20は同極となる右サイド発熱部3と左サイド発熱部4の主電極給電部分からメイン発熱部2の主電極給電部分を介して電源へ接続するように構成してある。さらに、リード線20の取り付け部には、シリコン接着剤などの絶縁性保護材21を塗布してある。   Further, the terminal members 19 are surface-bonded to the main electrode feeding portions of the main heat generating portion 2, the right side heat generating portion 3, and the left side heat generating portion 4, and lead wires 20 are connected to the respective terminal members 19, and these leads are connected. The line 20 is configured to be connected to the power source from the main electrode power feeding portion of the right heat generating portion 3 and the left side heat generating portion 4 having the same polarity via the main electrode power feeding portion of the main heat generating portion 2. Further, an insulating protective material 21 such as a silicon adhesive is applied to the attachment portion of the lead wire 20.

また加工法について、加工工程の順序としては基本的に同じなのでメイン発熱部2で説明すると、まず、この端子部材19の電極6の給電部分に接する面には導電性樹脂材料19aを形成してあり、この導電性樹脂材料19aによって電極6と端子部材19の間は電気的及び物理的に接合されていて、導電性樹脂材料19aは電極6に対して熱接着性を示すとともに熱硬化性としてあり、共重合ポリエステルに導電性付与材として銀粉末を分散し、さらに、硬化剤としてイソシアネートを適量添加して作製された導電性ペーストを使用している。   Since the processing method is basically the same as the order of the processing steps, the main heating portion 2 will be described. First, a conductive resin material 19a is formed on the surface of the terminal member 19 that contacts the power feeding portion of the electrode 6. The conductive resin material 19a is electrically and physically joined between the electrode 6 and the terminal member 19, and the conductive resin material 19a exhibits thermal adhesiveness to the electrode 6 and is thermosetting. There is used a conductive paste prepared by dispersing silver powder as a conductivity-imparting material in a copolyester and further adding an appropriate amount of isocyanate as a curing agent.

この段階の導電性樹脂材料19aは、イソシアネートによる硬化反応が生じないように低温で乾燥されているために熱可塑性を保持しており、融点以上の温度で加圧すれば電極6との熱融着が可能である状態にある。この場合、特に、電極6に導電性樹脂材料19aは同種の樹脂を使用すると熱融着性は極めて良く、十分な熱融着強度が得られる。   The conductive resin material 19a at this stage retains thermoplasticity because it is dried at a low temperature so as not to cause a curing reaction due to isocyanate. You are ready to wear. In this case, in particular, when the same kind of resin is used as the conductive resin material 19a for the electrode 6, the heat fusion property is very good and sufficient heat fusion strength can be obtained.

次に、ポリエステル不織布2aにラミネートされたポリエステルフィルム等の薄肉の電気絶縁性基材5をロール状に作成したものに、銀ペーストの印刷・乾燥により一対の電極6を形成する。その後、電極6に重なるように高分子抵抗体インクを印刷・乾燥により高分子抵抗体10を形成したのちに、電極6、高分子抵抗体10、及び電気絶縁性基材5と接着性を有するアクリル系接着剤等の接着性樹脂層8を予め形成されたポリエステルフィルム等の薄肉の電気絶縁性オーバコート材をラミネートした被覆材9を貼り合わせて形成して、発熱体本体部分が完成される。   Next, a pair of electrodes 6 is formed by printing and drying a silver paste on a roll-shaped thin insulating base material 5 such as a polyester film laminated on the polyester nonwoven fabric 2a. Thereafter, after the polymer resistor 10 is formed by printing and drying the polymer resistor ink so as to overlap the electrode 6, it has adhesiveness with the electrode 6, the polymer resistor 10, and the electrically insulating substrate 5. An adhesive resin layer 8 such as an acrylic adhesive is formed by laminating a covering material 9 formed by laminating a thin electrical insulating overcoat material such as a polyester film, which is formed in advance, thereby completing the heating element body portion. .

そして、発熱体本体部分の外形抜きを行った後、被覆材9の上から半田こてで被覆材9を溶かしてリード線20を半田22で接続し、最後に、リード線20の取り付け部にシリコン接着剤などの絶縁性保護材21を塗布したのち、端子部材19を接続するリード線20の全体を被覆材9の上から別の保護部材23で覆うように配設して組み立てが完了する。   Then, after the outer shape of the heating element main body is removed, the coating material 9 is melted from above the coating material 9 with a soldering iron, and the lead wire 20 is connected with the solder 22. Finally, the lead wire 20 is attached to the attachment portion of the lead wire 20. After applying the insulating protective material 21 such as silicon adhesive, the entire lead wire 20 connecting the terminal member 19 is disposed so as to be covered with another protective member 23 from above the covering material 9 to complete the assembly. .

そしてまた、リード線20の接続は、同極となる右サイド発熱部3と左サイド発熱部4の主電極給電部分からそれぞれメイン発熱部2の主電極給電部分へ接続するリード線20aを介し、メイン発熱部2の主電極給電部分から電源へ接続するリード線20bが接続されるように構成してある。   The lead wire 20 is connected to the main electrode feeding portion of the main heating portion 2 from the main electrode feeding portion of the right side heating portion 3 and the left side heating portion 4 having the same polarity, respectively. A lead wire 20b connected from the main electrode feeding portion of the main heat generating portion 2 to the power source is connected.

ここで、メイン発熱部2および右サイド発熱部3と左サイド発熱部4の主電極給電部分に端子部材19を面接合するとともに、それぞれの端子部材19にリード線20を接続し、これらのリード線は同極となる右サイド発熱部3と左サイド発熱部4の主電極給電部分からそれぞれメイン発熱部2の主電極給電部分へ接続するリード線20aを介し、メイン発熱部2の主電極給電部分から電源へ接続するリード線20bが接続されるように構成してあるので、それぞれの面状発熱体の電極6、12、16及び高分子抵抗体7,13,17の配設における設計的な制約が低減され、異なる形状の面状発熱体を効果的につなぎ合わせることができるなど、異形状の面状発熱体の性能を充分に引き出すことができるようになる。   Here, the terminal member 19 is surface-bonded to the main electrode feeding portion of the main heating portion 2, the right side heating portion 3, and the left side heating portion 4, and the lead wires 20 are connected to the respective terminal members 19, and these leads are connected. The wires are fed from the main electrode feeding portion of the right side heating unit 3 and the left side heating unit 4 to the main electrode feeding portion of the main heating unit 2 through the lead wires 20a respectively having the same polarity. Since the lead wire 20b connected from the portion to the power source is connected, the design in the arrangement of the electrodes 6, 12, 16 and the polymer resistors 7, 13, 17 of the respective planar heating elements is designed. Thus, it is possible to sufficiently bring out the performance of the irregularly shaped planar heating elements, such as by effectively joining the planar heating elements having different shapes.

つまり、複数の高分子抵抗体7,13,17をリード線20aで接続して電気的に一体化することで、それぞれの高分子抵抗体7,13,17は隣り合う高分子抵抗体7,13,17の電気の供給を電気絶縁性基材に印刷する電極で行わずにリード線でパラレルにあるいはシリーズに自由に接続できるようになり、設計的な制約が低減され、電極が長くなって電圧ドロップすることや、隣り合う抵抗体に電気の供給するために発熱面積が減少することの心配が無くなり、面状発熱体全体の暖房特性を引き出せるようになる。   That is, by connecting a plurality of polymer resistors 7, 13, and 17 by lead wires 20a and integrating them electrically, each polymer resistor 7, 13, and 17 is adjacent to each other. 13 and 17 electricity can be freely connected in parallel or in series with lead wires without using electrodes printed on an electrically insulating substrate, design constraints are reduced, and electrodes are lengthened. There is no need to worry about voltage drop or reduction of the heat generation area because electricity is supplied to adjacent resistors, and the heating characteristics of the entire sheet heating element can be brought out.

また、高分子抵抗体7,13,17間をつなぐ部分の強度も、リード線20で構成されるので、格段と強くすることができ、耐久的にも信頼性を向上することができるようになる。   Moreover, since the strength of the portion connecting the polymer resistors 7, 13, 17 is also constituted by the lead wire 20, it can be remarkably strengthened and the reliability can be improved in terms of durability. Become.

そして、端子部材19同士を接続するリード線20全体を被覆材の上から別の保護部材23で覆うように構成してあるので、さらに、高分子抵抗体7,13,17間をつなぐ部分の強度も、リード線20で構成される上に保護部材23で保護され、格段と強くすることができ、耐久的にも信頼性を向上することができるようになるとともに、端子部材19を接続するリード線20が露出することにより引っ掛かりやすくなって、面状発熱体を損ねたりする心配が無くなり、面状発熱体の生産性や施工性などを向上することができるようになる。   Since the entire lead wire 20 connecting the terminal members 19 is covered with another protective member 23 from the top of the covering material, the portion connecting the polymer resistors 7, 13, 17 is further provided. In addition to being composed of the lead wire 20 and being protected by the protective member 23, the strength can be remarkably increased, and the reliability can be improved in terms of durability, and the terminal member 19 is connected. Since the lead wire 20 is exposed, it becomes easy to be caught, and there is no fear of damaging the planar heating element, and the productivity and workability of the planar heating element can be improved.

さらに、この電極の配設パターンは、図1に示すように、中側に位置する主電極の中心から外に向けて配設した櫛形形状の複数の枝電極6dに、交互に位置するように、中側に位置する主電極6bを周囲から包囲するように位置させた外側に位置する主電極6aから内側に向けて配設した櫛形形状の複数の枝電極6dが配設してあり、外部からのストレスが多い外側に位置する主電極は閉回路の構成としてあるので、外側に位置する電極の一部が何らかの理由で亀裂や断線状態となっても、電気が回り込んで供給されるために、面状発熱体の発熱に大きな支障を与えることなく使用出来るようになり、面状発熱体の耐久性を大幅に向上することができるようになる。   Further, as shown in FIG. 1, this electrode arrangement pattern is alternately arranged on a plurality of comb-shaped branch electrodes 6d arranged outward from the center of the main electrode located on the inner side. A plurality of comb-shaped branch electrodes 6d disposed inwardly from the outer main electrode 6a positioned so as to surround the main electrode 6b positioned on the inner side from the periphery. Because the main electrode located on the outside where there is a lot of stress from is configured as a closed circuit, even if a part of the electrode located outside becomes cracked or disconnected for some reason, electricity wraps around and is supplied In addition, the sheet heating element can be used without greatly hindering the heat generation of the sheet heating element, and the durability of the sheet heating element can be greatly improved.

また、端子部材19の導電性樹脂材料19aが電極6,12,16に対して熱接着性を示すとともに熱硬化性とした構成としてあるので、端子部材19の導電性樹脂材料19aが電極6,12,16に接合される前は未硬化の状態とし、面接合時に熱をかけることで接着が可能となり、リード線20の取り付け時等の電極6,12,16に熱をかけた時に熱接着して硬化させることにより、その熱硬化の過程において、揮発分が除去されているので発泡せず、緻密な構造となり、十分な強度が得ら、導電性樹脂材料の本来の接着強度を発揮でき、簡単な構成で端子部材19が電極6に確実に面接合できるようになる。   In addition, since the conductive resin material 19a of the terminal member 19 is configured to be thermosetting and thermoadhesive to the electrodes 6, 12, 16, the conductive resin material 19a of the terminal member 19 is the electrode 6, Before being joined to 12, 16, it is in an uncured state and can be bonded by applying heat at the time of surface bonding. When the lead wire 20 is attached, the electrodes 6, 12, 16 are heat bonded. By curing, the volatile matter is removed in the process of thermosetting, so it does not foam, it has a dense structure, sufficient strength can be obtained, and the original adhesive strength of the conductive resin material can be demonstrated. The terminal member 19 can be reliably surface-bonded to the electrode 6 with a simple configuration.

そしてまた、リード線20の取り付け部に絶縁性保護材21を塗布し絶縁性保護処理を施した構成としてあるので、リード線20の取り付け部から電極6及びこの電極6により給電される高分子抵抗体17が絶縁性保護材に保護され、外気と遮断されて構成されるようになり、湿気や異物による汚染劣化や、電極6のマイグレーションによるショートなどの不具合を防止でき、より性能の安定性や耐久性を向上させることができる。   In addition, since the insulating protection material 21 is applied to the attachment portion of the lead wire 20 and the insulating protection treatment is performed, the electrode 6 and the polymer resistor fed by the electrode 6 from the attachment portion of the lead wire 20 are provided. The body 17 is protected by an insulating protective material and is configured to be cut off from the outside air, thereby preventing problems such as contamination deterioration due to moisture and foreign matter and short-circuiting due to migration of the electrode 6, and more stable performance. Durability can be improved.

なお、端子部材19の接着など複数の面状発熱体の説明をメイン発熱部11で代表して説明したがこれは、他の右サイド発熱部3と左サイド発熱部4についても同様な効果が得られ、また、メイン発熱部2と右サイド発熱部3と左サイド発熱部4の片側の電極6,12a,16bをリード線20aで接続して複数の発熱部を電気的に一体化する構成で説明したが、これは両側の電極をリード線20aで接続してもよく、その他各部の構成も本発明の目的を達成する範囲であればその構成はどのようなものであってもよい。   The description of the plurality of planar heating elements such as the bonding of the terminal member 19 has been described with the main heating part 11 as a representative, but this also has the same effect for the other right side heating part 3 and the left side heating part 4. Further, a configuration is obtained in which the electrodes 6, 12a, 16b on one side of the main heat generating portion 2, the right side heat generating portion 3, and the left side heat generating portion 4 are connected by a lead wire 20a to electrically integrate a plurality of heat generating portions. As described above, the electrodes on both sides may be connected by the lead wire 20a, and the configuration of each part may be any configuration as long as the object of the present invention is achieved.

以上のように、本発明は複数の高分子抵抗体の電極をリード線で接続して複数の発熱部を電気的に一体化することにより、効果的に電極を配設出来るようにして発熱体全体の暖房特性を維持しつつ耐久性等の信頼性を向上することができ、使い勝手が大幅に向上するものであり、主に車輌に用いられるカーシートヒータや、ハンドルヒータ等の車輌用や暖房器具や加熱器具等の用途にも適用できる。   As described above, according to the present invention, a plurality of polymer resistor electrodes are connected by lead wires, and a plurality of heat generating portions are electrically integrated, so that the electrodes can be arranged effectively and the heat generating body. While maintaining the overall heating characteristics, reliability such as durability can be improved, and the usability is greatly improved. For vehicle heating such as car seat heaters and handle heaters mainly used in vehicles It can also be applied to uses such as appliances and heating appliances.

本発明の実施の形態1における面状発熱体の構成を示す平面図The top view which shows the structure of the planar heating element in Embodiment 1 of this invention 同面状発熱体の端子部近傍の断面図Sectional view of the vicinity of the terminal part of the same heating element (a)従来の発熱体の構成を示す平面図(b)同発熱体の断面図(A) Plan view showing the configuration of a conventional heating element (b) Cross-sectional view of the heating element 従来の面状発熱体の被覆材の貼り合わせ時の概略構成図Schematic configuration diagram when pasting a conventional sheet heating element covering material 従来の他の面状発熱体を示す構成平面図Configuration plan view showing another conventional sheet heating element

符号の説明Explanation of symbols

2 面状発熱体
5 電気絶縁性基材
6 電極
7 高分子抵抗体
9 被覆材
19 端子部材
19a 導電性樹脂材料
20 リード線
21 絶縁性保護材
23 保護部材
DESCRIPTION OF SYMBOLS 2 Planar heating element 5 Electrically insulating base material 6 Electrode 7 Polymer resistor 9 Cover material 19 Terminal member 19a Conductive resin material 20 Lead wire 21 Insulating protective material 23 Protective member

Claims (6)

電気絶縁性基材上に印刷形成された電極及びこの電極により給電される高分子抵抗体と、片面に前記電極の給電部に給電するリード線を接続し、もう一方の面に導電性樹脂材料を形成して電極に面接合するように構成した端子部材と、前記電極と端子部材及び高分子抵抗体を覆い電気絶縁性基材と密着させて配設した被覆材とを備え、電気絶縁性基材上に高分子抵抗体と電極を複数配設するとともに、この複数配設した電極の所定位置に端子部材を配設し、それぞれの端子部材同士をリード線で接続して高分子抵抗体を電気的に高分子抵抗体一体化するようにした面状発熱体。 An electrode printed on an electrically insulating substrate, a polymer resistor fed by this electrode, a lead wire feeding power to the feeding portion of the electrode on one side, and a conductive resin material on the other side A terminal member configured to be surface-bonded to the electrode, and a covering material disposed so as to cover the electrode, the terminal member, and the polymer resistor so as to be in close contact with the electrically insulating base material, A plurality of polymer resistors and electrodes are disposed on the substrate, and terminal members are disposed at predetermined positions of the plurality of disposed electrodes, and the respective terminal members are connected to each other by lead wires. Is a sheet heating element in which a polymer resistor is integrated electrically. 電気絶縁性基材上に高分子抵抗体と電極を複数配設するとともに、この複数配設した電極の所定位置に端子部材を面接合し端子部材同士をリード線で接続して高分子抵抗体電気的に一体化するように構成し、且つ、端子部材同士を接続するリード線の一部或いは全体を被覆材とは別の保護部材で覆うように構成した請求項1記載の面状発熱体。 A plurality of polymer resistors and electrodes are arranged on an electrically insulating substrate, and a terminal member is surface-bonded to a predetermined position of the plurality of arranged electrodes, and the terminal members are connected to each other by lead wires. The planar heating element according to claim 1, wherein the sheet heating element is configured to be electrically integrated, and is configured to cover part or all of the lead wires connecting the terminal members with a protective member different from the covering material. . 面状発熱体に給電する電極のどちらか一方あるいは両方を閉回路となるように構成した請求項1〜2記載のいずれか1記載の面状発熱体。 The planar heating element according to any one of claims 1 to 2, wherein one or both of the electrodes for supplying power to the planar heating element are configured to be a closed circuit. 端子部材の導電性樹脂材料が電極に対して熱接着性を示すとともに熱硬化性とした請求項1〜3記載のいずれか1記載の面状発熱体。 The planar heating element according to any one of claims 1 to 3, wherein the conductive resin material of the terminal member exhibits thermoadhesiveness to the electrode and is thermosetting. リード線の取り付け部に絶縁性保護処理を施した請求項1〜4記載のいずれか1項記載の面状発熱体。 The planar heating element according to any one of claims 1 to 4, wherein an insulating protection treatment is applied to a lead wire attachment portion. 請求項1〜5のいずれか1項記載の面状発熱体を熱源として搭載した暖房器具。 The heating appliance which mounts the planar heating element of any one of Claims 1-5 as a heat source.
JP2005165119A 2005-06-06 2005-06-06 Sheet-like heating element Pending JP2006339094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165119A JP2006339094A (en) 2005-06-06 2005-06-06 Sheet-like heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165119A JP2006339094A (en) 2005-06-06 2005-06-06 Sheet-like heating element

Publications (1)

Publication Number Publication Date
JP2006339094A true JP2006339094A (en) 2006-12-14

Family

ID=37559470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165119A Pending JP2006339094A (en) 2005-06-06 2005-06-06 Sheet-like heating element

Country Status (1)

Country Link
JP (1) JP2006339094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198751A (en) * 2009-02-23 2010-09-09 Panasonic Corp Planar heating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198751A (en) * 2009-02-23 2010-09-09 Panasonic Corp Planar heating element

Similar Documents

Publication Publication Date Title
JPH04185455A (en) Heater
JP4867439B2 (en) Planar heating element
JP2008300050A (en) Polymer heating element
JP2007280788A (en) Plane shaped heating element
JP4946349B2 (en) Planar heating element
JP4793053B2 (en) Planar heating element
JP2006339094A (en) Sheet-like heating element
JP4552486B2 (en) Planar heating element
JP2006351459A (en) Planar heat radiation device
JP2007066698A (en) Planar heating element
JP4277729B2 (en) Planar heating element
JP2006324182A (en) Planar heating element
JP2006351458A (en) Flat heating device
JP2006324181A (en) Planar heating element
KR101468637B1 (en) Method of manufacture for flexible carbon heater and carbon heater
JP2018077963A (en) Planar heating element
JP3818987B2 (en) Planar heater and manufacturing method thereof
JP4747506B2 (en) Planar heating element
JP4872593B2 (en) Planar heating element
JP5061769B2 (en) Planar heating element
JPH08264262A (en) Planar heat generating body
JP5194726B2 (en) Planar heating element
JP2009181732A (en) Sheet heating element
JP4674564B2 (en) Planar heating element
KR102327373B1 (en) Film boiler and manufacturing method thereof